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Abstract

A quasiperiodic trajectory (xn) ⊂ X0, where X0 is a d-dimensional differen-
tiable manifold, is characterised by a diffeomorphism h : Td → X0 and an irra-
tional vector ρ ∈ Rd such that xn = h(nρ (mod 1)). We will see that ρ and the
Fourier coefficients of h can be expressed as a limit of a Birkhoff average, i.e. an
average over a certain function along the trajectory (xn). The Birkhoff Ergodic
Theorem provides us the convergence of these averages BN( f ) := ∑N−1

n=0 f (xn)/N
to the space average as N → ∞.

Sad to say this convergence is slow. The main goal of this work is to show
that if we modify the Birkhoff average by weighting each term such that the early
and late terms of the set {0, ..., N − 1} are weighted much less than the terms
with n ∼ N/2 in the middle, the weighted average converges far faster to the
space average. Hence, this numerical technique will allow us to obtain efficient
numerical computation of ρ and h for quasiperiodic systems. This work is based
on the research of S. Das, Y. Saiki, E. Sander and J. Yorke.

Our work proceeds as follows: Chapter 1 presents the formal definition of
quasiperiodicity, Chapter 2 explains the necessary concepts for stating the Birkhoff
Ergodic Theorem, Chapter 3 provides a detailed description of the superconver-
gence numerical technique of the weighted Birkhoff averages, and the last chapters
show how this method applies to compute ρ and h alongside numerical examples.

Keywords: Quasiperiodicity, Birkhoff Ergodic Theorem, Rotation Vector.
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iv Introduction

Resum

Una trajectòria quasiperiòdica (xn) ⊂ X0, on X0 és una varietat diferencial
d-dimensional, es caracteritza per un difeomorfisme h : Td → X0 i un vector
irracional ρ ∈ Rd tal que xn = h(nρ (mod 1)). Al llarg del treball, veurem que ρ

i els coeficients de Fourier de h es poden expressar com un límit d’una mitjana
de Birkhoff, és a dir, una mitjana sobre una determinada funció al llarg de la
trajectòria (xn). El Teorema Ergòdic de Birkhoff ens proporciona la convergència
d’aquestes mitjanes BN( f ) := ∑N−1

n=0 f (xn)/N a la mitjana espacial quan N → ∞.

Malgrat tot, aquesta convergència és lenta. L’objectiu principal d’aquest tre-
ball és demostrar que si modifiquem la mitjana de Birkhoff ponderant cada terme
de manera que els termes inicials i finals del conjunt {0, ..., N − 1} tinguin una
importància inferior que els termes amb n ∼ N/2 al mig, la mitjana ponderada
convergeix molt més ràpid a la mitjana espacial. Per tant, aquest mètode numèric
ens permetrà obtenir una bona approximació de ρ i h per a sistemes quasiper-
iòdics. Aquest treball es basa en la recerca de S. Das, Y. Saiki, E. Sander i J. Yorke.

El nostre treball procedeix de la següent manera: el Capítol 1 conté la defini-
ció formal de quasiperiodicitat, el Capítol 2 explica els conceptes necessaris per
enunciar el Teorema Ergòdic de Birkhoff, el Capítol 3 proporciona una descripció
detallada del mètode numèric de superconvergència de les mitjanes ponderades
de Birkhoff i els darrers capítols mostren com s’aplica aquest mètode per calcular
ρ i h juntament amb exemples numèrics.

Paraules claus: Quasiperiodicitat, Teorema Ergòdic de Birkhoff, Vector de
Rotació.
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Chapter 1

Quasiperiodicity

It has been hypothesised in [1] that for typical randomly chosen physical sys-
tems, there are only three kinds of maximal recurrent sets that are likely to be
present: periodic orbits, quasiperiodic orbits and chaotic sets. For instance, a sys-
tem as elementary as the double pendulum with zero air friction, depicted in the
following Figure 1.1, can present all three behaviours. Note that the outcomes may
differ depending on the specific characteristics of the double pendulum in ques-
tion and the initial state, characterised by the initial angles and angular velocities.

Figure 1.1: Double pendulum.

In this work, we will focus on quasiperiodicity. Quasiperiodic dynamics hold
significant importance across many scientific disciplines. In mathematics, they
provide deep insights into the structure of dynamical systems and their long-term
evolution. In physics, quasiperiodic motion can be found everywhere: from ce-
lestial mechanics to solid-state physics. In material science, quasiperiodicity can
be spotted in quasicrystals, which are the materials with quasiperiodic atomic ar-
rangements, that have unique mechanical, thermal, and electric properties. Over-
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2 Quasiperiodicity

all, quasiperiodic dynamics are important for understanding the richness and
complexity of natural phenomena and for extending mathematical abstraction
over real-world applications. Currently, there is a significant amount of pioneering
research across several scientific disciplines which study this dynamics.

In this first chapter, we start by explaining which are the conditions such that,
given a trajectory (xn), we can establish it has quasiperiodic motion. Most of the
definitions seen in this chapter are sourced from [2].

1.1 Irrational Rotations

Throughout this section, we will introduce irrational rotations, which represent
the most basic form of quasiperiodic maps and provide an intuitive understanding
of quasiperiodicity. Mastering the properties of these maps serves as a foundation
for exploring more intricate quasiperodic maps. We will denote the d-dimensional
torus as Td := Rd/Zd ' (R/Z)d.

Definition 1.1. Let ρ = (ρ1, . . . , ρd) ∈ Td. A (pure) rotation on the d-dimensional
torus Td is a map defined as:

Tρ : Td −→ Td

θ 7−→ θ + ρ mod 1 in each coordinate

We call ρ the rotation vector and each ρj a rotation number, for j = 1, . . . , d. Notice
that we are rotating each coordinate θj by its correspondent angle ρj. In some
papers, this map is referred to as a translation by ρ.

In some cases, it is useful to consider ρ ∈ Rd, and then take modulo 1 when
computing the image.

Definition 1.2. We say ρ = (ρ1, . . . , ρd) ∈ Rd is irrational (or non-resonant) if ∀k =

(k1, . . . , kd) ∈ Zd \ {0}, k · ρ := k1ρ1 + . . . + kdρd /∈ Z. If the condition is not
satisfied, we will say that ρ is resonant.

Example 1.3. The vector (
√

2,
√

2) ∈ R2 is irrational (or non-resonant), while the
vector (1,

√
2) ∈ R2 is resonant.

Definition 1.4. A (pure) irrational rotation is a rotation with an irrational rotation
vector.

Theorem 1.5. Let Tρ : Td → Td be a rotation. Tρ is an irrational rotation iff each
trajectory is dense in Td.

Proof. See proof in [3], Proposition 1.4.1.
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1.2 The Conjugacy Problem

Definition 1.6. Let X be a Cr-manifold of dimension d and Tρ be an irrational
rotation on the d-dimensional torus. A map F : X → X is quasiperiodic with irra-
tional rotation vector ρ if there exists a Cr-diffeomorphism h : Td → X such that
F(h(θ)) = h(Tρ(θ)) for all θ ∈ Td. Equivalently, if the following diagram com-
mutes:

X F // X

Td
Tρ

//

h

OO

Td

h

OO

Note that this implies that F is also a Cr-diffeomorphism. We refer to h as the
Cr-conjugacy of F to Tρ.

Definition 1.7. Let X be a Cr-manifold of dimension n ≥ d and X0 ⊆ X be a
d-dimensional invariant manifold with respect to F, i.e. F(X0) ⊆ X0. We will say
that F : X → X is quasiperiodic with irrational rotation vector ρ on X0 ⊆ X if there
exists a conjugacy map h : Td → X such that F(h(θ)) = h(Tρ(θ)) for all θ ∈ Td

and, in addition, h(Td) = X0 ⊆ X and h : Td → X0 is a Cr-diffeomorphism.

The following figure tries to illustrate this concept, which is the scenario in
most of the cases. As h acts as a parametrisation of X0, we will sometimes refer to
X0 as a d-dimensional invariant torus embedded in X.

Figure 1.2: Main idea of the parametrisation h for the invariant manifold X0, which
presents quasiperiodic behaviour. Notice that in the angle coordinates θ ∈ Td, the
dynamics are a rotation by ρ.

The main challenge in proving the existence of a quasiperiodic behaviour lies
in parameterising X0 ⊆ X such that the dynamics of the dynamical system are an
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irrational rotation. Formally, to establish that a d-dimensional trajectory (xn) ∈ X0

is quasiperiodic, it is sufficient to find a conjugacy map h : Td → X and an
irrational vector ρ ∈ Td such that xn = h(nρ (mod 1)). It is important to realise
that an irrational rotation is automatically a quasiperiodic map. The problem of
finding h and ρ, knowing only the trajectory (xn), is referred to as the Conjugacy
Problem.

Theorem 1.8. Let X be a Cr-manifold, F : X → X be a Cr-map, and X0 ⊆ X be an
invariant Cr-manifold of dimension d. Assume the dynamics of F|X0 are known to be Cr-
conjugated to a rotation Tρ. F is quasiperiodic on X0, i.e. ρ is irrational, iff each trajectory
under F is dense in X0.

Proof. Let x0 ∈ X0 and consider its trajectory under F denoted as (xn := Fn(x0))n∈Z≥0 .
The trajectory is quasiperiodic iff there exists a Cr-diffeomorphism h : Td → X0

and an irrational vector ρ such that xn = h(nρ mod 1). By hypothesis, we know
there exists a Cr-conjugacy h of F|X0 to Tρ. If we assume ρ is irrational, the se-
quence (nρ mod 1)n∈Z≥0 follows an irrational rotation, so by Theorem 1.5 it is
dense in Td. Since h is a conjugacy, this is equivalent to the fact that (xn)n∈Z≥0 is
dense in X0.

Example 1.9. (Linear flow on a Torus) Consider a vector field X on T2 defined
by:

X : T2 −→ R2

(x, y) 7−→ (1, α)

where α is constant. Consider the Poincaré section ∑ := {(0, y)|y ∈ T} ⊂ T2.
Recall we can represent the 2-dimensional torus T2 = {(x, y) (mod 1) |(x, y) ∈
R2} as a square with opposite sides identified, thus it is equivalent to consider
∑ = {(1, y)|y ∈ T}. Let πy : T2 → T be the projection onto the y-coordinate
πy(x, y) = y, and let ϕ1 : ∑ → ∑ be the flow at time 1. Then, define T : T→ T as
T(y) := πy ◦ ϕ1(0, y) = y + α (mod 1), which is a rotation by α.

If α = p/q ∈ Q with p, q ∈ Z coprime, the orbit {Tn(y0)}n≥0 is periodic
for any y0 ∈ T. Moreover, it returns to itself after q units of time. If instead
α ∈ R \Q, T is quasiperiodic. Notice that for different n, m ∈N, Tn(y0) = Tm(y0)

iff nα = mα (mod 1) iff (n − m)α ∈ Z, which is impossible as α is irrational;
therefore, each orbit is dense in T. See Figure 1.3 and Figure 1.4.

1.3 Orientation-preserving Circle Homeomorphisms

In the previous section, we mentioned that to demonstrate the quasiperiodic
nature of a trajectory (xn), we must find an irrational vector ρ and a conjugacy
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Figure 1.3: Exact orbit of y0 = 0 under
the flow T when α = 2/3 ∈ Q. It is
3-periodic.

Figure 1.4: Approximation of the orbit
of y0 = 0 under the flow T when α =

1/
√

2 ∈ R \Q. It is dense.

map h satisfying xn = h(nρ (mod 1)). For a more in-depth understanding of the
Conjugacy problem, we will examine the case where d = 1 and see how these
objects are computed.

The definitions and results we will present are well-known from Poincaré and
most of them can be found in Katok and Hasselblatt’s book [3]. Thoughout the
section, we will refer to π : R → R/Z =: T as the projection π(x) = x (mod 1)
for x ∈ R.

Definition 1.10. Let T : T → T be an homeomorphism. We say that an homem-
orphism T̂ : R → R is a lift of T if satisfies T ◦ π(x) = π ◦ T̂(x) for all x ∈ R.
Equivalently,

R
T̂ //

π
��

R

π
��

T
T
// T

It is unique up to an additive integer constant.

Definition 1.11. An homeomorphism T : T → T is orientation-preserving if there
exists a lift that is monotonically increasing.

Recall that any homeomorphism of R is monotone, hence this gives a notion
of "preserving/swapping the orientation".

Lemma 1.12. Let T : T→ T be an orientation-preserving homeomorphism. Then:

(1) There exists a lift T̂ : R→ R of T.

(2) T̂ is strictly increasing.



6 Quasiperiodicity

(3) T̂(x + k) = T(x) + k, ∀x ∈ R, k ∈ Z.

(4) G(x) := T̂(x)− x is 1-periodic in x ∈ R.

Proof. Property (4) can be proven as follows: G(x + 1) := T̂(x + 1) − (x + 1) =

T̂(x) + 1− x− 1 = T̂(x)− x =: G(x), where we have used Property (3).

Example 1.13. Consider the Arnold (circle) family defined as

Aα,ε : T −→ T

θ 7−→ θ + α− ε
2π sin(2πθ) (mod 1)

for some constants α, ε ∈ R. Its lifts are the form of Âα,ε,K(x) = x+ α− ε
2π sin(2πx)+

K for x ∈ R, where K ∈ Z.

Proposition 1.14. (Rotation Number) Let T : T → T be an orientation-preserving
homeomorphism and consider one of its lifts T̂ : R→ R. Let θ0 ∈ T and define

ρ(T̂) := lim
N→∞

1
N
(T̂N(θ0)− θ0)

Then, ρ(T̂) ∈ R, it is independent of θ0, and it is well-defined up to an integer. In fact, if
T̂1, T̂2 are two different lifts of T, then ρ(T̂1)− ρ(T̂2) = T̂1 − T̂2 ∈ Z.

Proof. See proof in [3], Proposition 11.1.1.

Definition 1.15. We define the rotation number of T as ρ(T) := π(ρ(T̂)) ∈ T. When
there is no-space for confusion, we will write just ρ. Note that as we have taken
modulo 1, ρ(T) is well-defined.

In 1-dimension, any homemorphism of the circle that preserves orientation
has an associated rotation number, although it does not necessarily have to be
quasiperiodic.

Proposition 1.16. Let T : T → T be an orientation-preserving homeomorphism. Then,
ρ(T) ∈ Q iff T has a periodic point.

Proof. See proof in [3], Proposition 11.1.4.

Proposition 1.17. (The Rotation Number is invariant under homeomorphisms)
Let T, h : T → T be orientation-preserving homeomorphisms. Then, ρ(h−1 ◦ T ◦ h) =

ρ(T).
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Proof. See proof in [3], Proposition 11.1.3.

This proposition extends the definition of rotation number from rotations to
more intrinsic maps, as long as they are conjugated to a rotation. In this work,
we use this result to justify that a general 1-dimensional quasiperiodic map F :
X → X conjugated to an irrational rotation Tρ, has an associated rotation number
ρ(F) := ρ(Tρ) = ρ.

Hence, we have obtained a formula to compute the rotation number for circle
homeomorphisms T : T → T: we compute the limit defined in Proposition 1.14
and then take it modulo 1.

Notice that the rotation number can also be computed by averaging as follows:

ρ(T̂) := lim
N→∞

1
N
(T̂N(θ0)− θ0) = lim

N→∞

1
N

N−1

∑
n=0

(T̂n+1(θ0)− T̂n(θ0))

= lim
N→∞

1
N

N−1

∑
n=0

(T̂(T̂n(θ0))− T̂n(θ0)) = lim
N→∞

1
N

N−1

∑
n=0

G(T̂n(θ0))

where G : R → R is the 1-periodic function defined in Lemma 1.12. Thus,
given a trajectory (θn) of length N, the rotation number can be computed as
ρ = limN→∞

1
N ∑N−1

n=0 G(T̂n(θ0)). In other words, ρ can be computed as a Birkhoff
average, which is an average of a function over an orbit. Although this may seem
like just another way to compute ρ, understanding this approach is crucial when
the limit is computed numerically. There is a result in the field of Ergodic The-
ory, known as the Birkhoff Ergodic Theorem, concerning the convergence of these
averages to a certain integral. In the following chapter, we will see what useful
information we can derive from it.

Moreover, the 1-dimensional Conjugacy Problem also involves finding a dif-
feomorphism h : T→ X, where X is a 1-dimensional differentiable manifold. It is
important to note that h must be 1-periodic in θ ∈ T (since θ = θ + 1 in T, then
h(θ) = h(θ + 1)). Let us consider its Fourier series representation:

h(θ) = ∑
k∈Z

cke2πikθ , where ck =
∫

T
h(θ)e−2πikθdθ

As previously mentioned, the Birkhoff Ergodic Theorem guarantees convergence
of the Birkhoff averages to a certain integral; thus we will approximate the Fourier
coefficients ck of the conjugacy h through Birkhoff averages. We will explain in
detail how to do this in Chapter 4. For now, the idea is that

lim
N→∞

1
N

N−1

∑
n=0

h(Tn(θ0))e−2πikTn(θ0) −→ ck



8 Quasiperiodicity



Chapter 2

Ergodic Theory in Broad
Brushstrokes

In the preceding chapter, we mentioned that to demonstrate the quasiperiodic
nature of a trajectory (xn), we must find an irrational vector ρ and a conjugacy
map h satisfying xn = h(nρ (mod 1)). We have also suggested that, as a result of
the Birkhoff Ergodic Theorem, it is possible to find a numerical approximation of
these crucial objects by computing the limit of Birkhoff averages.

Within this chapter, we will state the Birkhoff Ergodic Theorem. This re-
quires introducing some foundational mathematical concepts of Ergodic Theory.
This field studies the statistical properties of deterministic dynamical systems by
analysing the behaviour of time averages of various functions along system tra-
jectories. Ergodic Theory is extensively discussed in [4]. While we won’t go into
detail, we will provide an overview of its key concepts. It is important to stress
that some definitions and theorems may be modified to allow the map F to have
different domain and codomain.

2.1 Measure-preserving Maps

Let us start by defining the basics notions of Measure Theory that we will need.

Definition 2.1. Let X be a set and P(X) be its power set. A subset B ⊆ P(X) is a
σ-algebra over X if satisfies: X ∈ B, B is closed under complementation (if B ∈ B,
then X \ B ∈ B), and B is closed under countable unions (if B1, . . . , Bn ∈ B, then
B1 ∪ . . . ∪ Bn ∈ B).

Definition 2.2. Let X be a set and B be a σ-algebra over X. The tuple (X,B) is
known as a measurable space.

9



10 Ergodic Theory in Broad Brushstrokes

Definition 2.3. Let (X,B) be a measurable space. A map F : X → X is measurable
if for every B ∈ B, F−1(B) := {x ∈ X|F(x) ∈ B} ∈ B.

Definition 2.4. A measure on a measurable space (X,B) is a positive function
µ : B → R≥0 ∪ {+∞} with µ(∅) = 0 such that satisfies the countable additivity:
for any countable collection {Bn}n∈N of pairwise disjoint sets in B, µ(∪n∈NBn) =

∑n∈N µ(Bn). Moreover, we say that µ is a probability measure if µ(X) = 1.

Definition 2.5. Let (X,B) be a measurable space and µ be a measure on (X,B).
The triple (X,B, µ) is called a measure space. Moreover, if µ is a probability mea-
sure, then (X,B, µ) is known as a probability measure space

Now we are ready to define what is a measure-preserving map, which we will
presume to have from Chapter 3 onward.

Definition 2.6. Let (X,B, µ) be a measure space. A measurable map F : X → X is
a measure-preserving (or µ-invariant) map if for all B ∈ B, µ(B) = µ(F−1(B)). We
will refer to µ as the invariant measure for F.

Note that we define this concept in terms of the inverse to avoid discussing the
injectivity of F.

Proposition 2.7. (Measure-preserving is invariant under homeomorphisms) Let
(X,BX, µX) and (Y,BY, µY) be measure spaces. Let F : X → X be measure-preserving
with respect to µx and h : X → Y be a measurable homeomorphism. Assume µY(BY) :=
µX(h−1(BY)) for BY ∈ BY. Then, G := h ◦ F ◦ h−1 is measure-preserving with respect to
µY.

Y G // Y

X

h

OO

F
// X

h

OO

Proof. As µX is F-invariant, µX(BX) = µX(F−1(BX)) for all BX ∈ BX. Consider
BY ∈ BY. Since h is measurable, it preserves the σ-algebras, i.e. h−1(BY) ∈ BX.
Then, µY(BY) := µX(h−1(BY)) = µX(F−1(h−1(BY)) = µY(h(F−1(h−1(BY))) =

µY(G−1(BY))). Hence, µY is G-invariant.

We will now state a theorem that proves, under certain additional conditions,
the existence of such measures for dynamical systems in compact metric spaces.

Definition 2.8. Let X be a set. A metric on X is a function d : X × X → R such
that for x, y, z ∈ X: d(x, x) = 0; if x 6= y, then d(x, y) > 0; d(x, y) = d(y, x); and
d(x, z) ≤ d(x, y) + d(y, z). The tuple (X, d) is known as a metric space.
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Theorem 2.9. (Krylov-Bogolyubov) Let X be a compact metric space. For any contin-
uous map F : X → X there exists invariant (probability) Borel measures.

Proof. See proof in [4], Theorem 3.5.1.

There is a very particular context, where proving that a map F is measure-
preserving with respect to the Lebesgue measure in Rd is very simple.

Lemma 2.10. Let (Rd,B, λ) be the measure space where B is the σ-algebra formed by
the Borel measurable sets and λ stands for the Lebesgue measure. Let f : Rd → R be a
continuous function such that ∀B ∈ B,

∫
B f dx = 0. Then, f (x) = 0 for all x ∈ Rd.

Proof. Assume there exists x0 ∈ Rd such that f (x0) 6= 0. Without loss of generality,
assume f (x0) > 0. Then, as f is continuous, there exists ε > 0 such that f (x) > 0
∀x ∈ B(x0, ε). Hence,

∫
B(x0,ε) f dx > 0, which contradicts the hypothesis.

Lemma 2.11. Let (Rd,B, λ) be the measure space where B is the σ-algebra formed by
the Borel measurable sets and λ stands for the Lebesgue measure. Let F : Rd → Rd be a
C1-diffeomorphism. F is measure-preserving with respect to λ iff |det(DF(x))| = 1 for
all x ∈ Rd.

Proof. Since F is a diffeomorphism, it is injective and we can rewrite the measure-
preserving condition as λ(B) = λ(F(B)), for all B ∈ B. This is equivalent to∫

B
dx =

∫
F(B)

du⇐⇒
∫

B
dx =

∫
B
|det(DF(x))|dx

where we used the change of variables formula for multivariable integration.
If we assume that |det(DF(x))| = 1 for all x ∈ Rd, then the equality of integrals

holds, so F is measure-preserving. To show the other implication, we must demon-
strate that ∀B ∈ B,

∫
B(1− |det(DF(x))|)dx = 0. As f (x) := 1− |det(DF(x))| is

continuous, the previous Lemma holds and f (x) = 0 for all x ∈ Rd, which implies
that |det(DF(x))| = 1 for all x ∈ Rd.

Example 2.12. Consider the Standard map defined as:

Fε : T×R −→ T×R

(x, y) 7−→ (x + y− ε
2π sin(2πx), y− ε

2π sin(2πx))

See Figure 5.1 for a plot of its orbits. The differential matrix of F is(
1− εcos(2πx) 1
−εcos(2πx) 1

)
(2.1)

As det(DF) = 1, F is an area-preserving map with respect to the Lebesgue measure
on T×R, induced by the one on R2.
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2.2 Ergodicity

Definition 2.13. Let (X,B, µ) be a measure space. A measure-preserving dynami-
cal system F : X → X is ergodic if for every F-invariant set B ∈ B, i.e. F−1(B) = B,
it is the case that either µ(B) = 0 or µ(X \ B) = 0. We refer to µ as an ergodic
measure for F.

In other words, the definition implies the absence of non-trivial invariant sets
under system’s dynamics.

Proposition 2.14. (Ergodicity is invariant under homeomorphisms) Let (X,BX, µX)

and (Y,BY, µY) be measure spaces. Let F : X → X be ergodic with respect to µx and
h : X → Y be a measurable homeomorphism. Assume µY(BY) := µX(h−1(BY)) for
BY ∈ BY. Then, G := h ◦ F ◦ h−1 is ergodic with respect to µY.

Y G // Y

X

h

OO

F
// X

h

OO

Proof. By Proposition 2.7, we know µY is G-invariant. Notice that since h is mea-
surable, it preserves the σ-algebras, i.e. h−1(BY) ∈ BX. Let us start by characteris-
ing G-invariant sets:

G−1(BY) = BY ⇐⇒ (h ◦ F ◦ h−1)−1(BY) = BY

⇐⇒ (h ◦ F−1 ◦ h−1)(BY) = BY ⇐⇒ F−1(h−1(BY)) = h−1(BY)

Hence, BY is G-invariant iff h−1(A) is F-invariant. We will now show that BY has
either zero-measure or full-measure with respect to µY. As F is ergodic, we know
that any set BX ∈ BX such that F−1(BX) = BX, satisfies either µX(BX))) = 0 or
µX(X \ BX) = 0. Thus, if BY is G-invariant, then h−1(BY) ∈ BX is F-invariant and
has either zero-measure or full-measure with respect to µX. Since h is a bijection,
this implies that BY satisfies either µY(BY) = 0 or µY(Y \ BY) = 0.

We will now present a lemma that provides a necessary and sufficient con-
dition for determining if a dynamical system is ergodic. Its utility will become
apparent in the following chapter.

Lemma 2.15. (Ergodicity via invariant square integrable functions) Let (X,B, µ)

be a probability measure space and F : X → X be a measure-preserving map. F is ergodic
iff for all f ∈ L2(X, µ) such that f ◦ T = f µ-a.e., f is µ-a.e. constant.

Proof. See proof in [4], Lemma 3.6.3.
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2.3 Birkhoff Ergodic Theorem

Once the previous sections are understood, we can state one of the main results
on which our work is based: the Birkhoff Ergodic Theorem.

Definition 2.16. Let (X,B, µ) be a measure space and F : X → X be a measure-
preserving map. Let n ∈N and f : X → Rn a function. Given x0 ∈ X and N ∈N,
consider the N-segment of the forward orbit through x0. We define the Birkhoff
average of the function f at the point x0 as the time average of the form:

BN,F( f )(x0) :=
1
N

N−1

∑
n=0

f (Fn(x0))

Theorem 2.17. (Birkhoff Ergodic Theorem for ergodic transformations) Consider
the same notation as in the previous Definition 2.16. Let F be an ergodic map with respect
to µ. For all f ∈ L1(X, µ) and for µ-a.e. x0 ∈ X, the Birkhoff time average converges to
the space average, i.e

lim
N→∞

BN,F( f )(x0) =
∫

X
f dµ

Moreover, for any non-constant f , there exists a constant K > 0 such that for infinitely
many N: ∣∣∣ 1

N

N−1

∑
n=0

f (Fn(x0))−
∫

X
f dµ
∣∣∣≥ K

N

Proof. See proof of the first part in [4], Theorem 3.8.2. See proof of the second part
in [5].

It is important to note that for numerical computations, a rate of convergence
greater than O(1/N) is quite slow. In the following chapter, we will see how the
rate of convergence can be improved assuming F is quasiperiodic.

Observe that the fact that the convergence holds for µ-a.e. x ∈ X, implies
that the average behaviour of the system can be deduced from the trajectory of
a "typical" point. In the particular case that f = XB, where XB stands for the
characteristic function of B, the Birkhoff Ergodic Theorem implies that for all B ⊆ X
the proportion of time the system spends in B, as time goes to infinity, is the
same regardless of the starting point, provided the initial condition is in a set of
full-measure.
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Chapter 3

Superconvergence of Ergodic
Averages for Quasiperiodic Orbits

By the Birkhoff Ergodic Theorem 2.17, we know that the time average con-
verges to the space average. But for general ergodic dynamical systems, the rate
of convergence of these sums can be arbitrarily slow, as mentioned in the theorem.
For many purposes the speed of convergence is irrelevant but it is important for
numerical computations. We will show that we can improve the rate of conver-
gence if the dynamical system is quasiperiodic.

The idea is to modify the Birkhoff average by weighting each term such that
the early and late terms of the set {0, ..., N − 1} are weighted much less than
the terms with n ∼ N/2 in the middle. Assuming in addition that (xn) is a
quasiperiodic trajectory and f ∈ C∞, we will demonstrate that the weighted time
average converges far faster to the space average.

3.1 Rotations are Measure-preserving Maps

Since Td is a compact metric space and rotations are continuous, by Theorem
2.9, we know there exist a measure such that the rotations are measure-preserving
maps. We will now demonstrate that the Lebesgue probability measure satisfies
this requirement.

Definition 3.1. For any open interval I := (a, b) ⊆ [0, 1], we consider its length
as l(I) := b − a. Let d ∈ N and C ⊆ [0, 1]d be a rectangular cuboid, i.e. C :=
I1 × . . .× Id is a product of open intervals. We consider its volume as vol(C) :=
λ1(I1) · . . . · λ1(Id). The Lebesgue probability measure on [0, 1]d is λd : Ad → [0, 1],

15
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where Ad is a borelian σ-algebra of [0, 1]d, defined so that for each A ∈ A,

λd(A) := inf{
∞

∑
n=1

vol(Cn)|(Cn)n∈N is a sequence of cuboides and A ⊆
∞⋃

n=1

Cn}

Definition 3.2. The Lebesgue probability measure on Td is λd : Bd → [0, 1], where Bd

is a borelian σ-algebra of Td, defined in the same way of the Lebesgue probability
measure on [0, 1]d under the identification Td := Rd/Zd ' ([0, 1]/0 ∼ 1)d.

Lemma 3.3. The Lebesgue probability measure λd is invariant for rotations.

Proof. We will proof the result only for d = 1. A 1-dimensional rotation is a map
Tρ : T → T such that Tρ(θ) = θ + ρ (mod 1). Consider (a, b) ⊆ T, its Lebesgue
probability measure λ1((a, b)) is given by its positive difference, i.e. λ1((a, b)) =

min{|b − a|, |1 + a − b|}. Notice that T−1
ρ = T−ρ and thus the inverse is also

a rotation. As the image of an interval under a rotation has the same length,
λ1((a, b)) = λ1(T−1

ρ ((a, b))). Therefore, Tρ is λ1-invariant.

Now, we will state that there is only one possible choice of measure for which
an irrational rotation is a measure-preserving map. According to the precedent
Lemma 3.3, this measure must be the Lebesgue probability measure.

Proposition 3.4. An irrational rotation has a unique measure for which it is a measure-
preserving map, which is the Lebesgue probability measure.

Proof. See proof in [3], Proposition 4.2.1.

3.2 How Ergodicity applies to Irrational Rotations

In this section, we will see whether the concept of ergodicity defined in the pre-
vious chapter is applicable to rotations. In particular, we will proceed to show that
an irrational rotation is ergodic with respect to the Lebesgue probability measure,
while rational rotations are not, as illustrated by a counterexample.

Theorem 3.5. (Uniqueness of Fourier Coefficients) Let f ∈ L2(Td, λd). Then, its
Fourier coefficients ck = 0 for all k ∈ Zd iff f (θ) = 0 for λd-a.e. θ ∈ Td. In particular,
taking differences, if two functions have the same Fourier coefficients, then they are the
same except on a zero-measure set.
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Proposition 3.6. An irrational rotation is ergodic with respect to λd.

Proof. We will employ Lemma 2.15. Consider f ∈ L2(Td, λd) and assume f (Tρ(θ)) =

f (θ) for λd-a.e. point θ ∈ Td, we want to show that f is constant λd-a.e. Consider
the Fourier series of f and f ◦ Tρ:

f (θ) = ∑
k∈Zd

cke2πik·θ , where ck =
∫

Td
f (θ)e−2πik·θdθ

f ◦ Tρ(θ) = ∑
k∈Zd

ĉke2πik·θ , where ĉk =
∫

Td
f ◦ Tρ(θ)e−2πik·θdθ

Using Tρ(θ) := θ + ρ (mod 1) and doing a change of variables,

ĉk =
∫

Td
f (θ + ρ)e−2πik·θdθ =

∫
Td

f (θ)e2πik·(ρ−θ)dθ = e2πik·ρck

Thus,
f ◦ Tρ(θ) = ∑

k∈Zd

[
cke2πik·ρ

]
e2πik·θ

Since we have assumed that f (Tρ(θ)) = f (θ) for λd-a.e., by Theorem 3.5 we
can equate both expressions of the Fourier series, which implies:

ck = cke2πik·ρ ⇐⇒ ck(1− e2πik·ρ) = 0 for all k ∈ Zd

As ρ is an irrational vector, @k ∈ Zd \ {0} such that k · ρ ∈ Z, so (1− e2πik·ρ) 6= 0
and ck = 0 for all k ∈ Zd \ {0}. Thus, all Fourier coefficients of f are zero except
possibly c0. Then, f = c0 for λd-a.e. as we wanted to show.

Note that this can be extended to show that a general quasiperiodic map is
ergodic, as follows.

Corollary 3.7. Let F : X → X be a quasiperiodic map on X0, where X0 ⊆ X is a
d-dimensional manifold. Assume it is conjugated to an irrational rotation Tρ through a
measurable diffeomorphism h : Td → X0. Then, F is ergodic with respect to the measure
defined by µ(B) := λd(h−1(B)), for B ⊆ X.

Proof. By definition, F = h(Tρ) where h is a diffeomorphism and Tρ is an irra-
tional rotation, which by the previous Proposition 3.6 is ergodic. Therefore by
Proposition 2.14, F is also ergodic.

Example 3.8. (Rational rotations are not ergodic with respect to λ) Let ρ = p/q
with p, q ∈ Z coprime. Let λ1 be the Lebesgue probability measure of T. Consider
Tρ : T→ T such that Tρ(θ) := θ + ρ, for θ ∈ T. Define for q ∈N,

Aq :=
q−1⋃
i=0

[
i
q

,
i
q
+

1
2q

] ⊆ T



18 Superconvergence of Ergodic Averages for Quasiperiodic Orbits

The set Aq is clearly invariant under Tρ, since the rational rotation sends each
interval into another one. Since A is a union of q intervals of equal length 1/2q,
λ1(Aq) = 1/2 ∈ (0, 1). We have constructed an invariant set whose measure is
neither 0 nor 1, thus Tρ is not ergodic with respect to λ1.

We will now proof a version of the Birkhoff Ergodic Theorem for circle homeo-
morphisms. Note that in this particular case, the result is self-contained and does
not require Measure Theory. Moreover, we will see that we obtain a bound of
order O(1/N) for the rate of convergence of the Birkhoff averages to the space
average. The proof is taken from [6].

Theorem 3.9. (Birkhoff Ergodic Theorem for Circle Homeomorphisms) Let ρ ∈
R \Q. For every continuous function f : T → C and θ0 ∈ T, the temporal average
converges to the spatial average, i.e.

1
N

N−1

∑
n=0

f (Tn
ρ (θ0)) −→

∫
T

f (θ)dθ as N → ∞

Proof. Consider θ0 = 0 so that the temporal average is 1/N ∑N−1
n=0 f (nρ). Let us

define EN( f ) := 1/N ∑N−1
n=0 f (nρ)−

∫
T

f (θ)dθ. Our goal is to show that EN( f ) →
0.

(1) First, notice that if f (θ) = 1, then EN( f ) = 1− 1 = 0. Secondly, if f (θ) = e2πikθ

for k 6= 0, then

EN( f ) =
1
N

N−1

∑
n=0

e2πiknρ −
∫

T
e2πikθdθ =

1
N

N−1

∑
n=0

e2πiknρ =
1
N

e2πikNρ − 1
e2πikρ − 1

Using the triangular inequality and |eiα| = 1 for all α ∈ R,

|EN( f )| ≤ 1
N

2
|e2πikρ − 1|

−→ 0 as N → ∞

Therefore, if f (θ) = ∑d
k=−d ake2πikθ , by linearity EN( f )→ 0 as N → ∞.

(2) If f , g : T→ C and ‖ f − g‖∞ ≤ ε for a constant ε > 0 as small as we want,

|EN( f )− EN(g)| ≤ 1
N

N−1

∑
n=0
| f (nρ)− g(nρ)|+

∫
T
| f (θ)− g(θ)|dθ ≤ ε + ε = 2ε

We know that for any arbitrary continuous function f : T→ C, and any constant
ε > 0, there exists a trigonometric polynomial p : T → C such that ‖ f − p‖∞ ≤
ε/3. Because of (1), there exists N0 such that for all N ≥ N0, |EN(p)| ≤ ε/3. By
(2), for all N, |EN( f )− EN(p)| ≤ 2ε/3. Putting this together, we have that for all
N > N0,

|EN( f )| ≤ |EN( f )− EN(p)|+ |EN(p)| ≤ 2ε/3 + ε/3 = ε

which proofs the theorem.
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3.3 Weighted Birkhoff Averages

In this section, we aim to define what are the weighted Birkhoff averages and
state the main theorem of this work about the superconvergence of these averages.
This is based on the research of S. Das, Y. Saiki, E. Sander and J. Yorke, which is
explained in [2] and [7].

Definition 3.10. A Cm function w : R → [0, ∞) is a bump function if its support
supp(w) := Cl{x ∈ R|w(x) 6= 0} = [0, 1],

∫
R

w(x)dx 6= 0, and w and all of its
derivatives up to order m vanish at 0 and 1.

Example 3.11. An example of a C∞ bump function family is the exponential weight-
ings:

w[p](t) =

{
exp( −1

tp(1−t)p ) for t ∈ (0, 1)

0 for t /∈ (0, 1)

Figure 3.1: Representation of the bump function w[1](t) for t ∈ [0, 1].

Definition 3.12. Let (X,B, µ) be a probability measure space and F : X → X be a
measure-preserving map. Let n ∈N and f : X → Rn a function. Let w be a bump
function. Given x0 ∈ X and N ∈ N, consider the N-segment of the forward orbit
through x0. We define the weighted Birkhoff average of the function f at the point x0

as the time average of the form:

WBN,F( f )(x0) :=
1

AN

N−1

∑
n=0

w(
n
N
) f (Fn(x0)), where AN :=

N−1

∑
n=0

w(
n
N
)

Notice that it is an average of f (Fn(θ)) as ∑N−1
n=0

w(n/N)
AN

= 1. Heuristically, this
scheme weights more heavily the "typical" terms in the middle of the sequence,
avoiding "boundary effects" due to the fact that we average only a finite orbit
segment.
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Definition 3.13. An irrational vector ρ ∈ Rd is said to be Diophantine if for some
β > 0 it is Diophantine of class β, i.e. there exists Cβ > 0 such that for every
k ∈ Zd \ {0}, and every n ∈ Z,

|k · ρ− n| ≥
Cβ

‖k‖d+β

In most of the cases, the norm is set to be ‖k‖1 := k1 + . . . + kd ∈ R. Diophan-
tine vectors are a highly irrational type of vectors. The idea is that they can not be
well-approximated by any rational vector. Nonetheless, they are abundant.

Proposition 3.14. (Diophantine vectors are dense in Rd) For all β > 0, the set of
Diophantine vectors of class β have full Lebesgue measure in Rd.

Proof. See proof in [8], Proposition 5.4.

Now we are ready to introduce the Weighted Birkhoff Ergodic theorem, which
is the main result that this work is based on.

Theorem 3.15. (Weighted Birkhoff Ergodic Theorem) Let X be a Cr-manifold and
F : X → X be a Cr-map, which is quasiperiodic on a d-dimensional manifold X0 ⊆ X.
Assume F has a Diophantine class β rotation vector ρ. Let µ be the induced measure on
X0 by the Cr-conjugacy between F and an irrational rotation Tρ. Let n ∈ N and let
f : X → Rn be a Cr-function. Then, for each m ∈ N such that r > d + m(d + β), there
exists a constant Km > 0 independent of x0 ∈ X0 that satisfies

|WBN,F( f )(x0)−
∫

X0

f dµ| ≤ Km

Nm , for all N ∈N

where we consider w to be a Cm bump function.

Proof. See following Section 3.4.

In the proof, we will see that the constant Km relies on w(t) and its first m
derivatives, the function f , and the Diophantine class β of the rotation vector.
However, it remains independent of x0.

Since the limit as N → ∞ is the same for WBN,F( f )(x0) and BN,F( f )(x0), the
weighted Birkhoff average provides a faster method to compute the space integral.
In all 1D quasiperiodic studies shown in [7], convergence using weighted averages
to a 30-digits accuracy is achieved well before N = 106 iterates. While if we had
used BN , we would need N ∼ 1030 according to Theorem 3.9. Hence, assuming a
computation rate of 106 iterates per second, WBN would require 1 second, while
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BN would demand over 1 billion billion years. Therefore, there is a pressing need
for fast convergence.

As an observation, no single bump function consistently outperforms others.
The optimal choice depends on the specific problem and the desired level of pre-
cision. This is illustrated through examples in [7].

Another pertinent observation is that if the ergodic process T were chaotic
instead of quasiperiodic, the weighted Birkhoff averages would not provide any
advantage over the Birkhoff averages.

It is worth noting that there is a particular case of the theorem that demon-
strates superconvergence. In our examples, we will often have this scenario.

Definition 3.16. Let (aN)
∞
N=0 be a sequence in a normed vector space such that

aN → b as N → ∞. We say (aN) superconverges to b if for each m ∈ N, there exists
a constant Km > 0 that satisfies

|aN − b| ≤ Km

Nm , for all N ∈N

Corollary 3.17. (C∞ version of the Weighted Birkhoff Ergodic Theorem) Let X be
a C∞-manifold and F : X → X be a C∞-map, which is quasiperiodic on a d-dimensional
manifold X0 ⊆ X and has invariant probability measure µ induced by the C∞-conjugacy
between F and an irrational rotation Tρ. Assume F has a Diophantine rotation vector ρ.
Let n ∈ N and let f : X → Rn be a C∞-function. Assume w is a C∞ bump function.
Then, for all x0 ∈ X0, the weighted Birkhoff average WBN,F( f )(x0) has superconvergence
to
∫

X0
f dµ. Moreover, the convergence is uniform in x0.

Proof. Consider Theorem 3.15 with r = ∞.

3.4 Proof of the Superconvergence of Weighted Birkhoff
Averages

To proof Theorem 3.15, we need to previously state two important results.

Lemma 3.18. (Poisson Summation Formula) Let g : R → C be a Schwarz function,
i.e. ∀c > 0, n ∈N there exists a constant Kn,c > 0 such that |g(n)(x)| ≤ Kn,c

|x|c . Let k ∈ R

and let ĝ(k) :=
∫

R
g(x)e−2πikxdx be the Fourier transform. Then,

∑
n∈Z

g(n) = ∑
k∈Z

ĝ(k)
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Proof. Let us define G(x) := ∑n∈Z g(x + n) for x ∈ R. Notice that G(x + 1) =

G(x), so G is 1-periodic. The Fourier series of a periodic function G is

G(x) = ∑
k∈Z

Ĝke2πikx, where its Fourier coefficients are Ĝk :=
∫ 1

0
G(x)e−2πikxdx

Then,

Ĝk =
∫ 1

0
∑

n∈Z

g(x + n)e−2πikxdx = ∑
n∈Z

∫ 1

0
g(x + n)e−2πikxdx

= ∑
n∈Z

∫ 1

0
g(x + n)e−2πik(x+n)dx = ∑

n∈Z

∫ n+1

n
g(y)e−2πikydy

=
∫

R
g(y)e−2πikydy =: ĝ(k)

where we have used that e−2πikn = 1 and that g is a Schwarz function, so its
Fourier series converges uniformly, to change the order of the integral and the
summation.

Therefore, G(x) = ∑k∈Z Ĝke2πikx = ∑k∈Z ĝ(k)e2πikx. This implies ∑n∈Z g(x +

n) = ∑k∈Z ĝ(k)e2πikx. Let us fix x = 0, then ∑n∈Z g(n) = ∑k∈Z ĝ(k) as we wanted.

Remark 3.19. This result also works for g ∈ L2, though its proof relies on Distri-
bution Theory.

Lemma 3.20. ∑k∈Zd\{0} ‖k‖−α
1 converges iff α > d, where ‖ · ‖1 := |k1|+ |k2|+ . . . +

|kd| is the l1-norm.

Proof. It suffices to prove the convergence for ∑k∈Zd
≥1

1
‖k‖α

1
. Observe that,

∑
k∈Zd

≥1

1
‖k‖α

1
= ∑

k∈Zd
≥1

1
(k1 + . . . + kd)α

= ∑
S≥d

∑
{k∈Zd

≥1|k1+...+kd=S}

1
Sα

Recall that the number of monomials of d variables and degree n is:

∑
{k∈Zd

≥0|k1+...+kd=n}
1 =

(
d + n− 1

d− 1

)
and note that

∑
{k∈Zd

≥1|k1+...+kd=S}
1 = ∑

{k′∈Zd
≥0|k′1+...+k′d=S−d}

1 =

(
S− 1
d− 1

)

=
(S− 1)!

(d− 1)!(S− d)!
=

(S− 1) . . . (S− (d− 1))
(d− 1)!
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Therefore,

∑
S≥d

∑
{k∈Zd

≥1|k1+...+kd=S}

1
Sα

= ∑
S≥d

(
S− 1
d− 1

)
1

Sα
∼ ∑

S≥d

Sd−1

(d− 1)!
1

Sα

where ∼ means that both series either diverge or converge. Hence, the series con-
verges iff ∑S≥0

1
Sα+1−d converges, which happens iff α− d + 1 > 1, or equivalently

α > d.

We will now give a proof of Theorem 3.15, which is based on the proof in [2].

Proof. As F : X → X is quasiperiodic on X0 ⊆ X, there exists a conjugacy h : Td →
X to an irrational rotation Tρ, such that h : Td → X0 is a Cr-diffeomorphism.
Schematically, we have

X0 ⊆ X
F|X0 // X0 ⊆ X

Td

h

OO

Tρ

// Td

h

OO

Consider the Lebesgue measure on Td, denoted by λd, and the induced measure
on X0, µ(B) = λd(h−1(B)), where B ⊆ X0 is a measurable set. Let us take θ0 :=
h−1(x0) ∈ Td and g := f ◦ h : Td → Rn. Then, doing the change of variables
x = h(θ), ∫

X0

f dµ =
∫

Td
f ◦ hdλd =

∫
Td

gdλd

WBN,F( f )(x0) =
1

AN

N−1

∑
n=0

w
( n

N

)
f (Fn(x0)) =

1
AN

N−1

∑
n=0

w
( n

N

)
g(Tn

ρ (θ0))

where AN := ∑N−1
n=0 w( n

N ) and in the second line we used that ( f ◦ Fn)(x0) =

( f ◦ h ◦ Tn
ρ ◦ h−1)(x0) = (g ◦ Tn

ρ ◦ h−1)(x0) = (g ◦ Tn
ρ )(θ0). Hence, it suffices to

prove the result for irrational rotations Tρ : Td → Td and functions g : Td → Rn.

Given m ∈N such that r > d + m(d + β), our goal is to show that:

∣∣EN
∣∣ :=

∣∣∣WBN,Tρ(g)(θ0)−
∫

Td
g(θ)dθ

∣∣∣ ≤ Km

Nm

for a certain constant Km > 0.

Consider the Fourier series representation of g, g(θ) = ∑k∈Zd akσk(θ) for θ ∈
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Td, where ak :=
∫

Td g(θ)σk(−θ)dθ and σk(θ) := e2πik·θ . Then,

EN := WBN,Tρ(g)(θ0)−
∫

Td
g(θ)dθ

= WBN,Tρ

(
∑

k∈Zd

akσk

)
(θ0)− a0

= ∑
k∈Zd

akWBN,Tρ(σk)(θ0)− a0

= ∑
k∈Zd\{0}

akWBN,Tρ(σk)(θ0)

where we used that a0 :=
∫

Td g(θ)σ0(−θ)dθ =
∫

Td g(θ)dθ, and we took advantage
of linearity and the finite summation to rearrange the order of the summations.
Implicitly, we are also using that g ∈ Cr, so that its Fourier coefficients decrease.
We will show this through the proof.

Now, using that w is defined for all R, thought it is supported in [0, 1], w(0) =
w(1) = 0, and the Poisson Summation Formula 3.18.

EN = ∑
k∈Zd\{0}

akWBN,Tρ(σk)(θ0)

=
1

AN
∑

k∈Zd\{0}
ak

[ N−1

∑
n=0

w
( n

N

)
σk(θ0 + nρ)

]
=

1
AN

∑
k∈Zd\{0}

ak

[
∑

n∈Z

w
( n

N

)
σk(θ0 + nρ)

]
=

1
AN

∑
k∈Zd\{0}

ak

[
∑

n∈Z

∫
R

w
( t

N

)
σk(θ0 + tρ)e−2πintdt

]
=

1
AN

∑
k∈Zd\{0}

ak

[
e2πik·θ0 ∑

n∈Z

∫
R

w
( t

N

)
e2πit(k·ρ−n)dt

]

Consider a new variable s := t/N, so that Nds = dt. Let us start bound EN :

|EN | ≤
( N

AN

)
∑

k∈Zd\{0}

∣∣∣ak

∣∣∣ ∑
n∈Z

∣∣∣ ∫
R

w(s)e2πiNs(k·ρ−n)ds
∣∣∣

We will use ‖ · ‖1 for vectors and ‖ · ‖∞ for functions, but to simplify the notation
we won’t specify it. Let us look at each part separately:

(a) AN/N converges to
∫ 1

0 w(s)ds 6= 0, thus N/AN is bounded by some constant
Pw > 0.



3.4 Proof of the Superconvergence of Weighted Birkhoff Averages 25

(b) Consider Ω := 2πN(k · ρ− n). Recall w and its first m derivatives vanish at 0
and 1 and that its support is [0, 1]. Integrating by parts,

∫ 1

0
w(s)eiΩsds =

w(s)eiΩs

iΩ

]1

0
−
∫ 1

0

w′(s)eiΩs

iΩ
ds =

−1
iΩ

∫ 1

0
w′(s)eiΩsds

= · · · = (−1)m

(iΩ)m

∫ 1

0
w(m)(s)eiΩsds

Thus,
∣∣∣ ∫ 1

0 w(s)eiΩsds
∣∣∣ =∣∣∣Ω−m

∫ 1
0 w(m)(s)eiΩsds

∣∣∣ ≤ |Ω|−m
∫ 1

0

∣∣∣w(m)(s)eiΩs
∣∣∣ds ≤

|Ω|−m‖w(m)‖.

(c) We know ak :=
∫

Td f (θ)σk(−θ)dθ and that f ∈ Cr. Using that f (0) = f (1) and
integrating by parts we have:

ak =
∫ 1

0
. . .
[ ∫ 1

0
f (θ)e−2πik·θdθ1

]
. . . dθd

=
∫ 1

0
. . .
[ 1
(2πik1)r1

∫ 1

0

∂r1 f (θ)
∂r1 θ1

e−2πik·θdθ1

]
. . . dθd

= . . . =
1

(2πik1)r1 . . . (2πikd)rd

∫
Td

∂r1+...+rd f (θ)
∂r1 θ1 . . . ∂rd θd

e−2πik·θdθ

Therefore, there exist a constant P such that |ak| ≤ P‖k‖−r
∫

Td

∣∣∣ ∂r f (θ)
∂rθ

∣∣∣dθ ≤
Pf ,r‖k‖−r for some constant Pf ,r > 0.

Putting all together we have that,

|EN | ≤
( N

AN

)
∑

k∈Zd\{0}

∣∣∣ak

∣∣∣ ∑
n∈Z

∣∣∣ ∫
R

w(s)e2πiNs(k·ρ−n)ds
∣∣∣

< Pw ∑
k∈Zd\{0}

Pf ,r

‖k‖r ∑
n∈Z

‖w(m)‖
(2πN)m|k · ρ− n|m

=
Pw, f ,r

Nm ∑
k∈Zd\{0}

1
‖k‖r ∑

n∈Z

1
|k · ρ− n|m

where Pw, f ,r := PwPf ,r‖w(m)‖(2π)−m > 0 is a constant.

To finish the proof, it is sufficient to see that ∑k∈Zd\{0} ‖k‖−r ∑n∈Z |k · ρ− n|−m

is finite. Consider n0 ∈ Z such that it is the closest to k · ρ, so that k · ρ − n0 ∈
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(−0.5, 0.5). Then,

∑
n∈Z

|k · ρ− n|−m = ∑
n∈Z

|(k · ρ− n0)− (n− n0)|−m

= |k · ρ− n0|−m + ∑
n 6=n0,n∈Z

|(k · ρ− n0)− (n− n0)|−m

= |k · ρ− n0|−m + ∑
j 6=0,j∈Z

|(k · ρ− n0)− j|−m

≤ |k · ρ− n0|−m + 2 ∑
j∈Z>0

(j− 0.5)−m

≤ ‖k‖
m(d+β)

Pm
β

+ Pm

where Pβ and Pm are positive constants. To bound the first summand, we used the
Definition 3.13 of Diophantine vector of class β. As for the summation, we have
used that ∑j∈Z>0

(j− 0.5)−m converges as m > 1. To finish,

∑
k∈Zd\{0}

‖k‖−r ∑
n∈Z

∣∣∣k · ρ− n
∣∣∣−m
≤ ∑

k∈Zd\{0}
‖k‖−r(P−m

β ‖k‖
m(d+β) + Pm)

which by Lemma 3.20 is finite iff m(d + β) − r < −d, or equivalently r > d −
m(d + β) as we wanted to show.



Chapter 4

Applications

As an application of the weighted Birkhoff superconvergence method, we re-
turn to the main discussion of the paper: solving the Conjugacy Problem. In this
chapter, we will explain how this numerical method applies to compute the ro-
tation vector ρ and the Fourier coefficients of the parametrisation h, necessary to
establish that a trajectory (xn) presents quasiperiodic behaviour. Moreover, we
will also explain how weighted averages can be used to compute the integral of a
periodic function and the Lyapunov exponents of a dynamical system.

4.1 Rotation Vectors

Let us return to the discussion of Section 1.3, though now we will work with
an arbitrary dimension d. Let X be a manifold and F : X → X be a quasiperiodic
map on a d-dimensional invariant torus X0 ⊆ X. By definition, F has an associated
rotation vector ρ, which coincides with the rotation vector of the irrational rotation
Tρ to which it is conjugated.

However, with this definition the rotation vector of F is not unique. Assume
F is conjugated via h : Td → X to a rotation Tρ, i.e. F(h(θ)) = h(Tρ(θ)) for
θ ∈ Td. Consider a matrix A with integer entries and |det(A)| = 1, so that the
map A : Td → Td, defined as A(θ) = Aθ for θ ∈ Td, is invertible. Then,

F ◦ h = h ◦ Tρ ⇐⇒ h−1 ◦ F ◦ h = Tρ ⇐⇒ (h ◦ A)−1 ◦ F ◦ (h ◦ A) = A−1 ◦ Tρ ◦ A

where

TAρ := A−1 ◦ Tρ ◦ A : Td −→ Td

θ 7−→ A−1(A(θ) + ρ) = θ + Aρ

Therefore, F is also conjugated via h ◦ A : Td → X to a rotation TAρ, which has
rotation vector Aρ 6= ρ. Hence, rotation vectors depend on the choice of the

27



28 Applications

coordinate system and are well-defined except from continuous automorphisms
on Td. Notice that the irrationality of a vector is preserved under this type of
transformations.

We now explain how to obtain the rotation vector for F. Converting each finite
data of iterates (xn = Fn(x0)) ∈ X0 to an angle data φn := φ(xn) ∈ Td, our goal is
to determine ρ purely from (φn) ∈ Td. It is important to stress that the trajectory
(φn) does not have to follow an irrational rotation, it can just be a projection of
the dynamics into Td. Assume the dynamics of (φn) are described by a map
Φ : Td → Td.

The definition of lift and its subsequent lemma provided in Section 1.3 can be
easily extended to an arbitrary dimension, hence we will take them from granted.
As before, we will follow the convention of marking with a hat the lift functions.

Consider G(φ) := Φ̂(φ)− φ for φ ∈ Td. For φ0 := φ(x0) ∈ Td, the standard
approach towards computing the rotation vector ρ is as the limit

ρ(F) = ρ(Φ) := lim
N→∞

1
N
(Φ̂N(φ0)− φ0) = lim

N→∞

1
N

N−1

∑
n=0

(Φ̂n+1(φ0)− Φ̂n(φ0))

= lim
N→∞

1
N

N−1

∑
n=0

(Φ̂(Φ̂n(φ0))− Φ̂n(φ0)) = lim
N→∞

1
N

N−1

∑
n=0

G(Φ̂n(φ0))

= lim
N→∞

BN,Φ̂(G)(φ0) = lim
N→∞

WBN,Φ̂(G)(φ0)

Thus, the rotation vector can be computed through weighted Birkhoff averages,
which superconverge to ρ(F) provided Φ̂ is C∞, according to Theorem 2.17.

We will now illustrate a way to do this for d = 1, taken from [9]. For higher
dimensions, one should take advantage of the Tubular Neighbourhood Theorem and
construct tubular cylindrical coordinates. Although this is quite difficult and in
practice it is more common to use Frequency Analysis. Consider the scenario
where X0 is a 1-dimensional quasiperiodic curve embedded in X = R2. Let C :=
CB ∪ CU ⊂ R2 be the complement of X0, where CB (resp. CU) is the bounded
(resp. unbounded) component of C. Let p ∈ CB ⊆ R2 and assume the curve is
star-shaped with respect to the point p = (a, b). Consider for z = (x, y) ∈ X0 ⊂ R2,

φ(z) = atan2(x− a, y− b) ∈ [−π, π]

where atan2 refers to the four quadrant arctangent function. Then, take

G(φ) :=

{
φ(F(z))−φ(z)

2π if φ(F(z))− φ(z) ≥ 0
φ(F(z))−φ(z)

2π + 1 otherwise

The following Figure 4.1 tries to explain the nature of this trick.

For more in-depth on this topic, in [10] they discuss different ways of obtaining
the rotation number and how to tune its approximation.
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Figure 4.1: Correspondence between xn and the angle data φn. It will be used to
compute the rotation number of F.

4.2 Computing the Integral of a Periodic C∞-function

Let f : Rd → Rn be a periodic map. In this section, we will see how we can
accurately compute its integral with respect to the Lebesgue measure λd using
weighted Birkhoff averages.

According to [10], it is as simple as following these steps:

(i) Rescale coordinates so that its domain is in Td.

(ii) Choose any ρ = (ρ1, . . . , ρd) ∈ Rd of Diophantine class β ≥ 0. Recall that
by Proposition 3.14, these vectors are dense in Rd, so it is not so far-fetched
to find one. For example, for d = 1 we could use ρ = ϕ − 1 ∈ T, where
ϕ = (

√
5 + 1)/2 is the golden ratio.

(iii) Consider an irrational rotation Tρ on Td with rotation vector ρ and the expo-
nential weighting w[1] defined in Example 3.11.

(iv) By Corollary 3.17, WBN,Tρ( f )(θ0) superconverges to
∫

Td f dλd and the conver-
gence is uniform in θ0 ∈ Td.

4.3 Fourier Series Coefficients of the Conjugacy

Once the rotation vector is determined, we want to find an approximation
of the diffeomorphism h : Td → X0 such that xn+1 = F(xn) is conjugated to
θn+1 = Tρ(θn) := θn + ρ (mod 1). The Fourier series representation of h is

h(θ) = ∑
k∈Zd

ake2πik·θ where ak :=
∫

Td
h(θ)e−2πik·θdθ
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Recall that by ergodic theorems, it is enough to know a finite number of func-
tion’s values along a trajectory to approximate its integral. While the map h is
not known explicitly, some of its values xn = h(nρ (mod 1)) are known. Hence,
for every k ∈ Zd, we can estimate the k-th Fourier coefficient of h using weighted
Birkhoff averages as follows:

WBN,Tρ(h(θ)e
−2πik·θ) =

1
AN

N−1

∑
n=0

w
( n

N

)
xne−2πink·ρ −→ ak

which has superconvergence as N → ∞. In the equality, we have used the fact
that xn = h(θn) and θn = nρ (mod 1).

Therefore, weighted Birkhoff averages are also useful to compute the Fourier
coefficients of the conjugacy h. Moreover, the continuity and differentiability of h
can be non-rigorously estimated by observing the decay rate of its Fourier series
coefficients ak. For more in-depth on the smoothness of the conjugacy, see [10].

4.4 Lyapunov Exponents

In this section we will show a method that gives superconvergence to the Lya-
punov exponents of a quasiperiodic system. We will consider its phase space to
be X = Rn, so we can talk about tangent vectors. This discussion is taken from
[7].

Figure 4.2: Idea of the discrete version of variational equations. We are interested
in the average growth of the perturbation in the direction of v0.

Let F : Rn → Rn be a C∞ map. Consider the initial conditions x0, x′0 :=
x0 + v0 ∈ Rn, where v0 ∈ Rn is a vector in the tangent space of x0 and represents
the initial perturbation, as illustrated in Figure 4.2. The following iterates will
be x1 := F(x0) and x′1 := F(x′0) ≈ F(x0) + DF(x0)v0, hence we can consider the
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perturbation of the first iterate to be v1 := DF(x0)v0. Repeating this process, we
end up with: 

x0 ∈ Rn

v0 ∈ Rn

xn = F(xn−1) = Fn(x0)

vn = DF(xn−1)vn−1 = DFn(x0)v0

where we used

DFn(x0) = D(F ◦ Fn−1)(x0) = DF(Fn−1(x0)) · DFn−1(x0)

= DF(xn−1)DFn−1(x0) = . . . = DF(xn−1)DF(xn−2) . . . DF(x0)

so that,

vn := DF(xn−1)vn−1 = DF(xn−1)DF(xn−2)vn−2 = . . . =

= DF(xn−1)DF(xn−2) . . . DF(x0)v0 = DFn(x0)v0

Now that the perturbation vn of each iterate x′n with respect to xn is known,
one may ask which is its average growth. This is usually measured through the
Lyapunov multiplier.

Definition 4.1. Using the previous notation, we define the Lyapunov multiplier in
the direction of v0 as limN→∞

N
√
‖DFN(x0)v0‖.

However, this growth rate is usually measured computing its logarithm.

Theorem 4.2. (Oseledec’s Multiplicative Ergodic Theorem) Let F : Rn → Rn be
a C∞-map with invariant probability measure µ. There exist numbers λ1 ≤ λ2 ≤ . . . ≤
λn ∈ R such that for µ-a.e. x0 ∈ Rn and vector v0 in the tangent space of x0, the limit

λ(v0) := lim
N→∞

1
N

log ‖DFN(x0)v0‖

exists and equals one among λ1, . . . , λn. Moreover, the limit converges to λn for µ-a.e.
v0 ∈ Rn in the tangent space of x0.

Proof. See proof in [11].

Definition 4.3. Using the notation of the previous Theorem 4.2, we refer to λ1, . . . , λn

as the Lyapunov exponents of F. Moreover, we say λn is the maximal Lyapunov expo-
nent.
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Lyapunov exponents measure the rate at which nearby trajectories diverge or
converge and can be used to distinguish between chaos and quasiperiodicity. Con-
sider the case where F : Rn → Rn is quasiperiodic on a d-dimensional subset
X0 ∼= Rd ⊂ Rn. Then, on X0 there are d Lyapunov exponents that are zero, which
correspond to the d directions tangents to X0. The existence of a positive Lyapunov
exponent that corresponds to any of this tangent directions would be a signature
of chaos.

The maximal Lyapunov exponent is often computed iteratively using a method
analogous to the power method (which aims to find the dominant eigenvalue of a
matrix). Given x0 ∈ Rn and v0 ∈ Rn in the tangent space of x0, this version of the
power method is defined recurrently as:


w′0 := v0

l0 := ‖w′0‖
w0 := w′0

l0


xn := F(xn−1)

w′n := DF(xn−1)wn−1

ln := ‖w′n‖
wn := w′n

ln

One can check that ‖wn‖ = 1 and vn = Λnwn, where Λn := lnln−1 . . . l0. The
idea is that, by iterating several times, we will be considering the most dominant
direction. Hence, this will help us to find the maximal Lyapunov exponent. If
we are considering x0 ∈ X0 such that it lies in a quasiperiodic orbit, the maximal
Lyapunov exponent can be computed as an average over the trajectory (xn):

λn : = lim
N→∞

1
N

log ‖DFN(x0)v0‖ = lim
N→∞

1
N

log ‖vn‖

= lim
N→∞

1
N

log Λn = lim
N→∞

1
N

N−1

∑
n=0

log ln

Hence, we can compute λn using weighted Birkhoff averages. Thus, we have
obtained a method that superconverges to the maximal Lyapunov exponent.

Remark 4.4. For n = 2, the second Lyapunov exponent can be determined, al-
though we will not provide a proof here. Once λ2 is known, to obtain λ1 we
compute the sum λ1 + λ2, which can be expressed as a weighted Birkhoff average
when x0 is in a quasiperiodic trajectory:

λ1 + λ2 = lim
N→∞

1
N

log |det DFN(x0)| = lim
N→∞

1
N

N−1

∑
n=0

log |det DF(xn)|

= lim
N→∞

BN,F(log |det DF(x0)|) = lim
N→∞

WBN,F(log |det DF(x0)|)

In addition, note that if F is a 2-dimensional map that satisfies the measure-
preserving condition, i.e. |det(DF)| = 1, then the sum of the Lyapunov exponents



4.5 Machine Limitations 33

is zero, λ1 + λ2 = 0. Therefore, on a quasiperiodc curve, implying that one Lya-
punov exponent is zero, it follows that the other Lyapunov exponent must also be
zero.

4.5 Machine Limitations

It is crucial to note that machines cannot perform computations with the exact
Diophantine vector, as all the operands involved would be truncated so they are
well-approximated by rationals. Consequently, an error arises from the truncation
when performing numerical computations. However, as long as we have enough
bits, we can always use an approximation of the Diophantine vector that achieves
the desired precision.

Another problem we face when doing numerical approximations is how to
choose the initial condition x0 ∈ Rn. There is no method to find a point such
that it follows a quasiperiodic orbit. A simple way, which is surprisingly useful
in practice, is to see if the plotted curves appear to densely fill a simple curve in
Rn. A more sophisticated approach is to consider an increasing finite sequence of
orbits lengths (Ni)i∈I , where I ⊂ N is finite, and compute the correspondent ρNi

for each i ∈ I. If ρNi seems to converge as i ∈ I grows, it is likely that x0 is sampled
from a quasiperiodic orbit. If instead it seems to oscillate, x0 probably comes from
a chaotic zone.

Remark 4.5. Ideally, when we do the numerical computations we can choose an
increasing sequence of orbit lengths (Ni)i∈I such that the distance between xNi and
x0 is decreasing, so that we are considering iterates each time closer to x0. This
can be done thanks to the quasiperiodicity condition.

This in turn leads to an error, as we can only intuitively see that an initial con-
dition gives way to a quasiperiodic trajectory. Moreover, we end up just knowing
that the trajectory we are working with is near to a quasiperiodic orbit.
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Chapter 5

Persistence of Quasiperiodic
Motions under small
Perturbations

The necessity of introducing Kolmogorov-Arnold-Moser (KAM) Theory arises
from the fact that, in most of the cases, we will be working with a trajectory near to
a quasiperiodic orbit. Thus, a natural question is to ask if quasiperiodicity persists
for small perturbations. We won’t go into detail on KAM Theory as it is a very
complicated study and one should dedicate far more than an entire bachelor thesis
to explain it properly. Hence, we will just quickly state the results that have an
important role in our work.

5.1 Informal Explanation of the KAM Theorem

KAM Theory is generally studied for dynamical systems that are close to in-
tegrable systems, whose phase space is foliated by invariant d-dimensional tori.
On each torus, the dynamical system acts as a rotation with an associated rotation
vector, that varies throughout the family of invariant tori. KAM Theory shows
that, under suitable regularity assumptions, most (but not all) of such tori are
deformed and survive under small perturbations, i.e. there is a map from the
original manifold to the deformed one that is continuous in the perturbation. Tori
that survive have "sufficiently" irrational rotation vectors. This implies that the
motion on the deformed tori continues to be quasiperiodic. The union of persis-
tent n-dimensional tori, known as the Kolmogorov set, tend to fill the whole phase
space as the strength of the perturbation is decreased.

When we defined Diophantine vectors, we mentioned that they are the "most
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irrational" type among irrational vectors. Thus, trajectories characterised by a
Diophantine irrational vector, as well as trajectories sufficiently close to them, even
without an irrational rotation vector, will present quasiperiodic behaviour. This
justifies studying quasiperiodicity also in trajectories close to (pure) quasiperiodic
ones.

Remark 5.1. In the previous chapter, we talked about Lyapunov exponents and
how can they can quantify the sensibility of initial conditions. In particular, we
mentioned that for d-dimensional quasiperiodic tori, the d Lyapunov exponents
corresponding to the tangent vectors to the tori are zero.

In the following chapter, we will see how all the concepts introduced through-
out the work can be numerically computed through the Arnold, Standard and
Henon map. As previously mentioned, we won’t go into the details of KAM The-
ory. However, we give informal statements that apply to these maps.

Informal Statement 1. (Arnold’s Theorem) Let f : R → R be a 1-periodic
C∞-function. For α ∈ R, consider the circle diffeomorphism:

Aα,ε : T −→ T

θ 7−→ θ + α + ε f (θ) (mod 1)

where ε ∈ R is a parameter. Assume its rotation number ρ is Diophantine. Then,
if ε is sufficiently small, Aα,ε conjugates to an irrational rotation Tρ with rotation
number ρ. This result is also known as the KAM Theorem for Circle Diffeomorphisms.

The theorem can also be stated in the analytic category and in the finite dif-
ferentiable case of f . The following version of the KAM Theorem applies for
area-preserving maps on the cylinder.

Informal Statement 2. (Moser’s twist Theorem) Let F0 : T×R → T×R be
an integrable map, so that F0(x, y) = (x + w(y) (mod 1) , y), where w : R → R

is a 1-periodic C∞-function and satisfies the twist condition dw
dy 6= 0. Consider an

area-preserving map of the form

Fε : T×R −→ T×R

(x, y) 7−→ (x + w(y) + ε f (x, y) (mod 1) , y + εg(x, y))

where ε ∈ R is a parameter, and g and f are C∞-functions. For sufficiently small
ε, there exist many deformed tori that are close to the unperturbed invariant tori
{y = constant}. Moreover, the survived tori have Diophantine rotation number.
This theorem is also known as the KAM Theorem for area-preserving maps on the
Cylinder.
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In a neighbourhood of an elliptic fixed point, changing to angle coordinates,
the previous theorem also applies.

Informal Statement 3. (Stability of elliptic fixed points) Let F : R2 → R2

be an area-preserving map. Let (x∗, y∗) ∈ R2 be an elliptic fixed point such that
its eigenvalues λ, 1/λ satisfy λ3 6= 1 and λ4 6= 1. Assume, in addition, that a
condition similar to the twist condition that depends on the derivatives of F up to
order 3 is satisfied. Then, the elliptic fixed point is surrounded by quasiperiodic
invariant curves.

Example 5.2. This is very clear with the Standard Map Fε, used also in Example
2.12, and defined as:

Fε : T×R −→ T×R

(x, y) 7−→ (x + y− ε
2π sin(2πx), y− ε

2π sin(2πx))

When the perturbation is zero, the phase space is foliated with horizontal invari-
ant tori. If we allow ε to be small though non-zero, the nonlinear part begins to
play a role, and many of these tori are slightly deformed, as depicted in Figure
5.1. As we keep increasing ε, the perturbation grows stronger and most tori are
destroyed, leading to regions of chaotic behaviour bounded by the surviving KAM
tori. Notice that we have a stable elliptic fixed point at (0, 0) and an unstable hy-
perbolic fixed point at (0.5, 0). In the vicinity of the first, the phase space exhibits
concentric invariant tori, while in the second, the intersection between stable and
unstable manifolds, leads to chaos. Hence, in a neighbourhood of the elliptic point
we can apply the result mentioned above. The invariant tori that are homotopic to
the curve {y = 0} are known as primary tori, while the ones that are contractible
and arise from the perturbation are known as secondary tori.
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Figure 5.1: Orbits of the Standard Map for different values of ε. The initial
conditions are (x0, y0), where x0 ∈ {0, 0.5} and y0 = 0.01k ∈ [−0.5, 0.5] for
k ∈ Z. We have set the orbit length at N = 500. This drawing identifies
T = [−0.5, 0.5]/ − 0.5 ∼ 0.5 so that the elliptic fixed point (0, 0) is in the mid-
dle.



Chapter 6

Numerical Examples

In this chapter, we use the superconvergence method of weighted Birkhoff
averages to numerically explore the concepts explained in the precedent chapters
through worked examples. You can find all the coding used to obtain the graphics
of this chapter in Appendix A.

For the Arnold Circle map, we compute approximations of its rotation number
and Lyapunov exponent. In fact, we plot the devil’s staircase and the Lyapunov
exponent for different values of the perturbation ε to understand the complicity
between them. Using the Standard map, we show the improvement on the speed
of convergence of weighted Birkhoff averages with respect to the (unweighted)
Birkhoff averages. Finally, we provide a numerical recipe taken from [9] that ex-
plains in detail each of the steps needed to follow to numerically compute the
rotation number ρ and the conjugacy h for a quasiperiodic curve. The procedure
is illustrated through the Henon map.

6.1 Application to the Arnold Circle Map

Let us consider again the Arnold Circle map, used in Example 1.13, defined as:

Aα,ε : T −→ T

θ 7−→ θ + α− ε
2π sin(2πθ) (mod 1)

where α is a constant and ε is a small non-negative constant that represents the
nonlinear perturbation.

We know that KAM Theory is also studied for Circle Diffeomorphisms and
one can see the consequences of Arnold’s Theorem, stated in the previous chapter,
by prefixing different values of ε and plotting the devil’s staircase, i.e. the rotation
number against the value of α, as depicted in Figure 6.1. As expected, when ε = 0,
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Aα,0 is integrable and its dynamics are a (pure) rotation by ρ = α. As we increase
ε, stair-step patterns begin to emerge. While there exists a positive measure set
of values for α for which the dynamics of Aα,ε are quasiperiodic, periodic orbits
start to appear. Subsets of the parameter space {α, ε} where the system locks in a
periodic orbit are known as Arnold tongues. As ε increases, these tongues become
wider, indicating a larger region of parameter space where periodic orbits exist.
At each platform, the rotation number is rational, i.e. ρ = p

q ∈ Q with p, q ∈ N

coprime, and there is a couple of periodic orbits of period q, one attracting and
the other repelling, that are born and die at the extrema of the platform, where the
nonlinear perturbation is most pronounced, through saddle-node bifurcations.
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Figure 6.1: Devil’s staircase for different values of ε against α. We have set the
initial condition at x0 = 0.5 and the orbit length at N = 10, 000.

One can also compute the corresponding Lyapunov exponent of the Arnold
map. Note the significance relationship between the plots of the devil’s staircase
and those of the Lyapunov exponents in Figure 6.2. As the steps of the staircase
become larger, the corresponding Lyapunov exponent decreases. Moreover, we
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can see that when the dynamics are quasiperiodic the associated Lyapunov expo-
nents is zero. While when the dynamics are periodic, the Lyapunov exponent is
negative. This is due to the fact that the orbits are being attracted to the attracting
periodic orbit.
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Figure 6.2: Lyapunov exponents for different values of ε against α. We have set
the initial condition at x0 = 0.5 and the orbit length at N = 10, 000.

6.2 Application to the Standard Map

The Standard map Fε has already come out several times during the work, see
Example 2.12 for its definition. In this section, we will use it to compare the
improvement of the weighted Birkhoff averages with respect to the unweighted
ones. To do so, we will plot the difference between the rotation number of primary
tori |ρN2 − ρN1 | for different N1, N2 ∈ N, using both methods, against the second
coordinate of the initial condition y0 ∈ R.
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It is interesting to compare the following Figure 6.3 with the orbits of the
Standard map, depicted in Figure 5.1. Notice that, for the invariant tori that have
survived, weighted Birkhoff averages converge significantly faster than the normal
ones. Conversely, in the zone where these tori have been destroyed and we do
not longer have quasiperiodic motions on the first coordinate, weighted Birkhoff
averages provide no advantage.

As suggested by Theorem 3.9 and illustrated in Figure 6.3, with N1 = 10, 000
and N2 = 100, 000 the difference |ρN2− ρN1 | computed using (unweighted) Birkhoff
averages is about 10−4. In contrast, when using weighted Birkhoff averages for
quasiperiodic trajectories, the difference is significantly smaller. In this case, it is
on the order of 10−14.
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Figure 6.3: We have set ε = 0.5 and x0 = 0. In (a), you can see the rotation
number of primary tori against the second coordinate of the initial condition y0 ∈
[−0.5, 0.5], computed with N = 100, 000 and using weighted Birkhoff averages.
Plot (b) depicts the difference between |ρN2 − ρN1 |, with N1 = 10, 000 and N2 =

100, 000, against the second coordinate of the initial condition y0 ∈ [−0.5, 0.5]. We
have used the logarithm scale in the vertical axis. In purple you can see the results
obtained using (unweighted) Birkhoff averages, while in green the ones obtained
using weighted Birkhoff averages.

6.3 Application to the Henon Map

In this section, we give a numerical recipe taken from [9] such that, for any
quasiperiodic trajectory (xn) in an invariant curve, explains in detail each of the
steps needed to follow to numerically compute its rotation number ρ and the
conjugacy h. The following steps constitute the main steps of our algorithm.
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Step 1: Choose x0 ∈ X and N ∈ N. Compute the orbit segment ON = {xn =

Fn(x0)}N
n=0 and see if it appears to be sampled from a quasiperiodic zone,

following the instructions on Section 4.5. If it seems to come from a chaotic
zone, repeat this step choosing another x0.

Step 2: Compute the rotation number ρ using weighted Birkhoff averages, as ex-
plained in Section 4.1. It is crucial to compute it as accurate as possible,
as ρ will be used in subsequent numerical computations and even a small
error in ρ can lead to significant noise in these computations. To improve
the precision, increase the value of N.

Step 3: Compute the Fourier coefficients of h using weighted Birkhoff averages,
as described in Section 4.3, though with a shorter sample size. Use N
much smaller than in the rotation number computation and consider only
some of these values, such as k = 10i for i ∈ N. This approach allows
us to numerically determine N0 ∈ N such that the norm of the Fourier
coefficients ‖(ak, bk)‖ < εmachine for all |k| > N0.

Step 4: Consider the truncation index of the Fourier coefficients as NF ∈N roughly
the 10% or 20% of N0. Then, for all |k| < NF compute (ak, bk) through
weighted Birkhoff averages with a moderate accuracy, i.e. take N larger
than in Step 3 but smaller than in Step 2. Let us denote the h0 the NF

Fourier polynomial of h, the numerical defect is

ε0 = sup
θ∈T

∣∣∣F(h0(θ))− h0(θ + ρ)
∣∣∣

If ε0 is smaller than some tolerance, the initial guess is considered good.
Otherwise, we repeat this step increasing NF.

In Chapter 7, we explain a way to obtain an even better approximation of h by
running the Newton iteration scheme once the approximation h0 is known.

We will show how to apply the previous numerical recipe with a worked ex-
ample. Consider the Henon map defined as:

Hα : R2 −→ R2(
x
y

)
7−→

(
cos α − sin α

sin α cos α

)(
x

y− x2

)
where the matrix represents a rotation by α. It is straightforward to verify that the
determinant of the Jacobian matrix of Hα

DHα

(
x
y

)
=

(
cos α − sin α

sin α cos α

)(
1 0
−2x 1

)
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is one for all (x, y) ∈ R2, indicating that the system is area-preserving with respect
to the Lebesgue measure in R2.

Note that the origin is an elliptic fixed point, so in the absence of perturbations,
nearby trajectories rotate around it with quasiperiodic motion. However, the per-
turbation due to the quadratic nonlinearity y − x2, deforms or destroys some of
these curves. In a small neighbourhood of the origin (0, 0), where the perturbation
is small, KAM Theory guarantees that those with a rotation number α/2π that is
Diophantine survive.
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Figure 6.4: Orbits of the Henon map with N = 1, 000 iterates, α = arccos (0.24)
and initial conditions (0, y0), where y0 ∈ [−0.7, 0.7] varies with an increment of
0.01. Note that near the origin, the dynamics are close to a rotation and we see
a large set of invariant torus. As we move apart, they get more distorted and
eventually there appears a family of 5-period systems. Further from the origin,
the dynamics appear chaotic.

Throughout this example, we will assume α = arccos(0.24).

Step 1. Consider the initial condition x0 = (0.4, 0) ∈ R2. Let us compute
the approximation of the rotation number for different values of N. See Figure
6.5. The computations suggest that it comes from a quasiperiodic trajectory, as the
numerical approximations of the rotation number seem to converge. Then, we can
move on to the next step.



6.3 Application to the Henon Map 45

Remark 6.1. If instead we had chosen x′0 = (0.3,−0.44) ∈ R2, we would not
have seen any sign of convergence in the numerical computations of the rotation
number, hence we would deduce it comes from a chaotic zone.

N

100 0.206164038365342 0.196863099485937

500 0.206174513248940 0.197503558666674

1000 0.206174514865070 0.197628415757003

5000 0.206174514865715 0.199431995293399

10000 0.206174514865712 0.199737097322017

50000 0.206174514865718 0.199823145343572

100000 0.206174514865710 0.199984739391916

150000 0.206174514865705 0.199998753698169

200000 0.206174514865702 0.199999888701773

Figure 6.5: Numerically computed values of the rotation number for different
values of N and initial conditions x0 = (0.4, 0) and x′0 = (0.3,−0.44) ∈ R2.

Step 2. Based on the previous step, we deduce that the rotation number asso-
ciated to the orbit of x0 is ρ ≈ 0.206174514865704, which is likely correct except
possibly the last decimal digit.

Step 3. Note that for N = 5, 000 we already have twelve correct digits for
the rotation number, therefore we will compute Fourier coefficients with this orbit
length. Our aim is to find the index N0 ∈ N such that for all |k| ≥ N0, the k-th
Fourier coefficient has norm smaller than a prefixed tolerance. To get the result
faster, we will only consider k = 10i for some i ∈N. Fixing the tolerance at 10−10,
we get that the norm of the 40th-Fourier coefficient is smaller than the tolerance.
Then, take N0 = 40.

Step 4. Considering NF = 0.15 · N0 = 6, a good approximation of h is

h0(θ) :=
NF

∑
k=−NF

(
ak

bk

)
e2πikθ
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where we compute the Fourier coefficients with better accuracy than in the previ-
ous step, i.e. with N larger than 5, 000. In our computations, we use N = 100, 000.
To measure how good is the approximation one can compute its initial defect:

ε0 = sup
θ∈T

∣∣∣F(h0(θ))− h0(θ + ρ)
∣∣∣

which, thanks to our codes that you can find in the appendix, we can say that it
is around 9.58 · 10−4. If we want a more precise approximation h0, we can repeat
this using a greater NF. For instance, taking NF = N0 = 40, we get that the
error is around 5.258 · 10−12. Therefore, with this procedure we can get very good
approximations of the parametrisation h.

There is another way, besides repeating Step 4 with a greater NF, to tune the
approximation h0 of h. This is explained in the following Chapter 7.

Remark 6.2. Figure 6.4 also shows a group of five disjoint invariant circles, which
have the property that each iterate jumps from one torus to the next one. Taking
F5, this reasoning applies. For a more detailed explanation of how this method
applies for general K-periodic systems of quasiperiodic invariant sets, refer to [9].



Chapter 7

Delving Deeper into the
Conjugacy

Consider a manifold X and map F : X → X that is quasiperiodic on a d-
dimensional invariant set X0 ⊆ X with a rotation vector ρ. By definition, there
exists a diffeomorphism h : Td → X0 that conjugates F to an irrational rotation
Tρ : Td → Td, i.e. F(h(θ)) = h(Tρ(θ)) for all θ ∈ Td.

X0 ⊆ X
F|X0 // X0 ⊆ X

Td
Tρ

//

h

OO

Td

h

OO

In previous chapters, we explained how to obtain a good approximation h0

of h using weighted Birkhoff averages. Now, we will show a way to refine this
approximation h0. We will focus on the case where X = R2, and thus X0 is a curve
on the plane and Tρ : T→ T is defined as T(θ) := θ + ρ (mod 1) for θ ∈ T. We will
assume F is an area-preserving map, where invariant tori with irrational dynamics
are natural, as shows the KAM Theorem. Exploiting the fact that h must satisfy
the conjugacy equation F(h(θ)) = h(Tρ(θ)) for all θ ∈ T, the idea is to perform
the well-known Newton’s iterative method to find a better approximation of h.

7.1 Parametrisation Method for an Invariant Tori

We will assume that the rotation number ρ (or a good approximation of it) is
known. We are looking for h such that it satisfies the following equation

F(h(θ)) = h(θ + ρ) for all θ ∈ T

47
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To ensure the uniqueness of the solution, we need to fix a phase condition. We will
assume h(0) lies in a particular line in the plane by fixing two vectors p, η ∈ R2

and ask that the inner product (p− h(0)) · η = 0.

Hence, we want to solve the resulting system of equations:{
F(h(θ)) = h(θ + ρ)

(p− h(0)) · η = 0

These are two equations for only one unknown h. To balance the system, we
introduce a scalar unfolding parameter β. Thus, we now seek to solve:{

F(h(θ)) = (1 + β)h(θ + ρ)

(p− h(0)) · η = 0

These are two equations in two unknowns, h and β. The following lemma shows
that the solutions of the unfolded system satisfy the original equations.

Lemma 7.1. Let h∗ ∈ Ck
p(R) := {h ∈ Ck|h is 1-periodic}, and β∗ ∈ R. Consider

Ψ : R× Ck
p(R) −→ R× Ck

p(R)

(β, h) 7−→ ((p− h(0)) · η, F(h(θ))− (1 + β)h(θ + ρ))

If Ψ(β∗, h∗) = 0, then β∗ = 0 and h conjugates the dynamics generated by F to the
rotation map Tρ.

Proof. This proof comes from [9]. Let β∗ ∈ R and h∗ ∈ Ck
p(R) be a zero of Ψ. Then,

F(h∗(θ)) = (1 + β∗)h∗(θ + ρ)

Let Γ be the curve parametrised by h∗, and Γ̂ := F ◦ Γ be the curve parametrised
by F ◦ h∗. Note that h∗(θ + ρ) is just a reparametrisation with different phase of Γ.

For an arbitrary h ∈ Ck
p(R), consider the area enclosed by the simple closed

curves Γ (with both parameterisations) and Γ̂:

A(h) =
1
2

∫
Γ

h1dy− h2dx =
1
2

∫ 1

0

(
h1(θ)

d
dθ

h2(θ)− h2(θ)
d
dθ

h1(θ)
)

dθ

A(h ◦ Tρ) =
1
2

∫
Γ
(h1 ◦ Tρ)dy− (h2 ◦ Tρ)dx

=
1
2

∫ 1

0

(
h1(θ + ρ)

d
dθ

h2(θ + ρ)− h2(θ + ρ)
d
dθ

h1(θ + ρ)
)

dθ
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A(F ◦ h) =
1
2

∫
Γ̂
(F ◦ h)1dy− (F ◦ h)2dx

=
1
2

∫ 1

0

(
F(k(θ))1

d
dθ

F(k(θ))2 − F(k(θ))2
d
dθ

F(k(θ))1

)
dθ

We know that A(h) = A(h ◦ Tρ), as they are computed over the same curve Γ.
Due to the assumption that F is a diffeomorphism, Γ̂ is diffeomorphic to Γ. Since,
F is a measure-preserving map, A(h) = A(F ◦ h).

However, plugging F(h∗(θ)) = (1 + β∗)h∗(θ + ρ) into the areas formulae, one
gets that A(F ◦ h∗) = (1 + β∗)A(h∗ ◦ Tρ). As we have just seen that A(h∗) =

A(h∗ ◦ Tρ) = A(F ◦ h∗), it follows that β∗ = 0. From this, we obtain that F(h∗(θ)) =
h∗(θ + ρ); hence h∗ conjugates the dynamics of F to an irrational rotation Tρ.

7.2 Newton Scheme in Fourier Coefficient Space

By the previous Lemma 7.1, we now seek to solve Ψ(β, h) = 0. Assume h0 is
an approximate zero of the equation and choose β0 = 0. The Newton sequence is(

βn+1

hn+1

)
=

(
βn

hn

)
+

(
δn

∆n

)
where (δn, ∆n)T satisfies DΨ(βn, hn)(δn, ∆n)T = −Ψ(βn, hn). We refer to DΨ(β, h)
as the Frechet derivative of Ψ, thus for β, δ ∈ R and h, ∆ ∈ Ck

p(R),

DΨ(β, h)
(

δ

∆

)
=

(
−∆(0) · η

−δh(θ + ρ) + DF(h(θ))∆(θ)− (1 + β)∆(θ + ρ)

)
This refinement of the approximation of h allows us to add an extra step to the

numerical recipe we gave in Section 6.3 while working with the Henon map.
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Step 5: Perform the Newton method with an initial condition β0 = 0 and h0

defined as in the previous step. Iterate until the defect

εn = sup
θ∈T

∣∣∣F(hn(θ))− hn(θ + ρ)
∣∣∣

is either smaller than some tolerance or saturates. Then, we consider the
conjugacy h we were seeking as the last iterate hn of the Newton scheme.
If convergence is not achieved, return to Step 4 and refine NF.

We won’t do this step in our examples, as it requires some further studies to
implement the corresponding code. Interested readers can find a detailed expla-
nation in [9]. From the theoretical point of view, this justifies that close to the
numerical approximation there is a "true" invariant torus.

Recall h is 1-periodic and thus h(θ) = ∑n∈Z (an
bn
)e2πinθ . Using this assumption

about the form of the unknown function facilitates finding the solution. In fact,
one can notice that the translation by ρ is a diagonal operator in Fourier space as

h ◦ Tρ(θ) = h(θ + ρ) = ∑
n∈Z

(
an

bn

)
e2πin(θ+ρ) = ∑

n∈Z

e2πinρ

(
an

bn

)
e2πinθ

The phase condition can also be written in terms of the Fourier series

(p− h(0)) · η = p1η1 + p2η2 − ∑
n∈Z

(anη1 + bnη2)

In addition, assuming F ∈ Ck, since h ∈ Ck
p, then F ◦ h ∈ Ck

p. Hence,

F ◦ h(θ) = ∑
n∈Z

(F ◦ h)ne2πinθ

where its Fourier coefficients (F ◦ h)n depend in a nonlinear way on an and bn,
since F ◦ h(θ) = h ◦ Tρ(θ).

In conclusion, writing h using its Fourier series representation makes h ◦ Tρ

very easy to compute, as a translation by ρ is a diagonal operator in the Fourier
space. The equation that determines the phase condition can also be managed
using this representation of h. The map F ◦ h may be difficult to compute, but
we can exploit the fact that h ◦ Tρ = F ◦ h to obtain its Fourier series. Therefore,
solving Ψ(β, h) = 0 using the Newton scheme is usually done in the Fourier space
(truncating up to a certain order).



Appendix A

Codes used to produce the
graphics

A.1 Standard Map

The following code asks the user to introduce the number of iterates N ∈ N,
the perturbation ε ∈ R, and the first coordinate of the initial condition x0 ∈ T. It
then computes the forward orbit segment of length N for the Standard map given
the initial condition (x0, y0), where y0 = 0.01k ∈ [−0.5, 0.5] and k ∈ Z. The
resulting data is saved to a file so the orbits can be later plotted. This code has
been used to generate Figure 5.1.

1 /∗ Orbi ts of the Standard map ∗/
2

3 # include < s t d i o . h>
4 # include <math . h>
5 # include < s t d l i b . h>
6

7 # def ine PI 4∗ atan ( 1 . )
8

9 void standard_map ( double z [ ] , double EPSILON) ;
10

11

12 i n t main ( void ) {
13 double iy = 0 . 0 1 , x0 , y0 , z [ 2 ] ;
14 double EPSILON ;
15 FILE ∗out ;
16 i n t n , N;
17

18 /∗ User data ∗/
19 p r i n t f ( "\nGive me the number of i t e r a t e s :\n" ) ;
20 scanf ( " %d" , &N) ;

51
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21 i f (N<=0) {
22 p r i n t f ( " I t must be p o s i t i v e . End\n\n" ) ;
23 re turn 1 ;
24 }
25 p r i n t f ( " Give me the per turbat ion ( <1) :\n" ) ;
26 scanf ( " %l e " , &EPSILON) ;
27 i f (EPSILON>=1) {
28 p r i n t f ( " This per turba t ion i s too big .\n\n" ) ;
29 re turn 1 ;
30 }
31 p r i n t f ( "\nGive me x0 f o r the i n i t i a l condi t ion ( which w i l l be of the

form ( x0 , y0 ) ) :\n" ) ;
32 scanf ( " %l e " , &x0 ) ;
33 x0=x0−f l o o r ( x0 ) ;
34 i f ( x0 >=0.5) {
35 x0−=1;
36 }
37

38 /∗ F i l e ∗/
39 out=fopen ( " orbits_standardKAM . data " , "w" ) ;
40 i f ( out==NULL) {
41 p r i n t f ( " Problems with the f i l e . End.\n\n" ) ;
42 e x i t ( 1 ) ;
43 }
44 f p r i n t f ( out , " #x0%13cy0\n" , ’ ’ ) ;
45

46 /∗ Orbi ts ∗/
47 p r i n t f ( "\n −−−−−− computing o r b i t s of the standard map −−−−−−\n" ) ;
48 f o r ( y0 =−0.5; y0 < = 0 . 5 ; y0 += iy ) {
49 z [0 ]= x0 ;
50 z [1 ]= y0 ;
51 f o r ( n=0; n<N; n++) {
52 f p r i n t f ( out , " %10.8 l e \ t %10.8 l e \n" , z [ 0 ] , z [ 1 ] ) ;
53 standard_map ( z , EPSILON) ;
54 }
55 }
56

57 f c l o s e ( out ) ;
58 p r i n t f ( " Resu l t s can be found in orbits_standardKAM . data .\n\n" ) ;
59 re turn 0 ;
60 }
61

62

63 /∗ Standard Map ∗/
64 void standard_map ( double z [ ] , double EPSILON) {
65 z [1 ]= z[1]−EPSILON/(2∗PI ) ∗ s in (2∗ PI∗z [ 0 ] ) ;
66 z [0 ]= z [0 ]+ z [ 1 ] ;
67 z [0 ]= z[0]− f l o o r ( z [ 0 ] ) ;
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68 z [1 ]= z[1]− f l o o r ( z [ 1 ] ) ;
69 i f ( z [ 0 ] > = 0 . 5 ) {
70 z [0]−=1;
71 }
72 i f ( z [ 1 ] > = 0 . 5 ) {
73 z [1]−=1;
74 }
75 }

The following code computes the rotation number for the primary tori of the
Standard map via weighted Birkhoff averages. At the beginning, the user must
introduce the number of iterates N ∈ N, the perturbation ε ∈ R, and the first
coordinate of the initial condition x0 ∈ T. The resulting data is saved in a file for
subsequent plotting. This is used to generate Figure 6.3 (a).

1 /∗ weighted B i r k h o f f averages to compute the r o t a t i o n vec tor of the
Standard map ∗/

2

3 # include < s t d i o . h>
4 # include <math . h>
5 # include < s t d l i b . h>
6

7 # def ine PI 4∗ atan ( 1 . )
8

9 void standard_map ( double z [ ] , double EPSILON) ;
10 double exp_weights ( double t ) ;
11 double weighted_birkhoff ( double z [ ] , i n t N, double EPSILON) ;
12

13

14 i n t main ( void ) {
15 double z [ 2 ] , wb, x0 , y0 , iy =0 .001 , EPSILON ;
16 i n t N;
17 FILE ∗out ;
18

19 /∗ User data ∗/
20 p r i n t f ( "\nGive me the number of i t e r a t e s :\n" ) ;
21 scanf ( " %d" , &N) ;
22 i f (N<=0) {
23 p r i n t f ( " I t must be p o s i t i v e . End\n\n" ) ;
24 re turn 1 ;
25 }
26 p r i n t f ( " Give me the per turba t ion ( <1) :\n" ) ;
27 scanf ( " %l e " , &EPSILON) ;
28 i f (EPSILON>=1) {
29 p r i n t f ( " This per turba t ion i s too big .\n\n" ) ;
30 re turn 1 ;
31 }
32 p r i n t f ( "\nGive me x0 f o r the i n i t i a l condi t ion ( which w i l l be of the
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form ( x0 , y0 ) ) :\n" ) ;
33 scanf ( " %l e " , &x0 ) ;
34 x0=x0−f l o o r ( x0 ) ;
35

36

37 /∗ F i l e ∗/
38 out=fopen ( " wb_standardmap . data " , "w" ) ;
39 i f ( out==NULL) {
40 p r i n t f ( " Problems with the f i l e . End.\n\n" ) ;
41 e x i t ( 1 ) ;
42 }
43 f p r i n t f ( out , " #y0%14cwb[ 0 ]\ n" , ’ ’ ) ;
44

45

46 /∗ weighted B i r k h o f f ∗/
47 p r i n t f ( "\n −−−−−− computing the Weighted B i r k h o f f average −−−−−−\n" ) ;
48 f o r ( y0 =−0.5; y0 < = 0 . 5 ; y0+=iy ) {
49 z [0 ]= x0 ;
50 z [1 ]= y0 ;
51 wb=weighted_birkhoff ( z , N, EPSILON) ;
52 f p r i n t f ( out , " %10.8 l e \ t %+14.8 l e \n" , y0 , wb) ;
53 }
54

55 f c l o s e ( out ) ;
56 p r i n t f ( " Resu l t s can be found in wb_standardmap . data .\n\n" ) ;
57

58 re turn 0 ;
59 }
60

61

62 /∗ Standard Map ∗/
63 void standard_map ( double z [ ] , double EPSILON) {
64 z [1 ]= z[1]−EPSILON/(2∗PI ) ∗ s in (2∗ PI∗z [ 0 ] ) ;
65 z [0 ]= z [0 ]+ z [ 1 ] ;
66 }
67

68

69 /∗ Exponential weighting ∗/
70 double exp_weights ( double t ) {
71 i f ( t <=0||t >=1) {
72 re turn 0 . ;
73 }
74 re turn exp(−1/( t ∗(1− t ) ) ) ;
75 }
76

77

78 /∗ Weighted B i r k h o f f average ∗/
79 double weighted_birkhoff ( double z0 [ ] , i n t N, double EPSILON) {
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80 i n t n ;
81 double z1 [ 2 ] , weight , aN= 0 . , wb= 0 . ;
82 f o r ( n=0; n<N; n++) {
83 z1 [ 0 ] = z0 [ 0 ] ;
84 z1 [ 1 ] = z0 [ 1 ] ;
85 standard_map ( z1 , EPSILON) ;
86 weight=exp_weights ( ( double ) n/N) ;
87 wb+=weight ∗ ( z1 [0]−z0 [ 0 ] ) ;
88 aN+=weight ;
89 z0 [ 0 ] = z1 [0]− f l o o r ( z1 [ 0 ] ) ;
90 z0 [ 1 ] = z1 [1]− f l o o r ( z1 [ 1 ] ) ;
91 }
92 re turn wb/aN ;
93 }

The following code computes the difference between the rotation number of
primary tori of the Standard map |ρN2 − ρN1 |, for different N1, N2 ∈ N. At the
beginning, the user must introduce a pair of numbers N1, N2 ∈N, the perturbation
ε ∈ R and the first coordinate of the initial condition x0 ∈ T. The resulting data
is saved in two separate files so it can be later plotted. This is used to generate
Figure 6.3 (b).

1 /∗ Comparision of the speed of convergence with B and WB averages ∗/
2 # include < s t d i o . h>
3 # include <math . h>
4 # include < s t d l i b . h>
5

6 # def ine PI 4∗ atan ( 1 . )
7

8 void standard_map ( double z [ ] , double EPSILON) ;
9 double exp_weights ( double t ) ;

10 void rotation_number ( double z [ 2 ] , double EPSILON , i n t N1, i n t N2, double
rho [ 4 ] ) ;

11

12

13 i n t main ( void ) {
14 double x0 , y0 , iy =0 .001 , EPSILON ;
15 double z [ 2 ] , rho [ 4 ] ;
16 i n t N1, N2 ;
17 FILE ∗out1 , ∗out2 ;
18

19 /∗ User data ∗/
20 p r i n t f ( "\nGive me the number of i t e r a t e s N1 < N2 f o r which you want to

compare the r e s u l t :\n" ) ;
21 scanf ( " %d %d" , &N1, &N2) ;
22 i f (N1>=N2) {
23 p r i n t f ( " Error : N1>=N1\n\n" ) ;
24 re turn 1 ;
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25 }
26 p r i n t f ( "\nGive me the per turbat ion ( <1) :\n" ) ;
27 scanf ( " %l e " , &EPSILON) ;
28 i f (EPSILON>=1) {
29 p r i n t f ( " This per turba t ion i s too big .\n\n" ) ;
30 re turn 1 ;
31 }
32 p r i n t f ( "\nGive me x0 f o r the i n i t i a l condi t ion ( which w i l l be of the

form ( x0 , y0 ) ) :\n" ) ;
33 scanf ( " %l e " , &x0 ) ;
34 x0=x0−f l o o r ( x0 ) ;
35

36 /∗ F i l e s ∗/
37 out1=fopen ( " speedB . data " , "w" ) ;
38 i f ( out1==NULL) {
39 p r i n t f ( " Problems with the f i l e . End.\n\n" ) ;
40 e x i t ( 1 ) ;
41 }
42 f p r i n t f ( out1 , " #x0%14 d i f f e r e n c e \n" , ’ ’ ) ;
43 out2=fopen ( "speedWB . data " , "w" ) ;
44 i f ( out2==NULL) {
45 p r i n t f ( " Problems with the f i l e . End.\n\n" ) ;
46 e x i t ( 1 ) ;
47 }
48 f p r i n t f ( out2 , " #x0%14 c d i f f e r e n c e \n" , ’ ’ ) ;
49

50 /∗ B i r k h o f f ∗/
51 p r i n t f ( "\n −−−−−− computing normal and weighted B i r k h o f f averages

−−−−−−\n" ) ;
52 f o r ( y0 =−0.5; y0 < 0 . 5 ; y0+=iy ) {
53 z [0 ]= x0 ;
54 z [1 ]= y0 ;
55 rotation_number ( z , EPSILON , N1, N2, rho ) ;
56 f p r i n t f ( out1 , " %+14.8 l e \ t %+14.8 l e \n" , y0 , fabs ( rho [1]− rho [ 0 ] ) ) ;
57 f p r i n t f ( out2 , " %+14.8 l e \ t %+14.8 l e \n" , y0 , fabs ( rho [3]− rho [ 2 ] ) ) ;
58 }
59

60 f c l o s e ( out1 ) ;
61 f c l o s e ( out2 ) ;
62 p r i n t f ( " Resu l t s can be found in speedB . data .\n" ) ;
63 p r i n t f ( " Resu l t s can be found in speedWB . data .\n\n" ) ;
64 re turn 0 ;
65 }
66

67

68 /∗ Standard Map ∗/
69 void standard_map ( double z [ ] , double EPSILON) {
70 z [1 ]= z[1]−EPSILON/(2∗PI ) ∗ s in (2∗ PI∗z [ 0 ] ) ;
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71 z [0 ]= z [0 ]+ z [ 1 ] ;
72 }
73

74

75 /∗ exponent ia l weightings ∗/
76 double exp_weights ( double t ) {
77 i f ( t <=0||t >=1) {
78 re turn 0 . ;
79 }
80 re turn exp(−1/( t ∗(1− t ) ) ) ;
81 }
82

83 /∗ Rotat ion Number through weighted B i r k h o f f averages∗/
84 void rotation_number ( double z0 [ 2 ] , double EPSILON , i n t N1, i n t N2, double

rho [ 4 ] ) {
85 i n t n ;
86 double weight1 , weight2 , aN1= 0 . , aN2= 0 . , z1 [ 2 ] , d i f f ;
87 rho [ 0 ] = 0 . ;
88 rho [ 2 ] = 0 . ;
89 rho [ 3 ] = 0 . ;
90 f o r ( n=0; n<N1 ; n++) {
91 z1 [ 0 ] = z0 [ 0 ] ;
92 z1 [ 1 ] = z0 [ 1 ] ;
93 standard_map ( z1 , EPSILON) ;
94 weight1=exp_weights ( ( double ) n/N1) ;
95 weight2=exp_weights ( ( double ) n/N2) ;
96 d i f f =z1 [0]−z0 [ 0 ] ;
97 rho [0]+= d i f f ;
98 rho [2]+= weight1∗ d i f f ;
99 rho [3]+= weight2∗ d i f f ;

100 aN1+=weight1 ;
101 aN2+=weight2 ;
102 z0 [ 0 ] = z1 [0]− f l o o r ( z1 [ 0 ] ) ;
103 z0 [ 1 ] = z1 [1]− f l o o r ( z1 [ 1 ] ) ;
104 }
105 rho [ 1 ]= rho [ 0 ] ;
106 rho [ 0 ]= rho [ 0 ]/N1 ;
107 rho [ 2 ]= rho [ 2 ]/aN1 ;
108 f o r ( n=N1 ; n<N2 ; n++) {
109 z1 [ 0 ] = z0 [ 0 ] ;
110 z1 [ 1 ] = z0 [ 1 ] ;
111 standard_map ( z1 , EPSILON) ;
112 weight2=exp_weights ( ( double ) n/N2) ;
113 d i f f =z1 [0]−z0 [ 0 ] ;
114 rho [1]+= d i f f ;
115 rho [3]+= weight2∗ d i f f ;
116 aN2+=weight2 ;
117 z0 [ 0 ] = z1 [0]− f l o o r ( z1 [ 0 ] ) ;



58 Codes used to produce the graphics

118 z0 [ 1 ] = z1 [1]− f l o o r ( z1 [ 1 ] ) ;
119 }
120 rho [ 1 ]= rho [ 1 ]/N2 ;
121 rho [ 3 ]= rho [ 3 ]/aN2 ;
122 }

A.2 Arnold Map

Given the perturbation ε ∈ R, the orbit length N ∈N, and an initial condition
x0 ∈ T; the following code computes the rotation number and the Lyapunov
exponent of the Arnold map for different values of α ∈ [0, 1]. The resulting data
is saved in two separate files, so we can later plot them. This is used to generate
Figure 6.1 and Figure 6.2.

1 /∗ Devil ’ s s t a i r c a s e and Lyapunov exponent of the Arnold map ∗/
2

3 # include < s t d i o . h>
4 # include <math . h>
5 # include < s t d l i b . h>
6

7 double EPSILON ;
8 # def ine PI 4∗ atan ( 1 . )
9

10 double diff_arnold_map ( double x , double ALPHA) ;
11 double exp_weights ( double t ) ;
12 void weighted_birkhoff ( double x , double ALPHA, i n t N, double wb[ 2 ] ) ;
13

14 i n t main ( void ) {
15 double x0 , ALPHA, wb [ 2 ] ;
16 i n t N;
17 FILE ∗out1 , ∗out2 ;
18

19 /∗ User data ∗/
20 p r i n t f ( "\nGive me the number of i t e r a t e s :\n" ) ;
21 scanf ( " %d" , &N) ;
22 i f (N<=0) {
23 p r i n t f ( " I t must be p o s i t i v e . End.\n\n" ) ;
24 re turn 1 ;
25 }
26 p r i n t f ( "\nGive me eps i lon :\n" ) ;
27 scanf ( " %l e " , &EPSILON) ;
28 p r i n t f ( "\nGive me the i n i t i a l condi t ion x0 :\n" ) ;
29 scanf ( " %l e " , &x0 ) ;
30

31 /∗ F i l e s ∗/
32 out1=fopen ( " devil_arnoldmap . data " , "w" ) ;
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33 i f ( out1==NULL) {
34 p r i n t f ( " Problems with the f i l e . End.\n\n" ) ;
35 e x i t ( 1 ) ;
36 }
37 out2=fopen ( " lyapunov_arnoldmap . data " , "w" ) ;
38 i f ( out2==NULL) {
39 p r i n t f ( " Problems with the f i l e . End.\n\n" ) ;
40 e x i t ( 1 ) ;
41 }
42

43 /∗ weighted B i r k h o f f ∗/
44 p r i n t f ( "\n −−−−−− Computing the r o t a t i o n number and Lyapunov exponents

−−−−−−\n" ) ;
45 f o r (ALPHA=0; ALPHA<1; ALPHA+=0.001) {
46 weighted_birkhoff ( x0 , ALPHA, N, wb) ;
47 f p r i n t f ( out1 , " %10.8 l e \ t %10.8 l e \n" , ALPHA, wb[ 0 ] ) ;
48 f p r i n t f ( out2 , " %10.8 l e \ t %10.8 l e \n" , ALPHA, wb[ 1 ] ) ;
49 }
50

51 f c l o s e ( out1 ) ;
52 f c l o s e ( out2 ) ;
53 p r i n t f ( " Resu l t s can be found in devil_arnoldmap . data .\n" ) ;
54 p r i n t f ( " Resu l t s can be found in lyapunov_arnoldmap . data .\n\n" ) ;
55

56 re turn 0 ;
57 }
58

59

60 /∗ d i f f e r e n c e between i t e r a t e s of the Arnold C i r c l e map ∗/
61 double diff_arnold_map ( double x , double ALPHA) {
62 re turn ALPHA−EPSILON/(2∗PI ) ∗ s in (2∗ PI∗x ) ;
63 }
64

65

66 /∗ d i f f e r e n c i a l of the Arnold Map ∗/
67 double deriv_arnold_map ( double x ) {
68 re turn 1−EPSILON∗ cos (2∗ PI∗x ) ;
69 }
70

71

72 /∗ exponent ia l weightings ∗/
73 double exp_weights ( double t ) {
74 i f ( t <=0||t >=1) {
75 re turn 0 . ;
76 }
77 re turn exp(−1/( t ∗(1− t ) ) ) ;
78 }
79
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80

81 /∗ weighted B i r k h o f f ∗/
82 void weighted_birkhoff ( double x , double ALPHA, i n t N, double wb[ 2 ] ) {
83 double d i f f , aN= 0 . , weight ;
84 i n t n ;
85 wb[ 0 ] = 0 . ; /∗ r o t a t i o n number ∗/
86 wb[ 1 ] = 0 . ; /∗ lyapunov exponent ∗/
87 f o r ( n=0; n<N; n++) {
88 x=x−f l o o r ( x ) ;
89 d i f f =diff_arnold_map ( x , ALPHA) ;
90 weight=exp_weights ( ( double ) n/N) ;
91 wb[0]+= weight∗ d i f f ;
92 wb[1]+= weight∗ log ( fabs ( deriv_arnold_map ( x ) ) ) ;
93 aN+=weight ;
94 x+= d i f f ;
95 }
96 wb[0]/=aN ;
97 wb[1]/=aN ;
98 }

A.3 Henon Map

Analogous to the code previously presented for the Standard map, this code
aims to plot the orbits of the Henon map. Given a pre-fixed α ∈ R, the following
code asks the user to introduce the orbit length N ∈ N and the first coordinate
of an initial condition x0 ∈ T. It then computes the forward orbit segment of
length N of the Henon map with the initial condition (x0, y0), where y0 = 0.01k ∈
[−0.7, 0.7] and k ∈ Z. It saves the resulting data in a file so the orbits can later be
plotted. This code has been used to produce Figure 6.4.

1 /∗ Orbi ts of the Henon map ∗/
2

3 # include < s t d i o . h>
4 # include <math . h>
5 # include < s t d l i b . h>
6

7 # def ine PI 4∗ atan ( 1 . )
8 # def ine ALPHA acos ( 0 . 2 4 )
9

10 void henon_map ( double z [ 2 ] ) ;
11 void o r b i t ( double x0 , double y0 ) ;
12

13 i n t main ( void ) {
14 double iy = 0 . 0 1 , x0 , y0 , z [ 2 ] ;
15 i n t n , N;
16 FILE ∗out ;
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17

18 /∗ User data ∗/
19 p r i n t f ( "\nWe have s e t alpha = %.16 l e .\n" , ALPHA) ;
20 p r i n t f ( " Give me the number of i t e r a t e s :\n" ) ;
21 scanf ( " %d" , &N) ;
22 i f (N<=0) {
23 p r i n t f ( " I t must be p o s i t i v e . End.\n\n" ) ;
24 re turn 1 ;
25 }
26 p r i n t f ( "\nGive me x0 f o r the i n i t i a l condi t ion ( which w i l l be of the

form ( x0 , y0 ) ) :\n" ) ;
27 scanf ( " %l e " , &x0 ) ;
28 x0=x0−f l o o r ( x0 ) ;
29

30 /∗ F i l e ∗/
31 out=fopen ( " orbits_henonmap . data " , "w" ) ;
32 i f ( out==NULL) {
33 p r i n t f ( " Problems with the f i l e . End.\n\n" ) ;
34 e x i t ( 1 ) ;
35 }
36 f p r i n t f ( out , " #x0%13cy0\n" , ’ ’ ) ;
37

38 /∗ Orbi ts ∗/
39 p r i n t f ( "\n −−−−−− computing o r b i t s of the henon map −−−−−−\n" ) ;
40 f o r ( y0 =−0.7; y0 < = 0 . 7 ; y0 += iy ) {
41 z [0 ]= x0 ;
42 z [1 ]= y0 ;
43 f o r ( n=0; n<N; n++) {
44 f p r i n t f ( out , " %10.8 l e \ t %10.8 l e \n" , z [ 0 ] , z [ 1 ] ) ;
45 henon_map ( z ) ;
46 }
47 }
48

49 f c l o s e ( out ) ;
50 p r i n t f ( " Resu l t s can be found in orbits_henonmap . data .\n\n" ) ;
51 re turn 0 ;
52 }
53

54

55 /∗ Henon map ∗/
56 void henon_map ( double z [ 2 ] ) {
57 double bz [ 2 ] ;
58 bz [ 0 ] = z [ 0 ]∗ cos (ALPHA) − ( z [1]−z [ 0 ]∗ z [ 0 ] ) ∗ s in (ALPHA) ;
59 bz [ 1 ] = z [ 0 ]∗ s i n (ALPHA) + ( z[1]−z [ 0 ]∗ z [ 0 ] ) ∗ cos (ALPHA) ;
60 z [0 ]= bz [ 0 ] ;
61 z [1 ]= bz [ 1 ] ;
62 }

The following code aims to compute the rotation number of an invariant tori
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of the Henon map, with a pre-fixed α, given an initial condition (x0, y0) ∈ R in a
neighbourhood of the elliptic fixed point (0, 0). This is used in the Step 1 and Step
2 of the numerical recipe in Section 6.3.

1 /∗ Rotat ion number f o r the Henon map . STEP 1 and STEP 2∗/
2 # include < s t d i o . h>
3 # include <math . h>
4 # include < s t d l i b . h>
5

6 # def ine PI 4∗ atan ( 1 . )
7 # def ine ALPHA acos ( 0 . 2 4 )
8

9 void henon_map ( double z [ ] ) ;
10 double exp_weights ( double t ) ;
11 double WB_rotation_number ( double z0 [ ] , i n t N) ;
12

13 i n t main ( void ) {
14 double z [ 2 ] , rho ;
15 i n t N;
16

17 /∗ User data ∗/
18 p r i n t f ( "\nWe have s e t alpha = %l e \n" , ALPHA) ;
19 p r i n t f ( " Give me the number of i t e r a t e s :\n" ) ;
20 scanf ( " %d" , &N) ;
21 i f (N<=0) {
22 p r i n t f ( " I t must be p o s i t i v e . End.\n\n" ) ;
23 re turn 1 ;
24 }
25 p r i n t f ( "\nGive me the i n i t i a l condi t ion ( x0 , y0 ) c l o s e to ( 0 , 0 ) :\n" )

;
26 scanf ( "%l e %l e " , &z [ 0 ] , &z [ 1 ] ) ;
27

28 /∗ weighted B i r k h o f f ∗/
29 p r i n t f ( "\n−−−−Computing the r o t a t i o n number−−−−\n" ) ;
30 rho = WB_rotation_number ( z , N) ;
31 p r i n t f ( " The r o t a t i o n number of the o r b i t i s %.15 l e \n" , rho ) ;
32 p r i n t f ( " The r o t a t i o n number of the o r i g i n i s %.15 l e \n\n" , ALPHA/(2∗PI

) ) ;
33

34 re turn 0 ;
35 }
36

37

38 /∗ Henon map∗/
39 void henon_map ( double z [ ] ) {
40 double aux [ 2 ] ;
41 aux [ 0 ] = z [ 0 ] ;
42 aux [ 1 ] = z [ 1 ] ;
43 z [ 0 ] = aux [ 0 ]∗ cos (ALPHA)−(aux[1]−aux [ 0 ]∗ aux [ 0 ] ) ∗ s in (ALPHA) ;
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44 z [ 1 ] = aux [ 0 ]∗ s i n (ALPHA) +( aux[1]−aux [ 0 ]∗ aux [ 0 ] ) ∗ cos (ALPHA) ;
45 }
46

47

48 /∗ weightings ∗/
49 double exp_weights ( double t ) {
50 i f ( t <=0||t >=1) {
51 re turn 0 . ;
52 }
53 re turn exp(−1/( t ∗(1− t ) ) ) ;
54 }
55

56

57 /∗ wieghted b i r k h o f f average ∗/
58 double WB_rotation_number ( double z [ ] , i n t N) {
59 double theta1 , theta0 , sum= 0 . , weight , An= 0 . , ang ;
60 i n t n ;
61 t h e t a 0=atan2 ( z [ 1 ] , z [ 0 ] ) ;
62 f o r ( n=0; n<N; n++) {
63 henon_map ( z ) ;
64 t h e t a 1=atan2 ( z [ 1 ] , z [ 0 ] ) ;
65 ang=theta1−t h e t a 0 ;
66 i f ( ang <0) {
67 ang+=2∗PI ;
68 }
69 weight=exp_weights ( ( double ) n/N) ;
70 sum+=weight∗ang ;
71 An+=weight ;
72 t h e t a 0=t h e t a 1 ;
73 }
74 re turn sum/An/(2∗PI ) ;
75 }

The subsequent code aims to compute the ideal truncation index of the Fourier
series approximation of the conjugacy. A priori, one must fix the tolerance tol ∈ R

and the parameter α ∈ R of the Henon map. The code asks the user to introduce
the desired orbit length N ∈N, an initial condition (x0, y0) ∈ R2, and the rotation
number ρ. Recall that, for this to work, the initial condition must lie in an invariant
tori with an associated rotation number equal to the one that is given. Then, the
code searches for the first index such that the norm of the corresponding Fourier
coefficient of h is smaller than the pre-established tolerance. This is used in Step 3
of the numerical recipe in Section 6.3.

1 /∗ Truncation of the Four ier s e r i e s r e p r e s e n t a t i o n . STEP 3 ∗/
2 # include < s t d i o . h>
3 # include <math . h>
4 # include < s t d l i b . h>
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5

6 # def ine t o l 1 . 0 e−10
7 # def ine PI 4∗ atan ( 1 . )
8 # def ine ALPHA acos ( 0 . 2 4 )
9

10 void henon_map ( double z [ ] ) ;
11 double exp_weights ( double t ) ;
12 void f o u r i e r _ c o e f f i c i e n t s ( double z [ 2 ] , i n t k , i n t N, double rho , double

az [ 2 ] , double bz [ 2 ] ) ;
13

14 i n t main ( void ) {
15 double z [ 2 ] , az [ 2 ] , bz [ 2 ] ;
16 double norm1=10 , norm2 , rho ;
17 i n t k , N;
18

19 /∗ User data ∗/
20 p r i n t f ( "\nWe have s e t alpha = %.15 l e \n" , ALPHA) ;
21 p r i n t f ( " Give me the number of i t e r a t e s :\n" ) ;
22 scanf ( " %d" , &N) ;
23 i f (N<=0) {
24 p r i n t f ( " I t must be p o s i t i v e . End.\n" ) ;
25 re turn 1 ;
26 }
27 p r i n t f ( "\nGive me the i n i t i a l condi t ion ( x0 , y0 ) t h a t fo l lows a

q u a s i p e r i o d i c t r a j e c t o r y :\n" ) ;
28 scanf ( " %l e %l e " , &z [ 0 ] , &z [ 1 ] ) ;
29 p r i n t f ( " Give me i t s r o t a t i o n number :\n" ) ;
30 scanf ( " %l e " , &rho ) ;
31

32 /∗ weighted B i t k h o f f ∗/
33 p r i n t f ( "\n −−−−−− Computing the i d e a l t r u n c a t i o n of the Four ier s e r i e s

−−−−−−\n" ) ;
34 f o r ( k =0; k<N && norm1> t o l ; k+=10) {
35 f o u r i e r _ c o e f f i c i e n t s ( z , k , N, rho , az , bz ) ;
36 norm1= s q r t ( az [ 0 ]∗ az [ 0 ] + bz [ 0 ]∗ bz [ 0 ] ) ;
37 norm2= s q r t ( az [ 1 ]∗ az [ 1 ] + bz [ 1 ]∗ bz [ 1 ] ) ;
38 i f ( norm2>norm1 ) {
39 norm1=norm2 ;
40 }
41 p r i n t f ( "Norm[%d]= %.15 l e \n" , k , norm1 ) ;
42 }
43 i f ( k==N) {
44 p r i n t f ( "\nFourier c o e f f i c i e n t s have not reach 0 . Try to increment N.\

n\n" ) ;
45 } e l s e {
46 p r i n t f ( "\nWe can t r u n c a t e a t N0=%d.\n\n" , k ) ;
47 }
48
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49 re turn 0 ;
50 }
51

52 void henon_map ( double z [ ] ) {
53 double aux [ 2 ] ;
54 aux [ 0 ] = z [ 0 ] ;
55 aux [ 1 ] = z [ 1 ] ;
56 z [ 0 ] = aux [ 0 ]∗ cos (ALPHA)−(aux[1]−aux [ 0 ]∗ aux [ 0 ] ) ∗ s i n (ALPHA) ;
57 z [ 1 ] = aux [ 0 ]∗ s i n (ALPHA) +( aux[1]−aux [ 0 ]∗ aux [ 0 ] ) ∗ cos (ALPHA) ;
58 }
59

60 double exp_weights ( double t ) {
61 i f ( t <=0||t >=1) {
62 re turn 0 . ;
63 }
64 re turn exp(−1/( t ∗(1− t ) ) ) ;
65 }
66

67

68 /∗ Given an index k , we compute i t s Four ier c o e f f i c i e n t ( az [0 ]+ ibz [ 0 ] , az
[ 1 ] + ibz [ 1 ] ) ∗/

69 void f o u r i e r _ c o e f f i c i e n t s ( double z [ 2 ] , i n t k , i n t N, double rho , double
az [ 2 ] , double bz [ 2 ] ) {

70 i n t n ;
71 double weight , An;
72 az [ 0 ] = 0 . ;
73 az [ 1 ] = 0 . ;
74 bz [ 0 ] = 0 . ;
75 bz [ 1 ] = 0 . ;
76 An= 0 . ;
77 /∗ Computation of each c o e f f i c i e n t ∗/
78 f o r ( n=0; n<N; n++) {
79 weight=exp_weights ( ( double ) n/N) ;
80 az [0]+= weight∗z [ 0 ]∗ cos (2∗ PI∗k∗n∗rho ) ;
81 az [1]+= weight∗z [ 1 ]∗ cos (2∗ PI∗k∗n∗rho ) ;
82 bz [0]+= weight∗z [ 0 ]∗ s i n (2∗ PI∗k∗n∗rho ) ;
83 bz [1]+= weight∗z [ 1 ]∗ s i n (2∗ PI∗k∗n∗rho ) ;
84 An+=weight ;
85 henon_map ( z ) ;
86 }
87 i f ( k==0) {
88 az [ 0 ] = az [ 0 ] /An;
89 az [ 1 ] = az [ 1 ] /An;
90 bz [0 ]= bz [0 ]/An;
91 bz [1 ]= bz [1 ]/An;
92 } e l s e {
93 az [0]=2∗ az [ 0 ] /An;
94 az [1]=2∗ az [ 1 ] /An;
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95 bz [0]=2∗bz [0 ]/An;
96 bz [1]=2∗bz [1 ]/An;
97 }
98 }

Finally, the next code computes an initial approximation h0 of h and its initial
defect. Similar to the previous code, the parameter α ∈ R of the Henon map
must be predefined. Then, the user is asked to introduce the orbit length N, the
truncation of the Fourier coefficients NF, and the initial condition (x0, y0) along
with its rotation number ρ. Typically, NF is chosen about %15 of the N0 obtained
from the previous code. After that, the program proceeds to compute the Fourier
approximation h0 and its initial defect. If the initial defect is not sufficiently small,
the process can be repeated with a larger NF. This is used in Section 6.3, Step 4 of
the Numerical Recipe.

1 /∗ I n i t i a l guess of h0 f o r the Henon Map. STEP 4 ∗/
2 # include < s t d i o . h>
3 # include <math . h>
4 # include < s t d l i b . h>
5

6 # def ine PI 4∗ atan ( 1 . )
7 # def ine ALPHA acos ( 0 . 2 4 )
8 # def ine EXP 2.718281828459045
9

10 void henon_map ( double z [ ] ) ;
11 double exp_weights ( double t ) ;
12 void f o u r i e r _ c o e f f i c i e n t s ( double ∗∗z , i n t k , i n t N, double rho , double ∗∗

az , double ∗∗bz ) ;
13 void evaluate_h ( double theta , i n t NF, double ∗∗az , double ∗∗bz , double

hz [ 2 ] ) ;
14 double error_conjugacy ( double theta , i n t NF, double rho , double ∗∗a ,

double ∗∗b ) ;
15

16 i n t main ( void ) {
17 double ∗∗z , ∗∗az , ∗∗bz ;
18 double rho , error , theta , d e f e c t = 0 . ;
19 i n t k , n , N, NF;
20

21 /∗ User data ∗/
22 p r i n t f ( "\nWe have s e t alpha = %.15 l e \n" , ALPHA) ;
23 p r i n t f ( " Give me the number of i t e r a t e s N and the t r u n c a t i o n of the

Four ier S e r i e s NF:\n" ) ;
24 scanf ( " %d %d" , &N, &NF) ;
25 i f (N<=0 ||NF<=0||NF>N) {
26 p r i n t f ( " They must be p o s i t i v e . End.\n" ) ;
27 re turn 1 ;
28 }
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29 az =( double ∗∗ ) c a l l o c (NF, s i z e o f ( double ∗ ) ) ;
30 bz =( double ∗∗ ) c a l l o c (NF, s i z e o f ( double ∗ ) ) ;
31 z =( double ∗∗ ) c a l l o c (N, s i z e o f ( double ∗ ) ) ;
32 i f ( az==NULL || bz==NULL) {
33 p r i n t f ( " Error with c a l l o c . End.\n" ) ;
34 e x i t ( 1 ) ;
35 }
36 f o r ( k =0; k<NF; k++) {
37 az [ k ] = ( double ∗ ) c a l l o c ( 2 , s i z e o f ( double ) ) ;
38 bz [ k ] = ( double ∗ ) c a l l o c ( 2 , s i z e o f ( double ) ) ;
39 i f ( az [ k]==NULL || bz [ k]==NULL) {
40 p r i n t f ( " Error with c a l l o c . End.\n" ) ;
41 e x i t ( 1 ) ;
42 }
43 }
44 f o r ( n=0; n<N; n++) {
45 z [ n ] = ( double ∗ ) c a l l o c ( 2 , s i z e o f ( double ) ) ;
46 i f ( z [ n]==NULL) {
47 p r i n t f ( " Error with c a l l o c . End.\n" ) ;
48 e x i t ( 1 ) ;
49 }
50 }
51 p r i n t f ( " Give me the i n i t i a l condi t ion ( x0 , y0 ) :\n" ) ;
52 scanf ( " %l e %l e " , &z [ 0 ] [ 0 ] , &z [ 0 ] [ 1 ] ) ;
53 p r i n t f ( " Give me i t s r o t a t i o n number :\n" ) ;
54 scanf ( " %l e " , &rho ) ;
55

56 /∗ Computing a l l the o b j e c t s needed ∗/
57 p r i n t f ( "\n−−−−−− Computing i t e r a t e s −−−−−−\n" ) ;
58 f o r ( n=1; n<N; n++) {
59 z [ n ] [ 0 ] = z [ n− 1 ] [ 0 ] ;
60 z [ n ] [ 1 ] = z [ n− 1 ] [ 1 ] ;
61 henon_map ( z [ n ] ) ;
62 }
63 p r i n t f ( "\n−−−−−− Computing Four ier c o e f f i c i e n t s −−−−−−\n" ) ;
64 f o r ( k =0; k<NF; k++) {
65 f o u r i e r _ c o e f f i c i e n t s ( z , k ,N, rho , az , bz ) ;
66 }
67

68 /∗ Looking i f i t ’ s good ∗/
69 p r i n t f ( "\n−−−−−− Looking i f i t i s a good i n i t i a l condi t ion −−−−−−\n" ) ;
70 f o r ( t h e t a =0; theta <1; t h e t a +=0.001) {
71 e r r o r =error_conjugacy ( theta , NF, rho , az , bz ) ;
72 i f ( error > d e f e c t ) {
73 d e f e c t = e r r o r ;
74 }
75 }
76 p r i n t f ( "\nThe i n i t i a l d e f f e c t i s of %.15 l e \n\n" , d e f e c t ) ;
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77

78

79 f o r ( k =0; k<NF; k++) {
80 f r e e ( az [ k ] ) ;
81 f r e e ( bz [ k ] ) ;
82 }
83 f o r ( n=0;n<N; n++) {
84 f r e e ( z [ n ] ) ;
85 }
86 f r e e ( az ) ;
87 f r e e ( bz ) ;
88 f r e e ( z ) ;
89 re turn 0 ;
90 }
91

92

93 /∗ computes the fol lowing i t e r a t e of the Henon map ∗/
94 void henon_map ( double z [ ] ) {
95 double aux [ 2 ] ;
96 aux [ 0 ]= z [ 0 ] ;
97 aux [ 1 ]= z [ 1 ] ;
98 z [0 ]= aux [ 0 ]∗ cos (ALPHA)−(aux[1]−aux [ 0 ]∗ aux [ 0 ] ) ∗ s i n (ALPHA) ;
99 z [1 ]= aux [ 0 ]∗ s i n (ALPHA) +( aux[1]−aux [ 0 ]∗ aux [ 0 ] ) ∗ cos (ALPHA) ;

100 }
101

102

103 /∗ weightings ∗/
104 double exp_weights ( double t ) {
105 i f ( t <=0||t >=1) {
106 re turn 0 . ;
107 }
108 re turn exp(−1/( t ∗(1− t ) ) ) ;
109 }
110

111

112 /∗ saves in az and bz the f o u r i e r c o e f f i c i e n t s ∗/
113 void f o u r i e r _ c o e f f i c i e n t s ( double ∗∗z , i n t k , i n t N, double rho , double ∗∗

az , double ∗∗bz ) {
114 i n t n ;
115 double weight , An= 0 . ;
116 az [ k ] [ 0 ] = 0 . ;
117 az [ k ] [ 1 ] = 0 . ;
118 bz [ k ] [ 0 ] = 0 . ;
119 bz [ k ] [ 1 ] = 0 . ;
120 /∗ Computation of each c o e f f i c i e n t ∗/
121 f o r ( n=0; n<N; n++) {
122 weight=exp_weights ( ( double ) n/N) ;
123 az [ k ] [ 0 ] + = weight∗z [ n ] [ 0 ] ∗ cos (2∗ PI∗k∗n∗rho ) ;
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124 az [ k ] [ 1 ] + = weight∗z [ n ] [ 1 ] ∗ cos (2∗ PI∗k∗n∗rho ) ;
125 bz [ k ] [ 0 ] + = weight∗z [ n ] [ 0 ] ∗ s in (2∗ PI∗k∗n∗rho ) ;
126 bz [ k ] [ 1 ] + = weight∗z [ n ] [ 1 ] ∗ s in (2∗ PI∗k∗n∗rho ) ;
127 An+=weight ;
128 }
129 i f ( k==0) {
130 az [ 0 ] [ 0 ] = az [ 0 ] [ 0 ] /An;
131 az [ 0 ] [ 1 ] = az [ 0 ] [ 1 ] /An;
132 bz [ 0 ] [ 0 ] = bz [ 0 ] [ 0 ] /An;
133 bz [ 0 ] [ 1 ] = bz [ 0 ] [ 1 ] /An;
134 } e l s e {
135 az [ k ] [ 0 ] = 2∗ az [ k ] [ 0 ] /An;
136 az [ k ] [ 1 ] = 2∗ az [ k ] [ 1 ] /An;
137 bz [ k ] [ 0 ] = 2∗ bz [ k ] [ 0 ] /An;
138 bz [ k ] [ 1 ] = 2∗ bz [ k ] [ 1 ] /An;
139 }
140 }
141

142

143 /∗ eva luates the s e r i e s approximation of h at t h e t a ∗/
144 void evaluate_h ( double theta , i n t NF, double ∗∗az , double ∗∗bz , double

h_theta [ 2 ] ) {
145 i n t k ;
146 double sinus , cosinus ;
147 h_theta [ 0 ]= az [ 0 ] [ 0 ] ;
148 h_theta [ 1 ]= az [ 0 ] [ 1 ] ;
149 f o r ( k =1; k<NF; k++) {
150 s inus=s i n (2∗ PI∗k∗ t h e t a ) ;
151 cosinus=cos (2∗ PI∗k∗ t h e t a ) ;
152 h_theta [0]+= az [ k ] [ 0 ] ∗ cosinus+bz [ k ] [ 0 ] ∗ s inus ;
153 h_theta [1]+= az [ k ] [ 1 ] ∗ cosinus+bz [ k ] [ 1 ] ∗ s inus ;
154 }
155 }
156

157

158 /∗ re turns the d e f e c t of the approximation f o r t h e t a ∗/
159 double error_conjugacy ( double theta , i n t NF, double rho , double ∗∗az ,

double ∗∗bz ) {
160 double h_theta [ 2 ] , h_thetarho [ 2 ] ;
161 double norm ;
162 evaluate_h ( theta , NF, az , bz , h_theta ) ;
163 henon_map ( h_theta ) ;
164 evaluate_h ( t h e t a +rho , NF, az , bz , h_thetarho ) ;
165 h_theta [0]−= h_thetarho [ 0 ] ;
166 h_theta [1]−= h_thetarho [ 1 ] ;
167 norm= s q r t ( h_theta [ 0 ]∗ h_theta [0 ]+ h_theta [ 1 ]∗ h_theta [ 1 ] ) ;
168 re turn norm ;
169 }



70 Codes used to produce the graphics

Remark A.1. The codes use the real Fourier series expression for ease of imple-
mentation, instead of the complex one.



Bibliography

[1] E. Sander, and J.A. Yorke. (2015). The many facets of chaos. International
Journal of Bifurcation and Chaos, 25(04), 1530011.

[2] S. Das, and J.A. Yorke. (2018). Super convergence of ergodic averages for
quasiperiodic orbits. Nonlinearity, 31(2), 491.

[3] A. Katok, and B. Hasselblatt. (1995). Introduction to the modern theory of dy-
namical systems (No. 54). Cambridge university press.

[4] C. Ulcigrai. (2019). Dynamical Systems and Ergodic Theory. Part III.

[5] U. Krengel. (1978). On the speed of convergence in the ergodic theorem.
Monatshefte für Mathematik, 86(1), 3-6.

[6] V.I. Arnol’d. (2013). Mathematical methods of classical mechanics (Vol. 60).
Springer Science & Business Media.

[7] S. Das, Y. Saiki, E. Sander, and J.A. Yorke. (2017). Quantitative Quasiperiod-
icity. Nonlinearity, 30(11), 4111.

[8] M.R. Herman. (1979). Sur la conjugaison différentiable des difféomor-
phismes du cercle à des rotations. Publications Mathématiques de l’IHÉS, 49,
5-233.

[9] D. Blessing, and J.D. James. (2023). Weighted Birkhoff Averages and the Pa-
rameterization Method. arXiv preprint arXiv:2306.16597.

[10] S. Das, Y. Saiki, E. Sander, and J.A. Yorke. (2016). Quasiperiodicity: rotation
numbers. The Foundations of Chaos Revisited: From Poincaré to Recent Advance-
ments, 103-118.

[11] M. S. Raghunathan. (1979). A proof of Oseledec’s multiplicative ergodic the-
orem. Israel Journal of Mathematics, 32, 356-362.

71


	Introduction
	Quasiperiodicity
	Irrational Rotations
	The Conjugacy Problem
	Orientation-preserving Circle Homeomorphisms

	Ergodic Theory in Broad Brushstrokes
	Measure-preserving Maps
	Ergodicity
	Birkhoff Ergodic Theorem

	Superconvergence of Ergodic Averages for Quasiperiodic Orbits
	Rotations are Measure-preserving Maps
	How Ergodicity applies to Irrational Rotations
	Weighted Birkhoff Averages
	Proof of the Superconvergence of Weighted Birkhoff Averages

	Applications
	Rotation Vectors
	Computing the Integral of a Periodic C-function
	Fourier Series Coefficients of the Conjugacy
	Lyapunov Exponents
	Machine Limitations

	Persistence of Quasiperiodic Motions under small Perturbations
	Informal Explanation of the KAM Theorem

	Numerical Examples
	Application to the Arnold Circle Map
	Application to the Standard Map
	Application to the Henon Map

	Delving Deeper into the Conjugacy
	Parametrisation Method for an Invariant Tori
	Newton Scheme in Fourier Coefficient Space

	Codes used to produce the graphics
	Standard Map
	Arnold Map
	Henon Map

	Bibliography

