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Summary statement: We review the biological contexts of cell mechanical compression, the 

associated mechanisms, and the experimental systems engineered to compress cells in-vitro.   

  

Abstract:  

From border cell migration during Drosophila embryogenesis to solid stresses inside tumors, cells 

are often compressed during physiological and pathological processes, triggering major cell 

responses. Cell compression can be observed in-vivo but also controlled in-vitro through tools 

such as micro-channels or planar confinement assays. Such tools have recently become 

commercially available, allowing a broad research community to tackle the role of cell 

compression in a variety of contexts. This has led to the discovery of conserved compression-

triggered migration modes, cell fate determinants and mechanosensitive pathways, among others. 

In this Review, we will first address the different ways in which cells can be compressed and their 

biological contexts. Then, we will discuss the distinct mechanosensing and mechanotransducing 

pathways that cells activate in response to compression. Finally, we will describe the different in-

vitro systems that have been engineered to compress cells.   
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Introduction:  

Cell responses to mechanical signals have been characterized for decades, starting with 

the discovery of pressure-triggered opening of ion channels (Chalfie and Sulston, 1981). These 

responses can be divided into two steps, mechanosensing and mechanotransduction. 

Mechanosensing refers to the sensing of mechanical forces by cells, normally achieved by 

mechanosensitive proteins whose conformation or localization changes upon force application. 

In the example of mechanosensitive ion channels such as Piezo family proteins, mechanical force 

increases plasma membrane tension, leading to the opening of the channel through a 

conformational change (Coste et al., 2010; Ge et al., 2015). Mechanotransduction refers to the 

subsequent transduction of the mechanical inputs into a biochemical signaling cascade. For Piezo 

proteins, this would be the influx of Ca2+ through the channel, and subsequent Ca2+-mediated 

signaling. Such mechanical responses can be triggered by several types of mechanical signals, 

including pressure, substrate rigidity, mechanical stretch and compression, among others. In this 

Review, we focus on cell compression, which happens in-vivo both in physiological and 

pathological contexts as diverse as the creation of signaling centers during embryogenesis (Shroff 

et al., 2024) and cancer cell invasion (Han et al., 2020; Nishi et al., 2022). 

Cells experience different types of compression, which can be classified depending on 

the dimensions along which compression is applied, and the dimensions that remain 

unconstrained (Fig. 1). For instance, cells can be compressed along one dimension in-vitro by the 

addition of an agarose pad on top, leaving them free to move within a plane (Aureille et al., 2019). 

As this compression is generally applied along the apicobasal polarity axis, we will here refer to 

it as apicobasal compression. Cells can also be subjected to compression along two dimensions, 

here defined as in-plane compression, such as when they migrate through pores in the extracellular 

matrix (Boekhorst et al., 2016). Finally, cells can be exposed to mechanical compressions from 

all directions, as occurs inside tumors. We will designate this as volumetric compression, as it 

leads to a reduction in cell volume (Stylianopoulos et al., 2012). Of note, the frontier between one 

or another type of compression can be ambiguous and case-specific; a cell embedded in a matrix 

with pores small enough to prevent migration will be volumetrically compressed, whereas a cell 

able to squeeze between pores will only experience in-plane compression.  

This diversity of compression forces has driven researchers to engineer a variety of in-

vitro set-ups, recapitulating each condition to decipher the different mechanisms of signal 

transduction that occur in each context. In this Review, we first discuss the contexts in which cells 

experience compression in-vivo, specifically focusing on eukaryotic organisms. Then, we discuss 

the variety of associated mechanotransduction mechanisms involving the plasma membrane, 

cytoplasm and the nucleus. Finally, we present a range of available in-vitro set-ups that allow the 

study of cellular compression.  

 

Biological contexts and consequences of compression  

Cell density regulation 

Epithelial tissues act as physical barriers, which must preserve their integrity while being 

subjected to in-plane tensile or compressive forces. Epithelia maintain homeostatic cell numbers 

by balancing extrusion (Fig. 2) and division rates in-vivo (Campinho et al., 2013; Eisenhoffer et 

al., 2012; Marinari et al., 2012; Gudipaty et al., 2017). Interestingly, the mechanosensitive ion 

channel Piezo1 senses both tension and crowding which respectively induce either cell division 

or delamination (controlled cell extrusion from the epithelial tissue) (Eisenhoffer et al., 2012; 

Marinari et al., 2012; Gudipaty et al., 2017). High tissue density or confluency also induces 

contact-inhibition of proliferation, mediated by E-cadherin cell–cell contacts that inhibit the 



Hippo pathway (Aragona et al., 2013; McClatchey and Yap, 2012). Live-cell delamination upon 

inplane cell compression inside a dividing physiological epithelium also initiates stem cell 

specification. For example, Piezo1-mediated live-cell delamination has been recently shown to 

trigger neural crest cell migration in mouse embryos (Moore et al., 2024 preprint). In the 

mammalian epidermis, stem cell proliferation in the basal layer leads to in-plane compression, 

inducing stem cell delamination and differentiation, which re-establishes homeostatic density in 

the basal layer (Miroshnikova et al., 2018). In the context of cancer, cell delamination basally 

after in-plane compression can lead to cell invasion of the surrounding stroma (Fadul et al., 2021). 

However, preventing epithelial cell extrusion can also lead to the basal accumulation of defective 

or dead cells and poor epithelial barrier capability, which can eventually result in tumor initiation 

and progression (Gu et al., 2015). This is an example of the role mechanical forces can play in 

disease (Box 1). 

Cell migration  

To promote organ formation or to sustain tissue function, cells need to migrate through 

diverse environments and can experience compression along one or more axes (Denais et al., 

2016; Ratheesh et al., 2018; Szabó et al., 2016; Ventura and Sedzinski, 2022). Moreover, both 

immune and cancer cells rely on their ability to perform confined migration for 

immunosurveillance and invasion, respectively (Alexander et al., 2013; Boekhorst et al., 2016; 

Friedl and Weigelin, 2008; Heuzé et al., 2011; Kameritsch and Renkawitz, 2020; Siekhaus et al., 

2010; Wirtz et al., 2011). During confined migration, cells are subject to compression along one 

or two dimensions as they squeeze within tight spaces (Fig. 2). These spaces can be defined by 

dense extracellular matrix (ECM), by other cells during intravasation or extravasation, or by tissue 

structures like that of muscle or adipose tissue (Alexander et al., 2013; Boekhorst et al., 2016; 

Siekhaus et al., 2010; Szabó et al., 2016; Yamada and Sixt, 2019). To migrate in such distinct 

three-dimensional (3D) physical environments, cells adopt different migration modes. These are 

typically categorized as mesenchymal (slow and based on integrin-mediated adhesion) and 

amoeboid (fast and based on non-specific adhesion) (Boekhorst et al., 2016; Paul et al., 2017; 

Bergert et al., 2015; Yamada and Sixt, 2019). Interestingly, compressing cells along one 

dimension (apicobasal compression) is sufficient to induce amoeboid migration or mesenchymal-

to-amoeboid transition of various cell types (Liu et al., 2015; Ruprecht et al., 2015).  

Cells can also collectively migrate as cohesive clusters. This has been observed in both 

development and cancer where cells face the challenges of confined migration (Box 1) (Boekhorst 

et al., 2016; Friedl et al., 2004). In Drosophila, border cells in the ovary delaminate from the 

epithelium and experience volumetric compression as they squeeze between nurse cells to reach 

the border of the oocyte (Montell, 2003; Prasad and Montell, 2007). Moreover, in Xenopus and 

zebrafish embryos, neural crest cells delaminate from the neural tube to migrate collectively 

through a 3D-confined space during embryogenesis (Szabó et al., 2016).  

Cell fate  

Compressive signals influence stem cell fate decisions during embryogenesis and tissue 

homeostasis. During embryogenesis, compression forces contribute to the spatiotemporal 

coordination of the chemical signals required for organ development. For example, patterns of 

volumetric compression locate a signaling center necessary for tooth development (Shroff et al., 

2024) and determine ectoderm cell competence to Wnt signaling between developmental stages 

10 and 12 in Xenopus embryos (Alasaadi et al., 2024). Cell compression can also contribute to 

maintaining or damaging stem cell niches in adults (Fig. 2) (Xie et al., 2022). Indeed, apicobasal 

compression promotes the quiescence of muscle stem cells in healthy tissue, whereas its absence 

during injury leads to cell proliferation and migration, promoting muscle healing (Tao et al., 

2023). In contrast, plucking the hair of a rat tail induces in-plane compression of the stem cell 



niche and apoptosis of the cells it contains, in a phenomenon resembling aging-associated hair 

loss (Xie et al., 2022). Of note, researchers have used compression signals to reprogram cells. For 

instance, Li and collaborators have used volumetric compression via hyperosmotic shock to 

induce the dedifferentiation of adipocytes into mesenchymal stem cells (MSCs) (Li et al., 2020). 

Similarly, microchannels inducing in-plane compression have been employed to reprogram 

fibroblasts into induced pluripotent stem cells (Song et al., 2022).   

Box 1: When compression participates in pathologies  

Tissues associated with the musculoskeletal system are constantly submitted to compressive 

forces. A good example of this is cartilage, which is a soft tissue between bones that protects the 

joints while bearing the weight of the body. It is composed of chondrocytes embedded in a matrix 

rich in water and proteoglycan (Huselstein et al., 2008; Zhang et al., 2022a). This matrix has a 

significant role in maintaining tissue homeostasis and reducing the stress gradient applied to cells 

(Zhao et al., 2020). Although cartilage is constantly subjected to volumetric compression under 

physiological conditions, aging and excessive compressive forces cause cell apoptosis, leading to 

osteoarthritis symptoms in more than 300 million people worldwide (Han et al., 2024; Ren et al., 

2023). Interestingly, high dynamic compression of chondrocytes leads to their apoptosis 

(O’Conor et al., 2014; Takeda et al., 2021), whereas lower compression forces trigger 

mesenchymal stem cell (MSC) differentiation into chondrocytes (Li et al., 2009; Pelaez et al., 

2012; Wang et al., 2013). This shows the importance of separating physiological from 

pathological mechanical signals.  

Volumetric compression inside tumors, also called solid stress, is also associated with cancer. 

Reaching values of 6–16 kPa, it is caused by several factors (Fig. 2) (Helmlinger et al., 1997) 

including increased cell proliferation, high contractility of the surrounding fibroblasts (Barbazan 

et al., 2023) and ECM stiffening due to matrix deposition (Stylianopoulos et al., 2012). 

Compression stresses are not uniform (Stylianopoulos et al., 2013; Zhang et al., 2023) and 

differentially affect cell proliferation with time (Cheng et al., 2009; Delarue et al., 2014; 

Fernández-Sánchez et al., 2015; Mary et al., 2022). Compression initially causes inhibition of cell 

proliferation both through direct effects on cell division and apoptosis (Cheng et al., 2009; Delarue 

et al., 2014) and by limiting nutrient access (Stylianopoulos et al., 2013; Toi et al., 2017). 

Subsequently, tumor cells show adaptation to compressive forces, promoting cell proliferation 

(Fernández-Sánchez et al., 2015; Mary et al., 2022), invasion (Han et al., 2020; Nishi et al., 2022), 

stemness (Nguyen Ho-Bouldoires et al., 2022; Zhao et al., 2021) and the formation of secondary 

tumor centers (Gong et al., 2023 preprint).   

  

Mechanosensing and mechanotransduction of compressive forces   

Here, we will review current knowledge of mechanosensation mechanisms that can be 

triggered by compressive forces and the associated mechanotransduction pathways.  

At the plasma membrane  

Cell compression is first applied on the plasma membrane, leading either to its tension in 

the case of apicobasal and in-plane compression or to its compression in the case of volumetric 

compression (Fig. 3). Diverse components of the plasma membrane participate in 

mechanosensing and mechanotransduction. Some examples are discussed below, but for more 

detailed information, readers can refer to specific reviews (Le Roux et al., 2019; Li, 2024).  

First, the lipid composition and organization of the plasma membrane determine its 

physical properties (Li, 2024). Moreover, different tension states correlate with different types of 

membrane organization – high membrane tension is associated with lipid rafts whereas low 



membrane tension is associated with reservoirs (passive membrane invaginations or evaginations) 

(Fig. 3) or caveolae (membrane invaginations actively maintained by cells) (Kosmalska et al., 

2015; Le Roux et al., 2019; Sinha et al., 2011; Teo et al., 2020). These structures can be recognized 

by membrane-binding proteins (Le Roux et al., 2021; Quiroga et al., 2023) or can trigger lipid 

signaling, therefore transducing changes in membrane tension into biochemical signaling (Teo et 

al., 2020). For example, in-plane compression of single cells creates membrane reservoirs that are 

recognized by the BAR protein IRSp53 (also known as BAIAP2). IRSp53 later induces the 

recruitment of the actin polymerization machinery, promoting the reabsorption of membrane 

reservoirs (Quiroga et al., 2023) (Fig. 3). Conversely, caveolae disappear when plasma membrane 

tension increases (Sinha et al., 2011), leading to the depletion of caveolin-1, recruitment of 

FMNL2 and actin stabilization through phosphatidylinositol-4,5-bisphosphate (Teo et al., 2020). 

Beyond caveolae, other caveolin-mediated structures also respond to tension (Lolo et al., 2023). 

Membrane tension also depends on membrane attachment to the underlying actin cortex through 

force-sensitive membrane-to-cortex attachment proteins, such as ezrin, moesin, and radixin. For 

instance, membrane tension leads to the loss of the interaction between actin and FilGAP (also 

known as ARHGAP24), a Rac GTPase-activating protein, mediated by ezrin. This triggers Rac 

activation and actin polymerization (Ehrlicher et al., 2011). Similarly, myosin 1b interacts more 

strongly with actin when subjected to tension (Laakso et al., 2008), thus underscoring the 

importance of applied forces on the cell cortex organization and membrane tension.  

Signals can also be transduced at the plasma membrane through the concentration of 

receptors and the opening of ion channels (Fig. 3). Indeed, in-plane compression of cellular 

monolayers and volumetric cell compression can induce the reorganization of membrane proteins. 

For instance, studies have established that in-plane compression causes a reduction in the number 

of integrin-based adhesions which changes the mechanical homeostasis between cell–ECM and 

cell–cell adhesions, leading to cell delamination (Miroshnikova et al., 2018). In contrast, 

volumetric compression can induce the concentration of LRP6 signalosomes, which maintain the 

activity of the Wnt/β-catenin pathway (Fig. 3) and promote the stemness of compressed cells (Li 

et al., 2021).  

Moreover, ion channels have long been associated with the transduction of mechanical 

signals, for instance in C. elegans touch neurons (Chalfie and Sulston, 1981; Huang and Chalfie, 

1994) and inner ear hair cells (Corey and Hudspeth, 1979), which detect pressure and vibration, 

respectively. Some channels are permeable to specific ions, whereas others do not discriminate 

(Peyronnet et al., 2014). Ca2+ ions are important second messengers inside cells; thus, channels 

responsible for their transport are ideal candidates for factors involved in mechanosensing and 

mechanotransduction. Indeed, both Piezo1 (Coste et al., 2010) and some channels of the transient 

receptor potential vanilloid (TRPV) family, such as TRPV4 (Fu et al., 2021), promote Ca2+ influx 

into the cell when the membrane is under tension (Fig. 3). These channels can be activated through 

membrane tension downstream of apicobasal compression (Easson et al., 2023; O’Conor et al., 

2014; Shi et al., 2022; Takeda et al., 2021; Wang et al., 2024a) but also enable the detection of in-

plane or volumetric compression associated with plasma membrane compression (Gudipaty et al., 

2017; Hung et al., 2016; Xie et al., 2022). Interestingly, although in some cases the closing of 

channels is associated with compression sensing (Delarue et al., 2014; He et al., 2018; Nam et al., 

2019), in others their location (at the plasma membrane or inside cells) determines whether 

tension or compression is detected, highlighting the versatility of mechanisms of action of these 

channels (Gudipaty et al., 2017).  

Following apicobasal or in-plane compression, Ca2+ influx into cells has several 

downstream effects. It promotes cell apoptosis through many pathways, including induction of 

endoplasmic reticulum stress (Wang et al., 2024a), damage to mitochondria (Shi et al., 2022), 

caspase-3 activation in combination with tumor necrosis factor (TNF) signaling (Xie et al., 2022), 



and the induction of diverse inflammatory pathways (Easson et al., 2023; O’Conor et al., 2014; 

Takeda et al., 2021). Additionally, Piezo1 activation upon compression can induce ion-dependent 

cell apoptosis, or ferroptosis, via both Ca2+ (Jia et al., 2024) and Fe3+ signaling (Xiang et al., 2024) 

(Fig. 3). Ca2+ influxes also promote cell motility through myosin II activation (Lomakin et al., 

2020; Venturini et al., 2020) (Fig. 3), as well as Src signaling, which leads to matrix degradation 

and cancer cell invasion (Luo et al., 2022). Finally, Ca2+ influxes can impact cell fate by promoting 

cellular differentiation, for instance via the inhibition of Notch proteins (Fig. 3) during the 

differentiation of midgut stem cells into enteroendocrine cells (He et al., 2018), via the activation 

of the ERK-RANK-OPG pathway during the differentiation of periodontal ligament stem cells 

into osteoclasts (Jin et al., 2020), or through growth arrest in volumetrically compressed cells 

(Delarue et al., 2014; Nam et al., 2019). In contrast to apicobasal compression, volumetric 

compression reduces intracellular Ca2+ levels, leading to the downregulation of the 

phosphoinositide 3-kinase (PI3K)-Akt pathway, in turn promoting the nuclear localization of the 

cell cycle inhibitor p27Kip1 (also known as CDKN1B) and subsequent cell cycle arrest in G1 

phase (Delarue et al., 2014; Nam et al., 2019).   

In the cytoplasm and nucleoplasm  

By affecting cell volume, volumetric compression alters concentrations and organization 

of molecules within the cell, which impacts cell behavior and fate. For cells with otherwise 

identical physical properties, there is an ideal intermediary cell volume at which cells organize 

their actomyosin cytoskeleton into stress fibers and transmit forces from the substrate to the 

nucleus, leading to the nuclear translocation of the mechanosensitive transcription factor YAP 

(also known as YAP1) (Bao et al., 2017). Similarly, our team recently demonstrated that cell 

volume impacts mechanical behavior, as cells placed in large micro-wells exert contractile forces, 

whereas cells placed in small wells exert extensile forces (Faure et al., 2024).  

Furthermore, cell compression induced by an osmotic shock can induce molecular 

crowding and phase separation in both the cytoplasm and nucleoplasm (Fig. 3) (Jalihal et al., 

2020; Lee et al., 2021a; McCreery et al., 2024 preprint). Cellular compression through 

hyperosmotic shock induces the phase separation of nuclear 26S proteasome into dense foci, 

sequestering key nuclear proteins and supporting cell survival under stress (Lee et al., 2021a). 

Likewise, hyperosmotic shock can cause monomeric proteins to form inactive multimers. This 

can subsequently affect cellular processes, for example, multimerization of the structural pre-

mRNA cleavage and polyadenylation factor CPSF6 following osmotic shock impairs 

transcription termination (Jalihal et al., 2020). Finally, submitting human induced pluripotent 

stem cells (hiPSCs) to hyperosmotic shock in basal medium is enough to promote nucleoplasm 

crowding and chromatin remodeling, leading to lineage transition (McCreery et al., 2024 

preprint).  

In the nucleus  

Because of its intracellular localization and mechanical properties, the nucleus can 

selectively sense large cell-shape deformations. Large forces on the nucleus have been observed 

in cell migration (Denais et al., 2016; Renkawitz et al., 2019; Thiam et al., 2016), cell 

differentiation (Biedzinski et al., 2020) and through transmission of mechanical forces from the 

microenvironment via protein complexes, such as the linker of nucleoskeleton and cytoskeleton 

(LINC) complex (Caille et al., 1998; Maniotis et al., 1997). Such forces can deform nuclei to the 

point of creating nuclear ruptures and DNA damage (Denais et al., 2016; Nader et al., 2021) and 

can impact processes like cell motility or transcription, as discussed in detail in other reviews 

(Dupont and Wickström, 2022; Mammoto et al., 2012). Nuclear deformations depend on nuclear 

composition and mechanics, which are governed by lamin A/C expression levels and chromatin 

organization (Hobson et al., 2020; Stephens et al., 2017). Nuclear mechanical properties vary 



across cell types and during development, differentiation and disease (Hampoelz and Lecuit, 

2011; Isermann and Lammerding, 2013) but can also change upon direct force application 

(Guilluy et al., 2014). For example, as cells migrate through narrow constrictions, the nuclear 

lamina layer can disassemble, leading to the detachment of lamina-associated chromatin domains 

and to decreased histone methylation (Song et al., 2022). In epithelia, the Ca2+ increase upon 

uniaxial tissue stretching or cell compression can increase heterochromatin markers and induce 

nuclear softening (Nava et al., 2020). Forces reaching the nucleus induce the stretching of both 

the nuclear envelope (NE; which is composed of a double lipid bilayer with an underlying lamin 

meshwork) and of nuclear pore complexes (NPCs), which control molecular exchange between 

the cytoplasm and nucleoplasm (Andreu et al., 2022; Elosegui-Artola et al., 2017; Zimmerli et 

al., 2021). All these elements make the nucleus a key mechanosensor and mechanotransducer of 

forces, as recently reviewed (Niethammer, 2021).  

Inner nuclear membrane (INM) unfolding can be directly sensed by the cytosolic 

phospholipase A2 (cPLA2; encoded by PLA2G4A) (Fig. 3) (Enyedi et al., 2016). This lipase has 

a C2 domain that, in the presence of high Ca2+, binds to the INM in a stretch-sensitive way (Enyedi 

et al., 2016) where it catalyzes the release of arachidonic acid (AA), its first metabolite product 

(Lomakin et al., 2020; Venturini et al., 2020). Different pathways have been described 

downstream of cPLA2, supporting an important role for nuclear mechanotransduction of this 

mechanosensitive protein. In fact, AA can be further processed into molecules known as 

eicosanoids, which act as chemoattractants, for example attracting leukocytes at wound regions 

in zebrafish (Enyedi et al., 2016). AA can also act in a cell-autonomous way and activate myosin 

II activity via the Rho-ROCK pathway in a variety of cell types, including immune cells, cancer 

cells and zebrafish embryonic stem cells (Lomakin et al., 2020; Venturini et al., 2020) (Fig. 3). 

This allows single cells to increase their contractility upon apicobasal compression, further 

inducing cellular blebbing. This equips cells with ‘escape mechanisms’ that allow them to quickly 

evade confined environments (Lomakin et al., 2020; Venturini et al., 2020). In dendritic cells, 

mechanosensing by cPLA2 together with the ARP2/3 actin-nucleating complex controls 

homeostatic migration to the lymph node (Alraies et al., 2024). Furthermore, confining dendritic 

cells in between two parallel surfaces at a distance of 3 µm, but not 4 or 2 µm, activated the 

transcription factor NF-κB (Fig. 3) in a paracrine manner, inducing the expression of CCR7, the 

chemokine receptor required for homeostatic migration of dendritic cells. This 

mechanotransduction pathway not only controls migration of dendritic cells but also their immune 

phenotype and transcription profile (Alraies et al., 2024).  

Forces applied to the nucleus are transmitted to NPCs, which expand or shrink because 

of a respective increase or decrease in force applied to the nucleus via integrin-based focal 

adhesions and the actin cytoskeleton, or via hypotonic swelling (Elosegui-Artola et al., 2017; 

Granero-Moya et al., 2024; Schuller et al., 2021; Zimmerli et al., 2021) (Fig. 3). As a result, both 

passive diffusion and active transport increase when pores dilate (Andreu et al., 2022). However, 

NPC dilation has a greater effect on active transport than on passive diffusion, leading to the 

accumulation of mechanosensitive transcription factors, such as YAP, SMAD3, Snail (also known 

as SNAI1) or Twist proteins, in nuclei subjected to force (Fig. 3) (Andreu et al., 2022). Notably, 

this feature of NPCs can be harnessed to engineer synthetic molecules to use as probes. Such 

molecules can assess nuclear deformation and mechanotransduction via nucleocytoplasmic 

transport in different cell lines, independently of the biochemical signaling that affects 

mechanosensitive transcription factors such as YAP (Granero-Moya et al., 2024). Interestingly, 

YAP mechanosensing was first described in the context of ECM rigidity sensing (Dupont et al., 

2011; Elosegui-Artola et al., 2016), but this process was later shown to be mediated by 

actomyosin-induced nuclear compression (Aureille et al., 2019; Elosegui-Artola et al., 2017). 

Consequently, several studies have observed changes in YAP localization upon compression 

(Elosegui-Artola et al., 2017; Emon et al., 2024). In Xenopus laevis embryo development, an 



increase of hydrostatic pressure promotes the cytoplasmic translocation of YAP (Alasaadi et al., 

2024). Furthermore, the authors proposed a model in which YAP transduces volumetric 

compression by acting as a co-transporter of β-catenin out of the nucleus (Fig. 3), thus impacting 

cell fate through loss of competence to Wnt signaling.   

 

Engineering systems to compress cells  

To decipher how cells sense and transduce compression, researchers have developed a 

variety of in-vitro systems. We will present them based on the dimensionality of compression they 

apply. All the presented methods, together with the biological model used in each case, are 

recapitulated in Tables 1. These tools come with the caveat that they are minimalistic systems that 

aim to mimic and tune the physical properties of the cell micro-environment. Thus, these tools 

might over-simplify the in-vivo scenario or neglect key biophysical or biochemical features. 

Appropriate controls are often necessary to ensure cells are not being damaged or stressed to 

induce cellular death programs.   

Compression along one dimension  

Applying compression along one dimension, generally apicobasal, can be achieved by 

cell confiners and typically involves squeezing cells towards the surface they are cultured onto 

(Fig. 4A–D), which can be planar or corrugated (Gaertner et al., 2022). This can be achieved by 

simply placing an agarose pad on top of adherent cells (Aureille et al., 2019). More sophisticated 

tools have been designed to culture cells between two parallel surfaces separated at a defined 

distance. These include glass coverslips with silicone, specifically polydimethylsiloxane (PDMS) 

micro-pillars (Le Berre et al., 2014) or agarose pads containing pillars (Fig. 4A,C) (Elpers et al., 

2023; Prunet et al., 2020). Of note, PDMS pillars can be coated with any desired ECM protein 

and the confinement can be static (Fig. 4A,C) or dynamic (by coupling the coverslip is with a 

PDMS suction cup and a pressure controller) (Fig. 4B,C) (Le Berre et al., 2014). These systems 

are commercially available (4D cell, Bio-Connect). PDMS devices equipped with micro-pistons 

have also been developed to dynamically and specifically confine the cells underneath the 

micropiston and not their neighbors by controlling the pressure applied to a control channel that 

regulates the height of the piston (Onal et al., 2021). Finally, a complex microfluidic design in 

which observation chambers are placed between air cavities has been designed to apply 

compression over cell clusters (Jain et al., 2024).  

Similar confinements applied to one cell at a time can be achieved by using atomic force 

microscopy (AFM, available from Nanosurf, JPK, Bruker and others) or cell indenters (Optics11) 

(Fig. 4D). These systems can be used to confine or locally indent a cell using a probe in the shape 

of a sphere, an inverted pyramid or a flat surface, among others. Depending on the size and shape 

of the probe, AFM can be used to confine entire cells (Fig. 4D) (Lomakin et al., 2020; Andolfi et 

al., 2019; Lulevich et al., 2006) or subcellular regions or organelles, such as the nucleus (Andreu 

et al., 2022; EloseguiArtola et al., 2017). Probes that have sizes that are comparable to or larger 

than the nucleus have been used to show that nuclear compression is sufficient to activate nuclear 

mechanotransduction pathways (Lomakin et al., 2020; Andreu et al., 2022; EloseguiArtola et al., 

2017). Smaller and sharper probes offer the possibility of studying subcellular mechanics (Hobson 

et al., 2020; RocaCusachs et al., 2008). Advantages of AFM and cell indenters over cell confiners 

are that they can be used not only to confine but also to measure applied forces and deformations 

(Hobson et al., 2020; Roca-Cusachs et al., 2008) as well as the cellular mechanoresponse to 

compression (Lomakin et al., 2020). They can also be used on cells cultured on soft substrates 

(Andreu et al., 2022; EloseguiArtola et al., 2017). However, the sensitivity of these probes comes 

at the cost of a much lower throughput.   



In-plane compression  

Various systems that compress cells along two dimensions have been developed, mostly 

to either study cell migration through pores or cell compression within an epithelia layer (Fig. 

4E–K).  

To study confined migration, a plethora of in-vitro systems are available and used 

depending on the biological question of interest. Importantly, several tools are often combined in 

a single study, as in Renkawitz et al. (2019) and Kroll et al. (2023) and many others, emphasizing 

the generality of the proposed mechanisms as well as the compatibility and complementarity of 

these tools. Microchannels that constrict cell shape and direct cell migration have been developed 

in several different ways. Channels are typically fabricated in PDMS (Fig. 4E) (Lautenschläger 

and Piel, 2013; Renkawitz et al., 2019; Reversat et al., 2020; Thiam et al., 2016), although more 

recently softer materials like hydrogels have been used (Afthinos et al., 2022; Stöberl et al., 2023). 

Channels can even be made using liquid–liquid interfaces between aqueous and oil solutions 

(Mosier et al., 2023). Channel shapes can be freely designed according to the physical parameter 

or process of interest, and their surfaces coated with any protein of interest (typically ECM 

proteins). Additionally, chemoattractants can be added to direct cell migration (Fig. 4E). These 

tools have particularly been used to study immune cell migration in complex and confined 

environments. For example, channels with constrictions, corrugations or bifurcations of different 

sizes have been used to study how dendritic cells deform their nucleus while migrating through 

narrow spaces (Thiam et al., 2016). These channels have also been used to demonstrate that cells 

can migrate over textured substrates without adhesion molecules by using actin retrograde flow 

(Reversat et al., 2020). Cells have been found to use their nucleus as a ruler in order to choose 

wider paths during confined migration in the absence of chemokines (Renkawitz et al., 2019); 

however, this can be overwritten by chemotactic signals that can force cells to migrate within 

narrow spaces (Kroll et al., 2023). In comparison, channels made of hydrogels allow measurement 

of the forces exerted by cells as they migrate. By adding inert markers inside these gels, traction 

force microscopy can be used to measure the forces exerted by single cells as they pass through 

a constriction (Stöberl et al., 2023) or by a group of cells migrating in channels with different 

stiffness (Afthinos et al., 2022). Liquid–liquid interfaces, such as those in between oil and culture 

media, can also be harnessed to fabricate even softer microchannels (Mosier et al., 2023). These 

channels have been used to show that migrating neutrophils deform the channel itself. This 

suggests that the surface tension of the interface induces a confining pressure that is comparable 

to cell stiffness and confirms that the neutrophil migration modes observed in-vitro recapitulate 

the ones observed in-vivo (Mosier et al., 2023).  

Chambers containing arrays of PDMS micro-pillars with any desired shape (typically 

circular or square) and organization can also be used to study cell migration through pores (Fig. 

4F). These tools have been especially useful in understanding how nuclei deform and rupture 

when cells migrate through the spaces in between consecutive pillars spaced at distances smaller 

than the diameter of their nuclei (Denais et al., 2016). Using these tools, it has also been shown 

that cells use the actin cytoskeleton to pull their nuclei forward in order to migrate through narrow 

constrictions (Davidson et al., 2019). PDMS-based channels or pillar arrays can be designed with 

a very broad variety of geometries and design features using microfabrication technologies, and 

their imaging is straightforward. However, PDMS is known to be extremely stiff in comparison 

to biological tissues.  

Transwell plates or inlets (Fig. 4G), described in detail in Chung et al. (2018), are used to 

measure the ability of single cells to migrate across pores with diameters ranging from a few 

micrometers to submicrometer values. Transwell plates, or Boyden chambers (Chen, 2005), 

typically consist of a porous membrane (with a defined pore diameter and density) in the middle 

of a plate that separates two compartments, often filled with ECM components (see Fig. 4G). 



Cells are usually added to the upper compartment and transmigrate to the lower one, where 

chemoattractants can be added and cells can be counted or collected for further experiments 

(Fanfone et al., 2022; Jung-Garcia et al., 2023). These tools are commercially available (Corning, 

Thermo Fisher Scientific and others) in the form of single or multi-well plates. For a detailed 

review on use of porous membranes and Transwell plates as in-vitro models for studying cell 

transmigration see Salminen et al. (2020). These systems have been applied to study the 

transmigration of immune (Salminen et al., 2019) and cancer cells (Fanfone et al., 2022; Jung-

Garcia et al., 2023). For example, human breast cancer cells have been found to develop resistance 

to anoikis (programmed cell death) and show enhanced invasiveness upon confined migration 

through pores (Fanfone et al., 2022). Experiments with a series of Transwell plates have been 

used to test the ability of cancer cells to migrate through pores of decreasing sizes, showing that 

nuclear adaptability fosters cancer cell migration and invasion (Jung-Garcia et al., 2023). Finally, 

a cell monolayer can also be added on top of the porous membrane, allowing migrating cells to 

experience cell–cell contact during their migration (Chakravorty et al., 2006; Lee et al., 2021b).  

Confined migration of single immune or cancer cells can also be studied by embedding 

cells inside a 3D matrix with pores that are sufficiently large to allow cell migration (Fig. 4H) 

(Kameritsch and Renkawitz, 2020; Krause et al., 2019; Paul et al., 2017; Renkawitz et al., 2019; 

Wolf et al., 2003). Of note, 3D matrices with very small pore sizes can be used to limit cell growth, 

thereby confining cells volumetrically. As discussed in more specific reviews (Saraswathibhatla 

et al., 2023; Vu et al., 2015), these matrices are typically hydrogels made of collagen, alginate, 

Matrigel, polyethylene glycol (PEG) or a combination of materials, and are commercially 

available (Ibidi and Thermo Fisher Scientific). Notably, tissue-specific matrices can also be 

obtained by decellularization of the native ECM (Zhang et al., 2022b). When using hydrogels 

made of polymers that lack cell binding sites (e.g. alginate), specific peptides can be added to the 

polymers to ensure homogeneous cell binding (Elosegui-Artola et al., 2017). Depending on their 

compositions, these hydrogels can be either elastic or viscoelastic (Chaudhuri, 2017; Ma et al., 

2021). For instance, by tuning the molecular mass of alginate and the crosslinker concentration, 

gels can be obtained that have a similar storage modulus (i.e. stiffness when measured at long 

timescales) but different relaxation times (Chaudhuri et al., 2016; Elosegui-Artola et al., 2023). 

Interestingly, differences in gel viscoelasticity are sufficient to modulate cancer cell proliferation 

and invasion (Elosegui-Artola et al., 2023) and stem cell migration (Wu et al., 2023). As migrating 

cells pull and push onto the fibers of the matrix, this technology allows for highly sensitive 

measurement of 3D forces (Böhringer et al., 2024). However, cells can also actively remodel their 

matrix, for example by creating tunnels where more cells can migrate (Driscoll et al., 2024; 

Yamada and Sixt, 2019). Although interesting, such remodeling renders these systems less 

controllable and can prevent them from being reused.  

Other systems of in-plane compression have been designed to apply cell compression 

within epithelial monolayers (Fig. 4I), recapitulating conditions of high cellular density. For 

instance, a pneumatic system allowing the deformation of the bottom of a Petri dish to stretch or 

compress the cells plated in it was developed in 1985 (Banes et al., 1985). This system was 

patented and later improved upon and commercialized (e.g. Strex Cell and Cytostretche by Curi 

Bio). Stretching devices are generally based on a stretchable membrane that can be deformed 

pneumatically (Shimizu et al., 2011) through an indenter (Huang et al., 2010) or a membrane 

holder (Gerstmair et al., 2009). This allows cells to be stretched uniaxially, biaxially or equixially 

(Fig. 3I). Over time, different improvements have enabled cost reductions and the ability to 

stabilize these systems during microscopy imaging (Dow et al., 2020; Mäntylä and Ihalainen, 

2021). To compress cells in these setups, cells are seeded onto pre-stretched elastic membranes, 

which are released after the cells have spread or monolayers have reached confluency, inducing 

cellular compression (Fig. 4I). Using this approach, a 28% cell compression was found to induce 

live-cell extrusion in Madin–Darby canine kidney (MDCK) cell monolayers (Eisenhoffer et al., 



2012) with similar results observed in the epidermis (Miroshnikova et al., 2018). At the single-

cell and subcellular levels, this system has also been used to study microtubules under 

compression (Li et al., 2023) as well as compression-induced plasma membrane reshaping and 

subsequent mechanotransduction events (Kosmalska et al., 2015; Le Roux et al., 2021; Quiroga 

et al., 2023). More recently, a tool to stretch suspended monolayers has been developed. In this 

system, an MDCK monolayer is cultured onto a collagen substrate suspended between two rods; 

the collagen is then enzymatically removed, and the monolayer can be stretched and compressed 

between the rods using a micro-manipulator (Harris et al., 2013). With this system, it has been 

shown that epithelial buckling depends on the speed of compression (Wyatt et al., 2020).  

Cell compression inside monolayers can also be achieved by introducing differences in 

local cell density through substrate design. For example, some cell types self-align and create 

large-scale patterns inside monolayers. When areas of different alignments coincide in one 

location, they form a nematic defect (Fig. 4J). Different studies have established that some 

nematic defects are associated with high cell compression, whereas others correlate with high cell 

tension (Guillamat et al., 2022; Sonam et al., 2023) (Fig. 4J). Using this knowledge, it is possible 

to pattern a compression point inside a cell monolayer. In monolayers of C2C12 myoblasts, this 

induces differentiation into myotubes and controls monolayer organization in 3D (Guillamat et 

al., 2022). Similarly, seeding cells on a substrate with a frequency of corrugation larger than a few 

cell lengths has been used to establish a pattern of compression within the monolayer (Fig. 4K). 

Indeed, cells present in the valleys of these corrugations are compressed in comparison to those 

placed on the peaks, as characterized by their rounder nuclei and lower nuclear YAP levels 

(Luciano et al., 2021). These systems allow for easier imaging than stretch setups (Guillamat et 

al., 2022; Luciano et al., 2021). However, the choice of one versus the other should be 

predominantly based on the desired compressed area – stretch systems uniformly compress the 

whole cell monolayer, whereas substrate design can be used to obtain controlled spatial 

differences in cellular compression within the monolayer.  

Volumetric compression  

As discussed above, volumetric cell compression is common both during physiological 

processes, like the maintenance of the intestinal stem cell niche, and under pathological 

conditions, such as solid stresses generated by cell proliferation in cancer. Here, we present 

different systems developed to study these processes.  

A straightforward way to exert volumetric compression is through osmotic shocks. For 

instance, adding 1–4% PEG to the cell medium is sufficient to compress cells (Fig. 4L). This 

quick and simple method has been used to show that volumetric compression induces the 

dedifferentiation of adipocytes (Li et al., 2020) and the expression of epithelial-to-mesenchymal 

transition and cancer stemness markers in non-small-cell lung carcinoma cells (Zhao et al., 2021).  

As discussed in the context of 3D matrix culture, cells can be embedded in different 

polymer combinations, offering a simple way to impose volumetric compression progressively as 

cells proliferate. The amount of stress applied on cells can be controlled through gel stiffness and 

viscoelasticity (Fig. 4M) (Chaudhuri et al., 2014) as well as by adding pistons above the gel that 

introduce supplementary compression along one dimension (Fig. 4N) (O’Conor et al., 2014). The 

latter technique has been extensively used to study the impact of chondrocytes and cells from the 

intervertebral discs, as it reproduces the in-vivo conditions that lead to osteoarthritis and 

intervertebral disc degeneration (Easson et al., 2023; O’Conor et al., 2014; Shi et al., 2022; Wu et 

al., 2024). Using commercial piston systems from Flexcell-FESTO, researchers can apply 1.5% 

to 15% compression at a frequency of ∼1 Hz, for a period ranging from a few hours to a few days 

and study the deleterious effects of compression on cell survival (Jia et al., 2024; Shi et al., 2022; 

Xiang et al., 2024). Single cells or groups of cells can also be encapsulated in alginate or alginate–



gelatin capsules (Fig. 4O). Details on how to generate these capsules are reviewed in Mohajeri et 

al. (2022). This technique has enabled researchers to determine that cells stop growing when 

submitted to a pressure of 1.8–2.2 kPa (Alessandri et al., 2013; Di Meglio et al., 2022). 

Additionally, this approach has shown that cell compression, but not cell morphology, promotes 

the cytoskeletal reorganization and cell stemness changes observed during cancer (Fuentes-

Chandía et al., 2021). Compression build-up within the capsule also induces fibroblasts to migrate 

on top of a cancer spheroid instead of forming a segregated cluster (Bertillot et al., 2024). 

Encapsulation can also be used to cultivate hiPSCs as they organize as cysts in matrigel-coated 

capsules, which enhances their viability. In bioreactors, encapsulation also eliminates the damage 

caused by the reactor impeller, drastically enhancing the amplification of hiPSCs to 277- fold 

over 6.5 days (Cohen et al., 2023). Finally, compression induced by encapsulation of cerebral 

organoids has been demonstrated to promote their growth and maturation (Tang et al., 2023). Of 

note, encapsulation requires inert polymers like gelatin to be mixed with matrix proteins, which 

enable cell attachment and the degradation of the capsule (needed to recover cells at the end of 

the experiment) (Cohen et al., 2023). Capsules can also be difficult to image due to their shape 

and floating nature.  

Finally, single or groups of cells can be volumetrically compressed in microniches. These 

consist of wells of different shapes made of hard substrates, like PDMS (Zhang et al., 2020a) (Fig. 

4P,Q) and NoA-74 (Li et al., 2016), or hydrogels, such as hyaluronic acid (Bao et al., 2017; Wang 

et al., 2013) and polyacrylamide (Faure et al., 2024; Wilson et al., 2021). These microniches 

constrain cells seeded inside, which can lead to compressive forces, while also controlling cell 

shape and the specificity of cell–substrate adhesions. However, they do not allow for the recovery 

of the compressed cells after experiments, and their physical features (e.g. rigidity and 

viscoelasticity) can differ from in-vivo conditions (Fig. 4P,Q). Microniches can be used to 

encapsulate single cells and larger cellular clusters and can be combined with other techniques 

like AFM (Zhang et al., 2020b) or traction force microscopy (Faure et al., 2024). Combining these 

techniques enables monitoring of the mechanical status of the cells or tissues during compression 

and allows the control of cell behavior. Additionally, cells can experience different patterns of 

tension and compression inside a microniche depending on its shape. Indeed, intestinal organoids 

seeded in rectangular microniches are subjected to cellular tension in the long end of the rectangle 

and compression in the short end of the rectangle. This influences cell fate, triggering cells to 

express villi and crypt phenotypes following tension and compression, respectively (Gjorevski et 

al., 2022).   

 

Conclusion  

As discussed in this Review, cell compression is relevant in a broad variety of 

pathophysiological contexts and is sensed by cells through a number of pathways depending on 

the dimensionality of the compression. Some of these pathways have been known for years, such 

as the opening of Ca2+ channels following plasma membrane stretching (Coste et al., 2010), 

whereas other pathways highlight emerging concepts. For instance, the findings showing that 

phase separation can interfere with the transcription machinery during volumetric compression 

could point to a novel type of mechanotransduction mechanism (Jalihal et al., 2020), which might 

play a role in the cell quiescence displayed by stem cells, as the stemness phenotype is associated 

with volumetric compression (Li et al., 2020, 2021). These new pathways would not have been 

identified without the development of a plethora of in-vitro systems enabling cell compression in 

very controlled settings.   

As these systems have become broadly available and more user friendly, they have also been 

adopted outside of the mechanobiology field, broadening their applications. For instance, the 



addition of mechanical control systems to standard cell culture protocols might better recapitulate 

physiological conditions, as in organoids grown on 3D matrices rather than standard plastic plates, 

or chondroblasts submitted to dynamic compression (Li et al., 2009; Pelaez et al., 2012; Wang et 

al., 2013). Moreover, compression can improve the efficiency of some cell culture protocols. For 

instance, encapsulation methods improve yields of hiPSCs cultured in bioreactors (Cohen et al., 

2023), and the reprograming of fibroblasts into iPSCs can be boosted through mechanical 

compression in microfluidic channels (Song et al., 2022). Diagnostic and personalized medicine, 

particularly for cancer, could also benefit from these techniques. Indeed, cancer studies on human 

samples have complemented in-vivo observations with in-vitro tools, such as Transwell assays, to 

infer the metastatic capacity of cancer cells (Jung-Garcia et al., 2023). Similarly, cancer stem cells 

present different mechano-phenotypes when apico-basally compressed compared to that seen in 

their non-stem counterparts, suggesting a differential metastatic potential of these two populations 

(Conti et al., 2024). This could allow detection of high-metastatic cell types in clinical samples 

through their mechanical fingerprint, characterized with in-vitro tools. Such clinical phenotyping 

requires the development of systems enabling manipulation and culture of tissues ex vivo, which 

is already ongoing (Bertillot et al., 2024; He et al., 2018; Jain et al., 2024).  

Clearly, the dissemination of tools engineered to impose cell compression, together with 

the growing evidence of the importance of compressive forces in-vivo, will likely popularize their 

use and boost new discoveries. We expect these discoveries to focus not only on fundamental 

discoveries in mechanobiology, but also on tools available to the broad biomedical community, 

with specific applications in diagnostics and therapy.  
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Fig. 1. Definition of type and dimensionality of compression. Top-left, no compression. Cells 

are free to move in the three dimensions (in xyz) without spatial constrictions. Top-right, 

apicobasal compression (or compression along one dimension; 1D) refers to cell confinement in 

one dimension (typically the apicobasal axis) but where cells are free to move in the other two. 

Bottom-left, in-plane compression (or compression along two dimensions; 2D) occurs when cells 

are compressed in two dimensions (xz), but free to move in the remaining one (y). Bottom-right, 

volumetric compression refers to confinement in all dimensions (3D).   

  

Fig. 2. Scenarios in which cells can experience compression in vivo. The yellow, orange and 

red shaded areas indicate areas where cells are compressed apico-basally, in-plane and 

volumetrically, respectively. From left to right, in intestinal villi, single cells are compressed by 

their neighbors (in-plane compression) within the stem cell niche or as they are extruded from the 

tips of villi. Solid stress (volumetric compression) can be observed in cancer when growth is 

limited by highly contractile fibroblasts or by surrounding stiffened extracellular matrix (ECM) 

and stromal tissue as well as in the stem cell niche where cells have been shown to have smaller 

volumes because of mechanical crowding (Li et al., 2021). When cancer cells escape the main 

tumor or when immune cells patrol tissues, they migrate through dense ECM or within tissue 

structures, and perform intravasation or extravasation (migration between endothelial cells into 

and out of a blood vessel, respectively), thus achieving confined migration. In this scenario, cells 

experience either apicobasal or in-plane compression depending on whether they migrate between 

two surfaces or through pores.   



  

Fig. 3. Mechanosensing and mechanotransduction of cell compression. Pathways are divided 

according to the cell compartment in which the initial mechanosensing event occurs. At the 

plasma membrane (top), compression has been shown to maintain the activation of the Wnt/β-

catenin pathway through the clustering of the Wnt receptor at the plasma membrane and the 

subsequent translocation of β-catenin to the nucleus. Plasma membrane compression promotes 

the formation of reservoirs that can be recognized by BAR proteins, which induces actin 

polymerization and subsequent reabsorption of the reservoirs. Increase in membrane tension 

during apicobasal or in-plane compression activates the opening of stretch-sensitive ion channels, 

such as Piezo1 or TRPV4, leading to the influx of Ca2+ and Fe3+ inside cells, further tuning the 

activity of many cellular pathways involving ERK proteins (ERK1/2, also known as MAPK3 and 

MAPK1, respectively), Notch proteins, caspases and myosin II (among others). In the nucleus 

(bottom right), nuclear deformation typically results in stretching of the nuclear envelope, 

inducing NPC dilation and leading to the accumulation of various mechanosensitive transcription 

factors (TF) like YAP, Smad3, or Twist in the nucleus. Nuclear deformation in the presence of 

high Ca2+, can also induce the localization of cPLA2 to the nuclear envelope, which can activate 

myosin II activity (or lead to its accumulation at the actin cortex) and promote NF-κB activation 

through arachidonic acid (AA) release. In the cytosol (bottom left), volumetric compression 

directly controls the intracellular concentration of proteins and receptors and can induce their 

phase separation in both the cytoplasm and nucleoplasm leading to inactivation (protein 

multimerization).  



Fig. 4. Techniques to apply one-dimensional, in-plane, or volumetric cell compression in 

vitro. (A–D) Compressing along one dimension. (A) Static planar confiners made of agarose (left) 

or PDMS (right) allow the confinement of cells on top of a glass surface at a height defined by 

micro-pillars made of the same material. (B) In dynamic confiners, cells are confined similarly to 

in A, but the compression can be applied dynamically using a PDMS suction cup connected to a 

vacuum pump, whose pressure controls the position of the coverslip. (C) Magnified view of cells 

confined within static or dynamic confiners. (D) AFM cantilever with a flat tip to allow for planar 

compression over a whole cell. (E–J) In-plane compression. (E) Channels of different geometries, 

for example, containing constrictions or bifurcations, can be used in the presence of a chemotactic 

gradient, depicted as a color gradient, to direct cell migration. (F) Pillar arrays contain obstacles 

of various geometries and constrictions. (G) Transwell plates use a membrane suspended in the 

middle of a well, with pores of defined size, density, and geometry. (H) 3D matrices made of 

various ECM components can also be used to study confined cell migration. (I) Stretching devices 

can be used to impose compression on cells or epithelial tissues by releasing previously applied 

stretch. (J) Nematic defects, observed when cells align to pre-patterned substrates, induce local 

cell compression (depicted by the orange-shaded area). (K) Corrugated substrates made of PDMS 

can induce compression within the valley of a monolayer. (L–Q) Volumetric compression. (L) 



Osmotic shock can be induced by adding large polymers or molecules like PEG to the cell 

medium, resulting in volumetric cell compression. (M,N) Growing cells within gels of different 

mechanical properties (M) can be used to control volumetric cell compression and (N) a piston 

can be used to additionally compress cells vertically. (O) Encapsulation methods, such as those 

using alginate capsules can be used to culture cell aggregates in Matrigel while imposing a 

maximal volume, thus inducing volumetric cell compression upon tissue growth. (P,Q) 

Microniches of any desired geometry can be used to compress (P) single cells or (Q) multicellular 

aggregates in 3D, controlling their shape and size.  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



Table 1. Compression setups and applications. Publications mostly focusing on methodology 

are highlighted in gray.  

Along one dimension 

  Application  Biological model  Reference  

A
g

ar
o

se
 P

ad
 

Cell migration – mesenchymal  

and amoeboid migration  

Walker 256 carcinosarcoma cells  (Bergert et al., 2015)  

Cell migration – invasion  Human breast cancer cells (MBA-

MB- 231)  

(Luo et al., 2022)  

Cell fate – cell division  HeLa, Human embryonic fibroblasts 

(MRC-5), Normal colon tissue-

derived cell (CCD18Co)  

(Aureille et al., 2019)  

C
o

n
fi

n
er

 
 

Method – agarose     (Elpers et al., 2023)  

Method – PDMS   (Le Berre et al. 2014)   

 Compression of nuclei  HeLa  (Enyedi et al., 2016)  

 Cell migration – mesenchymal 

and amoeboid migration  

Zebrafish progenitor stem cells  (Ruprecht et al., 2015)  

Screening of various cell lines  (Liu et al., 2015) 

 Cell migration –     

mechanotransduction 

  

Zebrafish progenitor stem cells  (Venturini et al., 2020)  

HeLa, Mouse bone-marrow–derived 

immature dendritic cells (iDCs)  

(Lomakin et al., 2020)  

Human epidermal stem cells  (Nava et al., 2020)  

  

 Cell migration - invasion  

Retinal pigment epithelial cells (RPE1), 

Human breast epithelial cells 

(MCF10A), Human breast cancer cells 

(MBA-MB- 231)  

  

(Nader et al., 2021)  

Cell fate – cell division  

Hematopoietic cells (TF1), 

epithelial breast cells (MCF10A), ML2 

leukemic cells, mesenchymal stroma 

cells (HS27A)  

(Prunet et al., 2020)  

Cell fate – activate a 

quiescent stem cell state  

Muscle Stem Cells  (Tao et al., 2023)  

Cell fate - differentiation  Dendritic cells  (Alraies et al., 2024)  

Mechanical measurement of 

spheroids  

Coculture of fibroblasts (NIH-3T3) and 

hepatoma cells (H4-II-EC3) in 

spheroids  

(Jain et al., 2024)  

A
F

M
 o

r 
C

el
l 

in
d

en
te

r 

Method – AFM    (Lulevich et al. 2006)  

Cell migration – 

mechanotransduction  

HeLa  (Lomakin et al., 2020)  

 Nuclear deformation  

Fibroblasts  (Elosegui-Artola et al., 

2016)  

Breast epithelial cells (MCF10A), 

fibroblasts  

(Andreu et al., 2022;  

Elosegui-Artola et al., 

2017)  

 Ovarian Adenocarcinoma cells 

(SKOV3)  

(Hobson et al., 2020)  

 

  



In-plane compression 

  Application  Biological model  Reference  

M
ic

ro
ch

an
n

el
s 

Method – PDMS based 

chips   

  
  (Heuzé et al. 2011)  

Cell migration – 

mechanotransduction  

HeLa, Mouse bone-marrow–derived 

immature dendritic cells (iDCs)  
(Lomakin et al., 2020)  

Cell migration – migration 

through pores  

Dendritic cells, T-cells, leucocytes and 

fibroblasts  
(Renkawitz et al., 2019)  

Dendritic cells, Neutrophils (derived 

from HL60)  
(Thiam et al., 2016)  

Cell migration – 

mesenchymal and amoeboid 

migration  

Walker 256 carcinosarcoma cells  

(Bergert et al., 2015)  

F
o

re
st

 o
f 

p
il

la
rs

 

  

Cell migration – migration 

through pores  

Human breast cancer cells (MBA-MB-

231), fibrosarcoma cells (HT1080)  

(Denais et al., 2016; 

Krause et al., 2019)  

Dendritic cells, T-cells, leucocytes 

and fibroblasts  
(Renkawitz et al., 2019)  

Mouse embryonic fibroblast (NIH-3T3)  (Davidson et al., 2019)  

T
ra

n
s-

w
el

l 

P
la

te
 o

r 
in

le
t 

Cell migration – 

mechanotransduction  

Human MCs A375P  
(Lomakin et al., 2020)  

Cell migration – migration 

through pores  

Human melanoma cells and primary 

human melanocytes  

(Jung-Garcia et al., 

2023)  

Human neutrophils from healthy 

donors  
(Salminen et al., 2019)  

Cell fate – anoïkis resistance  
Human breast cancer cells (MDA-

MB- 231)  
(Fanfone et al., 2022)  

3
D

 m
at

ri
ce

s 

Method – 3D hydrogels    (Solbu et al. 2023)  

Cell migration – 

mechanotransduction  

Human MCs A375P, fibroblasts 

HT1080  
(Lomakin et al., 2020)  

Fibrosarcoma cells (HT1080), 

Human skin fibroblasts,  

(Denais et al., 2016; 

Krause et al., 2019)  

  

Cell migration – migration 

through pores  

Fibrosarcoma cells (HT1080),  

Fibrosarcoma (ACC315), Human breast 

cancer cells (MDA-MB-231), 

Human CD4+ from healthy donors, 

Human immune cells from healthy 

donors  

(Wolf et al., 2003; Wolf 

et al., 2013)  

  

Dendritic cells, T-cells, leucocytes and 

fibroblasts  

(Alraies et al., 2024; 

Renkawitz et al., 2019)  

Human melanoma cells and primary 

human melanocytes  

(Jung-Garcia et al., 

2023)  

Cell migration - invasion  

Human breast epithelial cells 

(MCF10A), intestinal organoids.  

(Elosegui-Artola et al., 

2023)  

Mesenchymal stem cells  (Wu et al., 2022)  

Cell migration – 

mesenchymal  

and amoeboid migration  

Walker 256 carcinosarcoma cells  (Bergert et al., 2015)  

Clonally derived mouse bone 

marrow stromal mesenchymal stem 

cells (D1)  

(Chaudhuri et al., 2016)  

Cell fate - differentiation  Pre-osteoblasts (MC3T3E1)  (Wu et al., 2023)  

S
tr

et
ch

in
g

 d
ev

ic
es

 Method – 3D printed 

stretcher 
 (Dow et al., 2020) 

Method – LEGO stretcher  
  (Mäntylä and Ihalainen, 

2021)  

Method – suspended 

monolayer  

  (Harris et al., 2013)  

  



Cell organization – 

membrane and cytoskeleton  

Mouse embryonic fibroblasts (MEFs)  (Quiroga et al., 2023)  

Retinal pigment epithelial cells (RPE1)  (Li et al., 2023)  

Cell fate – epithelial extrusion 

or delamination  

Epidermis monolayer  (Miroshnikova et al., 

2018)  

   

Cell fate – epithelial 

delamination and 

differentiation  

Madin-Darby canine kidney (MDCK)   (Eisenhoffer et al., 

2012)  

Cell fate – epithelial folding  Madin-Darby canine kidney (MDCK)   (Wyatt et al., 2020)  

Cell fate – induce stemness  Human colon carcinoma RKO cells  (Li et al., 2021)  

P
at

te
rn

in
g

  Cell fate – differentiation  

 

 

 

  

C2C12 - Myoblast  (Guillamat et al., 2022)  

 

Volumetric Compression 

O
sm

o
ti

c 
sh

o
ck

 

Cell organization – 

aggregation  

Human osteosarcoma (U2OS)  (Jalihal et al., 2020)  

Human colorectal carcinoma  (Lee et al., 2021a)  

Cell fate – cell fate changes  Human non-small lung carcinoma  (Zhao et al., 2021)  

Hepatocellular carcinoma cells  (Gong et al., 2023)  

Cell fate – stemness 

induction  

Human colon carcinoma RKO cells  (Li et al., 2021)  

Cell fate – dedifferentiation  Adipocytes  (Li et al., 2020)  

P
is

to
n

 (
so

li
d

 o
r 

g
as

eo
u

s)
 a

ss
o

ci
at

ed
 

w
it

h
 e

n
ca

p
su

la
ti

o
n

 

 

Cell fate – stemness 

induction  

Human colon carcinoma RKO cells  (Li et al., 2021)  

  

Cell fate - differentiation  

Bone marrow stem cells, Mesenchymal 

stem cells  

(Li et al., 2009; Pelaez et 

al., 2012; Wang et al.,  

2013)  

 

 

Cell fate – cell death 

Chondrocyte  (O’Conor et al., 2014;  

Takeda et al., 2021; Wang 

et al., 2024a)  

 

Nucleus pulpous cells  (Easson et al., 2023; Jia 

et al., 2024; Shi et al., 

2022; Xiang et al., 2024)  

Cancer – tumor growth  Murine carcinoma cells  (Cheng et al., 2009)  

E
n

ca
p

su
la

ti
o

n
 

Method   Mouse colon carcinoma cells  (Alessandri et al., 2013)  

Method – stem cell culture  Human induced pluripotent stem cells  (Cohen et al., 2023)  

Method – cerebral organoid 

culture  

Human embryonic pluripotent stem 

cells  

(Wang et al., 2024b)  

Cell migration  
Co-culture of colon cancer cell line  

(HT29) and fibroblasts (NIH3T3)  

(Bertillot et al., 2024)  

  

  

  

  

Cell fate – stop cell growth  

Human colon carcinoma (HT29), 

mouse colon adenocarcinoma (CT26), 

human breast cancer cells (BC52), 

mouse sarcoma cells (AB6) and mouse 

Schwann  

cells (FHI)  

 

(Delarue et al., 2014) 

Human breast cancer cells (MDA-MB-

231) and normal breast epithelial cells 

(MCF10A)  

(Nam et al., 2019)  

Madin-Darby canine kidney (MDCK)   (Di Meglio et al., 2022)  



E
n

ca
p

su
la

ti
o

n
 Cell fate – stemness induction  

Breast cancer cell line (MCF7)  (Fuentes‐Chandía et al., 

2021)  

Cell fate – epithelial folding  Madin-Darby canine kidney (MDCK)   (Di Meglio et al., 2022)  

Cancer – cell invasion  

Breast epithelial cells (MCF10A)  (Chaudhuri et al., 2014; 

Han et al., 2020)  

Human colorectal cancer cells (DLD-1)  (Nishi et al., 2022)  

M
ic

ro
n

ic
h

e 

Method    (Comelles et al., 2020)  

  

Cell organization  

Human mesenchymal stem cells  (Bao et al., 2017)  

Mouse Myoblasts C2C12  (Wilson et al., 2021)  

Mouse intestinal organoids  (Gjorevski et al., 2022)  

Cell fate – differentiation  Mouse embryonic stem cells  (Bao and Xie, 2023)  
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