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Abstract
The literature reports that students have difficulties connecting different meanings, multi-
ple representations of the derivative, and performing reversibility processes between rep-
resentations of f and f’. The research goal is to analyze the mathematical connections that 
university students establish when solving tasks that involve the graphs of f and f’ when 
the two functions do not have associated symbolic expressions. Seven students from the 
first year of undergraduate studies in mathematics from a university in southern Mexico 
participated. For data collection, two tasks involving the graphical context of the derivative 
were applied. An analysis of the mathematical activity was carried out by the participants 
with the analysis model proposed by the onto-semiotic approach, and thematic analysis 
with types of mathematical connections from the extended theory of connections was car-
ried out to infer the connections made in that mathematical activity, which allowed us to 
consider the reversibility connection between the graphs of f and f’ as the encapsulation of 
a portion of the mathematical activity. Four students establish the reversibility relationship 
between the graph of f and the graph of f’. It has been concluded that some students can 
establish the reversibility connection between the graphs of f and f’, but the complexity 
of the mathematical activity that encapsulates the connection explains (by showing every-
thing that the student must do) why some students are not able to establish it.
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1 Introduction

Research in mathematics education has focused on exploring mathematical connections 
since they are important for students to be able to understand mathematical concepts 
(Berry & Nyman, 2003; Eli et  al., 2011; NCTM, 2000). Likewise, establishing mathe-
matical connections is considered beneficial for students because they relate mathematical 
concepts, meanings, and representations to each other (intra-mathematical), and they also 
relate mathematics to real-life phenomena and other subjects (extra-mathematical) (Busin-
skas, 2008; Rodríguez-Nieto et al., 2022b).

At present, the extended theory of connections (ETC) framework is focused especially 
on intra-mathematical connections. In this theoretical support, mathematical connections 
are considered “a cognitive process through which a person relates two or more ideas, con-
cepts, definitions, theorems, procedures, representations and meanings with each other, 
with other disciplines or with real life” (García-García & Dolores-Flores, 2018, p. 229); 
and one type of included connection is called reversibility: this occurs when a student 
starts from concept A to obtain concept B and then inverts the process, starting from B 
until returning to A (García-García & Dolores-Flores, 2021). This type of connection has 
been analyzed in the graphic representation of a function and its derivative; a key fact is 
to investigate the properties of graphs that move from the graphical representation of a 
function g to the graph of the derivative g′ and to reverse the process (García-García & 
Dolores-Flores, 2020). Also, this type of connection has been investigated in different top-
ics, for example for the case of exponential and logarithmic functions (Campo-Meneses & 
García-García, 2020).

Also, other frameworks report the importance of focusing on the graphic of f, based 
on the properties of f’ and vice versa. Nemirovsky and Rubin (1992) mentioned that it 
is difficult to relate the function f with its derivative (students graph the derivative f’ 
similar to function f without considering the key aspects that are inferred from its graphs 
at different intervals). Natsheh and Karsenty (2014) recognized that some students did 
not sketch the graph of f based on the properties of f’, due to limited visual reasoning 
and procedural-focused learning involving only symbolic or algebraic representations. 
In Fuentealba et al. (2018a), it was recognized that it is difficult to establish bidirectional 
relationships or reversible processes where the signs of f’ and f’’ are linked with f and to 
also relate monotony and curvature of f with the sign of its first and second derivatives. 
Ikram et al. (2020) mention that students are competent in solving problems about the 
derivative when they proceed algorithmically to find f’, but they have difficulty interpret-
ing and drawing graphs of f and f’. In this line, García-García and Dolores-Flores (2021) 
recognized that to graph the derivative of a given function, pre-university students neces-
sarily require the algebraic representation associated with it; otherwise, they would not 
graph the derivative function.

Focused on connections and particularly on reversibility connection type, in this article, 
the objective is to analyze the mathematical connections made by university students when 
solving tasks related to the transit between the graphs of f to f’ and vice versa, especially 
when the graphs of the two functions do not have associated symbolic expressions—as 
Berry and Nyman (2003) point out, in many cases, it is not possible to have such a sym-
bolic expression.
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In our case, we understand the reversibility when a student outlines the graph of f’ tak-
ing the graph of f and vice versa, in tasks where there isn’t a symbolic expression (neither 
of the function nor the derivative) and only one of the two graphs.

This directional transition between both graphics is situated into the didactical and 
mathematical problem proposed by Font (2000), who recognized that there are two fun-
damental aspects for the teaching and learning of the derivative: (a) difficulties in the 
understanding of the derivative at a point and on derivative function, especially the defi-
nition as the limit of the average rate of the function (and not so much, for example, in 
the use of derivation rules), and (b) difficulties in understanding how to calculate the 
derivative of basic functions where the definition of the derivative should be used as a 
limit (to calculate the derivative functions of trigonometric functions, it is necessary to 
calculate the derivative of one of them from the limit to obtain, by indirect methods, the 
derivative of the other functions of the family, and, for example, the same for the family 
of exponential and logarithmic functions).

Several research studies have reported this first difficulty, which is explained by differing 
points of view depending on the framework of each one, for example, APOS (Fuentealba 
et al., 2015, 2018b; Sánchez-Matamoros et al., 2015). On the other hand, researchers with 
the OSA framework report that the understanding of the notion of derivative at a point 
and of the derivative function is related to the activation of a complex network of semiotic 
functions (SFs) that allow us to understand the relationship between f and f’ (Badillo, 2003; 
Font, 2000; Font & Contreras, 2008). Likewise, within the ETC framework, research has 
been carried out on necessary connections for a good understanding of the derivative. Con-
cerning to this problem, the reversibility connection between graphical representations of a 
function and its derivative, on the one hand, requires a certain understanding of the deriva-
tive notion and, on the other hand, helps to develop this understanding.

Font (2000) points out that the second aspect mentioned above is related to the fact that 
two functions are involved in the calculation of the derivative function (f and f’) and the 
calculation of f’ from f implies the passage of a representation from f to f’, but for some 
functions, a preliminary step should be considered. That is, the calculation of f’ can be 
interpreted as a process in which the following must be considered: (1) treatment and/or 
conversions between different ostensive forms of representing f (representations that can 
be shown directly to another person), (2) the change of an ostensive representation of f 
to an ostensive representation of f’, and (3) treatment and/or conversions between differ-
ent ostensive representations forms of f’. Treatments are transformations of representations 
that happen within the same register and conversions are transformations of representa-
tion that consist of changing a register without changing the objects being denoted (Duval, 
2006). This process is specified in different techniques for calculating the derivative func-
tion in which step 1 and step 3 may not be necessary and, in others, where said steps are 
essential. In articulation, step 2 can be necessary to relate the graph of f with the graph of 
f’. In the same way, the calculation of the antiderivative implies three analogous steps, and 
in the second step, it may be necessary to go from the graph of f’ to the graph of f.

2  Theoretical framework

In Sections 2.1 and 2.2, we synthesize the two theories considered in this investigation, and 
in Section 2.3, we synthesize the networking developed between both frameworks.
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2.1  Onto‑semiotic approach (OSA)

OSA considers that to describe mathematical activity from an institutional and personal 
point of view, it is essential to have in mind the objects involved in such activities and 
the semiotic relations between them (Font et  al., 2013). Mathematical activity is mod-
eled in terms of practices, the configuration of primary objects, and processes that are 
activated by practices. Mathematical practice is considered in this theory as a sequence 
of actions, regulated by institutionally established rules, guided toward a goal (usually 
solving a problem). In the OSA ontology, the term “object” is used in a broad sense to 
refer to any entity which is, in some way, involved in mathematical practice and can be 
identified as a unit. For example, when carrying out and evaluating a problem-solving 
practice, we can identify the use of different languages (verbal, graphic, symbolic, …). 
These languages are the ostensive part of a series of definitions, propositions, and pro-
cedures that are involved in the argumentation and justification of the solution of the 
problem. Problems, languages, definitions, propositions, procedures, and arguments are 
considered objects, specifically as the six mathematical primary objects. Taken together, 
they form configurations of primary objects. The term configuration is used to designate 
a heterogeneous set or system of objects that are related to each other. Any configuration 
of objects can be seen both from a personal and an institutional perspective, which leads 
to the distinction between cognitive (personal) and epistemic (institutional) configura-
tions of primary objects. The OSA also considers processes, understood as a sequence of 
practices involving configurations of primary objects.

The mathematical objects that intervene in the mathematical practices and those that 
emerge from them may be considered from the perspective of the following ways of being/
existing, which are grouped into facets or dual dimensions (Font & Contreras, 2008; Font 
et al., 2013): extensive-intensive (intensive objects correspond to those collections or sets 
of entities, of whatever nature, which are produced either, extensively, by enumerating the 
elements when this is possible or, intensively, by formulating the rule or property that char-
acterizes the membership of a class or type of objects), expression-content (the objects 
may be participating as representations or as represented objects), personal-institutional 
(institutional objects emerge from systems of practices shared within an institution, while 
personal objects emerge from specific practices from a person), ostensive-non ostensive 
(something that can be shown directly to another person, versus something that cannot 
itself be shown directly and must therefore be complemented by another something that 
can be shown directly), and unitary-systemic (the objects may participate in the mathemati-
cal practices as unitary objects or as a system).

Problem-solving is achieved through the articulation of sequences of practices. Such 
sequences take place over time and are often considered processes. In particular, the use and/
or the emergence of the primary objects of the configuration (problems, languages, definitions, 
propositions, procedures, and arguments) takes place through the respective mathematical 
processes of communication, problematization, definition, enunciation, elaboration of proce-
dures (algorithmization, routinization, etc.), and argumentation (applying the process–product 
duality). Meanwhile, the dualities described above give rise to the following processes: insti-
tutionalization–personalization, generalization–particularization, analysis/decomposition–syn-
thesis/reification, materialization/concretion–idealization/abstraction, expression/representa-
tion–meaning (Font et al., 2013) (see Fig. 1).

This list of processes derived from the typology of primary objects and dual facets 
used as tools to analyze mathematical activity in OSA, while contemplating some of the 
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processes considered important in mathematical activity, is not intended to include all 
the processes involved in that activity. This is because, among other reasons, some of 
the most important processes, such as problem-solving and mathematical modeling, are 
a macro processes (as a set of processes) rather than just mere processes (Godino et al., 
2007), since they involve more elementary processes, such as representation, argumen-
tation, idealization, and generalization.

The notion of semiotic function (SF) allows us to relate practices to the objects that 
are activated (Godino et al., 2007). An SF is a triadic relationship between an anteced-
ent (initial expression/object) and a consequent (final content/object) established by a 
subject (person or institution) according to a certain criterion or correspondence code 
(Godino et al., 2007).

The theoretical tools just described allow for analysis of the mathematical activity in 
which, firstly, temporal analysis of the mathematical practices carried out to solve a cer-
tain problem is performed; then, the configuration of primary objects that intervene in 
those practices is analyzed (which provides information on the elements or parts of this 
mathematical activity), plotting the SF that interlinks the primary objects which inter-
vene in mathematical practices (e.g., Breda et al., 2021); and finally, analysis in terms 
of processes is carried out again, to complete the analysis in terms of practices (which 
provides information on the temporal dynamics of mathematical activity).

2.2  Extended theory of connections in mathematics education

In ETC, two groups of connections are identified: the intra-mathematical and extra-
mathematical connections (Dolores-Flores & García-García, 2017). In this work, we 
only consider the intra-mathematical connections.

Fig. 1  Onto-semiotic representa-
tion of mathematical knowledge 
(from Font and Contreras (2008))
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1) Procedural: these connections are identified when a student uses rules, algorithms, or 
formulas to solve a mathematical problem. They are of the form A which is a procedure 
to work with a concept B (García-García & Dolores-Flores, 2021).

2) Different representations: they are identified when the subject represents mathematical 
objects using equivalent (same register) or alternate representations (different registers) 
(Businskas, 2008).

3) Feature: these connections are identified when the student expresses some characteristics 
of the concepts or describes their properties in terms of other concepts that make them 
different from or similar to the others (Eli et al., 2011).

4) Reversibility: they occur when a student starts from concept A to obtain a concept B and 
inverts the process, starting from concept B to return to concept A (Adu-Gyamfi et al., 
2017; García-García & Dolores-Flores, 2021).

5) Part-whole: they occur when logical relationships are established in two ways. The 
first refers to the generalization relation of form A and is a generalization of B, and B 
is a particular case of A. The second is that the inclusion relationship is given when a 
mathematical concept is contained within another (Businskas, 2008).

6) Meaning: this mathematical connection is identified when a student attributes a meaning 
to a mathematical concept or uses it in solving a problem (García-García & Dolores-
Flores, 2020).

7) Implication: these connections are identified when a concept A leads to another concept 
B through a logical relationship (Businskas, 2008; Selinski et al., 2014).

8) Metaphorical: these connections are understood as the projection of properties, charac-
teristics, etc. of a known domain to structure another lesser-known domain (Rodríguez-
Nieto et al., 2022b).

2.3  Networking between extended theory of mathematical connections 
and the onto‑semiotic approach

The networking of theories allows us to explore and understand how different theories can 
be successfully connected (or not), respecting their conceptual principles and underlying 
methodological, to understand and detail the complexity of the phenomena involved in the 
teaching and learning processes of mathematics (Kidron & Bikner-Ahsbahs, 2015; Predi-
ger et al., 2008).

Specifically, Rodríguez-Nieto et al. (2022a) present the networking of the ETC and 
the OSA. In this paper, the authors respond to the following questions: (1) What is 
the nature of the mathematical connections from the ETC and OSA points of view? 
(2) How are the connections of the subjects’ productions inferred in both theoretical 
frameworks? (3) Are there concordances and complementarities between the ETC and 
OSA of mathematical connections that allow for a more detailed analysis of mathemat-
ical connections?

In Rodríguez-Nieto et  al. (2022a), the work of articulation to answer the first two 
research questions is done through the content analysis of central publications of both 
theories (identifying principles, methods, and paradigmatic research questions). To 
answer the third question, the typical steps of the theory of networking methodology 
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are followed (Drijvers et al., 2013; Kidron & Bikner-Ahsbahs, 2015; Radford, 2008): (1) 
selection and description of episodes. (2) Based on the text (written protocol and tran-
script of the subsequent interview), the mathematical connections were identified using 
the ETC conceptual references. Simultaneously, (3) the mathematical connections were 
analyzed using the OSA. One concordance is that the methods used by both theories are 
content analysis. Now then, the thematic analysis of the ETC uses a typology of math-
ematical connections established a priori, while the analysis carried out with the OSA 
uses diverse tools. In this networking, the data were analyzed first in terms of practices, 
primary object configurations, and SFs that relate to them as proposed by the OSA (as 
shown in Section 4.2). Finally, parts of the mathematical activity (that is, practices, pri-
mary objects, and SFs) were encapsulated as a type of connection proposed in the ETC 
(as shown in Section 2.2).

Although the level of detail of the two methods of analysis is different, the main con-
clusion is that both theories complement each other to make a more detailed analysis of 
the mathematical connections. In particular, the more detailed analysis carried out with 
the OSA tools visualizes a mathematical connection, metaphorically speaking, like the 
tip of an iceberg of a conglomerate of practices, processes, primary objects activated 
in these practices, and the SF that relates them, which enables a thorough analysis that 
details the structure and function of the connection (as shown in the example in Tables 3 
and 4). In this research, a more detailed analysis of the mathematical connections will 
also be used to analyze the productions of the students.

3  Methodology

This research is qualitative (Cohen et  al., 2018) and carried out in three phases: (1) the 
participants were selected; (2) the data was collected through a questionnaire validated 
by experts, consisting of two tasks about the graphical context of the derivative and the 
think aloud method was implemented; and (3) the data was analyzed using the articula-
tion of two types of analysis to characterize the mathematical activity carried out by the 
students—first in terms of practices, processes, primary object configurations, and SFs that 
relate them as proposed by OSA and, finally, parts of the mathematical activity (that is, 
practices, processes, primary objects, and SFs) were encapsulated as a type of connection 
proposed in the ETC.

3.1  Participants and context

Seven students (S1–S7) from the first year of undergraduate studies in mathematics from a 
university in southern Mexico participated. They were selected because they had taken and 
passed the differential calculus course according to the study plan of Autonomous Univer-
sity of Guerrero (2010). Among the objectives of the course are for the student to master 
the concept of derivative and their different applications and to be able to use this notion in 
maximum and minimum application problems.
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3.2  Data collection

For data collection, two tasks involving the graphical context of the derivative were applied 
(Figs. 2 and 3) and the think aloud method was used.

3.2.1  Tasks

The objective of Task 1 (T1) was for the students to sketch the graph of the derivative func-
tion f’ from the information provided by the graph of the function f (Fig. 2). Task 2 (T2) 
consisted of sketching the graph of the function f a starting point from the graph of the 
derivative f’ (Fig. 3). To solve the tasks, it is necessary to know the link between the deriv-
ative sign and the intervals where the function increases and decreases, the first derivative 
test to calculate critical points and its relative extrema, or the second derivative test can be 
used to find the extremum maximum and minimum and inflection points. In general, the 
tasks had the purpose of exploring the mathematical connections that students make when 
solving tasks on the graph of the derivative and doing reversibility processes.

Task 1. Given the graph of the function f (see Fig. 2), determine:

Fig. 2  Graph of f (from Leithold 
(1998))

Fig. 3  Graph of f’ (from Leithold 
(1998))
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a) The intervals in which f is increasing or decreasing
b) At what point does the function have a relative maximum or a relative minimum
c) The abscissas of the inflection points of the function
d) At what interval does the graph of f is concave up or concave down?
e) Make a possible graph of the derivative function f’.

Task 2. Given the graph of the derivative of f (see Fig. 3), sketch the possible graph(s) of 
the function f. Argue your answer and also determine:

a) The intervals of growth and decrement of f
b) The maximum or minimum values of f
c) The inflection points
d) The intervals where f is concave up or concave down

3.2.2  Think aloud method

This method consists of asking people to express their thoughts aloud while solving a 
problem and analyzing the resulting verbal protocols (Eccles & Arsal, 2017; Van Some-
ren et  al., 1994). The students were first instructed to read the task and solve it, and 
then, they were asked to explain aloud everything they did in the process of solving the 
proposed tasks. In the application of this method, the student was not interrupted or 
guided; however, when the student did not verbalize his thoughts, they were reminded to 
speak aloud. The application of the tasks was carried out for 2 h by each student, and to 
capture and store the information, video recorders were used, and field notes were taken.

3.3  Data analysis

From the transcript of interviews, a temporal narrative was obtained (it is explained 
mathematically what the subject does when solving the task). Based on it, mathematical 
practices (Table  1) and processes are described, primary object configuration is built 
(Table 2), and SFs that relate to them (method for data analysis with OSA tools); finally, 
parts of the mathematical activity (that is, practices, primary objects, and SFs) were 
encapsulated as a type of connection proposed in the ETC (Table 3).

Concurrently, with this method of analysis developed in OSA, the data has been 
analyzed through thematic analysis (Braun & Clarke, 2006) to establish the connec-
tions according to the previous categories of connections proposed in the ETC. This 
type of analysis combines inductive (phases 2 and 3) and deductive methods (phases 
4 and 5): (1) familiarizing yourself with your data (transcribe and read the interview); 
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(2) generating initial codes (identification of parts of the transcript that suggest some 
of the ETC connections); (3) searching for themes (the codes are grouped by themes 
that are connections); (4) reviewing themes; (5) reviewing and refining mathematical 
connections (review each code to see if only one type of connection is inferred, or 
if it is an ambiguous code in which more than one category of connection could be 
inferred); (6) reports with all types of mathematical connections evidenced in math-
ematical activity.

Finally, the two analyses carried out are related in such a way that each ETC con-
nection is understood as an encapsulation of a part of the mathematical activity carried 
out (Table 3). To avoid ambiguities in data interpretation, first, the authors triangulated 
their analyses, to see if there were concordances and, in cases of discrepancy, agreed 
to apply a category among the three. Second, the authors used the expert triangulation 
method (in particular, the cognitive configurations and SFs were triangulated with the 
authors of the article Breda et al. (2021) since they had done a similar analysis) to reach 
a consensus with the analysis in Section 3.4 and the analyses that allowed for obtaining 
the results in Section 4.

3.4  Example of the analysis of a case

This section works as an example of how the answers provided by S1 to Task 1 were 
analyzed. First, the interviews were transcribed. Second, a narrative is made (con-
sidering the transcription of the students’ verbalizations during the application of 
the think aloud method) in which it is explained how the students solved the task in 
mathematical terms, and some codes are also identified (phase 2 “generating initial 
codes” of the thematic analysis based on the categories of the ETC). Third, from 
the narrative, mathematical practices are described (third phase). Fourth, the cog-
nitive configuration is constructed by highlighting the identified primary objects 
(fourth phase). Fifth, the SFs established between the primary objects are shown 
(fifth phase).

Sixth, the results of phases 3, 4, and 5 from thematic analysis are obtained, which are 
the mathematical connections in the last column of Table 3. Phases 3, 4, and 5 which are 
the code of the thematic analysis to identify the connections according to the ETC are not 
detailed in this analysis because, in a certain way, this would repeat the analyses carried 
out following the phases from OSA method since they are implicit in them. For example, 
in Mp4 and Mp6 of Section 3.4.2, the codes C3, C4, C5, C9, and C6 have similarities for 
the criteria of the first derivative, where we can observe an implication connection (phases 
3 and 4 from thematic analysis). Seventh, in Table 3, analyses are integrated, and in this 
way, each ETC connection is understood as an encapsulation of a part of the mathematical 
activity carried out.

Fig. 4  Gestures of S1 refer to the concavity of f 
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Table 2  Activated cognitive configuration of primary objects (PO) of S1 for the resolution of Task 1

PO Description

T Task (T1)
L Verbal: slope, function, graph, derivative function, derivative at a point, tangent, …

Symbolic: f, f’, intervals: e.g., (− ∞, − 1); points: (0, 0); x =  − 1; x = 2; x = 0
Graphic: see Fig. 5

D Previous concepts/definitions: maximum or minimum, inflection point, critical point, line, graph, 
tangent, first and second derivative, derivative at a point, …

D1: f’ is like the slope of the tangent line to the curve at a point
D2: A critical point of a function f is a number c in the domain of f such that f’(c) = 0 or f’(c) = 0 does 

not exist
D3: Let f continue at c. We call (c, f(c)) an inflection point of the graph of f, if f is concave up on one 

side of c and concave down on the other side of c
Pr Propositions:

a). (Pr1) the graph of f is increasing at the intervals: (− ∞, − 1) and (2, + ∞)
b). (Pr2) the graph of f is decreasing at interval: (− 1,2)
c). (Pr3) the function has a maximum at x =  − 1 and (Pr4) has minimum at x = 2
d). (Pr5) the inflection point is x = 0
e). (Pr6) the function is concave downward at the interval of (− ∞,0) and (Pr7) is concave up at 

(0, + ∞)
Pc Main procedure 1 (Pcp1): Find the intervals of increase and decrease. To perform this procedure, the 

student used two auxiliary procedures:
Pca1.1: They located the critical points (graphically finding the values of “x” where the slope is zero)
Pca1.2: Use of the sign of the slope to determine intervals of increase and decrease
Pcp2: Determine the extremes in the graph of f. To perform this procedure, the student used two auxil-

iary procedures:
Pca2.1: Use the change of increasing to decreasing for determinate one maximum
Pca2.2: Use the change of decreasing to increasing for determinate one minimum
Pcp3: Determine the inflection point of f
Pca3.1: Use the change of concavity for determinate the inflection point
Pcp4: Determine the intervals of concavity of f
Pca4.1: Visually determine the intervals where the function is concave down and concave up
Pcp5: Sketch f’
Pca5.1: Make a Cartesian coordinate system
Pca5.2: Locate the abscissa points x =  − 1 and x = 2 which are the intersection points of the derivative 

with the x-axis
Pca5.3: Sketch the graph of f’ in parts, considering the increasing intervals, the extremes of the func-

tion, and the inflection point
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3.4.1  Narrative

This section shows by way of example the beginning and end of the narrative corre-
sponding to the resolution of Task 1, from which the codes (phase 2 from thematic anal-
ysis) and mathematical practices are obtained:

Task 1 was proposed to S1 where they were asked to (a) determine the intervals 
of increase and decrease of function f; S1 understood the questions and implicitly 
assumed that the derivative is the slope of the tangent line to the curve at a point “the 
slopes here of the tangents that are formed are negative, so the derivative has to be 
below the x-axis” (Code 1, C1), and then, they answered that the function had critical 
points in x =  − 1 and x = 2 (C2) and f is increasing at (− ∞, − 1), and then, its deriva-
tive has to be positive, that is, the slopes are positive (C3), and then it grows again, 
it decreases, and here, it begins to grow; it is increasing at the other interval (2, + ∞) 

Table 2  (continued)

PO Description

A A1: Thesis: The increasing intervals are (− ∞, − 1) and (2, + ∞), and the decreasing interval is (− 1,2)
Reason 1 (R1): If a function is continuous, the critical points separate intervals of increase and/or 

decrease
R2: The critical points are x =  − 1 and x = 2 since for these values f’(x) = 0
R3: There are three intervals and the sign of f’ at each one is always the same. If the sign of the slope 

is negative, f is decreasing, and if is positive, f is increasing
Conclusion: f is increasing at (− ∞, − 1) and (2, + ∞), and decreases at (− 1,2)

A2: Thesis: The maximum point is at x =  − 1 and the minimum point is at x = 2
R1: At x =  − 1 and at x = 2, the graph of f’ cuts the x-axis, and the slope is 0
R2: If f is increasing and at a point, it becomes decreasing, then there is a maximum, and, if f is 

decreasing and at a point, it becomes increasing, then is a minimum
Conclusion 2: f has a maximum at x =  − 1 and a minimum at x = 2

A3: Thesis: The inflection point is at x = 0
R1: At that point, the function changes from concave up to concave down
R2: S1 makes gestures with their hands referring to the concavity (Fig. 4)
Conclusion 3: At the abscissa x = 0 if there is an inflection point

A4: Thesis: f is concave downward at (− ∞,0) and concave upward at (0, + ∞)
R1: f is continuous and has an inflection point at x = 0, where it stops being concave downward and 

becomes concave upward (they gesture with their hand)
Conclusion 4: f is concave downward at (− ∞,0) and concave upward at (0, + ∞)

Fig. 5  Graphical representation of f and f’ 
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(C4); those are the intervals where the function is increasing. Then, S1 affirms that 
the graph of f is decreasing at the interval (− 1,2), since the slopes of the tangent lines 
are negative, and the graph of the derivative must be below the x-axis (they also drew 
the graph) (C5) (…). Finally, based on the information obtained, S1 responded to part 
e, explaining the behavior of the graph of f’ drawn.

3.4.2  Mathematical practices

Next, we describe the mathematical practices (Mp) and the codes (C) inferred from nar-
ratives (Table 1).

Next is an analysis of the processes, for example, Mp1 carries an understanding and problema-
tization process. For reasons of space, this analysis is only partially incorporated in Tables 3 and 4.

3.4.3  Cognitive configuration of primary objects of S1 on Task 1 and SF

This section presents the configuration of primary objects evidenced in the sequenced 
mathematical practices to solve T1 (Table 2).

Based on the mathematical practices and the configuration of primary objects in Table 2, 
in Fig. 6, the circled numbers linked to the thin blue arrows serve to enumerate some of the 
SFs that the authors, after triangulation, have inferred that S1 establishes among the dif-
ferent primary objects of the configuration that they use in solving Task 1. For example, to 
solve part a of T1, the student S1 needs to read the problem and must understand that they 
must find intervals of increase and decrease (SF1). Then, S1 must know that the increase 
and decrease are related to the sign of the first derivative (SF2) and that the derivative is 
the slope of the tangent line to the curve at a point (SF3). After this, the student has to 
relate the slope of the tangent line with the critical point of a function (SF4), and has to 
relate it with the main procedure Pcp1 (find the intervals of increase and decrease) (SF5) 
and this procedure with the auxiliary procedure Pca1.1 (the critical points in the given 
graph are x =  − 1 and x = 2 because the derivative is zero) (SF6, SF7, and SF8). Then, the 
student has to use the procedure Pca1.2 to find that the graph is increasing at (− ∞, − 1) 
and (2, + ∞) and decreasing at (− 1,2) (SF9 and SF10). Once they have obtained this result, 
they consider it true (SF11) and justify it with the argument A1 (SF12). In Fig. 6, the thick 
blue arrows refer to the propositions being related to the arguments, and these validate and 
support each statement contained in the propositions and procedures boxes.

3.4.4  Detailed analysis of the mathematical connections in Task 1 based 
on the integration between ETC and OSA

The last column of Table 3 presents some mathematical connections established by S1 in 
solving T1. For this, the data has been analyzed through thematic analysis to establish the 
connections according to the previous categories of connections proposed in the ETC. The 
rows show the conglomerate of mathematical practices, processes, objects, and SFs that 
constitute the connection.
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4  Results

In Sections 4.1 and 4.2, we report on the overall findings of the seven students and include 
excerpts from some cases to illustrate the findings (in Section 3, we explain the case of S1 
in T1 as an example). In Section 4.3, we show a synthesis of students that established con-
nections of reversibility type and those who did not. The incorrect answers and their pos-
sible explanation are treated in Section 4.3, where the reversibility connection is analyzed 
from a systematic point of view for T1 and T2.

Fig. 6  SFs established with the primary objects by S1 in the resolution of Task 1

Fig. 7  Graphical representation of f’ 
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4.1  Task 1

Concerning the other students, it was evident that S2, S3, and S7 made mathematical con-
nections similar to S1, which allowed them to solve T1 correctly (Fig. 7). For example, to 
sketch the graph of f’ S2 uses the criteria of the first derivative associated with the growth 
and decrease of the function in the intervals indicated in response to the question (a). S7 
proceeds in the same way as S2 and uses gestures to represent the concavity of the func-
tion f. S3 responded to the researcher’s questions as follows: “What I considered from f to 
obtain f ’, was information to know where the maxima and minima were, as well as the 
increasing and decreasing intervals, because between f and f ’ there is a relationship that if 
my function f is increasing then my derivative is going to be positive and if the function f 
is decreasing then the derivative is negative. In the maximums and minimums, I am taking 
into account, or I am guided by, the slope of the tangent line, at that point its slope is zero, 
and this is how I relate it (…).”

The students that answered T1 incorrectly (S4, S5, and S6) also answered T2 incorrectly. 
For this reason, the incorrect answers and their possible explanation are treated in Section 4.3, 
where the reversibility connection is analyzed from a systematic point of view for T1 and T2.

4.2  Task 2

S1 managed to establish mathematical connections to solve T2. We do not explain the 
same detailed analysis made with T1. We will limit ourselves to presenting (a) the graph 
that S1 drew; (b) a part of their written production that shows the justification for how they 
made the graph, in particular, the part where they made explicit the propositions of the 
cognitive configuration they used (Fig. 8); (c) the result of the cognitive configuration and 
the SFs established between the primary objects of this configuration (Fig. 8); and (d) a 
part of Table 3 where each ETC connection is understood as an encapsulation of a part of 
the mathematical activity carried out.

Figure 8 shows in detail the propositions used by S1 to sketch the graph of f from the 
graph of f’ considering growth and decrease intervals, critical points, maximum, minimum, 
inflection point, and the analysis of the concavity of the function.

Fig. 8  Propositions considered by S1 in sketching the graph of f 
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Figure 8 shows a part of the primary objects of the cognitive configuration presented in 
Fig. 9. In turn, Fig. 9 shows the SFs that relate to the primary objects of the configuration. 
For example, as in Fig. 6, to solve part a of T1, the student must understand that they have 
to find intervals of increase and decrease (SF1), and then, they must know that the increase 
and decrease are related to the sign of the first derivative (SF2) and that the derivative is 
the slope of the tangent line (SF3).

The last column of Table 4 presents some mathematical connections established by S1 
in solving the Task 2 and the row shows the conglomerate of mathematical practices, pro-
cesses, objects, and SFs that constitute the mathematical connection.

Students S2, S3, and S7 also managed to establish mathematical connections to solve 
T2. Next, evidence of the graphs of f that the students made based on the information of the 
derivative graph is shown (Fig. 10).

In addition, extracts from the written productions of S2, S3, and S7 are presented 
(Fig. 11) as evidence that they correctly answered the question using the sign of the deriva-
tive to determine the increase or decrease of the function.

The students that answered T1 incorrectly (S4, S5, and S6) also answered T2 incorrectly. 
For this reason, the incorrect answers and their possible explanation are discussed in detail in 
Section 4.3, when the reversibility connection is analyzed jointly for Tasks 1 and 2.

Fig. 9  SFs with the primary objects established by S1 in the resolution of Task 2

Fig. 10  Graph of f from the information of f’ 



82 C. A. Rodríguez-Nieto et al.

1 3

4.3  Establishing the mathematical connections of reversibility

In the resolution of T1 and T2, mathematical connections of meaning, part-whole, different 
representations, procedural, and implication were evidenced. Particularly, the mathemati-
cal connections of the implication type established by S1, S2, S3, and S7 when they solved 
the tasks (Tables 3 and 4) are the foundation of the mathematical connection of the revers-
ibility type, since they are bidirectional logical relations made to graph  f’ based on the 
information in f, or graph f based on the information in f’, as shown in Fig. 12.

However, S4, S6, and S7 did not establish the reversibility connection because it did not 
establish the implication connection that is necessary to successfully solve T1.

In Fig. 13 and written production of student S4 to solve T1, it is observed that they 
carried out (among other) the following mathematical practice (Mp9 and Mp11) where a 
wrong connection is observed: Mp2. In part a, they determined the intervals of increase 
(− ∞, − 1) and (2, + ∞) and decrease at the interval (− 1,2) of the function f, from the 
given graph, but did not consider the sign of the slope of the tangent line (…): Mp9. 
In part d, S4 states that the concave intervals of f are concave up at interval (− 2,0) and 

Fig. 11  S2, S3, and S7 explain how to draw out f graph
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concave down at interval (0,4) (wrong connection): Mp11. In part e, they drew the graph 
of the derivative making a wrong connection; see Fig.  14 (Task 1) and the following 
excerpt from the transcript.

Fig. 12  Structure of the mathematical connection of reversibility

Fig. 13  Sketches of the graphs of f and f’ made by S4

Fig. 14  Written production of S4 
solving Task 1
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S4: I have the Cartesian plane if f  is concave downward, for its derivative f ′ it has to 
be concave upward, then in this case, because the points ( x = −2 and x = 4 ), for the graph 
of f  was from (−∞,−1) increasing, but for f ′ it will be decreasing in (−∞,−1) and f ′ 
increases from (2,+∞).

I: What helped you build the graph of f ′? (the interviewer made the question for to the 
incorrect answer of S4).

S4: Being able to see the graph of f  , I observed that where it was concave it had a maxi-
mum point for the derivative, the graph was the inverse if it was maximum for f  , for the 
other ( f1 ) it was minimum. If I follow the same procedure, the graph of f ′ is increasing 
from (−1, 2) but for the graph of f  was decreasing and the maximum of f ′ is at x = 2 and the 
minimum at x = −1 . In this case, the inflection points do not change, because it is the same 
behavior. Also, f ′ is concave upward at (−2, 0) and concave downward at (0, 4) (Fig. 14).

These incorrect implication connections (e.g., if the graph of f is concave upward at an 
interval, then the graph of f’ is concave downward at that same interval) cause S4 not to 
perform the other mathematical practices that are key or necessary for the correct resolu-
tion of the task (see mathematical practices in the resolution of S1). Given this situation, 
an explanation for this difficulty is that the complexity of the mathematical activity neces-
sary to establish the connections that allow for finding the graph of f or f’ may be higher 
than the mathematical activity that the student can perform (in this case S4), which leads 
them to stop carrying out some practices, to stop establishing some SFs, etc., and there-
fore, to stop establishing a certain mathematical connection. Each of these connections 
that S4 did not make is the main cause of different difficulties in drawing the graph of 
f’ from the graph of f or vice versa; some of them have been indicated by other researchers 
(Berry & Nyman, 2003; Fuentealba et al., 2018a; Ikram et al., 2020; Natsheh & Karsenty, 
2014; Ubuz, 2007). Then, S5 solved similar to S4 and obtained one graph practically 
equal to the graph of S4.

In the case of S6, it is shown that they draw the graph of f following the same perfor-
mance as the graph of f’ (Fig. 15).

Fig. 15  Written production of S6
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5  Discussion and final considerations

In this article, we study the mathematical connections established by university students 
when solving tasks that involve the graphs of f and f’, without symbolic expressions. We 
conclude that the most significant mathematical connection for solving these tasks is the 
reversibility connection. The results indicate that some students can do bidirectional pro-
cesses where they link the signs of f’ with f and relate the monotony and curvature of f 
with the sign of its first derivative, while other students are not able to do so. This is a 
result consistent with other research that has shown that these processes become difficult 
for some students (Fuentealba et al., 2018a). It must be highlighted that, to make the men-
tioned connection possible, students must establish other mathematical connections, par-
ticularly the implication connection (they are needed to solve the tasks). In other words, 
reversibility is the mathematical connection specifically used to solve tasks that involve the 
graphs of f and f’, although the other types of connections are present.

Metaphorically, this mathematical connection can be understood as the visible part of 
an iceberg, while the underwater, non-visible part is a vast network of SFs that are at its 
base. The non-establishment of some of those SFs sheds light on the reasons why the stu-
dents do not establish the desired connection (for this reason, there is a wide spectrum of 
possible causes of why the students fail to establish a determined connection).

Since the students who have not solved T1 are the same as those who have not solved 
T2, it can be concluded that both processes present the same difficulty for students. This is 
one possible conclusion but there are others, for example, that the successful students were 
successful in learning differential calculus and the unsuccessful students were unsuccessful 
in learning differential calculus; calculus courses are notorious for failing many students 
and they end up being confused on the whole course, not just specific processes. The con-
clusion that both processes present the same difficulty for students contradicts the results 
of Ikram et al. (2020) who state that it is not a trivial task for many students to sketch the 
graph of the function when given the graph of the derivative, even though they can find 
the graph of the derivative when given the graph of the function. However, the part of the 
mathematical activity that encapsulates the connection of implication in each task helps to 
explain the significant difficulty that T2 presents relative to T1.

This way of characterizing the reversibility connection (as the visible part of an iceberg) 
is consistent with the one used in the study of the understanding of exponential and logarith-
mic functions (Campo-Meneses & García-García, 2020). In some cases, the role of revers-
ibility in these function pairs has been investigated with categories from other theoretical 
frameworks—for example, Ikram et  al. (2020) use APOS to study the function’s case and 
its inverse. A possible line of research is to study whether the characterization made here of 
this connection applies to other mathematical contents where it is relevant, as is the case of 
the relationship between a function and its inverse, the power function, the root function, etc.

The difficulties observed in this research when students solve tasks that involve the 
graphs of f and f’ are similar to those reported in different investigations (Fuentealba et al., 
2018a; Nemirovsky & Rubin, 1992). Now, this article explains that the reason why some 
students did not solve the task was that they did not establish some of the SFs that they had 
to establish between the conglomerate of practices, primary objects, and processes that are 
encapsulated by the notion of reversibility connection.

In the research by García-García and Dolores-Flores (2021), the students made revers-
ibility connections in a graphic environment, but it was necessary to use the algebraic 
symbolic representation to graph, while, in the results of this research, the students used 
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qualitative criteria of the functions to relate f to f’ and vice versa. The fact of presenting the 
reversibility connection as an encapsulation of a portion of complex mathematical activity 
makes it possible to specify in detail the reason why reversibility is not established and jus-
tifies that in these cases the use of the symbolic expression is key to establishing it.

While different authors have pointed out the importance of the reversibility connection 
and, more generally, reversible reasoning for mathematical understanding (Ikram et  al., 
2020; Sangwin & Jones, 2017), this research shows that the relevance of this type of revers-
ibility connection goes beyond its role in understanding the derivative as it may be a neces-
sary step in alternative techniques for calculating the derivative and the antiderivative.

In addition to the result that the most significant mathematical connection for solving 
tasks that involve the graphs of f and f1, without symbolic expressions, is the reversibility 
connection, this integrated view provides other relevant results. On one hand, it provides 
results about the complexity of the mathematical activity necessary to establish the connec-
tions that allow for finding the graph of f or f1; in particular, it allows for explaining how 
the complexity of the mathematical activity that encapsulates the connection explains why 
the connection cannot be established (by showing everything that the student must do). 
On other hand, the relevance of this paper is that it contributes, together with other works, 
to illustrating how networking between two theories of different levels can be applied in a 
specific situation—in this case, a general theory for the analysis of mathematical activity 
(OSA) and a theoretical framework for the analysis of the specific mathematical activity of 
connection (ETC). This approach results in an integrated proposal of the two theories for 
the analysis of the mathematical activity of interest to the specific theory, in this case, the 
connection process required for solving tasks that involve the graphs of f and f1, without 
symbolic expressions. This type of networking between OSA and theories that make spe-
cific analyses of mathematical activity has also been carried out with other processes such 
as modeling (Ledezma et al., 2022).
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