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SUMMARY
Cancer cells display wide phenotypic variation even across patients with the same mutations. Differences in
the cell of origin provide a potential explanation, but traditional assays lack the resolution to distinguish clon-
ally heterogeneous subsets of stem and progenitor cells. To address this challenge, we developed simulta-
neous tracking of recombinase activation and clonal kinetics (STRACK), a method to trace clonal dynamics
and gene expression before and after the acquisition of cancer mutations. Using mouse models, we studied
two leukemic mutations, Dnmt3a-R878H and Npm1c, and found that their effect was highly variable across
different stem cell states. Specifically, a subset of differentiation-primed stem cells, which normally becomes
outcompeted with time, expands with both mutations. Intriguingly, Npm1c mutations reversed the intrinsic
bias of the clone of origin, with differentiation-primed stem cells giving rise to more primitive malignant
states. Thus, we highlight the relevance of single-cell lineage tracing to unravel early events in cancer evolu-
tion and posit that different cellular histories carry distinct cancer phenotypic potential.
INTRODUCTION

Cancer cells display striking phenotypic variation, within and

across patients, yet the origins of this variation are still unclear.1

Since cancer is a clonal disorder, researchers have long hypoth-

esized that phenotypic heterogeneity could be a consequence of

the cell type that acquires the driver mutations.2,3 The ‘‘cell-of-

origin’’ model revolutionized the cancer field, leading to transfor-

mational discoveries across various tumor types.4–6 The cell-of-

origin hypothesis has been extensively characterized in cancer

types with few driver mutations, such as myeloid malignancies.

Depending on whether mutations are introduced in the hemato-

poietic stem cells (HSCs), at the top of the hematopoietic hierar-

chy, or in the more mature myeloid progenitors (MPs), re-

searchers have consistently shown differences in the resulting

phenotypes.7–16 However, traditional cell-of-origin studies

induce mutations at the population level using reporter genes

or surface markers, which are insufficient to discretize the com-

plex heterogeneity in the system.17,18 Furthermore, we and

others have shown that even the HSCs, at the top of the hierar-

chy, are biased at the level of both state and function, with amul-

tiplicity of fate-imprinted clonal hierarchies co-existing in the

bone marrow (BM).19–29 Importantly, due to the lack of high-res-

olution cell-of-origin techniques, the functional significance of

stem cell heterogeneity in tumor initiation remains poorly under-

stood,30 leaving researchers to rely on inference.31
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Here, we present a system called simultaneous tracking of re-

combinase activation and clonal kinetics (STRACK), which pre-

cisely addresses existing methodological and knowledge gaps,

unbiasedly linking pre-existing stem cell states (and intrinsic

fates) with their potential cancer states and fates. STRACK takes

advantage of defined primary stem cell culture systems to

explicitly minimize the confounding effect of extrinsic variables

and solely focus on intrinsic determinants. To this end,

STRACK combines long-term ex vivo PVA-based expansion cul-

tures, which can sustain and expand HSCs andmyeloid progeny

for weeks,32,33 mouse models carrying different Cre/Flp-

inducible leukemia mutations,34 a second-generation palette of

Lineage and RNA Recovery (LARRY) barcode libraries to track

clones, and a sister-cell-clone-splitting strategy.24,29 This unique

combination allowed us to sample the system longitudinally and

obtain a dense clonal and transcriptional landscape for the same

set of clones, with and without mutations.

RESULTS

State-fate analysis in long-term PVA-based HSC
expansion cultures
Inorder tocharacterizeHSCclonalbehaviors inPVA-basedexvivo

expansion cultures, we profiled thousands of HSC clones through

a 27-day protocol using single-cell lineage tracing and RNA

profiling. For this, we genetically labeled �10,000 long-term
Published by Elsevier Inc.
eativecommons.org/licenses/by/4.0/).
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Figure 1. State-fate analysis in ex vivo HSC expansion cultures

(A) Experimental design. HSCs transducedwith the LARRY barcode library were cultured for up to 27 days. Cells were sampled at different time points by scRNA-

seq to profile lineage (barcode) and state.

(legend continued on next page)
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HSCs (lineage� Sca-1+ cKit+ CD48� CD150+ CD201+ or

‘‘E-SLAM’’) with second-generation LARRY barcoding libraries

expressing the T-Sapphire fluorescent protein (Figure S1A).

Labeled HSCs were expanded across multiple wells for 27 days,

sorted, and randomly sampled for scRNA-seq as depicted in the

schematic at days 7, 14, and 27 (Figure 1A; Table S1 �see STAR

Methods).24

Most of the cells profiled on day 7 expressed markers of HSCs

(Procr,Hlf, andMecom) or multipotent progenitors (MPPs,Cd48)

(Figure S1B). Starting on day 14, but mostly at day 27, we also

found a continuum of differentiating cell states that we annotated

using marker genes to six major cluster groupings: granulocyte

monocyte progenitors (GMPs), megakaryocyte progenitors

(Mk), erythrocyte progenitors (Ery), basophil progenitors (Ba),

monocyte progenitors (Mono), and neutrophil progenitors (Neu)

(Figures 1B, 1C, and S1B—markers detailed in Table S2). Even

at day 27, we could still annotate thousands of cells as HSCs,

confirming their expansion within these cultures (Figures 1C

and S1C). This result suggested both differentiation and self-

renewal from the initial pool of stem cells as previously

reported.32,33

Next, we leveraged LARRY barcoding to assess the clonal dy-

namics and cell fate choices of expanded HSCs over time. We

found that expansion cultures gradually lose their clonality,

despite initiating from highly pure EPCR+ HSCs, in line with

recent reports (Figure 1D).35 Sister-cell splitting across indepen-

dent wells confirmed the preferential expansion of specific

clones, which correlated across wells higher than expected

based on a null distribution obtained from a sampling simulation

(Figures 1D and S1D).

To describe the mechanisms leading to clonal selection, we

visualized all clones detected in both D7 and D14 time points

using ‘‘clone x annotation’’ fate heatmaps, which are colored

based on the fate bias in each individual clone (Figure 1E).

We observed a striking heterogeneity in fate biases across

clones even at D27 (Figures 1F and S1C). We next quantified

HSC clonal fate properties based on our previous methodol-

ogy.36 Briefly, output activity (the ratio of differentiation versus

self-renewal) was calculated as the frequency of clone i non-

HSC clusters divided by the frequency of clone i in the HSC

cluster. Specific fate biases (megakaryocyte and myeloid)
(B) UMAP of wild-type (WT) cell states in ex vivo expansion cultures from days 7

Density overlay indicates the density of cells across the UMAP.

(C) Cluster distribution of WT ex vivo expansion cultures at different time points.

(D) Evidence for clonal selection. Left, observed versus expected number of clon

correlation of sister-cell clone sizes across split independent wells (observed, ye

(E) State-bias heatmaps showing clones (rows) and clusters/states (columns), col

all those detected in both days 7 and 14. Clones are separated into two heatmaps

day 27.

(F) UMAP showing exampleWT clonal behaviors at day 27 from different experime

of mature progeny) over self-renewal (frequency of HSCs). Three different clones

(G) Scheme of the interpretation of results based on clonal groupings. In the fin

exhausted), while high-fitness clones continue to survive and expand (possibly d

(H) Volcano plot for day 7 HSCs comparing low-versus-high fitness clonal groups.

in green (high-fitness) or red (low-fitness). Bottom red and green numbers repres

(I) Gene set enrichment analysis (GSEA) of differential gene expression results in

(J) Competitive 1:1 ex vivo HSC expansion of Tcf15-Venushigh or Tcf15-Venuslow H

at day 20 (mean ± SD, n = 5, p < 0.001).

See also Tables S1, S2, S3, and S4.
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were quantified as the frequency of clone i in the cluster k

divided by the frequency of the clone i across non-k clusters.

Fate-biased HSCs showed differences in gene expression pro-

grams, which resembled those previously identified in trans-

plant or developmentally traced native hematopoiesis and

showed hallmarks of heritability (Figures S1E–S1H).19,36

Together, these results indicate the preservation of clonal

HSC fate and state heterogeneity in long-term ex vivo HSC

expansion cultures.

We next compared the HSC clones that persist and expand

until D27 (termed ‘‘high-fitness clones’’) with the clones that

are detected early (at day 7 and 14) but do not expand enough

to be detected at the last time points (termed ‘‘low-fitness

clones’’). Analysis of their fate properties indicated that out-

competed, low-fitness clones displayed more rapid and abun-

dant contribution to mature progeny, suggesting intrinsic prim-

ing for activation and differentiation (Figures 1E, S1I, and S1J).

To assess the early transcriptional differences associated with

these differences in fitness, we used longitudinal retrospective

state-fate analysis, comparing the HSC cell states at day 7

based on their fitness differences at day 27 (Figures 1G and

1H; Table S3). High-fitness HSCs exhibited enriched expres-

sion of markers associated with self-renewal (Procr) and HSC

identity (Mecom, Ly6a, and Hlf), as well as non-conventional

retinoic signaling (Rarb), extracellular matrix (Sdc4 and

Mmp16), synapses (Dlg2 and Ncam2) and actin cytoskeleton

regulation (Fmnl2, Gimp, and Palld) (Figure 1H). High-fitness

HSC clones also expressed higher levels of low-output and

Mk-biased HSC signatures, as well as Skeletal morphogenesis

signatures (Tcf15 and Myof) (Figure 1I and Table S4). To vali-

date the high fitness of Tcf15high cells during ex vivo HSC cul-

tures, we used the Tcf15-Venus mouse model, which enriches

for highly transplantable self-renewing HSCs.36 We sorted 500

CD45.1 wild-type (WT) E-SLAM HSCs and co-cultured them

with either Tcf15high or Tcf15low E-SLAMHSCs (marked by their

CD45.2 background). Tcf15high HSCs consistently expanded

more than the bulk HSCs, whereas Tcf15low cells were relatively

outcompeted after 20 days in expansion cultures (Figure 1J).

Taken together, these analyses indicate that ex vivo expansion

cultures display a broad range of stable and dynamic fate be-

haviors, including intrinsic and deterministic differences in
, 14, and 27 time points. Cells are colored based on their cluster annotations.

The mean and SD of two independent experiments are represented.

es per well at day 27 based on a stochastic sampling model. Right, Spearman

llow; blue, expected; n = 1,000 simulations, mean ± SD).

ored by the intra-clonal fraction in each cluster/state (scale). Clones shown are

(top—bottom), depending onwhether the clone is detected (in at least 2 cells) at

nts/replicates. High or low output refers to the ratio of differentiation (frequency

for each clonal behavior are represented, colored by clone of origin.

al sampling point, low-fitness clones cannot be detected anymore (they get

riven by higher self-renewal).

Selected genes are highlighted.Markers associated with each group are shown

ent the number of downregulated and upregulated genes, respectively.

(H). Scale is log10 FDR
�1.

SCs co-cultured with CD45.1 HSCs. Right, quantification of CD45.2+ fraction



A

C

F

H

I

J K

G

D E

B

Figure 2. Sister-cell state-fate landscape of Dnmt3a-R878H mutagenesis

(A) Experimental design for sister-cell state-fate analysis in R878H mutagenesis.

(B)Waterfall plot showing log2 fold-change inclonesize (fractionof cells) for the sameset of cloneswithandwithout theR878Hmutation.Redcolor indicates increased

clone size upon mutation while blue color indicates decreased clone size upon mutation. Bubble size indicates size of the clone in the condition where it was larger.

(legend continued on next page)
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fitness, which allows us to study how different stem cell clones

respond upon acquisition of cancer driver mutations, which

should increase this fitness.

Sister-cell analysis and state-fate landscapes for
Dnmt3a-R878H mutagenesis
To investigate how different cancer driver mutations influence

stem cell fates, we used a mouse model carrying two different

conditional knockin mutations that can be activated using

different recombinases: a Cre-dependent Dnmt3a-R878Hmuta-

tion (R878H) and a Flp-dependent Npm1-cA mutation (Npm1c).

We started by studying the effects of R878H, the mouse homo-

log of Dnmt3a-R882H, which is one of the most frequent driver

mutations in acute myeloid leukemia (AML).34,37 To activate the

R878Hmutation, we developed a second set of lentiviral libraries

constitutively expressing Cre-recombinase and a fluorescent

reporter or the mock fluorescent reporter alone as a control

(Cre-P2A-mScarlet and mScarlet). We isolated HSCs from

male and female mice, transduced them with differently indexed

T-Sapphire LARRY libraries, and then, on day 7, we profiled a

part of the cells and split the remainder into a Cre or a mock la-

beling reaction, and then these were further split into separate

wells that continued expansion independently (Figure 2A). The

system allowed state-fate analysis for both WT and mutant

clones arising from sister HSCs, which we termed STRACK.

We observed increased expansion of Dnmt3a R878H mutant

cells (from here on R878H cells) in competitive cultures (Fig-

ure S2A) but did not identify major differences in their states (at

the population level) compared with WT mock controls from

the same mouse line (Figure S2B). After performing clonal anal-

ysis, we observed that HSC clones expanding significantly more

with R878H also tended to have the largest clone sizes (Fig-

ure 2B). We then compared the clones that could be detected

in both day 7 as well as day 27 in both WT and R878H cells by

plotting their behaviors using state-bias heatmaps (Figure 2C).

Sister WT/R878H clones displayed remarkably similar behav-

iors, even with a mutation and 20 days after splitting. However,

this analysis showed a clear difference: most clones gained rela-

tively more HSCs with R878H mutation in comparison to WT

(Figure 2D), which resulted in reduced clonal output activity (Fig-
(C) State-bias heatmap of clones (n = 43) observed in both WT and R878H cultu

corresponds to a single barcode (clone), and these are aligned to show the same c

ordered by hierarchical clustering (using scaled data from both conditions for ever

the percentage of clones in which a barcode has been detected for that specific ce

an asterisk).

(D) Waterfall plot showing log2 fold-change in HSC versus mature bias (output ac

(higher self-renewal in R878H condition) to blue (higher self-renewal in WT). Bub

(E) Example UMAP of sister wild-type and mutant fates for the same clone (all ce

(F) Difference between observed and expected number of clones at day 27, b

p < 0.029.

(G) Schematic for grouping clones as mutation-dependent or mutation-independ

(H) Box plots comparing clone size proportion (p), output activity, and fate bias (

independent (n = 47 clones) mutant clones at day 27. **p < 0.01, ns, not significa

(I) Box plots comparing clone size and output activity in R878H-dependent (R8

significant.

(J) UMAP of HSCs at day 7. Highly variable genes, principal components, and

detected at day 27 are highlighted (R878H-dependent, top; R878H-independent

(K) GSEA of differential gene expression results comparing R878H-dependent ve

bottom). Scale is log10 FDR
�1.

See also Tables S1, S2, S3, and S4.
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ure S2C). In some rare but notable cases, high-output multiline-

age clones even completely lost their output in the presence of

the R878H mutation (Figure 2E), indicating that differentiation-

biased stem cells can be efficiently reprogrammed by the

Dnmt3a mutation to increase their self-renewal at the expense

of differentiation.

Considering these effects, we wondered whether themutation

could be altering the fitness capacity of intrinsically low-fitness

clones, which differentiate early and get outcompeted during

long-term culture. Comparing the clonality of R878H cultures

with sampling simulations confirmed that R878H cultures main-

tained a relatively more polyclonal pool (p = 0.029), suggesting

that clones that are normally outcompeted in the WT setting

can persist upon activation of the R878H mutation (Figure 2F).

We next compared the clones detected at day 14 and day 27

only in R878H cells (mutation-dependent) with those detected

only in WT or in both WT and R878H conditions at day 14 and

day 27 (mutation-independent) (Figure 2G). We plotted state-

bias heatmaps for day 27 states for each clone, split into groups

based on their detection in WT and/or R878H cultures (Fig-

ure S2D). Surprisingly, mutation-dependent R878H clones at

day 27 behaved similarly compared with mutation-independent

R878H clones (Figure 2H), with increased HSC bias compared

with WT-only clones (Figure 2I). We next used retrospective

state-fate analysis and compared the transcriptomes of day 7

HSCs based on their R878H mutation dependency at day 27

(Figure 2J). Gene set enrichment analysis (GSEA) of R878H-

dependent versus independent clones at day 7 indicated

reduced expression of self-renewal and fitness signatures, sup-

porting the origin of mutation-dependent clones in low-fitness

HSCs (Figure 2K, top). In line with the fate bias analyses, post-

mutation R878H-dependent HSCs displayed positive enrich-

ment of high-fitness and self-renewal signatures, indicating the

potent stemness reprogramming capacity of these driver muta-

tions (Figure 2K, bottom). We further confirmed this by quanti-

fying the single-cell low-fitness scores of R878H-dependent

and independent HSCs at day 7 and 27 (Figure S2E). In addition

to changes in HSC output, differential expression analysis and

GSEA revealed that R878HHSCs (andMPPs) displayed reduced

expression of early response genes, suggesting dampened
res at day 27. Log2 fold-change in HSC bias is shown on the right. Each row

lone in both conditions, colored by intra-clone fraction (scale). Clones (rows) are

y clone). Bars on top of the heatmap correspond, for each individual column, to

ll type. Notice the increased percentage of HSCs in R878H cultures (marked by

tivity�1) for the same set of clones comparing R878H versus WT. Scale is red

ble size indicates the HSC frequency in the condition where it was higher.

lls were derived from a single HSC at the time of barcoding).

ased on the stochastic sampling model. Mean ± SD, n = 1,000 simulations,

ent.

megakaryocytic or myeloid) in R878H-dependent (n = 82 clones) and R878H-

nt.

78-only, n = 82) and WT-only (n = 95) clones at day 27. ***p < 0.005, ns: not

UMAP coordinates have been recomputed specifically for HSCs. D7 clones

, bottom).

rsus independent clones (day 7, before mutation, top; day 27, after mutation,
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Figure 3. Dnmt3a-R878H rewires stem cell fitness in the Flt3-Cre HSC model

(A) Experimental design for analysis of Flt3-Cre HSC models with sample-hashed scRNA-seq.

(B) UMAP showing Flt3-Cre wt and Flt3-Cre R878H hematopoietic landscapes, with cells colored by tdTom expression. Annotated cluster groups are indicated.

(C) Barplot of an exemplary sample showing cluster distribution of tdTom+ and tdTom� cells.

(D) Scheme showing interpretation of Flt3-Cre model results.

(E) Volcano plot showing differential expression analysis of Flt3-Cre tdTom+ versus tdTom� HSCs.

(F) GSEA showing hallmarks and HSC signatures for Flt3-Cre tdTom+ versus tdTom� HSCs. Scale is log10 FDR
�1.

(legend continued on next page)
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inflammatory activation as an additional mechanism for their

competitive expansion, in line with recent reports in clonal hema-

topoiesis (Figures S2F and S2G).38–40 Together, these results

highlight the differential effect of this cancer driver mutation

across different stem cell clones. While the effects of the

R878H mutation are too mild to affect the intrinsically high-

fitness clones, it can potently reprogram the fates and states

of low-fitness HSCs, allowing them to survive and expand in

ex vivo long-term cultures.

The Flt3-Cre model recapitulates Dnmt3a-R878H
mutagenesis in low-fitness HSCs
Next, we sought to validate the fitness reprogramming effects of

the Dnmt3a R878H mutation using a complementary approach

to identify these cells. We and others have previously identified

Flt3 as part of the gene signature of high-output, multilineage

HSCs.36,41 Although no HSCs express the Flt3 receptor on their

surface, we hypothesized that the cells could still be identified

using a transcriptional reporter, the Flt3-Cre allele, in which

Flt3-expressing cells can acquire a label through concomitant

expression of Cre recombinase.42 In previous studies, using

mTmG or LSL-EYFP reporters, researchers reported that Flt3-

Cre only labels developmentally restricted HSCs (which disap-

pear after birth), and it does not label any adult HSCs.43,44 How-

ever, we speculated that, in combination with a more sensitive

reporter, the LSL-TdTomato allele (tdTom), Flt3-Cre could still

enrich the adult HSC subset characterized by high-output and

low-fitness signatures. To unbiasedly describe the model, we

profiled tdTom+ and tdTom� LSK (Lin–c-Kit+Sca-1+) and LKs

(Lin–c-Kit+ Sca1�) from young Flt3-Cre;LSL-tdTom mice

(Figures 3A and 3B left). We observed that tdTom+ cells popu-

lated most clusters, including HSCs. Meanwhile, rare tdTom�
cells were almost exclusively restricted to HSC and MkP

clusters, suggesting a cell trajectory that indicates direct differ-

entiation toward Mk, similar to the reported Mk-restricted

pathway (Figures 3C and S3A–S3C) and a recent report using

a similar model.25,41,45–49 Approximately �50% of Ehi-SLAM

HSCs (�80% of SLAM HSCs) were labeled tdTom+ at

8–12weeks of age, suggesting that the Flt3-Cre tdTommodel al-

lows the separation of the Mk-restricted and non-Mk-restricted

hierarchies (Figure 3D). We next performed differential gene

expression analysis comparing tdTom+ and tdTom� HSCs (Fig-

ure 3E). We found that tdTom+ cells showed relative downregu-

lation of stemness-associated genes like Mecom and positive

enrichment for low-fitness and high-output signatures, as well
(G) UMAP of subsetted HSCs showing the distribution density. The dotted linemar

(higher cell cycle and inflammatory response). Color scale is the UMAP density.

(H) Barplot showing relative enrichment ratio in cluster 0 versus clusters 1 and 2

Mean ± SD n = 2.

(I) Volcano plot showing differential expression analysis of Flt3-Cre tdTom+ R878

(J) GSEA showing hallmarks and HSC signatures for Flt3-Cre tdTom+ R878H-m

(K) Experimental design for CD45.1 competition experiment using ex vivo expan

(L) Proportion of tdTom+ cells (all cells) at day 20 comparing Flt3-Cre tdTom+ R8

(M) Scheme to evaluate effect of transient IL1b pulse in the fitness of various HSC

into the same well at 1:1 proportion with CD45.1 HSCs. After 72 h, media was r

washed twice with standard expansion media and continued to grow for an add

(N) Percentage of CD45.2+ cells at day 15 post IL1b washout. Competitor cells

(R878H mutant). n = 5 cultures per condition. Mean ± SD ****p < 0.001, ***p < 0.

See also Tables S1, S2, S3, and S4.
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as inflammatory pathways, including IFNa and IL6/JAK/STAT3

signaling (Figure 3F). Thus, Flt3-Cre tdTom+ HSCs transcription-

ally resemble low-fitness HSCs, with hallmarks of inflammatory

priming and fast activation response.

To test the functional consequences of acquiring Dnmt3a

R878H mutations in Flt3-Cre;tdTom+ HSCs, we generated

Flt3-Cre; LSL-TdTomato; Dnmt3a-fl-R878H/+ mice and verified

the specific and robust mutagenesis in this tdTom+ HSC popu-

lation by genotyping PCR (Figure S3D). Next, we compared the

single-cell transcriptional landscape of R878H tdTom+ with WT

tdTom+ hematopoiesis (Figure 3B). We observed a relative

loss of myeloid cells and expansion of erythroid progenitors in

the R878H, in line with previous observations, suggesting this

phenotype can arise without acquisition of the Dnmt3a mutation

in the high-fitness HSCs (Figure S3E).50,51 We then subsetted

and reclustered tdTom+ HSCs. R878H tdTom+ cells were rela-

tively enriched in cluster c0, which expresses higher levels of

stemness regulators and quiescence-associated genes

(Figures 3G and 3H). In line with this, R878H tdTom+ HSCs

showed upregulation of stemness genes compared with WT

tdTom+ HSCs (Hlf and Mecom), and GSEA showed positive

enrichment of low-output, self-renewal, and high-fitness signa-

tures, suggesting that R878H can enhance the stemness of

tdTom+ HSCs in vivo (Figures 3I and 3J). Finally, we mixed 500

Flt3-Cre tdTom+ HSCs (R878H or wt) with 500 (age-matched)

bulk CD45.1 HSCs in competitive ex vivo expansion cultures

(Figure 3K). WT tdTom+ HSCs were quickly outcompeted, con-

firming the success of the Flt3-Cre system for enriching true low-

fitness HSCs. By comparison, R878H HSCs showed a �2-fold

increased expansion, supporting that R878H can increase the

fitness of tdTom+ HSCs (Figure 3L). Altogether, these results

support our findings in clonally traced ex vivo cultures, and

they demonstrate that Dnmt3a-R878H mutations can be ac-

quired in vivo within the low-fitness HSC population (which

represent �80% of SLAM HSCs) and this is sufficient to repro-

gram their transcriptional state and competitive behavior.

Considering the inflammatory priming signatures observed in

tdTom+ HSCs and the reduced expression of early-response

genes in R878H HSCs (e.g., Jun), we next hypothesized whether

R878H was mediating its effects through protecting HSCs from

inflammatory cues. To test this, we stimulated competitive

ex vivo expanding cultures with IL1b, which drives HSC exhaus-

tion through activation of myeloid differentiation (Figure 3M).

Interestingly, in these inflammatory cultures, R878H tdTom+

HSCs showed increased competitive fitness, although they
ks the border between cluster 0 (higher stemnessmarkers) and clusters 1 and 2

for Flt3-Cre tdTom+ R878H-mutant versus Flt3-Cre tdTom+ wild-type HSCs.

H-mutant versus Flt3-Cre tdTom+ wild-type HSCs.

utant versus Flt3-Cre tdTom+ wild-type HSCs. Scale is log10 FDR
�1.

sion cultures.

78H and wild-type competitors. Mean ± SD n = 6 cultures, ****p < 0.001.

s derived from different compartments. Competitor CD45.2 HSCs were sorted

eplaced with expansion media containing 1 ng/ml IL1b. After 24 h, cells were

itional 15 days before flow cytometry analysis.

analyzed are Flt3-Cre tdTom�, Flt3-Cre tdTom+ (WT), and Flt3-Cre tdTom+

005.
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Figure 4. Pre-existing stem cell states-fates determine unique properties in malignant Npm1c clones

(A) Experimental design for sister-cell state-fate analysis in Npm1c mutagenesis.

(B) Waterfall plot showing log2 fold-change in clone size for the same set of clones with and without the Npm1c mutation.

(C) Integrated UMAP showing Npm1c mutant cells (all clones combined) at day 14 and day 27, colored by cluster groups.

(D) Difference between observed and expected number of clones at day 27, based on a stochastic sampling model.

(E) Barplot showing distribution of day 7 states for clones observed at day 27 (shown separately for WT or Npm1c). All day 7 states are shown for comparison.

(F) Boxplot showing sister clonal behavior changes at day 27. Data are expressed as log2 fold-change (Npm1c versus WT) in the indicated measurement (for all

clones observed at day 27 in both Npm1c and WT cultures, n = 48).

(G) State-bias heatmap of sister clones observed in both WT (mock) and Npm1c cultures at day 27 (n = 48). Rows are aligned (same clone in each line) across all

columns and ranked according to HSC log fold-change. Additional columns show, for every clone, clonal proportion (size) in each culture and log2 fold-change in

HSC bias (Npm1c over WT).

(H) Boxplot showing the changes in HSC bias comparing the Npm1c andWT sister clones after separating them into 3 quantiles (low,medium, high), based on the

HSC bias of the sister WT clones. n = 16 clones per group, ranked by WT output activity, ****p < 0.001, **p < 0.01.

(I) Example UMAP of sister-cell wild-type and mutant fates at day 27 for a single clone.

(J) Volcano plot results of differential gene expression analysis comparing Npm1c clones with HSC-increased versus Npm1c clones with HSC-decreased.

Example markers are highlighted.

(legend continued on next page)
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remained less fit compared with more intrinsically resistant

tdTom� HSCs (Figure 3N). Together, these results suggest

that R878H at least partly mediates its fitness driver effects

through protecting activation-primed HSCs from inflammatory-

based exhaustion.

Pre-existing stem cell states give rise to distinct
malignant phenotypes upon Npm1c mutagenesis
Npm1c mutations are another frequent initiating alteration in

AML and have been shown to endow stemness potential to

mutant cells.52–54 To investigate the effects of Npm1c at clonal

resolution, we developed a third set of lentiviral libraries consti-

tutively expressing EGFP alongside Flpo recombinase or alone,

and we then performed STRACK using the same mouse model,

which carried a Flpo-inducible Npm1c allele (Figure 4A). As with

Dnmt3a, we again observed a very heterogeneous but signifi-

cant expansion of Npm1c mutant cells in competitive ex vivo

expansion cultures (Figures 4B and S4A). This expansion was

accompanied by the enrichment of Npm1c cells in an HSC-like

state, which became conspicuous only at day 27, 20 days

post-mutation (Figures 4C, S4B, and S4C). Compared toWT cul-

tures, Npm1c cultures maintained almost perfect clonality,

losing less than 25% of the clones expected based on the sto-

chastic sampling model (Figure 4D). Based on prior findings,

we speculated that contribution from non-HSC clones (e.g.,

GMPs) could explain these results, but tracing back the sister-

cell states of these clones at day 7 confirmed that most clones

still originated in HSCs (Figure 4E). Based on our experience

with Dnmt3a, we decided to classify HSCs as Npm1c-indepen-

dent or -dependent and compared their origins at day 7. Npm1c-

dependent HSCs showed a low fitness score at day 7, which

became reversed at day 27, highlighting the potent fitness-pro-

gramming effect of the Npm1c mutation (Figure S4D). Npm1c

mutant cells showed expected gene expression changes

compared with WT cells, including increased expression of

HoxA cluster genes, proteasome and ribosomal components,

and stemness markers (Figures S4E–S4I; Table S3).

To quantify clonal changes in fate behaviors in response to

Npm1c mutagenesis, we compared sister-cell clones that had

been profiled in both WT and Npm1c cultures at day 27

(Figures 4F and 4G). We noticed that Npm1c mutation tended

to expand HSCs and reduce output activity and My bias, but

this was highly variable across clones. Surprisingly, sister clones

with low-output and high HSC content in the WT setting dis-

played more mature states and decreased the proportion of

HSC-like cells after acquiring the Npm1c mutation. Conversely,

sister clones with high-output properties in the WT showed the

most primitive and differentiation-blocked behaviors in the

context of the Npm1c mutation (Figures 4H and S4J). This

response was highly heritable, with independently mutated sis-

ters of the original WT clone displaying similar behavior (Fig-

ure S4K). We next compared the gene expression profiles

of clones that became more mature with Npm1c mutation
(K) Boxplot showing UCell score for the Npm1c-targets signature (Hox, Pbx, and

mutation (HSC-decreased, n = 261) and acquired HSCs (HSC-increased, n = 3,0

(L) Boxplot showing expression for two low-fitnessmarker genes (Dnajc6 and Pcd

(n = 345) HSCs (pre-mutation, day 7) and HSC-increased (n = 3,032) or -decreas

See also Tables S1, S2, S3, and S4.
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(‘‘HSC-decreased’’) with clones that became more primitive

(‘‘HSC-increased’’) (Figure 4I; Table S3). HSC-decreased

Npm1c clones expressed higher levels of mature malignant

cell markers, including GMP genes (Plac8 and Mpo) as well as

various genes involved in AML function (Zeb2 and Plzf),55,56

whereas HSC-increased clones showed higher expression of

canonical leukemic stemness genes (Mecom and Msi2) and

higher expression of Npm1c Hox program genes (Pbx3 and

Hoxa cluster) (Figure 4J). Intriguingly, HSC-increased malignant

clones still maintained expression of certain makers of their

pre-mutant states such as Pcdh7 or Dnajc6, which are part of

the low-fitness HSC signature (Figure 4K). Comparing Npm1c

clonal signatures based on the fitness score of their HSCof origin

(at day 7) further confirmed these observations (Figure S4M).

Finally, we evaluated clone-of-origin Npm1c signatures in pub-

lished datasets of human AML samples that were previously

classified as ‘‘mature’’ or ‘‘primitive’’ across two different co-

horts, including bulk and scRNA-seq data.57,58 We observed

that Npm1c clonal signatures were recapitulated in different

classes of AML patients, indicating that differences in HSC ori-

gins can drive malignant phenotypic heterogeneity that models

relevant aspects of human leukemias (Figure S4N). Taken

together, these results suggest that Npm1c mutations in low-

fitness HSCs can generate more primitive malignant cell pheno-

types, contrary to our expectations.

Low-fitness HSCs give rise to primitive Npm1c
malignant states in vivo

We next sought to validate the phenotypic differences observed

across Npm1c clones using an in vivo assay. Since the Flt3-

Cre;LSL-TdTomato model allows us to separate HSCs enriched

in either high- or low-fitness signatures (Figure 3F), we crossed

thismodel with the Flpo-inducibleNpm1FSF-cA to study the conse-

quences of the mutation in each HSC state. We sorted tdTom+ or

tdTom� HSCs and immediately transduced them with the Flpo-

EGFP lentiviral library (Figure 5A). As expected, WT cultures

derived from tdTom+ HSCs quickly lost HSCs compared with

tdTom�, and, while Npm1c mutation induced a relative gain of

HSCs across both subsets, it did so to a greater extent in tdTom+

cultures (Figure 5B). This suggests that the Flt3-Cre model allows

us to partially enrich the clones that tend to lose HSCs with time

(tdTom+) and increase their HSCs with Npm1c mutation.

To generate separate in vivomodels, we transplanted tdTom�
or tdTom+ derived Npm1c cultures in sublethally irradiated

recipient mice (Figure 5C). These mice inevitably progressed to

amyeloid-dominant disease with expansion of Npm1c cells. Ma-

lignant cells derived from tdTom� HSCs expanded noticeably

more than tdTom+ derived Npm1c cells (Figure 5D), indicating

a higher proliferation. By contrast, tdTom+ Npm1c cells showed

reduced output and a larger fraction CD48low HSPCs, in line with

a more primitive, low-output phenotype (Figure 5E). Single-cell

RNA-seq profiling confirmed our suspicions, with tdTom+

Npm1c HSPCs showing a 2-fold increase in the number of cells
Meis genes—see STAR Methods) across clones that lost HSCs upon Npm1c

32) groups. ****p < 0.001.

h7) that show higher gene expression in low-fitness (n = 1,504) and high-fitness

ed (n = 261) Npm1c clones (post-mutation, day 27).****p < 0.001.
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Figure 5. Pre-existing states drive differences in Npm1c leukemic phenotypes in vivo

(A) Experimental design for studying Npm1c mutagenesis in Flt3-Cre tdTom+ versus tdTom� HSCs.

(B) Flow cytometry quantification of EPCR+ Sca-1+ (HSC-like) cells in WT and Npm1c mutant cells derived from either Flt3-Cre tdTom+ or tdTom� HSCs. Fold-

change HSC expansion is indicated for each comparison. Mean ± SD, n = 7 and 8 cultures, *p < 0.05.

(C) In vivo transplant models of Flt3-Cre tdTom+ and tdTom� HSC-derived Npm1c malignancies.

(D) Flow cytometry quantification of total BM engraftment comparing tdTom+ and tdTom� HSC-derived Npm1c malignancies. Mean ± SD, n = 4 mice (tdTom�)

and 3 mice (tdTom+), *p < 0.05.

(E) Flow cytometry quantification of CD48low LSKs in tdTom+ and tdTom� HSC-derived Npm1c malignancies.

(F) UMAP of scRNA-seq analyses comparing tdTom+ and tdTom� derived Npm1c malignancies (all mice per condition pooled). Cells are colored based on their

clusters of origin. A density map overlay is shown.

(G) Barplot showing distribution of malignant states for tdTom� and tdTom+ derived Npm1c HSPCs. Mean ± SD, n = 4 mice (tdTom�) and 3 mice (tdTom+), *p <

0.05, ns: non-significant.

(H) Boxplot showing UCell HSC fitness signature scores for tdTom+ (n = 1,073) and tdTom� (n = 1,094) derived Npm1cmalignant cells (comparing cells from the

HSC cluster). ****p < 0.001.

(I) Boxplot showing expression of example low-fitness signature genes comparing tdTom+ (n = 1,073) and tdTom� (n = 1,094) derived Npm1c cells. ****p < 0.001.

(J) Boxplot showing the UCell Npm1c program signature score in the HSC cluster, comparing tdTom+ (n = 1,073) and tdTom� (n = 1,094) derived Npm1c cells.

****p < 0.001.

(K) Percentage of HSC-like cells in Npm1c ex vivo cultures treated with Pbx3 shRNA. Mean ± SD, n = 5 cultures per condition, ***p < 0.01, ns, not significant.

(L) GSEA of tdTom+ and tdTom� Npm1c-mutant bulk signatures in NPM1 AML patient samples grouped based on bulk-RNA-seq analysis (Mer et al.57).

NES, normalized enrichment score; FDR, false discovery rate (FDR).

See also Tables S1, S2, S3, and S4.
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annotated as ‘‘HSCs’’ compared with tdTom� Npm1c HSPCs

(Figures 5F and 5G). Npm1c HSCs displayed certain markers

of native HSCs (Procr and Hlf) and were more quiescent relative

to other clusters but were fully depleted of CD150 (Slamf1)

(Figures S5A–S5C and Table S3). Using the Flpo barcodes to

identify clones, we further verified that the more primitive-like

phenotype of tdTom+Npm1cwas due to themassive expansion

of low-output (HSC-biased) clones (Figures S5D–S5F). Interest-

ingly, the tdTom+ Npm1c HSCs showed higher expression

of low-fitness signature genes compared with tdTom�, which

might be explained by a gene expression memory from their

ancestral pre-mutant HSC state, in line with our observations

in ex vivo cultures (Figures 5H and 5I). Also consistent with the

ex vivo results, tdTom+ Npm1c cells in vivo showed higher

expression levels across most Npm1c-target genes (Hoxa clus-
ter, Hoxb cluster, Pbx1, Pbx3, and Meis1) (Figures 5J, S5H, and

S5I).54 This suggests that tdTom+ HSCs are more susceptible to

Hox cluster activation upon Npm1c mutation, which can mech-

anistically explain the differences in differentiation block. To

test whether abnormal hyperactivation of the Hox/Pbx/Meis

signaling mediates HSC expansion, we silenced Pbx3, a key

transcriptional mediator of Hox activity, and we observed

reduced levels of EPCR+/Sca1+ cells in ex vivo Npm1c cultures

(Figure 5K).59,60 Thus, Npm1c-mediated hyperactivation of the

Hox program is driving the expansion of the primitive phenotype.

Together, our observations indicate that pre-existing HSC states

can act as a non-genetic substrate for the activity of malignant

mutations. We finally generated tdTom+ and tdTom� Npm1c

gene signatures and performed GSEA on patient samples previ-

ously classified as mature or primitive, finding differential
Cell Stem Cell 32, 564–580, April 3, 2025 573
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Figure 6. Mutational synergism of Dnmt3a-R878H and Npm1c at the clonal level

(A) Experimental design for sister-cell state-fate analysis in sequential Dnmt3a and Npm1 mutagenesis.

(B) State-bias heatmap showing clones detected in both R878H and R878H/Npm1c double-mutant conditions at day 30. Rows are aligned (same clone in each

line) across all columns and sorted based on change of HSC bias. Rows are separated in three blocks (gain, loss, or maintenance of HSCs, comparing double-

mutant with R878H-only).

(C) Waterfall plot showing relative gain of HSC bias in R878H/Npm1c with respect to R878H-only condition. Scale indicates HSC bias change, from red (higher in

R878H condition) to blue (higher in WT). Bubble size indicates the HSC frequency in the condition where it was highest.

(D) Venn diagram of differentially expressed genes (Wilcoxon test, log2FC > 0.25 and FDR < 0.05) in single and double-mutant HSCs with respect to mock control

HSCs at day 30. Example relevant genes in each group are indicated and colored: green, Npm1c targets; red, low-output signature; blue, high-output signature.

(E) Heatmap showing q value results of single-cell pathway analysis (SCPA) comparing single- or double-mutant HSCs with respect to mock control HSCs at day

30. q value scale relates to the number of genes changed, and the q value sign indicates the direction of change (positive means enriched in mutant condition).

(F) Alluvial plot showing the proportion of clones that gain HSCs only with R878H/Npm1c mutation. y axis indicates the number of clones, and x axis represents

the sample of origin.

(legend continued on next page)
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enrichment of these signatures across patient groups (Figure 5L).

Together these results suggest that the Flt3-Cre system can be

used to separately model relevant aspects of NPM1 disease het-

erogeneity in humans.

Sequential Dnmt3a-Npm1 mutagenesis reveals
synergism and phenotypic shift
Approximately 60% of NPM1 leukemias acquire this AML-

defining mutation in cells with a pre-existing lesion in DNMT3A.

To decipher how theDnmt3amutant background impacts the ef-

fect of Npm1c-driven transformation at the clonal level, we de-

signed an experiment for sequential acquisition of both muta-

tions that still allowed us to sample a common set of clones

across the four conditions (mock/WT, Npm1c, Dnmt3a, and

Dnmt3a/Npm1c), profiling them by scRNA-seq at the last time

point (day 30) (Figures 6A, S6A, and S6B).

We observed that double-mutant Dnmt3a/Npm1c cultures

showed the highest percentage of clones that maintained

HSCs (>60%) in our entire study, surpassing either single muta-

tion (Figures S6C–S6E). Dnmt3a/Npm1c clones showed a

further increase in HSC bias compared with the same clones

with either single mutation (Figures 6B, 6C, and S6F). These re-

sults indicate a highly penetrant synergistic effect, with pre-ex-

isting Dnmt3a mutations preventing the exhaustion of Npm1

mutant clones from the HSC pool.

Next, to identify unique and shared gene programs, we per-

formedgeneexpressionanalysisonHSCsacross the four groups.

As expected, both Dnmt3a/Npm1c and Npm1c-only HSCs

showed upregulation of Npm1c signature genes (Hoxa cluster,

Meis, Pbx), but Npm1c-only HSCs showed more pronounced

dysregulation of the canonical HSC identity, with hallmarks of

Myc, E2F, mTOR/ phosphatidylinositol 3-kinase (PI3K), and cell

cycle activity (Figures 6D, 6E, S6F, and S6G). By contrast,

Dnmt3a/Npm1ccells showeda relative suppressionof theseacti-

vation programs. Surprised by this finding, we next separated the

clones that ‘‘gained’’ HSCs only with Dnmt3a as a background

mutation from the clones that ‘‘maintained’’ HSCs independent

of Dnmt3a. Dnmt3a-independent Npm1c HSCs showed equal

levels of Hox activity as Npm1c-only and were strongly HSC-

biased, indicating a minor advantage for a pre-existing Dnmt3a

mutation in these cases (Figure 6G). By contrast, Dnmt3a-depen-

dent Npm1c HSCs showed a reduced Hox-signature expression

and a strong Gata1+ fate bias, in line with the effects of R878H,

as observed before (Figures 6G–6I). Taken together, our observa-

tions clarify a synergistic role of Dnmt3a-R878H and Npm1c,

which enables Gata1-lineage-biased R878H HSCs to self-renew

and persist after acquiring an Npm1c mutation.

DISCUSSION

Phenotypic heterogeneity (plasticity, memory, and noise) im-

pacts critical therapeutic aspects of cancer, such as treatment
(G) Boxplot showing UCell score of Npm1c signature (left) and low-fitness signa

gain (n = 51) or maintain HSCs (n = 72) compared with the Npm1c-only (n = 44)

(H) State-bias heatmap showing R878H/Npm1c clones that gain (green) or main

(I) UMAP showing the distribution of R878H-Npm1c clones, separated based on

clone of origin (randomly picking colors for visualization). The Gata1+ region of t

See also Tables S1, S2, S3, and S4.
resistance and clonal dominance, which can be traced back to

the non-genetic variation in individual cancer cells.61,62 Our find-

ings here suggest that pre-existing heterogeneity in the cells of

origin can also be a source of phenotypic cancer heterogeneity,

even upon acquisition of identical cancer driver mutations, and

their study requires advanced single-cell tracing approaches to

circumvent limitations of traditional approaches.24,29 We pro-

pose that STRACK can empower a conceptual andmethodolog-

ical shift from the traditional cell-of-origin model to a more

nuanced clone-of-origin paradigm, which takes into account

both lineage and state information, as we have described for

the two mutations in this study.

At the population level, we observed that the Dnmt3a R878H

mutation (R882H in humans) enhances the fitness and expansion

of HSCs, consistent with prior studies.34,37 Also, R878HHSCs ex-

hibited reduced inflammatory response hallmarks, in line with

recent studies in zebrafish, mice, and human clonal hematopoie-

sis.38–40,63 However, at the single-clone level, the R878Hmutation

showed a wide range of responses, with a more pronounced ef-

fect on low-fitness HSCs. These stem cells are primed to activate

and differentiate quickly and normally get outcompeted by inflam-

mation-protected high-fitness HSCs. Yet, upon R878H mutation,

low-fitness HSCs significantly increased their self-renewal poten-

tial, and this was at least partially explained by a reduced respon-

siveness to inflammatory stimulation.

Similarly, the Npm1c mutation consistently activated Pbx/

Hoxa cluster expression, in line with its well-described role in

activating these stemness genes.52,54,64–66 Yet, the individual

clonal responses to this mutation varied greatly. Unexpectedly,

low-fitness HSCs gave rise to more primitive malignant cells,

with a bias toward stem-cell-like states. Previous studies in

MLL-rearranged AML models have suggested that cancer cells

inherit pre-existing functionalities of the cell of origin.14 However,

our Npm1c results completely upset the notion that these state

biases are always maintained post mutation. Notably, our

different Npm1c clones exhibited characteristics of various hu-

man AML LSC subtypes, which are increasingly recognized as

a major source of therapy-response variability.67,68

Why do low-fitness HSCs respond in such a unique way to the

Npm1c transforming mutation? Malignant cells derived from

low-fitness clones showed increased activation of the Hox/

Pbx/Meis program, which drove the expansion of HSC-like cells.

This suggests that, although Npm1c is sufficient to activate this

program, it is further modulated by specific pre-existing non-ge-

netic determinants. Interestingly, a recent report also found

a specific Hox positional gene program that interacts with onco-

genic mutations to drive acral melanoma.6 We speculate that

anatomical origins (which can be highly diverse in the hemato-

poietic system) may also underlie the phenotypic differences

that we report. Our finding that low-fitness HSCs are primed to

respond to inflammatory insults also suggests that stem cell-

activating events inscribed in the chromatin are being co-opted
ture (right) comparing R878H/Npm1c HSCs separated based on whether they

condition. ****p < 0.001, ns: not significantly different.

tain (orange) HSCs with double mutation with respect to Npm1c only.

their R878H dependency to maintain HSCs. Cells are colored based on their

he UMAP is indicated with a dotted line.
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by Npm1c mutations. This resembles recent reports in pancre-

atic and skin cancer initiation, where inflammation has been

linked to chromatin licensing events required for transformation

by driver mutations.69–71

While we have not ruled out the contribution of pre-existing ge-

netic diversity to our results, we believe this to be unlikely. It is well

reported that mouse HSCs divide slowly, have a high diversity of

developmental precursors at a young age, and have a low fre-

quency of recurrent cancer driver mutations.72–74 Though this

supports a mostly non-genetic mechanism, this does not exclude

the contribution of genetics and extrinsic factors, particularly in

longer-lived human systems. Past work has elucidated the role

of genetic predispositions75,76 and extrinsic regulation in the

expansion of initiating (pre)-malignant clones.53,63,77 Based on

all this evidence, we would like to propose here the concept of

a ’clonal reaction norm,’ where the clonal history—developmental

origin, genetic background, sequence of driver mutations, and

environmental factors—collectively determines the fate and prop-

erties of a cancer-initiating clone. Understanding these norms for

different cancer driver genes may have a direct impact on diag-

nostics and personalized treatments.

Finally, we want to highlight that our experimental design

should be amenable to other driver genes and systems beyond

hematopoiesis. Looking ahead, we anticipate the development

of mouse models that can reproducibly generate tumors from

clone-specific origins, offering a more accurate representation

of the non-genetic tumor diversity that characterizes human pa-

tients to advance precision medicine efforts.
Limitations of the study
These studies have been performed using mice, due to the

accessibility of precision mutagenesis that can be achieved us-

ing genetically engineered Cre/Flp-conditional mouse alleles. In

the future, CRISPR-based precision editing might enable similar

approaches in primary human HSCs.78

Our definition of ‘‘high fitness’’ or ‘‘low fitness’’ is not quantita-

tive, and it is strictly based on our capacity to detect clones in

expansion cultures at the last sampling time point (27–

30 days). While fitness correlated with self-renewal (HSC

numbers per clone), as expected, this may be specific to our

experimental context.

We used ex vivo expansion cultures to maximize our capacity

to maintain and track many stem cell clones longitudinally, in

separate environments, with and without mutations, something

that is difficult to achieve in a transplantation setting. Future

technological implementations should address the role of the

stem cell niche.79–81

Finally, our state-fate analysis relies on sister-cell splitting and

clonal analysis, with sister states/fates serving as a proxy.

Advanced technologies are emerging to allow same-cell tracing

without destruction and may eventually have the throughput to

perform STRACK-type studies at scale.82
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d Raw and processed single-cell RNA-seq, LARRY barcoding, and

TotalSeq� library sequencing data have been deposited at GEO:

GSE266232, GSE282755, and GSE282756, and are publicly available
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11. Cozzio, A., Passegué, E., Ayton, P.M., Karsunky, H., Cleary, M.L., and

Weissman, I.L. (2003). Similar MLL-associated leukemias arising from

self-renewing stem cells and short-lived myeloid progenitors. Genes

Dev. 17, 3029–3035. https://doi.org/10.1101/gad.1143403.
12. Huntly, B.J.P., Shigematsu, H., Deguchi, K., Lee, B.H., Mizuno, S., Duclos,

N., Rowan, R., Amaral, S., Curley, D., Williams, I.R., et al. (2004). MOZ-

TIF2, but not BCR-ABL, confers properties of leukemic stem cells to

committed murine hematopoietic progenitors. Cancer Cell 6, 587–596.

https://doi.org/10.1016/j.ccr.2004.10.015.

13. Krivtsov, A.V., Twomey, D., Feng, Z., Stubbs, M.C., Wang, Y., Faber, J.,

Levine, J.E., Wang, J., Hahn, W.C., Gilliland, D.G., et al. (2006).

Transformation from committed progenitor to leukaemia stem cell initiated

by MLL-AF9. Nature 442, 818–822. https://doi.org/10.1038/nature04980.

14. George, J., Uyar, A., Young, K., Kuffler, L., Waldron-Francis, K., Marquez,

E., Ucar, D., and Trowbridge, J.J. (2016). Leukaemia cell of origin identified

by chromatin landscape of bulk tumour cells. Nat. Commun. 7, 12166.

https://doi.org/10.1038/ncomms12166.

15. SanMiguel, J.M., Eudy, E., Loberg, M.A., Miles, L.A., Stearns, T., Mistry,

J.J., Rauh, M.J., Levine, R.L., and Trowbridge, J.J. (2022). Cell origin-

dependent cooperativity of mutant Dnmt3a and Npm1 in clonal hemato-

poiesis and myeloid malignancy. Blood Adv. 6, 3666–3677. https://doi.

org/10.1182/bloodadvances.2022006968.

16. Stavropoulou, V., Kaspar, S., Brault, L., Sanders, M.A., Juge, S., Morettini,

S., Tzankov, A., Iacovino, M., Lau, I.-J., Milne, T.A., et al. (2016). MLL-AF9

Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML

Expressing EMT-Related Genes Linked to Poor Outcome. Cancer Cell

30, 43–58. https://doi.org/10.1016/j.ccell.2016.05.011.

17. Paul, F., Arkin, Y. ’ara, Giladi, A., Jaitin, D.A., Kenigsberg, E., Keren-Shaul,

H., Winter, D., Lara-Astiaso, D., Gury, M., Weiner, A., et al. (2016).

Transcriptional Heterogeneity and Lineage Commitment in Myeloid

Progenitors. Cell 164, 325.

18. Giladi, A., Paul, F., Herzog, Y., Lubling, Y., Weiner, A., Yofe, I., Jaitin, D.,

Cabezas-Wallscheid, N., Dress, R., Ginhoux, F., et al. (2018). Single-cell

characterization of haematopoietic progenitors and their trajectories in ho-

meostasis and perturbed haematopoiesis. Nat. Cell Biol. 20, 836–846.

https://doi.org/10.1038/s41556-018-0121-4.

19. Li, L., Bowling, S., McGeary, S.E., Yu, Q., Lemke, B., Alcedo, K., Jia, Y.,

Liu, X., Ferreira, M., Klein, A.M., et al. (2023). A mouse model with high

clonal barcode diversity for joint lineage, transcriptomic, and epigenomic

profiling in single cells. Cell 186, 5183–5199.e22. https://doi.org/10.1016/j.

cell.2023.09.019.

20. Jindal, K., Adil, M.T., Yamaguchi, N., Yang, X., Wang, H.C., Kamimoto, K.,

Rivera-Gonzalez, G.C., andMorris, S.A. (2024). Single-cell lineage capture

across genomic modalities with CellTag-multi reveals fate-specific gene

regulatory changes. Nat. Biotechnol. 42, 946–959. https://doi.org/10.

1038/s41587-023-01931-4.
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B6.Cg-Gt(ROSA)26Sortm9

(CAG-tdTomato)Hze/J

The Jackson Laboratory Strain #:007909; RRID:IMSR_JAX:007909

B6.129-Tg(Flt3-cre)#Ccb Benz et al.83 RRID: EMMA EM:11790

Recombinant DNA

pmScarlet_NES_C1 Bindels et al.84 Addgene plasmid # 85060; RRID:Addgene_85060

pEB1-T-Sapphire Balleza et al.85 Addgene plasmid # 103977; RRID:Addgene_103977

pLARRY-EGFP Weinreb et al.24 Addgene plasmid # 140025; RRID:Addgene_140025

pLARRYv2-T-Sapphire library 1 This Paper Addgene plasmid #233213; RRID: Addgene_233213

pLARRYv2-T-Sapphire library 2 This Paper Addgene plasmid #233214; RRID: Addgene_233214

pLARRYv2-T-Sapphire (backbone) This Paper Addgene plasmid #233209; RRID: Addgene_233209

pLARRYv2-EGFP library 1 This Paper Addgene plasmid #233215; RRID: Addgene_233215

pLARRYv2-EGFP library 2 This Paper Addgene plasmid #233216; RRID: Addgene_233216

pLARRYv2-EGFP (backbone) This Paper Addgene plasmid #233208; RRID: Addgene_233208

pLARRYv2-EGFP-T2A-Flpo (backbone) This Paper Addgene plasmid #233212; RRID: Addgene_233212

pLARRYv2-mScarlet-T2A-iCre (backbone) This Paper Addgene plasmid #233211; RRID: Addgene_233211

pLARRYv2-mScarlet (backbone) This Paper Addgene plasmid #233210; RRID: Addgene_233210

Software and algorithms

FlowJo v10 BD https://www.flowjo.com

GraphPad Prism 10 Dotmatics www.graphpad.com

Affinity Designer Serif https://affinity.serif.com/en-us/

Biorender BioRender https://app.biorender.com/

Snakemake Köster et al.86 https://snakemake.github.io/

UMICollapse Liu et al.87 https://github.com/Daniel-

Liu-c0deb0t/UMICollapse

CloneRanger v0.1.0 This Paper https://github.com/dfernandezperez/

cloneRanger

Seurat v5.0.1 Hao et al.88 https://satijalab.org/seurat/

scDblFinder Germain et al.89 https://doi.org/10.18129/

B9.bioc.scDblFinder

EmptyDrops Lun et al.90 https://doi.org/10.18129/

B9.bioc.DropletUtils

MAST Finak et al.91 https://rglab.github.io/MAST/

ComplexHeatmap v2.12.1 ComplexHeatmap https://github.com/jokergoo/

ComplexHeatmap

Tidyverse v1.3.2 Tidyverse https://www.tidyverse.org/

ggrastr v1.0.2 Ggrastr https://github.com/VPetukhov/ggrastr

GSEApy Fang et al.92 https://github.com/zqfang/GSEApy

SCPA v1.6.2 Bibby et al.93 https://github.com/jackbibby1/SCPA/

SCpubr v2.0.2 Alquicira-Hernandez and

Powell94 Blanco-Carmona95
https://github.com/enblacar/SCpubr/

cellranger v7.0.0 103 Genomics https://www.10xgenomics.com/support/

software/cell-ranger/latest
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals
Rosa26-LSL-tdTomato, Dnmt3aLSL-R878H and Npm1frt-cA mice were obtained from The Jackson Laboratory, and alleles were

maintained in a C57BL/6 background. B6 CD45.1 mice (B6.SJL-Ptprca Pepcb/BoyJ) were purchased from Charles River France.

Flt3-Cre mice were previously generated by Conrad Bleul83 and kindly donated by Fernando Camargo (Boston Children’s Hospital).

All procedures involving animals adhered to the pertinent regulations and guidelines of the European Union, Spain, and Catalonia.

Approval and oversight for all protocols and strains of mice were granted by the Institutional Review Board and the Institutional An-

imal Care and Use Committee at Parque Cientı́fico de Barcelona under protocol CEEA-PCB-22-001-ARF. The study follows all rele-

vant ethical regulations. Mice were kept under specific pathogen-free conditions for all experiments. Eight to twelve-week-old male

and female mice were tracked for the main experiments (donor 1 and 2, and donors 3 and 4), with exception of Flt3-Cre experiments

for which only male mice were used (due to the Flt3 BAC Cre transgene being localized to the Y chromosome).

Primary cell cultures
Ex-vivo cultures of HSCs were done under self-renewing F12-PVA-based conditions as described previously.32 To this end, cell-cul-

ture activated 96-well flat-bottom plates were coated with a layer of 100 ng/ml fibronectin (Bovine Fibronectin Protein, CF Catalog:

1030-FN) for 30 minutes at room temperature. Following the sorting process, HSCs were transferred into 200 ml of complete HSC

media supplemented with 100 ng/ml recombinant mouse TPO and 10 ng/ml recombinant mouse SCF (PeproTech Recombinant Mu-

rine TPOCatalogue Number: 315-14; PeproTech Recombinant Murine SCF, Catalogue Number: 250-03) and grown at 37�Cwith 5%

CO2. During lentiviral library transduction, the first media change took place 24 hours post-transduction. All other protocol steps fol-

lowed the guidelines provided in Wilkinson et al.96

METHOD DETAILS

Hematopoietic stem cell isolation
Following euthanasia, bone marrow was harvested from the femur, tibia, pelvis, and sternum through mechanical crushing, ensuring

the retrieval of most HSCs. The collected bone marrow cells were then sieved through a 100-mm strainer and cleansed with a cold

‘Easy Sep’ buffer containing PBS with 2% fetal bovine serum (FBS), followed by lysis of red blood cells using RBC lysis buffer (Bio-

legend, Catalog no. 420302). At first, mature lineage cells were selectively depleted through the Lineage Cell Depletion Kit, mouse

(Miltenyi Biotec, Catalog no. 130-110-470), while the resulting Lin- (lineage-negative) fraction was then enriched for c-Kit expression

using CD117 MicroBeads (Miltenyi Biotec, Catalog no: 130-091-224). These cKit-enriched cells were washed, blocked with FcX and

stainedwith following fluorescently labeled antibodies: APC anti-mouse CD117, clone ACK2 (Biolegend catalog no. 105812), PE/Cy7

anti-mouse Ly6a (Sca-1) (Biolegend, catalog no. 108114); Pacific Blue anti-mouse Lineage Cocktail (Biolegend, catalog no. 133310);

PE anti-mouse CD201 (EPCR) (Biolegend, catalog no. 141504); PE/Cy5 anti-mouse CD150 (SLAM) (Biolegend, catalog no. 115912);

APC/Cyanine7 anti-mouse CD48 (Biolegend, catalog no. 103432).

Construction of lentiviral pLARRY vectors
The construction of barcoded libraries was executed by a previously established protocol (https://www.protocols.io/view/barcode-

plasmid-library-cloning-4hggt3w). First, the T-Sapphire, Scarlett, or EGFP coding sequences, and the EF1a promoter sequences

were PCR amplified from pEB1-T-Sapphire, pmScarlet_NES_C1, and pLARRY-EGFP with primers homologous to the vector inser-

tion site in a custom synthetic lentiviral plasmid backbone (Vectorbuilder, Inc) using Gibson assembly (Gibson Assembly� Master

Mix, NEB, Ref. E2611L). For recombinase lentivirus libraries, iCre or Flpo recombinase was PCR amplified together with EGFP

and Scarlett with primers homologous to the vector insertion site in a custom synthetic lentiviral plasmid backbone and cloned using

Gibson assembly. After magnetic-bead purification, ligated vectors were then transformed into NEB10-beta electroporation ultra-

competent E.coli cells (NEB� 10-beta Electrocompetent E. coli, NEB, Ref.C3020K) and grown overnight on LB plates supplemented

with 50 mg/mL Carbenicillin (Carbenicillin disodium salt, Thermo Scientific Chemicals Ref. 11568616). Colonies were scrapped

using LB medium and pelleted by centrifugation. Plasmid maxipreps were performed using the Endotoxin-Free Plasmid Maxi Kit

(Macheray Nagel), following the manufacturer’s protocol. pEB1-T-Sapphire was a gift from Philippe Cluzel (Addgene plasmid

103977). pLARRY-EGFP was a gift from Fernando Camargo (Addgene plasmid 140025). pmScarlet_NES_C1 was a gift from Dorus

Gadella (Addgene plasmid 85060).

Barcode lentivirus library generation and diversity estimation
To barcode pLARRYv2 plasmids and generate a library, first a spacer sequence flanked by EcoRV restriction sites was cloned into

the plasmid after theWPRE element of the vector. Custom PAGE-purified single-strand oligonucleotides with a pattern of 20 random

bases and surrounded by 25 nucleotides homologous to the vector insertion site were synthesized by IDT DNA Technologies

(Table S5). The assembly of these components and subsequent purification steps were carried out throughGibson assembly (Gibson

Assembly� Master Mix, NEB, Ref. E2611L). Six electroporations of the bead-purified ligations were performed into NEB10-beta

E.coli cells (NEB� 10-beta Electrocompetent E. coli, New England BiolabsEB, Ref.C3020K) utilizing a Gene Pulser electroporator

(Biorad). Subsequently, after transformation, the cells were incubated at 37 degrees for 1 hour at 220 rpm. Post-incubation, the
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transformed cells were plated in six large LB-ampicillin agar plates overnight at 30�C. Colonies from all six plates were collected by

scraping with LB-ampicillin and then grown for an additional 2h at 225 rpm and 30 �C. Cultures were pelleted by centrifugation, and

plasmids were isolated using the Endotoxin-Free PlasmidMaxi Kit (Macheray-Nagel), following themanufacturer’s protocol. For esti-

mating diversity, barcode amplicon libraries were prepared by PCR amplification of the lentiviral library maxiprep using flanking ol-

igonucleotides carrying TruSeq read1 and read2 adaptors using 10 ng of the library (Table S5).We used theminimal number of cycles

that we could detect by qPCR to avoid PCR amplification bias (10-12 cycles). After bead purification, 10 ng of the first PCR product

was used as a template for a second PCR to add Illumina P5 and P7 adaptors and indexes (Table S5). Two independent PCRs were

sequenced on an Illumina NovaSeq 6000 S4 platform (Novogene UK) to confirm diversity after correction of errors through collapsing

with a Hamming distance of 4. After collapsing, libraries were confirmed to contain at least 50million different barcodes, with enough

diversity for uniquely labeling up to 100,000 HSCs with a minimal false-positive rate (<1%). Sequencing results of these libraries are

available at Zenodo (https://doi.org/10.5281/zenodo.14261507). Lentivirus production and HSPC transduction were performed as

described in Weinreb et al.24

Single-cell encapsulation and library preparation for sequencing
For scRNA sequencing and subsequent plating, cells were pipetted up and down gently a few times to be dissociated into single cells

and transferred to a 1.5 mL microtube. The well was then washed with prewarmed PBS to collect all the possible remaining cells.

Cells were then concentrated by centrifugation at 800 g for 8 minutes. Washed cells were then blocked with FcX, and stained

with the E-SLAM stem cell antibodies panel, to confirm expansion of E-SLAM cells. Live cells were then sorted based on fluorescent

reporter expression. Part of the sample as specified in text was then taken for constructing a single-cell library using ChromiumSingle

Cell 3’ Reagent Kits (v3) following the manufacturer’s guidelines (10X Genomics). The remaining part was then plated back for further

expansion in culture. To minimize the impact of batch effects on sequencing, we multiplexed different conditions leveraging the

unique barcode pattern of our libraries together with Biolegend TotalSeq� anti-mouse hashing antibodies (Table S5), enabling

the simultaneous preparation of libraries representing all experimental conditions in a single reaction for each day of sampling.

Following the reverse transcription of mRNA and first-strand cDNA amplification, 100 ng of the cDNA libraries were used as tem-

plates to amplify LARRY barcodes by nested PCR similar to the protocol described in Weinreb et al.24 The first PCR used forward

primer (Pre-Enrichment forward) CTG AGC AAA GAC CCC AAC GAG AA together with the corresponding 10x Genomics dual index

TruSeq reverse primer using the following programs 1, 98 C, 3 min; 2, 98 C, 20 s; 3, 58 C, 15 s; 4, 72 C, 20 s; 5, repeat steps 2–4 08

times; 6, 72 C, 3min; 7, 4 C, hold. The PCR products were then purified with a 0.8:1 ratio of Ampure XP beads. Purified PCR products

were then subjected to a second PCR using the forward primer (Trueseq_LARRY) GTG ACTGGAGTT CAGACG TGTGCTCTT CCG

ATC TGC TAG GAG AGA CCA TAT GGG ATC and the corresponding 10x dual index Truseq reserve primer, following program

1, 98 C, 3 min; 2, 98 C, 20 s; 3, 58 C, 15 s; 4, 72 C, 20 s; 5, repeat steps 2–4 08 times; 6, 72 C, 3 min; 7, 4 C, hold. The final PCR

products were then purified by a 0.8:1 ratio of Ampure XP bead: PCR products, were indexed using the 10x dual index TruSeq

kit, and sequenced using Illumina NovaSeq or NextSeq.

scRNA-seq data processing and calling of lineage barcodes
Generation of single-cell matrices for gene expression and LARRY lineage barcodes was performed using cloneRanger, an in-house

developed pipeline (https://github.com/dfernandezperez/cloneRanger) to process 10XGenomics single-cell RNA-seq together with

LARRY barcoding. The pipeline is based on Snakemake86 and the use of Docker/singularity containers to allow for reproducibility and

easy deployment of the code.

For each sample, fastq files from gene expression (GEX), LARRY and TotalSeq� tags were processed using cellranger v7.0.0 with

default parameters. However, since cellranger only collapses barcodes that are 1 hamming distance apart, prior to the execution of

cellranger, fastq files containing LARRY barcodes were processed using UMICollapse.87 This allowed us to collapse all barcodes

which were 4 hamming distance units apart or less, similar to the procedure used by Weinreb et al.24 In particular, the

UMICollapse was executed with the following parameters: ‘‘fastq -k 4 –tag’’. Finally, in order to run cellranger in feature barcode

mode with LARRY and TotalSeq� sequences, we created a reference library csv file by extracting all detected LARRY barcodes

across all collapsed fastq files, together with TotalSeq� sequences. A reference library file was created for each individual sample

and given as input to cellranger, executed with default parameters. All the code and steps performed by the pipeline are available in

the cloneRanger github page.

A Seurat88 object containing single-cell count matrices from GEX, LARRY and TotalSeq� counts was created with the function

Read10X from Seurat. Finally, cell doublets were removed with scDblFinder89 using default parameters and TotalSeq� sequences

were demultiplexed with the function hashedDrops from the DropletUtils R package90 with default parameters.

The assignment of LARRY barcodes to individual cells was performed by cloneRanger similarly to Weinreb et al.24: first, we gener-

ated a filtered LARRY matrix by removing barcode UMIs that were sustained by less than 5 sequencing reads (this information is

stored in the molecule_info.h5 file generated by cellranger). Then, we further filtered the LARRY matrix by removing all barcodes

with less than 4 UMIs. After filtering, barcodes were assigned to individual cells as following: (a) for cells in which only one barcode

was detected after filtering, that barcode was assigned, (b) for cells in which more than one barcode was detected post-filtering, the

top barcode with higher UMI counts was assigned and (c) for cells in which there were ties in the top barcode, no barcode was as-

signed. Our barcode calling strategy was developed to minimize mixing cells from different clones at the expenses of having higher

chances to split real clones into subclones.
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Single-cell integration, clustering and annotation
To integrate scRNA-seq samples, we applied the IntegrateLayers Seurat v5 workflow to test multiple integration algorithms (sample

time point was used as batch variable): Harmony, Reciprocal PCA, Canonical Correlation Analysis and Joint PCA. After supervising

the results from all algorithms, we decided to use Reciprocal PCA to integrate the single-cell GEX matrices. We followed a standard

Seurat pipeline with some minor modifications. Raw counts were normalized with the function NormalizeData and the top 3000 var-

iable genes were selected. From those, we removed all ribosomal andmitochondrial genes, as well as genes that correlated with cell

cycle genes (Ube2c,Hmgb2,Hmgn2, Tuba1b,Ccnb1, Tubb5, Top2a, Tubb4b, pearson cor of 0.1 or more), as performed byWeinreb

et al.24 Then, filtered variable genes were used to compute the top 50 reciprocal-PCA components. The kNN graph was computed

using the function FindNeighbors setting the number of neighbors to 20, which was extended to 30 for the generation of UMAP com-

ponents. Clusters were generated with the function FindClusters with a resolution of 0.3 and the Louvain algorithm.

Annotation of cell types was performed using known gene markers from the literature. A summary of the main markers for every

cluster are shown in Figure S1B and the whole list of markers for every cluster, computed with FindAllMarkers from Seurat, are listed

in Table S2. UMAPs and Nebulosa plots were performed using SCpubr v2.02.94,95

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and classification of HSC clonal behaviors
Clone x state heatmaps from Figures 1, 2, and 4 were generated as follows: for every clone, we computed the number of cells de-

tected across every cluster (cell type), generating a clone-by-cluster matrix A. In A, each Aij represents the number of cells from the

cluster j detected in the clone i. After generating A, in order to account for cell type abundance heterogeneity, we column-normalized

the matrix by the total number of cells from each cell type, generating a B matrix. Finally, to compare clonal fates between clones of

different sizes, we row-normalized the B matrix to obtain, for every clone, the fraction of cells present in each cell type (intra-clone

fraction score).

HSC clonal behaviors were quantified as described in Rodriguez-Fraticelli et al.25,36 based on the distribution of cells across HSC

and non-HSC clusters. Output activity (Ai) is quantified as the frequency of clone i non-HSC clusters divided by the frequency of clone

i in the HSC cluster. Fate biases (Bi) (megakaryocyte andmyeloid) are calculated as the frequency of clone i in the cluster k divided by

the frequency of the clone i across non-k clusters (excluding also MPPs and HSC clusters). t. To determine statistically significant

biased clones (clones representing a higher proportion of a specific cluster than expected from random cell sampling) we applied

a Fisher’s exact test as described in Biddy et al.97 accounting for clone size.

Sister cell similarity analysis
To calculate the sister cell similarity scores shown in Figure S1D, we subsetted individually the cells corresponding to each timepoint

(Day 7 and D27) and proceeded as follows: The top 2000 variable genes were selected and, as described above, ribosomal, mito-

chondrial and genes correlating with cell cycle genes were filtered out. These filtered variable genes were scaled and used as input to

calculate the top 70 principal components (PCs). The cell-by-PC matrix (obtained with the function Embeddings from Seurat) was

used as input for the R cor function selecting pearson as the correlation metric. This procedure generated a cell-by-cell similarity

matrix that was split into: (a) all pairs of sister cells, (b) all pairs of non-sister cells, and (c) all pairs of sister cells in which the barcode

label was previously shuffled. To assess the statistical significance between the average Perason coefficient of these 3 groups, a

permutation test with 1000 simulations was performed. Briefly, the average correlation of each group was compared to a random

distribution of sister similarity scores generated by shuffling the larry barcodes prior to the generation of the cell-by-cell similarity

matrix across 1000 iterations.

Stochastic sampling model of clonal selection
To calculate the expected clonality across our experimental time course, assuming that all clones have equal fitness, we developed a

null clonal selection model based on sampling with a binomial distribution. This model recapitulates the different sampling events

(sample splitting, well splitting, sampling of cells for scRNA-seq, fraction of cells encapsulated in library preparation) and measured

cell expansion (from D7 to D14 and D14 to D27). It makes two key assumptions for simplicity: no cell death (based on our limited

observation of apoptotic-like events during culture) and similar proliferation probabilities for all cell types.We applied sequential sam-

pling calls with andwithout replacement (using the R function sample) to model, from the initial distribution of clones sizes detected at

D7, the following steps -using empirical data for each individual well replicate-: 1) fraction of cells lost in encapsulation for single-cell

RNAseq at D7 (with replacement), 2) fraction of cells split into WT and mutant samples at D7 (without replacement), 3) transduction

efficiency of secondary LARRY barcoding (without replacement), 3) fraction of cells split into different wells (without replacement), 4)

cell expansion from D7 to D14 (with replacement), 5) fraction of cells used for D14 sequencing (without replacement), 6) cell expan-

sion from D14 to D27 (with replacement), 7) fraction of cells sampled for D27 sequencing (without replacement) and 8) fraction of cell

recovery (encapsulation) from D27 library preparation (without replacement). The output of the model is a list of the expected clones

detected at D27 and their corresponding sizes. We ran 1000 iterations of the model, from which we calculated an average expected

clone size. The distribution of clones sizes from the model was also used to calculate the expected clone size correlation between

wells at D27.
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Single-cell differential gene expression and signature scores
Gene differential expression analysis corresponding to Figures 3, 5, and 6 were performed using a Wilcoxon test with the function

findMarkers from Seurat. Gene differential expression analysis corresponding to the data presented in Figures 1, 2, and 4 were per-

formed using MAST91 within the function findMarkers from Seurat using the replicate information as the only latent variable. This was

done in order tomask differences in gene expression betweenmale and female cells, which corresponded to replicate 1 and replicate

2, respectively.

Gene set enrichment analysis
For each comparison, we created pre-ranked lists based on log2 fold-change differences in gene expression obtained from scRNA-

seq or bulkRNAseq analysis. These pre-ranked lists were analyzed using gseapy version 1.1.1.92 For gene sets, we used signatures

shown on Table S4 (HSC signatures) or MsigDB gene sets (mouse hallmarks or gene-ontology terms). Data from AML patients were

obtained from previous studies.57,58 For the scRNAseq dataset, patients were categorized as ‘‘mature’’ or ‘‘primitive’’ based on the

ratio of%cells expressing CD14 versus%cells expressing CD96. Patients with CD14/CD96 ratio >1were labeled as ‘‘mature’’, while

CD14/CD96 ratio <1 were labeled as ‘‘primitive’’. For the bulkRNAseq dataset, we used the differential expression list output in the

available code (comparing the ‘‘mature’’ patient cluster with the ‘‘primitive’’ patient cluster).

For Figure 6 panel E, SCPA v1.6.2 was used to perform gene set enrichment analysis, using the same gene sets described in the

previous paragraph93 Gene sets with a -log10(qvalue) > 2 and adjusted p-value < 0.01 were considered as significantly enriched.

Additional data visualization and figure preparation
For additional arranging and visualization of clonal data we used Tidyverse v1.3.2, ggrastr and ComplexHeatmap (see key re-

sources table).

Statistical methods
Statistical analysis was performed using the tests as indicated throughout the main text and in the Figure Legends. Wilcoxon rank-

sum tests (adjusted for multiple comparisons where necessary) were used for statistical significance except where indicated. Sta-

tistical significance was generally defined as p < 0.05, unless otherwise specified. No exclusion or inclusion criteria were used.

No strategies for blinding or randomization were used. For statistical analysis, we usedWilcoxon tests, which avoid specific assump-

tions about data distributions.
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