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Abstract

We motivate the study of the representations of SO(3) by showing how it is useful
to solve the angular part of the Schrödinger equation for a particle under a central
potential, with an emphasis in the Casimir operator. We study finite-dimensional
representations and finish with the applications of the Peter-Weyl theorem for rep-
resentations in homogeneous spaces.
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Chapter 1

Introduction

The aim of this work is to motivate the study of representation theory. We try to
do so finding an application of the study of SO(3) representations for a rotationally
symmetric Schrödinger equation.

In chapter 2, we introduce the quantum mechanics basics and the Schrödinger
equation. Then, via a change of variables, one sees that it could be solved by finding
an eigenbasis of the hamiltonian, as a self-adjoint operator in an infinite-dimensional
space. Next, we introduce the concept of symmetry and focus on a rotationally
symmetric Schrödinger equation, to later translate this symmetry into a condition
regarding a representation of SO(3). We prove that this problem is suitable to be
splitted into the radial and spherical part, and that solving the spherical part will
help us into the overall problem. Our goal becomes to show that

L2(S2) =
⊕
ℓ∈N

Hℓ

i.e., that the space of square-integrable functions on the sphere is the completion of
a direct sum of irreducible representations of SO(3). And also to determine each Hℓ
along with how the spherical part of the laplacian acts in it.

Chapter 3 serves as an introduction to the concept of groups, actions, Lie groups,
Lie algebras and representations.

In chapter 4 we develop the theory for finite-dimensional representations. This
is going to be crucial to be able to later classify each irreducible representation of
SO(3) but also to assimilate the upcomming theory.

Chapter 5 is devoted to the explicit computation of all the irreps of SO(3). In
it, we show that they can be realized as the spherical harmonics. Moreover, we
introduce the Casimir operator and deduce some important properties of it using
the theory of Lie algebras, only to see later that this operator is exactly the spherical
part of the laplacian. The chapter concludes that the harmonic polynomials not only
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2 Introduction

serve as lower dimensional subspaces in which the spherical part of the laplacian can
be diagonalized, but rather that it is constant in each harmonics space.

Finally, this work concludes with chapter 6, in which we prove the Peter-Weyl
theorem for matrix groups. Then, we introduce homogeneous spaces and see how this
theorem yields interesting results in them. We show that since S2 is homogeneous
under the SO(3) action, it implies the direct sum decomposition mentioned before.

Two appendices complement this work. Appendix A develops several of the
algebraic aspects treated, such as the trace map, the representations of SU(2), the
induction of representations into several algebraic structures and some more algebraic
results that are used at some point. Appendix B is its analytic counterpart, in which
we introduce smooth manifolds and give important results on their regard, as long
as a more detailed study of the Lie algebra than the one given in chapter 3. There
are also the explicit computations on the Casimir operator that are used in chapter
5. Finally, there is a general description of the concerned matrix groups.
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Chapter 2

Quantum mechanics basics

2.1 The quantum mechanics toolbox

2.1.1 The states of a system

Since we are not physicists, we shall not delve too much into details, but rather
shed some light to understand the very basics of quantum mechanics and understand
what we are doing.

In classical mechanics, when we study a system we consider the phase space
{(x,v) | x ∈ Rn valid position, v ∈ Rn valid velocity at position x}. From this
space we then create several real functions which stand for each quantity that we
observe from it. For instance, the mechanical energy: E = 1

2m|v|2−V (x). Then, to
understand the future state of the system, we wonder for the curve that (x(t),v(t))
will draw in the phase space along time.

Several more advanced algebraic structures can be imposed in our space to gather
results from different areas of mathematics. Since we may want to take profit of the
continuity we assume on natural events, we will take the phase spaces to be manifolds.
Since we will also want to be able to differentiate on them, we will look for smooth
manifolds.

Quantum mechanics is devoted to the study of the microscopic world. When
studying atom-scale systems, the rules of the ordinary reality we see do not apply
anymore. For instance, in the real world we can take measurements and expect the
observed reality to not be significantly altered by them, so we can make predictions
based on our measurements. But, since to measure something we need to shed to it
some energy or matter, if such particle is as small as the fundamental building blocks
of the universe, this will have a non negligible impact on it, thus being us able to
recover the position of the object but having lost the information we had about its
velocity, for instance. It is for this reason that it takes a probabilistic approach.
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4 Quantum mechanics basics

Instead of taking the state of the particle as a point in a smooth manifold and
the values that some real functions take in it, we will use complex functions of only
the position to encode the whole state of the system. Since functions are complex
(in the sense of complicated) enough, we hope that we will be able to extract enough
information from them thanks to the right operators.

That is, if the configuration space of the system is the smooth manifold M , the
state of the system will be encoded by a function ψ : M → C, which despite not
necessarily solving the wave equation is always referred to as the wave function in the
physics literature. This function is such that the integral of the square of its module
over a subset of M is the probability of the particle(s) to be inside it. Since it is not
directly a probability density, it is called a probability amplitude. More formally:

P(x ∈ E) =

∫
E
|ψ(x)|2dx

Of course, if we want it to actually mean a probability distribution, we would
need the previous integral over M to be 1. We can hence restrict ourselves to only
normalized wave functions or consider an equivalence relationship in the functions
space for a scale factor and make ψ represent the same state than ψ/∥ψ∥. Moreover,
observe that there are many functions whose integral over a set equals the same,
despite having different shapes. It is in this way that we expect to encode the rest
of observables of the system.

2.1.2 The Hilbert space

We then wonder where should we make this wave functions belong to. For later
uses, we want to consider a functions vector space. And it would be convenient to
look for a complete one. We could then think on C∞(M) which is Cauchy-complete
as a metric space with the supreme norm ∥f∥∞:= supx∈M |f(x)|. But it presents two
main problems. The first one is that we would need M to be compact in order for
this norm to be applicable to all C∞(M). But even if M were compact, as (A.16)
shows, it does not come from any inner product.

So a conventional approach could be to take L2(M) and this is exactly what is
done. Moreover, if the purpose of the wave functions is to encode probabilities, it
makes sense to consider L2(M) since we do not care of differences on zero-measure
set. This, along with the inner product that we are on our way to define, will form
a Hilbert space, which we will denote H .

Since the smooth manifolds M we will consider are all subsets of Rn, we will
consider as their measure the corresponding restriction of the Lebesgue measure on
Rn and hence avoid writing it explicitly. We will also always assume them to map
M → C and also avoid writing the codomain.
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2.1 The quantum mechanics toolbox 5

Even though for the moment we do care more about the properties of it than of
its particular definition, the reader can consider the inner product in L2(M) as

⟨f, g⟩ :=
∫
M
f(x)g(x)dx

where f(x) denotes the complex conjugate of f(x). We define it to be linear on the
second argument and conjugate-linear on the first one.

2.1.3 Observables

The quantities of our interest will be represented by observables, which are going
to be linear self-adjoint operators Â : H → H . The interest of them being self-
adjoint is for them to have real eigenvalues, which will allow us to give a meaning
to the observed value. The existence of orthonormal topological eigenbasis for self-
adjoint operators in infinite-dimensional spaces will be commmented later, but it is
not trivial when the vector space is infinite-dimensional.

Now let’s discuss what do we mean by a topological basis of an infinite dimensional
vector space. A set B is formally defined to be a basis for a vector space V if every
element of V can be uniquely expressed as a finite linear combination of B (while
B is allowed to be infinite or even non countable). However, in several cases such
a basis might not exist or not be easy to find. So we will allow ourselves to call
topological basis to B if span(B) is dense in V . That is, every element of V is the
limit of a convergent sequence in span(B), i.e.: V ∋ v =

∑
n∈N anvn with an ∈ C

and vn ∈ B.
This is a really useful construction which allows us to view the functions {eint}n∈N

as a basis of L2([0, 2π]) which turn out to be orthogonal with the previously showed
inner product.

This broader concept of topological basis in H is going to be central to define
observables. Let’s assume that H admits a numerable orthonormal topological basis
B of eigenvalues for the self-adjoint operator Â. For an element ψ ∈ B with eigenvalue
λ, we say that the observable quantity represented by Â takes the value λ in the state
ψ. We say then that ψ is a pure state for this observable. And the surprising fact
about quantum mechanics is that some states are not going to be pure, but rather a
linear combination of more than one eigenvectors. In this case, we cannot know in
which state the system actually is and we return to the probabilistic side. We will
consider that if

ψ =
∑
n∈N

anψn, ψn ∈ B,

then, provided that ∥ψ∥= 1, |an|2 takes the meaning of the probability of the mea-
surement to take the value represented by ψn and consistently define the expectation

5



6 Quantum mechanics basics

of the observable Â as

E[Â] := ⟨ψ, Âψ⟩ = ⟨ψ, Âψ⟩ = ⟨
∑
n∈N

anψn, Â
∑
n∈N

anψn⟩

= ⟨
∑
n∈N

anψn,
∑
n∈N

anÂψn⟩ = ⟨
∑
n∈N

anψn,
∑
n∈N

anλnψn⟩

=
∑
n,m∈N

anam⟨ψn, λmψm⟩ =
∑
n∈N

|an|2λn

.
In this example, we shall say that the state ψ is in a quantum superposition of

the states {ψn}n∈N.

2.2 Time evolution of a system: the Schrödinger equa-
tion

2.2.1 The general Schrödinger equation

The Schrödinger equation states that the time evolution of a state is given by
the following differential equation

∂ψ

∂t
=
Ĥ

ih̄
ψ (2.1)

where Ĥ is the hamiltonian of the system. That is, the observable associated to the
total mechanic energy of the system. And it can be written as

Ĥ =
∆

2m
+ V (x, t)

being

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

the laplacian operator and V (x, t) the potential energy.
This is a partial differential equation and is therefore hard to solve as we lack

general theorems of existence and unicity of solutions. However, let’s observe that,
in the vector space H of states, Ĥ is an endomorphism and hence equation (2.1)
can be seen as a linear differential equation in this infinite dimensional space. Then,
its solutions form a vector subspace.

Our goal is to give, for any initial state Ψ(0, x) = ψ0(x) its evoluion as time
passes, so to give Ψ(t, x) for t ∈ R.
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2.2 Time evolution of a system: the Schrödinger equation 7

2.2.2 The Schrödinger equation for a time-independent hamilto-
nian

In the case where the potential does not depend on time, that is, the Schrödinger
quation takes the following form

∂ψ

∂t
=

1

ih̄
[
∆

2m
ψ + V (x)ψ] (2.2)

we can try to apply the method of separation of variables. We will suppose equation
(2.2) admits solutions of the form Ψ(t, x) = ψ(x)f(t), with the hope that such ψ(x)
will allow us to reconstruct ψ0(x), the initial condition, as a sum of them. If ψ(x)f(t)
is a solution, then

∂

∂t
(ψ(x)f(t)) =

1

ih̄
[
∆

2m
(ψ(x)f(t)) + V (x)ψ(x)f(t)]

⇐⇒ ψ(x)
∂f(t)

∂t
=

1

ih̄
[f(t)

∆

2m
ψ(x) + V (x)ψ(x)f(t)]

⇐⇒ ψ(x)
∂f(t)

∂t
=
f(t)

ih̄
[
∆

2m
ψ(x) + V (x)ψ(x)]

⇐=
ih̄

f(t)

∂f(t)

∂t
=

1

ψ(x)
[
∆

2m
ψ(x) + V (x)ψ(x)]

Note that the last equivalence holds only where f(t)ψ(x) ̸= 0. So the purpose of
this computation is just to understand how we can derive the solution that we are
going to suggest. The last equation is our goal because it sets an identity for two
functions on different variables, so the only way for this to hold is for them being
constant to some, a priori complex, number E. This leads to the following equalities:

ih̄

f(t)

∂f(t)

∂t
= E

⇐⇒ ∂f(t)

∂t
=

−iE
h̄

f(t) (2.3)

1

ψ(x)
[
∆

2m
ψ(x) + V (x)ψ(x)] = E ⇐⇒ ∆

2m
ψ(x) + V (x)ψ(x) = Eψ(x)

⇐⇒ Ĥψ(x) = Eψ(x) (2.4)

Equation (2.3) is an ODE admiting only the (defined in all R) solution f(t) =

e−iEt/h̄. And (2.4) simply states that ψ(x) is an eigenfunction of the hamiltonian Ĥ
of eigenvalue E.

7



8 Quantum mechanics basics

Therefore, our problem is reduced to finding an eigenbasis {ψn(x)}n∈N ⊂ H of
Ĥ. If we manage to do so, then, for any ψ0(x), we could write

Ψ(t, x) =
∑
n∈N

anfn(t)ψn(x)

Ψ(0, x) = ψ0(x) =
∑
n∈N

anψn(x)

for some an ∈ N, where the fn(t) are the previously stated functions depending on
the eigenvalue En of ψn. Hence,

∂Ψ(t, x)

∂t
=
∑
n∈N

anf
′
n(t)ψn(x) =

∑
n∈N

En
ih̄
anfn(t)ψn(x)

=
∑
n∈N

Ĥ

ih̄
anfn(t)ψn(x) =

Ĥ

ih̄
Ψ(t, x)

Unfortunately, the spectral theorem for infinite-dimensional vector spaces is weaker
than the one for Cn. We may not always be able to find an orthonormal eigenbasis.
For theory on the spectral theorem for self-adjoint operators in Hilbert spaces, see
([6], Ch 6-10).

2.3 The symmetries of a system

This section only concerns symmetries of autonomous equations since they are
easier to understand and it is our case of study, but a similar reasoning applies to
non autonomous systems.

Consider a general evolutionary system which rules the behaviour of a function
x(t) in a smooth manifold M , given by the function f . That is,

f :M −→ TM

x 7→ ẋ

Where ẋ = f(x) is the tangent vector to the curve that x(t) draws as time passes.
Equivalently, it can be seen as the direction and the speed in which x(t) is varying
at time t.

We will say that a system possesses a symmetry encoded by a smooth map
S :M −→M if the following diagram commutes

M TM

M TM

f

S dS

f

(2.5)

8



2.3 The symmetries of a system 9

Being dS the differential map:

dS : TM −→ TM

(x, v) 7→ (x, dxS(v))

To exemplify why we define it this way, we provide the following diagrams. We
have represented in red the points in M and in pink the tangent vectors (when they
differ with the vector field). Mappings R represent rotations and T translations.

I
5

- ⑧ ------
-

I
2

!I
---- c

·..-

----
s

Figure 2.1: A system with trans-
lational symmetry.

d=*
·-

Figure 2.2: A system with rota-
tional symmetry.

T
........ -

I
·

j-.

......
8⑧

-
-

...

Figure 2.3: A system without (these) translational and rotational
symmetries.
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10 Quantum mechanics basics

We are going to work not in M but in L2(M). We can then give a way to extend
symmetries in the former to the latter. For S :M →M , define

S : L2(M) −→ L2(M)

ψ(x) 7→ ψ(S−1x)

Intuition 2.1. We define it this way for two main reasons. Firstly, if S transforms M
in a certain way, then the graph of ψ(x) gets transformed to the one from ψ(S−1x)

accordingly. And secondly, to make it extend left-actions of S from M into L2(M)

in the case where S belongs to a group.

In particular, very typical symmetries like translations, rotations or re-scalings
take the form of linear or afine automorphisms. And therefore, their differential map
is given by themselves (or their linear part). Since L2(M) is a vector space and we
are not interested in its topology, we will simply see tangent vectors in L2(M) as
elements from L2(M), and also consider the tangent bundle of L2(M) as itself. We
will then, in a notation abuse denote dS by S.

2.3.1 Symmetries in quantum mechanics

In the light of the above, the symmetry condition in quantum mechanics can be
reduced to

SĤ = ĤS

Which is simply that the two endomorphisms commute. And this is precisely
what is going to allow us to transform our intuitions into mathematical power. The
following proposition gives us a hint on how is it going to do so.

Proposition 2.1. If two endomorphisms commute, then they preserve each other’s
eigenspaces.

Proof. Let A and B be two commuting endomorphisms of the same vector space. If
v ∈ Ker(A− λId), then

(A− λId)Bv = (AB − λB)v = (BA− λB)v = B(A− λId)v = B0 = 0

And therefore, Bv ∈ Ker(A− λId).

In classical mechanics, Noether’s Theorem states that there is a one to one corre-
spondence between continuous symmetries of a system and its conserved quantities.
Conserved quantities help us in solving the differential equations in Rn ruling this
system by keeping the state x(t) inside the same level curve for all t. The analogous
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2.3 The symmetries of a system 11

in quantum mechanics will be that, for every continuous symmetry acting as a group
representation, if a state belongs to a subrepresentation of it (we will see later this
definition, but for now the reader can imagine it as a common eigenspace for all sym-
metry elements), then it will remain there as time flows. Moreover, Ĥ will preserve
these subrepresentations. So, if we break H into a direct sum of these such subrep-
resentations, then the problem of diagonalizing Ĥ in H reduces to diagonalizing all
its restrictions to each corresponding subrepresentation.

And lastly, it turns out that if the representation is of a compact group and acts
transitively (then the representation space will be called homogeneous, and the action
of SO(3) in S2 satisfies it), then representation theory (Peter-Weyl Theorem) ensures
us that the vector space will break into a numerable direct sum of finite dimensional
irreducible representations. Thus, we will have then broken the problem into just
diagonalizing several (possibly infinite indeed) self-adjoint endomorphisms in finite
dimensional vector spaces, which we already know to be feasible from linear algebra!

And the aid we are going to get from studying the representations of SO(3) goes
even beyond that. Not only will we see that

L2(S2) =
⊕
ℓ∈N

Hℓ

with each Hℓ being an SO(3)-subrepresentation of L2(R3), but also, (through the
study of the Casimir operator and the Lie algebra of SO(3)) that the angular part
of the laplacian acts in them as a constant times the identity. So the problem of
diagonalizing the hamiltonian in each subrepresentation will already be solved!

2.3.2 The Schrödinger equation for a radial potential

In this work, we will consider a particular case in which the potential is time
independent and radial, that is, solely dependent on the distance with respect to a
central point which we will consider as our coordinates center. We can then write
V (x, t) = V (|x|) = V (r).

The corresponding hamiltonian will therefore be invariant by rotations, which,
thinking in spherical coordinates, act on the angular variables leaving fixed the radial
one. This means that we have a representation

ρ : SO(3)× H −→ H

(R,ψ(x)) 7→ ψ(R−1x)

commuting with the hamiltonian Ĥ.
As we said, we are interested in representations arising from actions on homo-

geneous spaces. Since, if not, we are not guaranteed to be able to to break them

11



12 Quantum mechanics basics

into finite-dimensional subrepresentations. And R3 is not homogeneous since there
its orbits are rS2 for r ∈ R+.

It is now clear that we should look at how rotations act in R3. And, as intuition
shows, R3 can be continuously sliced into spherical fibers, which is to say that we
have the following homeomorphism

R3 \ {0} ∼= S2 × R+

And it is important to notice that this homeomorphism of R3 aligns with the
spherical coordinates. Note that excluding {0} is not a problem since we are working
in an L2 space and this is a zero measure set. Now, rotations act on R+ as the identity,
and on S2 transitively (taking a point a to a point b in the sphere defines a rotation).
So we have achieved our target.

Applying Fubini’s theorem, we get

L2(R3) = L2(S2) ⊗̂L2(R+)

taking in L2(S2) the Lebesgue measure restricted to the sphere and in L2(R+) r2dr,
where dr is the restriction to the positive reals of the Lebesgue measure (see [3], Ch
3, §3, p.184).

Now, as we said, we know that we will be able to find finite-dimensional irre-
ducible representations of L2(S2) and that inside of them we will be able to find
eigenvectors for the angular part of Ĥ. But before diving in this journey, let’s check
if this is going to be useful to us. By the former we know that any function in H

can be expressed as

ψ =
∑
n∈N

fn(r)Yn(θ, ϕ)

with Yn(θ, ϕ) being eigenvectors of Ĥ which will live in some representation of
SO(3). Then, to see whether Ĥ is going to respect this decomposition or not, let’s
write it in spherical coordinates. The potential part is obviously writen as V (r). A
change of variables shows that the laplacian takes the following form:

∆ =
1

r2
∂

∂r
(r2

∂

∂r
)− 1

r2
M̂2 (2.6)

M̂2 =
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2
(2.7)

Now, M̂2 is the angular part of ∆ and therefore it is going to be the part that
we will be able to diagonalize in L2(S2).

To finally see how this is going to help in our problem, let’s take Yℓ(θ, ϕ) an
angular function which is an eigenfunction of M̂2 of eigenvalue ℓ(ℓ + 1) and Rℓ(r)

12



2.3 The symmetries of a system 13

some radial function. The notation ℓ is not casual and neither is the eigenvalue
ℓ(ℓ+ 1), (cf. Ch 5).

Then, applying ∆ to R(r)Yℓ(θ, ϕ) leads to

∆(R(r)Yℓ(θ, ϕ)) =
1

r2
∂

∂r
(r2

∂R(r)Yℓ(θ, ϕ)

∂r
)− 1

r2
M̂2(R(r)Yℓ(θ, ϕ))

= Yℓ(θ, ϕ)
1

r2
∂

∂r
(r2

∂R(r)

∂r
)− R(r)

r2
M̂2(Y (θ, ϕ))

= Y (θ, ϕ)
1

r2
∂

∂r
(r2

∂R(r)

∂r
)−R(r)

1

r2
ℓ(ℓ+ 1)Yℓ(θ, ϕ)

= Yℓ(θ, ϕ)(
1

r2
∂

∂r
(r2

∂R(r)

∂r
)−R(r)

ℓ(ℓ+ 1)

r2
)

So the condition for R(r)Yℓ(θ, ϕ) to be an eigenfunction of eigenvalue E of Ĥ
becomes

ĤR(r)Yℓ(θ, ϕ) =
∆

2m
R(r)Yℓ(θ, ϕ) + V (r)R(r)Yℓ(θ, ϕ)

= Y (θ, ϕ)(
1

2m

1

r2
∂

∂r
(r2

∂R(r)

∂r
)−R(r)(

ℓ(ℓ+ 1)

r2
− V (r)))

= ER(r)Yℓ(θ, ϕ)

⇐⇒ ER(r) = (
1

2m

1

r2
∂

∂r
(r2

∂R(r)

∂r
)−R(r)(

ℓ(ℓ+ 1)

r2
− V (r)))

Which is an ODE in R(r). But we are still far from done. We will close this
section translating this problem into the study of the spectrum of another and simpler
operator. After doing the substitution fℓ(r) = rR(r) so that R(r) = f(r)

r ,

∂

∂r
(r2

∂

∂r
R(r)) =

∂

∂r
(r2

∂

∂r
(
R(r)

r
)) =

∂

∂r
(r2

ḟ(r)r − f(r)

r2
)

=
∂

∂r
(ḟ(r)r − f(r)) = f̈(r)r + ḟ(r)− ḟ(r) = f̈(r)r

Plugging it back to the original equation we get

1

2mr2
∂2f

∂r2
r − ℓ(ℓ+ 1)

r2
f

r
+ V

f

r
= E

f

r

since r > 0, it is equivalent to multiplying by r and so:

1

2m

∂2f

∂r2
− ℓ(ℓ+ 1)

r2
f + V f = Ef

13



14 Quantum mechanics basics

Therefore, the operator we are looking for is

Ĥℓ =
1

2m

∂2

∂r2
− ℓ(ℓ+ 1)

r2
+ V (r)

and the remaining work would be to study its spectrum. The interested reader
can refer to ([3], Ch 3, §4.3).

So first, we have reduced the problem of solving the Schrödinger equation of a
particle in R3 under a central potential to the study of the spectrum of the corre-
sponding hamiltonian. And next, thanks to representation theory, we have simplified
the study of the spectrum of an operator (Ĥ) acting on L2(R3) to the study of an-
other one (Ĥℓ) acting only on L2(R+).

2.4 Quantum version of Noether’s theorem

In classical mechanics, Noether’s theorem states that to every continuous sym-
metry of a system, it corresponds a conservation law of it. We shall here just suggest
how may this be translated to quantum mechanics.

As we showed in (§2.3.1), a continuous symmetry in a quantum system with a
hamiltonian Ĥ means a representation of a Lie group G commuting with Ĥ.

Now, if L̂ is a self-adjoint operator (so an observable) such that [Ĥ, L̂] = 0, the
expected value of this observable will remain constant throughout time, as the next
proposition shows.

Proposition 2.2. Under the previous assumptions,

∂

∂t
Eψ[Â] = Eψ[

1

ih̄
[Â, Ĥ]]

In particular, if [Â, Ĥ] = 0, then ∂
∂tEψ[Â] is preserved.

Proof.
∂

∂t
Eψ[Â] =

∂

∂t
⟨ψ,Aψ⟩ = ⟨ ∂

∂t
ψAψ⟩+ ⟨ψA ∂

∂t
ψ⟩

Now, we use the Schrödinger equation, ∂
∂tψ = Ĥ

ih̄ψ so

⟨ψ,A ∂

∂t
ψ⟩ = ⟨ψ,AĤ

ih̄
ψ⟩ = ⟨ψ,AĤ

ih̄
ψ⟩

analogously, and using that Ĥ is self-adjoint and that we defined the inner product
to be conjugate-linear in the first argument:

⟨ ∂
∂t
ψ,Aψ⟩ = ⟨ψ,Aψ⟩ = ⟨ψ,

(
Ĥ

ih̄

)†
Aψ⟩ = ⟨ψ, Ĥ

−ih̄
Aψ⟩

14



2.4 Quantum version of Noether’s theorem 15

Therefore

∂

∂t
Eψ[Â] = ⟨ψ,AĤ

ih̄
ψ⟩+ ⟨ψ, Ĥ

−ih̄
Aψ⟩ = ⟨ψ,AĤ

ih̄
− Ĥ

ih̄
Aψ⟩

= ⟨ψ, 1
ih̄

(L̂Ĥ − ĤL̂)ψ⟩ = ⟨ψ, 1
ih̄

([L̂, Ĥ])ψ⟩ = Eψ[
1

ih̄
[L̂, Ĥ]]

We will not dive into the process of constructing self-adjoint operators from group
representations, but just mention that it is related to the Lie algebra representation
of the group. For more details, see [6] or [3].

15



16 Quantum mechanics basics
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Chapter 3

Elementary group theory and Lie
theory

3.1 Groups and group actions

We start by the very basic definitions.

Definition 3.1. A group G = (G, ∗, e) is a set G endowed with an inner operation
∗ : G×G −→ G satisfying the following properties:

i. ∗ is associative.

ii. There exists a neutral element, which we will mostly denote by e, which satisfies
e ∗ g = g ∗ e = g ∀g ∈ G.

iii. ∀g ∈ G, ∃g−1 ∈ G such that gg−1 = g−1g = e. This element will be called the
inverse of g.

We are interested in groups that arise from transformations on a set. A basic
example is how invertible matrices act on vectors. Then, we want a notion to capture
the idea of how group elements can act by multiplication on a set.

Definition 3.2. An action (on the left) of a group G on a set X is a map

ρ : G×X −→ X

(g, x) 7→ ρ(g, x) = ρg(x)

such that it satisfies the following two properties:

• ρe ≡ IdX

• ρg ◦ ρh ≡ ρgh

17



18 Elementary group theory and Lie theory

Remark 3.1. Analogously, we can define right actions but changing the second con-
dition into ρg ◦ ρh = ρhg. If ρ : G × X −→ X is an action on the left, then we
can set ϱg := ρg−1 and we get ϱ a right-action. Checking that ϱ is a right action is
immediate from (gh)−1 = h−1g−1.

We now see an important consequence of having an action of a group on a set.

Proposition 3.3. If ρ is a G-action on a set X, then, ∀g ∈ G, ρg : X → X is a
bijection.

Proof. ρg ◦ ρg−1 = ρgg−1 = ρe = ρg−1g = ρg−1 ◦ ρg. So any ρg has an inverse given by
ρg−1 .

Hence, an action of G on X is equivalent to a groups morphism

G −→ Perm(X)

g 7→ ρg

In later sections we will use the following definitions.

Definition 3.4. An action ρ : G×X −→ X is said to be transitive if ∀x1, x2 ∈ X,
∃g ∈ G such that ρ(g, x1) = x2.

Definition 3.5. An action ρ : G × X −→ X is said to be faithful if ρ : G −→
Perm(X) is injective.

3.2 Lie groups

The groups in which we will be interesed, such as the automorphisms of an R-
vector space or the rotations of an euclidean space are infinite. This is an obvious
complication but it also makes them suitable for fancier mathematical structures
which can make our life easier, such as them being topological spaces. Now, let’s
see the structure we will impose to these infinite groups. Note that we define it this
way because these are the properties satisfied by our groups of interest, and hence
we want to capture them all to push our theory as far as possible. For clarification
on smooth manifolds, see (B.1).

Definition 3.6. A Lie group G is a set provided by both a structure (G, ∗, e) of a
group and of a smooth manifold such that the two are compatible. Which means that
the multiplication map

µ : G×G −→ G

(g, h) 7→ µ(g, h) = g ∗ h
is smooth.

18



3.3 Representations of Lie groups 19

It can be proven (cf. [1]) that with these assumptions, left-multiplication and the
inverse mapping g 7→ g−1 are also smooth.

We want to adapt the concept of a group action to these special groups. As we
just said, we want to capture as many important properties as possible. Firstly, we
will not use them in arbitrary sets but in vector spaces. Secondly, we want them to
respect this vector space structure, and since our symmetries of interest are linear
maps, we can impose it. And lastly, if we think on how rotations act on an euclidean
space, we see that they act continuously on it. That is, if a rotation in an angle and
along an axis takes a point somewhere, other rotations close to it will not take it too
far away.

We then need to give our vector space a topological structure. Since we will be
working with Hilbert spaces, we can simply take the topology given by the distance
inherited from the inner product.

3.3 Representations of Lie groups

Definition 3.7. A representation of a Lie group G on a topological vector space V is
a map ρ : G×V → V which is an action in the sense of (3.2) with the two following
additional properties:

i. ρg : V → V is linear.

ii. ρ : G −→ Aut(V ), g 7→ lg is continuous.

Remark 3.2. By ρ : G −→ Aut(V ) being continuous, it is immediately smooth
because it is also a groups morphism. And a continuous group morphism between
Lie groups is always smooth (cf. [1]). However, the proofs to these facts are far away
from being trivial and are not the purpose of this work.

3.4 The Lie algebra and its representations

Given a Lie groupG, let g = LG denote its tangent space at the identity, g = TeG.
If G has dimension n and is embedded in Rm, it can be seen as the n-dimensional
vector space underlying the afine tangent space of G at e. This approach will be
particularly useful for G = Aut(V ).

There is another way to think about the tangent space that allows us to extend
this definition to Lie groups not embedded in Rn. In particular, it also applies to
them, and we will use it to provide the Lie algebra with an actual structure of a Lie
algebra. It consists on realizing that each element of g yields a left-invariant vector
field on G. Vector fields, as derivations, can be composed and the commutator of

19



20 Elementary group theory and Lie theory

two vector fields is still a vector field. The Lie bracket is then defined in g by this
identification. For more details regarding this construction, see (B.2).

Here we will just give the definition of a Lie algebra as an algebraic structure.

Definition 3.8. A Lie algebra (g, [·, ·]) is a vector space with a bilinear operation
[·, ·] : g× g −→ g which satisfies the following two conditions

i [·, ·] is anti-symmetric: [x, y] = −[y, x]

ii [·, ·] satisfies the Jacobi identity: [[x, y], z] + [[z, x], y] + [[y, z], x] = 0

3.4.1 Morphisms of Lie algebras

Any morphism of Lie groups φ : G −→ H yields a linear map between the Lie
algebras Lφ = deφ : g −→ h which also satisfies

[Lφ(X), Lφ(Y )] = Lφ([X,Y ])

Such a map is called a Lie algebra morfism (cf. [1], [5]).

3.4.2 Lie algebra representations

A representation ρ at V of a Lie group G yields a Lie groups morphism ρ : G −→
Aut(V ). Then, using results from (§3.4.1), we get that

Lρ : (g, [·, ·]) −→ (LAut(V ), [·, ·]) = (End(V ), [·, ·])

In this particular case, note that even though in general there is no composition
law in g, since LAut(V ) ∼= End(V ), one can compose the images by Lρ of elements
of g. However, it will not be a group morphism by the composition.

3.5 The exponential map

Definition 3.9. Given a Lie group G with Lie algebra g, and X ∈ g, let ΦX(t; 0, e)
be the integral curve for the vector field associated to X which takes the value e at
t = 0.

We define the exponential map as

exp : g −→ G

X 7→ ΦX(1; 0, e)

Which is, the point of G corresponding to the position at t = 1 of the solution of
the vector field corresponding to X which at t = 0 is e the identity element.

20



3.6 The SO(3) and SU(2) groups 21

It can be verified that this definition is valid using that the vector field X is
differentiable (cf. [1], Ch 1, §3).

Proposition 3.10. If G ⊂ GL(n,C) is a matrix group, its exponential map is given
by matrix exponentiation.

For a proof, see ([1], Ch 1, §3).
It will be important for us later the following proposition, which applies to SO(3)

for it is compact and connected.

Proposition 3.11. If G is a compact and connected Lie group, then exp : g −→ G

is surjective.

We can easily see a counter-example of this for the case when G is not connected.
Let G = (R∗, ·) be the real multiplicative group. It is not connected because R∗ =

R− ⊔ R+ (and neither is compact). Then, its Lie algebra is R and

exp : R −→ R∗

x 7→ ex

is its exponential map because the flow defined by x ∈ LR∗ = R is x(t) = xt. And
Φx(t; 0, 1) = etx since d

dte
tx = xetx. And exp is not surjective because it is always

positive.

3.6 The SO(3) and SU(2) groups

For a detailed definition of them and their construction as actual Lie groups, see
(B.5). For what follows, it suffices for the reader to consider them as they are defined
in this section.

Let
SO(3) := {O ∈ GL(3,R) | OOt = I, detO = 1}

be the three dimensional special orthogonal group.
And let

SU(2) := {U ∈ GL(2,C) | UU † = I, detU = 1}

be the two dimensional special unitary group.
As mentioned in (B.22), there is 2 : 1 epimorphism from SU(2) to SO(3) and

both are connected. Also, as proved in (B.5), these groups are compact.

21



22 Elementary group theory and Lie theory

22



Chapter 4

Finite-dimensional representations

The reader unfamiliarized with representation theory has at its disposal (A.1) for
an introduction in this regard.

4.1 Subrepresentations

Let V be an R or C-vector space.
Sometimes, and throughout this work we will do it a lot, the vector space V in

which we have the representation

ρ : G× V −→ V

is equally refered to as a representation.
Now, we introduce some definitions which extend what we discussed in §4.2 to

representations.

Definition 4.1. Let W ⊂ V be a vector subspace. If ρ(G)W ⊂ W , we say that W
is a subrepresentation of V .

By ρ(G)W ⊂ W we mean that ρg(W ) ⊂ W ∀g ∈ G. It means that W is an
invariant subspace for all the automorphisms of the representation.

The subrepresentation terminology makes more sense if we see that if W is such,
then, the representation ρ : G −→ Aut(V ) induces, by restriction, another one
ρ|W : G −→ Aut(W )

Definition 4.2. A representation V of G is called reducible if there exists 0 ̸=W ⊊ V

which is a subrepresentation.

Definition 4.3. A representation V of G is said to be completely reducible if there
exist 0 ̸= W1,W2 ⊊ V such that they are subrepresentations and V = W1 ⊕W2. In
this case, the representation can be written as

ρ = ρW1 ⊕ ρW2

23



24 Finite-dimensional representations

If V is finite dimensional, it means that the matrices ρg can all be simultanously
(block) diagonalized as (

ρ
)
=

ρW1
0

0 ρW2


Let’s define now an analogous to the eigenspaces-morphisms we discussed for

linear maps. Let G be a Lie group for which we have a representation in a vector
space V . Let W ⊂ V be a subrepresentation.

Definition 4.4. A linear map φ : V −→ V is said to be a G-morphism if [ρg, φ] = 0

∀g ∈ G.

Definition 4.5. Let

HomG(W,V ) := {φ ∈ Hom(W,V ) | [φ, ρg] = 0 ∀ g ∈ G}

be the vector space of G-morphisms from W to V .

4.2 G-invariant inner products

Given an n-dimensional smooth manifold M and a differentiable function f :

M −→ C, when we consider its Lebesgue integral over K ⊂ M a compact set, one
could think on taking on K the measure inherited from the Lebesgue measure in
Rn by a differential chart. However, this measure would differ for different charts.
Differential forms allow us to give a consistent measure on any compact set. For
our concern, if we have a compact Lie group G, there exists a unique measure µ
in it such that µ(G) = 1 and such that it is left-invariant. This is: µ(U) = µ(gU)

∀g ∈ G, ∀U ⊂ G µ-measurable. Integration with respect to this measure will be
denoted by

∫
dg. And the left-invariance condition will mean that dg = d(hg) ∀h ∈ G

and
∫
G f(hg)dg =

∫
h(G)=G f(g)d(h

−1g) =
∫
G f(g)dg. This measure is named the

Haar measure and the reader can refer to ([1], Ch I, §5) and ([5], Ch 4, §4.11).
One of the main interests of having the possibility to integrate over the whole

group G is that it will allow us to construct G-invariant inner products, which will
turn out to be very useful for our purpose.

Definition 4.6. An inner product ⟨·, ·⟩ in V is G-invariant if

⟨gx, gy⟩ = ⟨x, y⟩ ∀x, y ∈ V

Since we will need it for our theory, let’s first see that for any inner product in
V , there is always a way to construct another one which is G-invariant.
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4.2 G-invariant inner products 25

Proposition 4.7. Every inner product space V admits a G-invariant inner product.

Proof. Let ⟨·, ·⟩ be the inner product in V . Define

⟨x, y⟩G :=

∫
G
⟨gx, gy⟩dg

where by dg we mean that we are taking the Lebesgue integral over the previously
mentionned measure on G, normalized to 1. ⟨·, ·⟩G is an inner product in V . We
will show its behaviour for sums in the second argument. The rest of the bilinearity
properties it must satisfy follow from a trivial computation analogous to this one.

⟨x, y1 + y2⟩G =

∫
G
⟨gx, g(y1 + y2)⟩dg

=

∫
G
⟨gx, gy1 + gy2)⟩dg

=

∫
G
⟨gx, gy1⟩+ ⟨gx, gy2), d⟩g

=

∫
G
⟨gx, gy1⟩dg +

∫
G
⟨gx, gy2), d⟩g

= ⟨x, y1⟩+ ⟨x, y1⟩

Where we have used, in this order, the linearity of lg, the linearity of ⟨·, ·⟩ and the
linearity of the integral.

Moreover, ⟨x, x⟩G ≥ 0 because ⟨x, x⟩G =
∫
G⟨gx, gx⟩dg, so it is the integral of a

non-negative function over a set with measure 1 and therefore non-negative.
If ⟨x, x⟩G = 0, then 0 =

∫
G⟨gx, gx⟩dg, but since ⟨gx, gx⟩ is a non-negative func-

tion in G, it implies ⟨gx, gx⟩ ≡ 0 in L2(G). But ⟨gx, gx⟩ is continuous in G because
it is a composition of continuous functions and therefore, if it is 0 almost every-
where, it is zero everywhere. So, ⟨gx, gx⟩ = 0 ∀g ∈ G and in particular for e. So
0 = ⟨ex, ex⟩ = ⟨x, x⟩, which implies x = 0 since ⟨·, ·⟩ is an inner product.

Now, its G-invariance comes from the left invariance of the measure in it. That
is,

⟨hx, hy⟩G :=

∫
G
⟨hgx, hgy⟩dg

=

∫
h(G)

⟨gx, gy⟩d(h−1g)

=

∫
G
⟨gx, gy⟩d(h−1g)

=

∫
G
⟨gx, gy⟩dg

= ⟨x, y⟩G
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26 Finite-dimensional representations

Where we have used, in this order: the change of variables formula under lh, the
fact that lh is an automorphism and therefore surjective, the left-invariance of the
measure.

One useful thing of inner products is that they give a practical way to find
comlementary spaces to a subspace. That is, the elementary result that, for every
vector space V and subspace W , it is always V = W ⊕W⊥. Imposing the inner
product to be G-invariant is what will allow us to find a complementary space to a
subrepresentation which is also a subrepresentation.

Proposition 4.8. If V is a reducible representation of a compact lie group G, then
it is completely reducible.

Proof. As expected, consider W⊥. We will show that GW⊥ ⊂ W⊥. Let g ∈ G and
v ∈W⊥. Take any w ∈W . Since W is G-invariant, w = g−1w′∃w′ ∈W . Then,

⟨gv, w⟩ = ⟨gv, gg−1w⟩ = ⟨gv, gw′⟩ = ⟨v, w′⟩ = 0

using that the inner product is G-invariant.

4.3 Irreducible representations

Analogously to prime numbers for integers, irreducible representations take an
important role in order to understand the structure of a representation. As for
integers, we would like to show that a decomposition as a direct sum of irreducible
subrepresentations exists and that it is unique (up to isomorphism). We will achieve
this for finite representations of compact Lie groups.

Moreover, we will show that such decomposition can be expressed as a direct sum
of irreducible representations non-isomorphic pairwise, times each one’s multiplici-
ties. As it will turn out, showing this form of decomposition will make it easier to
prove uniqueness.

Definition 4.9. A representation ρ in V is irreducible if it has no proper subrepre-
sentations. That is, if its only invariant subspaces are the trivial ones ({0} and V

itself).

One characterization of irreducible representations is that if V is irreducible and
V = V1 ⊕ V2, with Vi subrepresentation, then either V1 = {0} or V2 = {0}.

Let’s see here the first part of our goal, to show existence of such decomposition.

Proposition 4.10. If V is a representation of G a compact group, then it breaks
into a direct sum of irreducible subrepresentations.
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Proof. Suppose V is not irreducible. Then, it has a proper subrepresentation W .
But as (4.8) showed, V is then completely reducible V = W ⊕ W ′, ∃W ′ ⊂ V a
subrepresentation. The same reasoning applies to W , to break it into subrepresen-
tations. Since the dimV is finite and dimW < dimV , this recursive process stops
after finite steps, being the final subspace of each branch irreducible.

The following Theorem states that irreducible representations are the building
blocks of representations. This meaning that two irreducible representations are
whether the same or unrelated.

Theorem 4.11. (Schur’s Lemma) Let G be any group and V and W irreducible
representations. Then,

i. A G-morphism V −→W is either 0 or an isomorphism.

ii. Any G-morphism φ : V −→ V is φ = λId ∃λ ∈ C.

iii. dimC HomG(V,W ) =

{
1, V if ∼=W

0, V if ≇W

Proof. See (A.3.2).

Definition 4.12. Let Irr(G,K) denote the set of irreducible K representations (ρ, V )

(ρ is the representation map and V the representation space) of the group G up to
isomorphism. That is, the quotient set of all irreducible representations of a group
G on the field K modulus G-isomorphism.

Note that for two representations over K (ρ, V ), (ν,W ) to be isomorphic, the
K-vector spaces V and W must be K-isomorphic and the matrix realizations ρ :

V −→ Aut(V ) and ν : W −→ Aut(W ) must be the same. We will often consider
representations of a group over non isomorphic vector spaces, and they will obviously
be non isomorphic. And it may mislead us to think that Irr(G,K) never carries a
vector space more than once. For an example of this, see (A.3.1).

One of our purposes will be to determine, for a given representation of a group,
which irreducible representations of it generate it. Since we consider irreducible
representations up to isomorphism, the following definition is comprehensible.

Definition 4.13. If W ∼= W ′ and W ′ ⊂ V is a subrepresentation. We will say that
W is contained in V .

The intuition for eigenspaces given in (§A.1) motivates the following definition.
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28 Finite-dimensional representations

Definition 4.14. For V and W two representations of a group G, and W irreducible,
we define the multiplicity of W in V as

dimCHomG(W,V )

Intuition 4.1. One can think of it as the number of ways in whichW can be embedded
in V . Again, the interest of this will be to quantify the number of times that each
irreducible representation is contained in a given representation.

More formally, given V a representation of G a compact group, by (4.10) we now
that V =

⊕
i Vi with every Vi irreducible. Then,

dimCHomG(Vj ,W ) = dimCHomG(Vj ,
⊕
i

Vi) =
∑
i

dimCHomG(Vj , Vi)

And by Schur’s Lemma (4.11), each dimCHomG(Vj , Vi) is 1 if the pair is iso-
morphic and 0 otherwise. So dimCHomG(Vj , Vi) is the number of times that the
representation Vj appears in the decomposition into irreducible representations of
Vj .

4.4 Existence of a decomposition

In order to see that

V =
⊕
i

dimCHomG(Vi, V )⊗ Vi

with {Vi}i pairwise non-isomorphic. We will see that⊕
W∈Irr(G,C)

dimCHomG(W,V )⊗W ∼= V

that is, that they are G-ismorphic vector spaces. We first need to provide the left
hand-side with a G-module structure. Let G act on each HomG(W )(V )⊗W by

G× (HomG(W,V )⊗W ) −→HomG(W,V )⊗W

(g, f ⊗ w) 7→ f ⊗ gw

Then, we will just consider the G-module structure in the direct sumas the nat-
urally inherited one from the representation in each summand.

Proposition 4.15. The map

dW : HomG(W,V )⊗W −→ V

f ⊗ w 7→ f(w)

is a G-morphism.
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4.5 The fixed points subspace 29

Proof. It is linear in HomG(W,V )⊗W because it is bilinear in HomG(W,V )×W .
To see that it is a G-morphism, let g ∈ G and f ⊗w ∈ HomG(W,V )⊗W . Then,

dW (gf ⊗ w) = dW (f ⊗ gw) = f(gw) = g(f(w)) = gdW (f ⊗ w)

Where we have used that f is a G-morphism.

Proposition 4.16. If V is a representation of a compact Lie group G, the map

d =
⊕

W∈Irr(G,C)

dW :
⊕

W∈Irr(G,C)

HomG(W,V )⊗W −→ V

is a G-isomorphism.

Proof. See (A.3.2).

Remark 4.1. This proposition is difficult to understand the first time one looks at
it. It is important to note that every Vi irreducible in the decomposition of V is in
Irr(G,C) only once, but it does not mean that a representation in Irr(G,C) appears
only once in the decomposition of V . Indeed, it can appear several times, and that
is were multiplicity comes in.

From now one, and according to the intuition given in (4.1) and the fact that
dimV ⊗ U = dimV dimU , we will denote such representations in the two following
ways, understanding that ni = dimCHomG(Vi,W,).

n⊕
i=0

HomG(Vi, V )⊗ Vi =
n⊕
i=0

niVi

4.5 The fixed points subspace

To prove some interesting properties of the, yet to be defined, character of a
representation, we will need to see an interesting property given by the projection
operator in the fixed points subspace.

Throughout this section, let V be a finite-dimensional representation over the
field K of a compact Lie group G.

Definition 4.17. Let

V G := {v ∈ V | gv = v ∀g ∈ G}

denote the fixed points set of the representation V .
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30 Finite-dimensional representations

Proposition 4.18. V G is a subspace of V .

Proof. It is not empty since 0 ∈ V G for the representation is linear. Let u, v ∈ V G,
λ ∈ K. Now, g(u+ λv) = gu+ λgv = u+ λv ∈ V G again because of the linearity of
the representation.

We imposed G to be compact so we can integrate over the whole G. This allows
us to consider the projection operator. Recall that in (§ 4.2) we took the Haar
measure normalized to 1.

Definition 4.19. Let

p : V −→ V G

v 7→
∫
G
gv dg

be the projection operator into V G. Equivalently, p is the linear V -endomorphism
defined as

p =

∫
G
ρg dg

It really has V G as its image due to the left-invariance of the measure in G. And
p|V G= IdV G . We will see later that its interest for us will be when we consider it as
p : Hom(V,W ) −→ Hom(V,W )G = HomG(V,W ). Let’s see that it is actually true.

Proposition 4.20. Hom(V,W )G = HomG(V,W ) and hence

p : Hom(V,W ) −→ HomG(V,W )

Proof. ⊆)

Let f ∈ Hom(V,W )G, v ∈ V and g ∈ G. Then, since gfg−1 ≡ f , f(gv) =

gf(g−1gv) = gf(ev) = gf(v) and so f ∈ HomG(V,W ).
⊇)

Let f ∈ HomG(V,W ), v ∈ V and g ∈ G. Then, gf(g−1v) = gg−1f(v) = ef(v) =

f(v) and so f ∈ Hom(V,W )G.

Lemma 4.21. If V is irreducible, then for any f ∈ Hom(V, V ),

p(f) =

∫
G
gfg−1 dg =

1

dimC V
Tr(f) IdV
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4.6 The character of a representation 31

Proof. As we said before, p(f) ∈ HomG(V, V ), and since V is irreducible and by
Schur’s Lemma, it is p(f) = λIdV ∃λ ∈ C.

Then, on the one hand,

Tr(p(f)) = Tr(λIdV ) = λTr(IdV ) = λ dimC V

using (A.1, vi) and the fact that we take the measure of G normalized to 1.
The trace is a linear map Hom(V, V ) −→ C and the integral commutes with any

linear map and so with the trace. Then, on the other hand,

Tr(p(f)) = Tr(
∫
G
gfg−1 dg) =

∫
G

Tr(gfg−1) dg =

∫
G

Tr(f) dg = Tr(f)

where we used (A.1, ii). And therefore, λ = Tr(f)
dimC V

Lemma 4.22. The projection operator p, seen as an endomorphism p : V −→ V G ⊂
V has trace Tr(p) = dimC V

G

Proof. Let v1, ..., vℓ be a basis for V G, and complete it to v1, ..., vℓ, vℓ+1, ..., vn a basis
for the whole V . Then, the matrix of p in this basis has the formIdimC V G A

0 0


since Im(p) = V G = ⟨vℓ+1, ..., vn⟩ and p|V G= IdV G as we said. Then, it is clear that,
Tr(p) = Tr(IdimC V G) = dimC V

G

4.6 The character of a representation

We now define the invariant for representations that we insinuated in the previous
section.

Definition 4.23. The character of a representation is the map

χV : G −→ C
g 7→ Tr(ρg)

Properties 4.1. The character of a representation has the following properties.

i. χV ∈ C∞(G,C).

ii. χV⊕W = χV + χW
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32 Finite-dimensional representations

iii. χV⊗W = χV · χW

iv. χV = χV ∗ = χV

v. χHom(V,W ) = χV · χW

Proof. i Since g 7→ lg = (aj,i(g)) is smooth, g 7→
∑

i ai,i(g) = χV (lg) is also
smooth.

ii Let ρ(g) = ρV (g)⊕ ρW (g) ∈ Aut(V ⊕W ) denote the direct sum representation.
Then, taking any basis for V and for W , the its matrix representation will be
block diagonal (

ρV (g) 0

0 ρW (g)

)
and therefore the trace will be the sum of the traces of each block matrix in the
diagonal, Tr(ρV (g)) + Tr(ρW (g)).

In particular, if V =W ⊕ n· · · ⊕W , then χV = χW +
n· · ·+ χn = nχW .

iii Immediate from (A.1, iv).

iv χV = χV follows from (A.1, v). And χV ∗ = χV since V ∗ ∼= V as representations,
as shown in (A.15).

v Since, as seen in (A.6.5) Hom(V,W ) ∼= V ∗⊗W as representations, then χHom(V,W ) =

χV ∗⊗W and by (iii), χV ∗⊗W = χV ∗χW which, thanks to (iv), we know that is
equal to χV χW .

Having seen interesting linear properties of the character, we will look at how it
behaves under the inner product in L2(G). We define it as

⟨χV , χW ⟩ =
∫
G
χV (g)χW (g)dg

The following theorem will show us the key information that the trace provides
us for its future usage.

Theorem 4.24. Let V be a finite dimensional representation of a compact Lie group
G. Then,

i.
∫
G χV (g)dg = dimV G

ii. ⟨χW , χV ⟩ =
∫
G χW (g)χV (g)dg = dimCHomG(W,V )
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4.7 Uniqueness of the decomposition 33

iii. If V and W are irreducible, then∫
G
χW (g)χV (g)dg =

{
1 if V ∼=W

0 otherwise

Proof. i. Using that the integral and the trace commute and the definition of p,
we get ∫

G
χV (g)dg =

∫
G

Tr(ρg)dg = Tr(
∫
G
ρgdg) = Tr(p)

and by (4.22), we know Tr(p) = dimC V
G.

ii. By (4.1, v), χHom(W,V ) = χWχV . By, (i),
∫
G χHom(W,V ) dg = dimHom(W,V )G.

But since Hom(W,V )G = HomG(W,V ) by (4.20), the stated result is true.

iii. By (ii), the left expression is equal to dimCHomG(W,V ). And if they are irre-
ducible, the rest follows straight from Schur’s Lemma.

4.7 Uniqueness of the decomposition

Theorem 4.25. A finite dimensional representation of a compact Lie group is de-
termined by its character.

To clarify what we mean here. Let R(G,C) the set of all finite dimensional
representations over C of a compact Lie group G, modulus G-isomorphism. Let [V ]

denote the equivalence class of a representation V . Then,

χV ≡ χW ⇐⇒ [V ] = [W ]

The left-right implication follows immediately from that the character is invariant
under conjugation. Therefore, we will just prove the right-left one. Proposition (4.8)
shows us that any such representation admits a decomposition into irreducibles of
the following form

V ∼=
n⊕
i=0

niVi

we will see then that the ni are dictated by the character of V .

Proof. Let V break into irreducibles as V ∼=
⊕n

i=0 niVi, then,

⟨χV , χVℓ⟩ = ⟨χ⊕n
i=0 niVi , χVℓ⟩ = ⟨

n∑
i=0

niχVi , χVℓ⟩
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34 Finite-dimensional representations

=
n∑
i=0

ni⟨χVi , χVℓ⟩ = nℓ⟨χVℓ , χVℓ⟩ = nℓ

Using property (iii) of (A.1).

Now, it is easy to prove the uniqueness of the decomposition.

Theorem 4.26. Any finite dimensional representation of a compact Lie group de-
composes uniquely (up to isomorphism) as a direct sum of irreductibles times their
multiplicity.

Meaning that, considering some representatives Vi ∈ [Vi] ∈ Irr(G,C), if

V =

n⊕
i=0

niVi =

n⊕
i=0

miVi

then, ni = mi ∀i = 0, ..., n.

Proof. As (4.25) proved, ni = ⟨χV , χVi⟩ = mi.

Theorem (4.25) has the following corollary, which we will use in chapter (5).

Corollary 4.27. Let V be a finite-dimensional representation of a compact Lie gorup
G. Then, if ⟨χV , χV ⟩ = 1, V is irreducible.

Proof. By contraposition. Suppose V is reducible. Then, as G is compact, V =

W1 ⊕W2 non-trivially. And χV = χW1 +χW2 . Observe that ⟨χV , χV ⟩ > 0 since it is
equal to dimCHomG(V, V ) and Id ∈ HomG(V, V ).

Then,

⟨χV , χV ⟩ = ⟨χW1 + χW2 , χW1 + χW2⟩
= ⟨χW1 , χW1⟩+ ⟨χW2 , χW2⟩+ ⟨χW1 , χW2⟩+ ⟨χW2 , χW1⟩
≥ 2 + ⟨χW1 , χW2⟩+ ⟨χW2 , χW1⟩
≥ 2

As the summands ⟨χWi , χWj ⟩ are positive as stated in (4.24).

And it serves as a converse of Schur’s Lemma, as shows the following corollary.

Corollary 4.28. A finite dimensional representation V of a compact Lie group G

is irreducible if, and only if, for every f ∈ HomG(V, V ), f = λId ∃λ ∈ C.

Proof. One implication is Schur’s Lemma. The other one is an immediate conse-
quence of (4.27).
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4.7 Uniqueness of the decomposition 35

A shocking result from this, which will be used in (§6.2.3), is that if V is an irrep
of G, then so it is any tensor product of it.

Proposition 4.29. If V and W are irreducible representations of G and H respec-
tively, then V ⊗W is an irreducible representation of G×H.

Proof. Property (4.1, iii) was based upon the matrix realization of the representation,
and therefore remains valid even if we letG act on the first factor andH in the second.
The resulting matrix will still be their Kronecker product and so their character will
still be the product of each one’s. Therefore:

⟨χV⊗W , χV⊗W ⟩ = ⟨χV χW , χV χW ⟩ =
∫
G×H

χV (g)χW (h)χV (g)χW (h)dgdh

=

∫
G
χV (g)χV (g)dg

∫
H
χW (h)χW (h)dh = ⟨χV , χV ⟩⟨χW , χW ⟩ = 1 · 1 = 1

And therefore, by (4.28), it is irreducible.
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Chapter 5

The irreducible representations of
SO(3)

5.1 The relation between SU(2) and SO(3)

Though we are stugying SO(3), we will study before SU(2). We will need this
because for this second group, we will be able to use an analysis result in order to
show that we have found each one of its irreducible representations. However, this
argument does not hold for SO(3), and we will classify its representations thanks to
the 2 : 1 relation existing between him and SU(2).

The irreducible representations of SU(2) are computed explicitly in A.4. The
result us gathered in the next theorem.

Theorem 5.1. The irreducible representations of SU are, up to isomorphism, {Vn}n∈N.
Where

Vn := {P (z1, z2) | P is homogeneous of degree n} ⊂ C[z1, z2]n

in which SU(2) acts in their coordinates by

SU(2)× Vn −→ Vn

(g, P (z1, z2)) 7→ P ((z1, z2)g)

5.2 Representations of SO(3)

We will use of course the preceding results to find the irreps of SO(3). Using the
isomorphism π of B.22, we will see that there is a correspondence between suitable
irreducible representations of SU(2) and the ones of SO(3).
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38 The irreducible representations of SO(3)

Proposition 5.2. If V is an irrep of SO(3), then it is also an irrep of SU(2) (by
pullback).

Proof. Consider the following diagram

SU(2)

SO(3) Aut(V )

π
π∗ρ

ρ

π∗ρ is the pull-back by π and, since π is a Lie groups morphism, π∗ρ also is for
being a composition of Lie groups morphisms. It proves that V is a representation
of SU(2).

Now, let’s see that if V is irreducible for SO(3) then so it is for SU(2). Let
W ⊂ V such that π∗ρ(SU(2))W ⊂W . Since π is surjective, it means that ρgW ⊂W

∀g ∈ SO(3), so W = {0} because W is irreducible for SO(3).

Proposition 5.3. If V is an irrep of SU(2) in which −Id acts as the identity, then
it is also an irrep of SO(3) (by the factorization through the quotient).

Proof. Recall that SO(3) ∼= SU(2)/{Id,−Id}. For V satisfying the assumptions of
the statement, consider the following diagram

SU(2)

SO(3) ∼= SU(2)/{Id,−Id} Aut(V )

π
ρ

ρ

Where ρ is defined as

ρ : SO(3) ∼= SU(2)/{Id,−Id} × V −→ V

([g], v) 7→ gv = ρgv

It is well defined since, for [g1] = [g2] ∈ SU(2)/{Id,−Id} ∼= SO(3), ρ([g1], v) =

ρ(g1, v) = ρg1(v) = ρ±Idρg1(v) = ρ±g1(v) = ρg2(v) = ρ(g2, v) realizing that [g1] =

[g2] =⇒ g2 = ±g1. It is continuous since ρ ◦ π = ρ which is continuous, then ρ is
continuous by the universal property of the quotient topology. It proves that it is a
representation of SO(3).

To see that if it is irreducible for so SU(2) then it is also for SO(3), letW ⊂ V such
that ρ(SO(3))W ⊂ W . Take g ∈ SU , then ρ[g]W ⊂ W and therefore, ρgW ⊂ W .
Since this is valid for every g ∈ SU(2), W = {0}.
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Lemma 5.4. In Vn, −Id ∈ SU(2) acts as (−1)nId.

Proof. Take the basis Bn given in (§A.4). Then,
−IdPk = (−z1)k(−z2)n−k = (−1)nzk1z

n−k
2

This discussions proves:

Proposition 5.5. The irreps of SO(3) are exactly {V2n}n∈N.

We will denote Wn := V2n. Note that dimCWn = 2n + 1. Though we have
found and characterized all irreps of SO(3), the action of SO(3) in them is far from
clear. We now wonder for a more suitable characterization of them, and we will
see that they can be realized as the harmonic polynomials. Since SO(3) acts in
a natural way in functions from R3 by f((x1, x2, x3)) 7→ f((x1, x2, x3)A) and we
already used homogeneous polynomials for SU(2), it seems reasonable to start by
them. However, as the next proposition shows, the space of homogeneous complex
polynomials on three real variables C[x1, x2, x3]n is not irreducible under SO(3) in
general (see (A.13)).

Definition 5.6. Being ∆ = ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
the laplacian operator, the harmonic

polynomials of dergree ℓ are defined as

Hℓ := {P ∈ C[x1, x2, x3]ℓ | ∆P = 0}

Throughout this work, sometimes Hℓ will also used to denote what will be called
the spherical harmonics. These will be just the harmonic polynomials restricted to
S2. Since they are a function of a 2-dimensional manifold, when we call a function
a spherical harmonic we will use solely two variables: the angular variables θ and ϕ.
This, however, is no abuse of notation indeed, since the homogeneous polynomials
of three real variables and their restrictions in S2 are under a 1 : 1 correspondence.
This is because a harmonic polyonial P of degree ℓ is in particular a homogeneous
function of degree ℓ, and therefore its value in any point rn ∈ R3 is determined
by P (rn) = rℓP (n), with n ∈ S2. However, it is convenient to work on them as
polynomials since they are easier to manipulate.

Proposition 5.7. The space of harmonic polynomials of degree ℓ has dimension
dimC(Hℓ) = 2ℓ+ 1.

Proof. See (A.5).

Proposition 5.8. The space Hℓ of harmonic polynomials of degree ℓ is an irreducible
SO(3) representation.

Proof. See (A.5).
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40 The irreducible representations of SO(3)

5.3 The casimir operator

5.3.1 The Lie algebra so(3)

We will construct the Lie algebra so(3) of SO(3) here geometrically as a vector
field of tangent vectors. For this, we will need to use the fact that SO(3) is a three-
dimensional manifold.

Intuition 5.1. Fixing an orientation, a rotation in R3 is determined by the axis and
the angle. A point in S2 determines an axis. The angle of rotation is θ ∈ T. We can
map points in θS2 to counterclockwise rotations along their axis of angle θ. However,
both p and −p correspond to the same axis and then (p, θ) is the same rotation than
(−p, 2π − θ). What we can do is, instead of taking θ ∈ [0, 2π], to take it in [0, π].
Then, (p, θ1) and (−p, θ2) are mapped to the same rotation iif θ1 ≡ −θ2 (mod 2π),
so only for θ = π. Thus, we end up with a filled sphere of radius π whose surface
points are identified along the antipodal relation.

Then, it suffices to compute the derivation at the identity of three paths along
it, as long the velocities end up being linearly independent.

Take a matrix realization of the group SO(3) in a given orthonormal basis and
then consider a curve in SO(3) γ(θ) of rotations along the axis of the first basis vector
for angles θ in an open neighborhood of 0. Then, γ(0) = I and we look for γ′(0)

γ(θ) =

1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

 γ′(θ) =

0 0 0

0 − sin(θ) − cos(θ)

0 cos(θ) − sin(θ)



γ′(0) =

0 0 0

0 0 −1

0 1 0

 = Z1

The same computation for rotations along the axis for the second and third
vectors of the basis yield the reamining two elements Z2 and Z3. Altogether we
obtain the three following elements of so(3) which are linearly independent and
therefore generate so(3):

Z1 =

0 0 0

0 0 −1

0 1 0

 Z2 =

 0 0 1

0 0 0

−1 0 0

 Z3 =

0 −1 0

1 0 0

0 0 0
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5.3 The casimir operator 41

Let ρ be the representation of SO(3) in C∞(R3,R). Then,

SO(3) Aut(C∞(R3,R))

so(3) End(C∞(R3,R))

ρ

exp

Lρ

exp

And it can be proven (see [5], Ch 3, §6, p.107) that Lρ(X) is the operator

Lρ(X) = lim
t→0

ρexp(tX) − Id
t

which acts in C∞(R3,R) as

Lρ(X)f(x) = lim
t→0

ρexp(tX)(f(x))− f(x)

t

where ρexp(tX)(f(x)) = f(x exp(tX)). Denoting Lρ(X) = LX , ρg(f) = g · f and
exp(X) = eX , it can be rewritten as

LXf(x) = lim
t→0

etX · f(x)− f(x)

t
= lim

t→0

f(xetX)− f(x)

t
=

d

dt

∣∣∣∣
t=0

f(xetX)

Then, LX is a vector field in C∞(R3,R) as defined in (B.10). And since R3

admits a global chart given by the identity, LX can be expressed as

LX = a1(x)
∂

∂x1
+ a2(x)

∂

∂x2
+ a3(x)

∂

∂x3

And to explicitly compute ai(x) for X, make it act on any function f(x), then

LXf(x) =
d

dt

∣∣∣∣
t=0

f(xetX) = dxf ◦ d0xetX = dxf ◦ d

dt

∣∣∣∣
t=0

xetX

= dxf ◦ xXe0X = dxf ◦ xXI = dxf ◦ xX

And in the basis { ∂
∂x1

, ∂
∂x2

, ∂
∂x3

}, for TR3,

dxf =


∂f
∂x1
∂f
∂x2
∂f
∂x3


and so, by writing xX = (a1(x), a2(x), a3(x)):
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dxF ◦ xX =


∂f
∂x1
∂f
∂x2
∂f
∂x3

(a1(x) a2(x) a3(x)
)
= a1(x)

∂f

∂x1
+ a2(x)

∂f

∂x2
+ a3(x)

∂f

∂x3

Therefore, we can write the operator LX as

LX = ∇(·)xX

And this allows us to now understand the global derivation operators in C∞(R3,R)
to which each Zi is mapped to by Lρ.

A simple matrix multiplication shows:

xZ1 = (0, x3,−x2) xZ2 = (−x3, 0, x1) xZ3 = (x2,−x1, 0)

and therefore:

LZ1 = x3
∂

∂x2
− x2

∂

∂x3
LZ2 = −x3

∂

∂x1
+ x1

∂

∂x3
LZ3 = x2

∂

∂x1
− x1

∂

∂x2

5.3.2 Introducing the Casimir operator

As we said, there is no composition rule in so(3). However, the image of Lρ lies
in End(C∞(R3,R)) in which there is indeed one.

Now, we must take into account that Lρ will be a morphism of Lie algebras from
so(3) to End(C∞(R3,R)) but it will not respect the product in the second space.
Moreover, [LX , LY ] ∈ Im(Lρ) but LXLY may not.

After these considerations, let

C = L2
Z1

+ L2
Z2

+ L2
Z3

be the casimir operator.
It is important to remember here that L is not a morphism under composition,

so trying to see it from the relationhip of Z2
1 +Z

2
2 +Z

2
3 with Zi will be pointless. So,

we are left with two options: to explictly compute the operator C as a composition
of vector fields and then seeing that it commutes with the other vector fields, or to
try to translate to Im(Lρ) the properties of the Lie bracket in so(3).

Proposition 5.9. The commutation relations in so(3) are as follows:

[Z2, Z3] = Z1 [Z3, Z1] = Z2 [Z1, Z2] = Z3
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5.3 The casimir operator 43

This is not proved here since it is just a matrix computation for the explictly
given elements.

Proposition 5.10. C commutes with every LZi .

Proof. See (B.3.1).

A direct consequence of this proposition is that, because {Zi}i=1,2,3 are a basis
of so(3), C commutes with every LX X ∈ so(3).

For the explicit computations under spherical coordinates, see (B.3.2).

Theorem 5.11. The Casimir operator in spherical coordinates is written:

C = L2
Z1

+ L2
Z2

+ L2
Z3

=
1

cos2 θ

∂2

∂θ2
− tanϕ

∂

∂ϕ
+

∂2

∂ϕ2
(5.1)

Proof. Straightforward computation following the expressions of each L2
Zi

given in
(B.19). It is convenient to observe that

tan2 ϕ+ 1 =
sin2 ϕ

cos2 ϕ
+

cos2 ϕ

cos2 ϕ
=

sin2 ϕ+ cos2 ϕ

cos2 ϕ
=

1

cos2 ϕ

We will not prove the following lemma, but rather refer the reader to ([3], p.182),
taking into account that he is taking ϑ ∈ (0, π) while we take ϕ ∈ (−π

2 ,
π
2 ).

Lemma 5.12. The angular part of the laplacian, M̂2 is written under this spherical
coordinates as:

M̂2 =
1

cos2 ϕ

∂2

∂θ2
+

1

cosϕ

∂

∂ϕ
(cosϕ

∂

∂ϕ
)

=
1

cos2 ϕ

∂2

∂θ2
− tanϕ

∂

∂ϕ
+

∂2

∂ϕ2

The relevant conclusion of this section is that we have an operator C which
despite not belonging to Im(Lρ) can be proven to commute with every element in it
using the Lie bracket and which ended up being the angular part of the laplacian.
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44 The irreducible representations of SO(3)

5.3.3 The Casimir acting on Hℓ

Proposition 5.13. The Casimir is an endomorphism of Hℓ.

Proof. This might be trivial but it was mind-blowing to me the first time. If we look
at the expression of C given in (5.1) it is not trivial that C : Hℓ −→ Hℓ. However, if
we turn back to its definition as being C = L2

Z1
+ L2

Z2
+ L2

Z3
then it is evident that

C is an endomorphism of Hℓ for each LZi belongs to LAut(Hℓ) = End(Hℓ).

Proposition 5.14. The Casimir as C : Hℓ −→ Hℓ is a SO(3)-morphism.

Proof. It only remains to show that it commutes with every automorphism of the
representation. Let’s look again at the following diagram:

SO(3) Aut(Hℓ)

so(3) End(Hℓ)

ρ

exp

Lρ

exp

And recall that since SO(3) is compact and connected, the exponential map
exp : so(3) ↠ SO(3) is surjective (3.11).

Since Hℓ is finite-dimensional, each ρg ∈ Aut(Hℓ) and Lρ(X) ∈ End(Hℓ) can be
expressed by a matrices given a basis. And therefore, by (3.10), the exponential
map is given by matrix exponentiation. And so is for SO(3) since it is also a matrix
group.

In (§5.3.2) we showed that C commuted with every element of Im(Lρ).
Now, take g ∈ SO(3). Then, since the exponential map is surjective, ∃X ∈ so(3)

such that eX = g. And using that the diagram commutes, Cρ(g) = Cρ(eX) =

CeLρX = eLρXC = ρ(eX)C = ρ(g)C. Where we also used that if [A,B] = 0, then
[A, eB] = 0 ∀A,B ∈ GL(n,C).

Theorem 5.15. The angular part of the laplacian operator acts as a constant times
the identity in each Hℓ.

Proof. As concluded in the end of (§5.3.2), the Casimir is the angular part of the
laplacian. By (5.14), it is a SO(3)-morphism of the representations Hℓ. And therefore,
by Schur’s Lemma, for they are irreducible representations of a compact Lie group,
it must act as a constant times the identity.

Remark 5.1. It does not mean that the Casimir acts as a constant times the identity
in the whole space C∞(S2). The constants by whom it acts in each Hℓ can be
different for each one of these spaces. Indeed, it can be shown that this constant is
exactly ℓ(ℓ+ 1).
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Chapter 6

Infinite-dimensional
representations on homogeneous
spaces

6.1 Homogeneous spaces

Looking at the action of SO(3) in R3, we observed in chapter (2) that it had its
limitations. Notably, SO(3) had several orbits: rS2 for each r ∈ R+. We may look
for spaces in which G acts as it pleases, transforming any object to any other object
in it. We hope it justifies the following definition.

Definition 6.1. A smooth manifold X in which a Lie group acts smoothly and
transitively is called a homogeneous space (under G).

Lemma 6.2. E(x) is a closed subset of G for any x ∈ X.

Proof. Since, as seen before ρ = ρ ◦ ι, it is continuous. Then, ρ−1({x0}) is a closed
subset of G (for being the preimage of a closed set). But ρ−1({x0}) is precisely
E(x).

We will later see some crucial results related to the action that G has to itself.
These results will extend to homogeneous spaces thanks to the following result. Note
that, G/H admits a smooth manifold structure (cf. B.20).

Proposition 6.3. If X is homogeneous under G. Let H := E(x0) be the stabilizer
of some point x0 ∈ X. Then,

X ∼= G/H

as smooth manifolds.
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46 Infinite-dimensional representations on homogeneous spaces

Proof. Let

ρ : G/H −→ X

gH 7→ gx0

Since we are not imposing H to be a normal subgroup, note that G/H may not
be a group. And also we have to make a choice to define G/H as the right or the
left cosets of H. But since we need compatibility with the left-action, we will choose
the left-cosets:

G/H := {gH | g ∈ G}

To see that it is well defined: if g1H = g2H, then g−1
2 g1 ∈ H. And therefore,

g2x0 = g2(g
−1
2 g1)x0 = g2g

−1
2 g1x0 = eg1x0 = g1x0.

It is injective since, if ρ(g1H) = ρ(g2H), then g1x0 = g2x0 =⇒ g−1
2 g1x0 = x0 =⇒

g−1
2 g1 ∈ H =⇒ g1H = g2H.

It is surjective because, thanks to the transitivity of the action of G, for y ∈ X,
∃g ∈ G such that gx0 = y. And therefore ρ(gH) = gx0 = y.

To see continuity, invoque the universal property of the quotient topology. Then,
ρ : G/H −→ X is continuous if, and only if, ρ ◦ π : G −→ X is continuous. But
ρ ◦ π = ρ, which is continuous by assumption.

It is open since it is a continuous map onto a compact and Hausdorff space (X
is compact since it is the image of G under G −→ X; g 7→ gx for any x ∈ X, a
continuous function of a compact space).

To see smoothness. Let ι denote the inclusion

ι : G× {x0} ↪→ G×X

(g, x0) 7→ (g, x0)

Then ι is smooth. We get the following commutative diagram

G×X X

G× {x}

ρ

ι
ρ

And ρ = ρ ◦ ι, a composition of smooth functions and hence smooth.

Proposition 6.4. Let G be a Lie group. The action of G into himself by left-
translation makes G a G-homogeneous space.
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6.2 The Peter-Weyl theorem 47

Proof. Left multiplication in G is smooth. And it has only one orbit for g2g−1
1 takes

g1 to g2.

Due to this results, G can be seen as the universal homogeneous space under G.
In the sense that the properties regarding homogeneous spaces can all be deduced
from the ones exhibiting G himself as a homogeneous space. In the remain part of
the section we try to shed some light in this direction.

Now, combining (6.2) and (B.20). π : G −→ G/H is smooth. And therefore, any
function f : G/H −→ C yields a function G −→ C by pullback. In closer detail:

G C

G/H

π∗f

π
f

where π ∗ f = f ◦ π : G → G/H → C. And since π is smooth, these transport
of functions respects the smooth and continuous categories. This meaning that the
pullback by π∗, seen as a functor, takes

C∞(G/H,C) ↪−→ C∞(G,C)
C (G/H,C) ↪−→ C (G,C)
L2(G/H,C) ↪−→ L2(G,C)

6.2 The Peter-Weyl theorem

6.2.1 Representative functions

Definition 6.5. Let V be a finite dimensional representation of a compact Lie group
G. Let B be a basis for V and (aj,i(g))j,i the matrix realization of the representation
in this basis. Then, we define

T (V ) := SpanC({aj,i(g)}j,i)

as the representative functions of V .

We will observe two key properties concerning T (V ): the fact that they do not
depend on the basis and that this space is closed under G-translations.

sV : V ∗ ⊗ V −→ T (V )

u∗ ⊗ v 7→ u∗(gv)
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48 Infinite-dimensional representations on homogeneous spaces

Proposition 6.6. If f(g) ∈ T (V ), then f(hg), f(gh) ∈ T (V ) for any fixed h ∈ G.

Proof. This is a direct consequence of the representation for being a morphism of
groups. Let h ∈ G a fixed element. Then,

(aj,i(g))j,i(aj,i(h))j,i = (
∑
k

aj,k(g)ak,i(h))j,i = (aj,i(gh))j,i

Since h is a fixed element, aj,i(h) are fixed scalars and therefore aj,i(gh) is a linear
combinations of the functions {aj,i(g)}j,i.

Proposition 6.7. T (V ) does not depend on the chosen basis for V .

Proof. We will show that it is the image under a canonical map. Let

ℶ : V ∗ ⊗ V −→ T (V )

u∗ ⊗ v 7→ u∗(gv)

To see that it is well defined, let B = {v1, ..., vn} be the basis for which we defined
T (G), if we let (aj,i(g))j,i denote the matrix expression of the representation under
this basis, ℶ is determined by how it acts on {v∗i ⊗ vj}i,j which is a basis for V ∗ ⊗ V

and Imℶ = ⟨{ℶ(v∗i ⊗ vj)}j,i⟩. And ℶ(v∗j ⊗ vi) = aj,i(g). Having seen Imℶ ⊂ T (V ),
let’s see the other inclusion. Let f(g) =

∑
xj,iaj,i(g) ∈ T (V ). Then, f(g) =

ℶ(
∑
xj,iv

∗
j ⊗ vi).

Definition 6.8. Let G be a compact Lie group. We define the representative func-
tions of G as

T (G,C) := +
V ∈R(G,C)

T (V )

(By + we denote a sum of vector spaces, not necessarily direct.)

We want to extend the representation theory we know for finite spaces to this
one. For this, we will define in it an action of a group. Observe that G acts in G

(and so in L2(G,C)) both by left and right translation. The reader may guess that
the spaces V ∗ ⊗ V will play a significant role here and, as we have seen in (4.29), if
V and V ∗ are irreps of G, then V ∗ ⊗ V is an irrep of G × G. We denote left and
right translations as:

L : G× L2(G,C) −→ T (G,C)
(h, f(g)) 7→ f(hg)

R : G× L2(G,C) −→ T (G,C)
(h, f(g)) 7→ f(gh)
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6.2 The Peter-Weyl theorem 49

Note that defined this way, both L and R are right-actions, in contrast with the
rest of actions that have appeared in this work. But the theory developed for left
representations will of course still apply to right representations. The important
point is not whether they are right or left actions, but that both align, so that we
can define an action in the product G×G combining them.

(G×G)× T (G,C) −→ T (G,C)
((h1, h2), f(g)) 7→ f(h1gh2)

Proposition 6.9. T (G,C) is an algebra.

Proof. An element of T (G,C) will be a finite sum of elements in T (V ) for some V
representations and not necessarily the same. The product of two elements will be
the sum of the products of each sumand. Then, showing that for f1(g) ∈ T (V ) and
f2(g) ∈ T (W ) f1(g)f2(g) ∈ T (G,C ) will be enough. Fixing a basis BV for V and
BW for W , each fi(g) will be expressed as a linear combination of the corresponding
matrices entries. Their product will be a sum of products of the entries of the first
matrix for the ones of the second. Then, it suffices to show it for aj,i(g) and bk,l(g) two
matrix entries of the representations V and W in the basis BV and BW respectively.
Now, aj,i(g)bk,l(g) is an entry of the matrix (aj,i(g))j,i ⊗ (bk,l(g))k,l being this the
matrix realization in the basis BV ⊗ BW of the representation V ⊗W .

We will assume the following result, for a proof, refer to ([1], Ch III, §1; Ch II,
§2).

Proposition 6.10. HomG(V,T (G,C)) ∼= V ∗ and T (G,C) admits the following
decomposition

T (G,C) =
⊕

V ∈Irr(G,C)

V ∗ ⊗ V

The isomorphism between them is given by

ℶ =
⊕

V ∈Irr(G,C)

ℶV :
⊕

V ∈Irr(G,C)

V ∗ ⊗ V −→ T (G,C)

Our interest for us is that it shows that the multiplicity of V in T (G,C) is finite.
To see how big is T (G,C), we just have to see how big is Irr(G,C). And this is
going to be a consequence of the Peter-Weyl theorem of the next section.
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50 Infinite-dimensional representations on homogeneous spaces

6.2.2 Proving the Peter-Weyl theorem

Theorem 6.11. (Stone-Weierstrass) Let K be a compact topological space and A ⊂
C (K,C). Then, provided that A satisfies the following hypothesis:

i A is an algebra.

ii 1 ∈ A.

iii f ∈ A =⇒ f ∈ A.

iv A separates points of f .

Then, A is dense in C (K,C). (cf. [2], Ch IV, §28).

Let A = T (G,C). Then 1 ∈ A because G has the trivial representation in C
where it acts as Id and so has matrix (1) in the basis 1 of C. It is also an algebra
as showed in (6.9). We will see that A does actually satisfy all the requirements of
(6.11).

Lemma 6.12. If f ∈ A, then f ∈ A.

Proof. Under the same logic than for the proof of (6.9), it suffices to prove it for
aj,i(g) a matrix entry of the representation in V for a basis BV . As shown in (A.6), a
representation V arises another one V . If (aj,i(g))j,i is the matrix of the representa-
tion in V , then taking in V the same basis, the matrix of the conjugate representation
will be (aj,i(g))j,i and so aj,i(g) ∈ A.

Lemma 6.13. If G ⊂ GL(n,C) is a linear group, then A separates points.

Proof. Let h1 ̸= h2 ∈ G ⊂ GL(n,C). Then, they must differ in a coefficient, let it be
the corresponding to the entry j, i. Then, aj,i(g) separates the points h1 and h2.

Then, since G is compact, applying (6.11), we have proved:

Theorem 6.14. (Peter Weyl for linear groups) For G a linear Lie group, the repre-
sentative functions are dense in C (G,C).

C (G,C) = T (G,C)

Proof. We have just showed that A satisfies the conditions for the Stone-Weierstrass
theorem.
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6.2 The Peter-Weyl theorem 51

Lemma 6.15. Let C be a topological space and A ⊂ B ⊂ C provided with the
subspace topology. Then, if A = B and B = C, A = C.

Since, by definition, L2(K) is the completion of C (K) under the supremum
distance topology, C (K) is dense in L2(K). Then, Peter-Weyl and (6.15) prove:

Proposition 6.16. For a linear group G, the representative functions are dense in
L2(G).

6.2.3 Consequences of the Peter-Weyl theorem

The statements of this section are left without proof but illustrate some important
properties of compact Lie groups, which provide a justification for the study we have
performed. Namely, if we would not be assured that the set Irr(G,C) were finite,
maybe we would not have embarked in its study in order to simplify the problem of
the rotationally symmetric Schrödinger equation. For complete proofs, see ([1], Ch
3).

Theorem 6.17. Every compact Lie group admits a faithful representation.

Proposition 6.18. Let

G −→GL(n,C)
g 7→ (aj,i(g))j,i

be the expression in a certain basis of a faithful representation of the compact Lie
group G. And let U be the C-subalgebra generated by {aj,i(g)}j,i.

Then U = T (G,C).

The fact that T (G,C) is generated by a finite set as an algebra is no contradiction
with it being infinite dimensional. For instance, the polynomials R[x] are generated
as an algebra by {1, x}.

Let V be a faithful representation of a compact Lie group G and V the corre-
sponding conjugate representation. We define

V (k, l) := V ⊗ k· · · ⊗ V ⊗ V ⊗ l· · · ⊗ V
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52 Infinite-dimensional representations on homogeneous spaces

Theorem 6.19. Every irreducible representation of G is contained in some V (k, l).
In particular, Irr(G,C) is numerable.

Hence, we have achieved our goal and proved the following.

Theorem 6.20. For a compact Lie group G,

L2(G) =
⊕
n∈N

Vn

This meaning that L2(G) is a numerable direct sum of finite-dimensional represen-
tations.

6.2.4 Back to homogeneous spaces

The action R was defined in (§6.2.1) in order to satisfy the following property.

Proposition 6.21. The functions of G/H can be identified with functions G such
that are fixed under the action of the subgroup H by the right action R. This meaning
that the following are isomorphic as representations of G×G.

C (G/H,C) ∼= C (G,C)HR

Proof. Let
π∗ : C (G/H,C) −→ C (G,C)HR

f(gH) 7→ π∗f = f ◦ π(g)

be the pullback by the projection π : G↠ G/H and

π : C (G,C)HR −→ C (G/H,C)
f(g) 7→ f(gH)

π∗ is well defined: if f ∈ C (G/H,C), then π∗f(gh) = f ◦ π(gh) = f ◦ π(g) =

π∗f(g) and therefore π∗f ∈ C (G,C)HR . For π to be well defined, for f ∈ C (G,C)
πf must take the same value in any representative of an equivalence class of G/H.
But this is exactly the case, because if [g1] = [g2], then g−1

2 g1 ∈ H and πf([g2]) =

f(g2) = f(g2g
−1
2 g1) = f(g1) = πf([g1]).

Both π∗ and π are linear maps. They are inverses of each other: if f ∈ C (G/H,C)
ππ∗f([g]) = π(f ◦ π)(g) = f([g]), and if f ∈ C (G,C)H π∗πf(g) = π∗f([g]) =

f(g).
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6.3 The laplacian spectrum in L2(S2) 53

Proposition 6.22. Identifying T (V ) ∼= V ∗ ⊗ V ,

(V ∗ ⊗ V )HR = V ∗ ⊗ V H

Proof. Under the R, G representation acts on them by

R : G× V ∗ ⊗ V −→ V ∗ ⊗ V

(h, u∗ ⊗ v) 7→ Rhu
∗(gv) = u∗(ghv)

and so (V ∗ ⊗ V )HR = V ∗ ⊗ V H .

By (6.10), (6.21) and (6.22) we get:

T (G/H,C) = T (G,C)HR

= (
⊕

V ∈Irr(G,C)

V ∗ ⊗ V )

=
⊕

V ∈Irr(G,C)

(V ∗ ⊗ V )HR

=
⊕

V ∈Irr(G,C)

V ∗ ⊗ V HR

as G×G representations.

6.3 The laplacian spectrum in L2(S2)

For SO(3), we already found all its irreducible representations:

Irr(SO(3),C) = {Hℓ | ℓ ∈ N}

Let H ⊂ SO(3) be the stabilizer of some point in S2.

Proposition 6.23. HHR
ℓ = C.

Proof. By HHR
ℓ we mean HHℓ for the right action of SO(3). Now, H is the stabilizer

of a point and therefore conjugate to {r(t)}t∈T where

r(t) =

1 0 0

0 cos t − sin t

0 sin t cos t
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54 Infinite-dimensional representations on homogeneous spaces

Since it is not easy to explictly give the space Hℓ we will use that Hℓ ∼=Wn
∼= V2n

∃n as representations of SO(3). And that the representation of SO(3) in V2n is
inherited by the one of SU(2).

Also, as we said, H ⊂ SO(3) is a closed subgroup and therefore a Lie group. Also,
π−1(H) ⊂ SU(2) is also closed for π is continuous and therefore π−1(H) is a closed
subgroup of SU(2). Then, the study of the representation of H in V2n is reduced to
the study of the corresponding one of π−1(H) in it.

π−1(H) =

{
R(t) =

(
eit 0

0 e−it

)}
t∈T

Now, the basis {Pk = zk1z
2n−k
2 }2nk=0 satisfies that R(t)Pk = ei(2k−2n)tPk, so a

condition for a vector v =
∑

k akPk to be fixed by R(t) is

R(t)
∑
k

akPk =
∑
k

akR(t)Pk =
∑
k

akλk(t)Pk =
∑
k

akPk

⇐⇒ ak(λk(t)− 1) = 0 ∀k

In other words: for every non null coefficient of v in this basis, the corresponding
eigenvalues λ(t) must be all 1 ∀t ∈ T. Let ζ be a primitive (2n+1)-root of the unity
(ζ = eiτ ∃τ ∈ T).

Then, ζ2k1−2n ̸= ζ2k2−2n for k1 ̸= k2 ∈ {0, ..., 2n}, since otherwise,

2n+ 1 | 2k1 − 2n− (2k2 − 2n) = 2(k1 − k2)

⇐⇒ 2n+ 1 | k1 − k2

which, since |k1 − k2|< 2n+ 1, implies k1 − k2 = 0 and so they are equal.
R(τ)Pn = ζ2n−2n = ζ0 = 1 and for the previous discussion, it is the only n for

which this happens. Therefore, dimV
π−1(H)
2n = 1 and so does dimHHℓ .

As discussed in (§6.1), S2 ∼= SO(3)/H, for (§6.2.4) and in the light of the above:

C (S2,C) ∼= C (SO(3)/H,C) =
⊕
ℓ∈N

H∗
ℓ ⊗ HHℓ =

⊕
ℓ∈N

H∗
ℓ ⊗ C =

⊕
ℓ∈N

H∗
ℓ

H∗
ℓ is an irreducible representation of SO(3) and has dimHℓ = 2ℓ+ 1. Up to iso-

morphism, there is exactly one irreducible representation of SO(3) of this dimension
and it is Hℓ, so the two are SO(3)-isomorphic. This, altogether with (6.15), allows
us to finally write

L2(S2) =
⊕
ℓ∈N

Hℓ
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6.3 The laplacian spectrum in L2(S2) 55

Which proves that any function f ∈ L2(S2) can be expressed as

f(n) =
∑
ℓ∈N

2ℓ+1∑
m=1

Yℓ,m(n)

as claimed in chapter 2.
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Appendix A

Algebraic appendix

A.1 An intuitive approach to representation theory

To understand the upcomming theory, let’s start by some linear algebra.
Consider the endomorphism ρ of R5 which, in the basis B = {e11, e21, e12, e22, e13}

has the following matrix:

Mρ =


1 1 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 3


Let Ei = ⟨{eji}j⟩ for i = 1, 2, 3. Then, R5 = E1⊕E2⊕E3. And ρ = ρ1⊕ ρ2⊕ ρ3,

with ρi = ρ|Ei .
However, E2 is still decomposable, for it breaks into ⟨e12⟩⊕⟨e22⟩ and ρ still respects

this decomposition. Moreover, if we think in the eigenspace Ker(ρ− 2Id), the spaces
⟨e12⟩ and ⟨e22⟩ are fundamentally the same, in the sense that they are just a one-
dimensional eigenspace corresponding to the eigenvalue 2.

One the other hand, E1 is undecomposable since it is already a Jordan form.
However, the two vectors e11, e21 are interchangeable, in the sense that, if e11, e21 is an
irreducible invariant subspace, then e21, e

1
1 still is. However, e21, e12 is not even an

invariant subspace. So, eigenvectors can be permuted as long as they correspond to
the same eigenvalue.

Since our object to study will be a generalization on eigenspaces, let’s first think
on them as a mathematical object with a structure. A natural question that arises is
what kind of maps will respect this structure. So, what maps will be its morphisms.

Following what we just discussed, for us, for two eigenspaces to be the same, they
should belong to the same eigenvalue. We look for a characterization of a map

57



58 Algebraic appendix

φ : Ker(ρ− λId) −→ Ker(ρ− µId)

such that φ satisfies it if, and only if, λ = µ. Of course, since eigenspaces are vector
spaces, we will impose our map to be linear.

Proposition A.1. For a not null linear map φ : Ker(ρ − λId) −→ Ker(ρ − µId),
λ = µ if, and only if, ρ and φ commute. Provided that the eigenspaces have dimension
greater than 0.

Proof. =⇒) For v ∈ Ker(ρ− λId), φ ◦ ρ(v) = φ(λv) = λφ(v). And ρ ◦ φ(v) = µφ(v)

since φ(v) ∈ Ker(ρ − λId). And since λ = µ, φ ◦ ρ(v) = ρ ◦ φ(v). It is valid
∀v ∈ Ker(ρ− λId) so the two maps commute.

⇐=) For v ∈ Ker(ρ−λId), since φ(v) belongs to Ker(ρ−µId), ρ ◦φ(v) = µφ(v).
Now, since they commute, ρ ◦φ(v) = φ ◦ ρ(v) = φ(λv) = λφ(v). Therefore, µφ(v) =
λφ(v). And since the eigenspaces are not empty and φ is not null, ∃v such that
φ(v) ̸= 0 and therefore λ = µ.

It justifies the following definition.

Definition A.2. For a linear map ρ : Rn → Rn, a map φ : Rn → Rn is said to be a
ρ-morphism if it is a linear map such that ρ ◦ φ = φ ◦ ρ.

More generally, for V an eigenspace of ρ, φ : V → Rn is said to be a ρ-morphism
if it is a linear map such that ρ ◦ φ = φ ◦ ρ|V .

We will see how this definition allows us to say formally how many times is the
one dimensional eigenspace of eigenvalue 2 of ρ in R5 in the initial example. Looking
at the diagonalization of Mρ, one would say that it is present twice, and can be
represented by ⟨e12⟩ or ⟨e22⟩. To express how many times is it inside Rn, we could
wonder how many ρ-eigenspaces morphisms do we have from ⟨e12⟩ (or ⟨e22⟩, but they
are ρ-isomorphic) to ⟨e12⟩. Since these maps form a vector space, we should better
think on its dimension. Let’s that it is actually 2.

The endomorphisms space we are considering is therefore

{φ ∈ Hom(⟨e12⟩,R5) | φ ◦ ρ = ρ ◦ φ}

If φ is one of them, then in the basis e11 and B, it has the matrix

φ =


a

b

c

d

e
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By contrast, ρ|⟨e12⟩ is written

ρ|⟨e12⟩=
(
2
)

and therefore, the commutation property becomes

φ ◦ ρ|⟨e12⟩==


a

b

c

d

e


(
2
)
= 2


a

b

c

d

e

 =


a+ b

b

2c

2d

3e

 =


1 1 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 3




a

b

c

d

e

 = ρ ◦ φ

⇐⇒


a = 0

b = 0

e = 0

c, d ∈ R

so it has dimension 2. It motivates the following definition.

Definition A.3. For ρ ∈ End(Rn) and V ⊂ Rn an eigenspace of ρ, dimHomρ(V,Rn) :=
dim{φ ∈ End(Rn) | [ρ, φ] = 0} is defined as the multiplicity of the ρ-eigenspace V in
Rn.

And we can think about it as the number of copies of V that are present in the
original vector space.

A.2 The trace map

A common trick used in mathematics in order to classify objects up to an equiv-
alence relation is to look for an invariant under this relation with the hope that it
will also be different for non-equivalent objects.

Since representations are classified up to a particular form of automorphism con-
jugation and we know that the trace map is invariant under these conjugations, it
makes sense to try to consider it as our potentially useful invariant.

A typical approach to define the trace, is to do it for a matrix realization of an
endomorphism in a finite-dimensional vector space and to see that it is invariant
under matrix conjugation, so it only depends on the morphism and not on the cho-
sen basis. We will take another approach, the same taken in [1], under which this
property is going to be trivial.

Proposition A.4. If V is a finite-dimensional K-vector space, then End(V ) ∼=
V ∗ ⊗ V , canonically.
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Proof. Consider the map

V ∗ × V −→End(V )

(f, v) 7→ vf

where vf : V −→ V, u 7→ f(u)v. It is bilinear and therefore it yields a linear
map

ξ : V ∗ ⊗ V −→ End(V )

acting on pure tensors as f ⊗ v 7→ vf .
To see that it is an isomorphism, we will consider its expression on a given basis,

the tensor basis given by {v∗i ⊗ vj}i,j for vi ∈ B a basis of V and v∗i ∈ B∗ the
corresponding dual basis.

Let’s see its injectiveness. Let x =
∑

i,j aj,iv
∗
i ⊗vj ∈ Ker ξ. Then, f = ξ(x) is the

null map. In particular, 0 = f(vℓ) =
∑

i,j aj,iv
∗
i (vℓ)vj =

∑
j aj,ℓvj . But since {vi}i

are linearly independent, this implies aj,ℓ = 0∀j, and doing this for ℓ = 1, ..., n we
get ai,j = 0 ∀i, j which implies x = 0 and thus ξ is injective.

To finish our proof, dimV ∗ ⊗ V = dimV ∗ dimV = n2 = dimEnd(V ), and hence
φ is an isomorphism.

Since it is an isomorphism, ξ−1 exists. It is important to see that though this
definition for ξ does not depend on the basis, if we take a basis for V ∗⊗V constructed
as in the previous proof from B a basis for V , then, ξ−1 states the matrix realization
of any endomorphism in the basis B.

Lemma A.5. In the previous notation, for f ∈ End(V ), if ξ−1(f) =
∑

j,i aj,iv
∗
i ⊗vj,

then the matrix of f in the basis B is (aj,i)j,i.

Proof. It means that f =
∑

j,i aj,ivjv
∗
i . So, f(vℓ) =

∑
j,i aj,ivjv

∗
i (vℓ) =

∑
j aj,ℓvj .

Definition A.6. We define the following linear map as the trace

Tr : End(V ) ∼= V ∗ ⊗ V −→ K

u⊗ v 7→ u(v)

What we saw in (A.5) allows us to show that this definitions corresponds to the
definition of the trace of a matrix. Fixing a basis B, if ξ−1(f) =

∑
j,i aj,iv

∗
i ⊗vj , then

Tr(f) =
∑

j,i aj,iv
∗
i (vj) =

∑
i ai,iv

∗
i (vi) =

∑
i ai,i. But since the basis is unrelated

to the definition of Tr it is direct that it does not depend on the basis in which we
express the endomorphism f .

Properties A.1. The trace map satisfies the following properties:
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i It is a linear map.

ii Tr(gfg−1) = Tr(f) ∀f ∈ End(V ), g ∈ Aut(V ).

iii Tr(f ⊕ g) = Tr(f) + Tr(g) ∀f ∈ End(V ), g ∈ End(W )

iv Tr(f ⊗ g) = Tr(f)Tr(g) ∀f ∈ End(V ), g ∈ End(W ).

v Tr(f) = Tr(f).

vi Tr(IdV ) = dimC V .

Proof. i Since the map

V ∗ × V −→K

(u, v) 7→ u(v)

is bilinear, then, by the universal property of the tensor product, Tr is linear.

ii Observe that we are not proving that it is basis-independent. It was already
immediate from the definition. What we are seeing here is that it is invariant
under automorphism conjugation (but we will use its matrix expression). To
make it more comprehensible, let tr : Mn×n −→ K denote the trace map defined
for matrices. Let φB be the matrix realization morphism to a given basis B. We
have just showed that Tr(f) = tr(φB(f)) for any B basis for V . Now, if we
observe that φB(gfg

−1) is the matrix realization of f in the basis B′ = g(B) it
follows

Tr(gfg−1) = tr(φB(gfg
−1)) = tr(φB′(f)) = Tr(f)

iii Let BV and BW be basis of V and W , then, the basis of f⊕g : V ⊕W −→ V ⊕W
in the basis BV ∪ BW is given by

Af ⊕Ag

Af 0

0 Ag


with Af and Ag being the corresponding matrices for f and g in their previously
mentionned basis. Then it is direct that Tr(Af ⊕ Ag) = Tr(Af ) + Tr(Ag), and
the desired result follows.

iv Let BV and BW be basis of V and W , respectively. Let A and B be the matrices
of f and g, respectively. Then, the matrix of f ⊗ g in the basis BV ⊗BW is given
by A⊗B, where ⊗ here stands for the Kronecker product. We can write it more
explicitly by
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A⊗B =

a1,1B · · · a1,nB
... . . .

...
an,1B · · · an,nB


where A = (aj,i)j,i. Then, the trace is the sum of the trace of each block in the
diagonal, that being

Tr(A⊗B) =
n∑
i=1

Tr(ai,iB) =
n∑
i=1

ai,iTr(B) = Tr(B)
n∑
i=1

ai,i = Tr(B)Tr(A)

v In (A.14) it is shown that if in a basis B the matrix of f : V −→ V is A, then
the matrix of f : V −→ V is A. Then, it is direct to see that Tr(f) = Tr(A) =
Tr(A) = Tr(f).

vi Immediate since the matrix of IdV is IdimC V .

A.3 Finite dimensional representations

A.3.1 Irreducible and non-isomorphic representations for the same
vector space

We have the following representations of T = ({eiθ}θ∈[0,2π], ·) for n ∈ N:

ρn : T −→ Aut(R2)

eiθ 7→

(
cos(nθ) − sin(nθ)

sin(nθ) cos(nθ)

)

ρn is irreducible over R for the characteristic polynomial of this matrices is x2 −
2x cos θ + 1 and, for θ ̸≡ 0, π (mod 2π) it has no real roots. And if n ̸= m, these
representations are not isomorphic because, if they were, they would be conjugated
and therefore would have the same trace. But they don’t because Tr(ρn) = 2 cos(nθ)

and Tr(ρm) = 2 cos(mθ). Hence, for n ̸= m ∈ N the equivalence classes of (ρn,R2)

and (ρm,R2) are different in Irr(TR).

A.3.2 Proofs for chapter 4

Proof. (of 4.11) Let φ : V −→ W be a G-morphism between these two irreducible
representations.
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i Kerφ is a subrepresentation. To show it: if v ∈ Kerφ, φgv = gφv = gv = 0

since φ is a G-morphism and hence commutes with the representation and the
representation is linear.

But since V is irreducible, it is whether Kerφ = V , and therefore φ ≡ 0, or
Kerφ = {0}. In this later case, Imφ ⊂W is a non null subspace of it. It is also a
subrepresentation of W because if y ∈ Imφ, then y = φx ∃x ∈ V . And therefore
gy = gφ(x) = φ(gx) =∈ Imφ. But W is irreducible so therefore it is whether
Imφ = {0} (which is impossible because φ is not the null map) or Imφ =W , so
φ is also surjective, being hence an isomorphism.

ii In particular, φ is a linear automorphism. We can therefore look for its eigenspaces.
The characteristic polynomial of φ has a root λ in C. Therefore, {0} ⊊ Ker(φ−
λId).

Let’s see that this space is G-invariant. If v ∈ Ker(φ − λId), then φ(gv) =

gφ(v) = gλv = λgv, therefore gv ∈ Ker(φ− λId).

Since it is a proper G-invariant subspace and V is irreducible, it is Ker(φ−λId) =
V and thus φ = λId.

iii If V ∼= W , (with this we mean that they are G-isomorphic), then there exist
G-isomorphisms between then, but since by (ii) they are multiples of Id, the
complex dimension of it is 1.

If V ≇ W and φ is a G-morphism between them, by (i) it is whether 0 or an
isomorphism. It cannot be an isomorphism for they are not isomorphic, so it is
the null map and therefore this space is {0} and has dimension 0.

Proof. (of 4.16) Let V =
⊕

i Vi a decomposition of V into irreducible subrepresen-
tations, which exists by (4.8). Then, plugging this into the definition of d, yields

⊕
W∈Irr(G,C)

HomG(W,
⊕
i

Vi)⊗W −→
⊕
i

Vi⊕
W∈Irr(G,C)

(
⊕
i

HomG(W,Vi))⊗W −→
⊕
i

Vi⊕
W∈Irr(G,C)

⊕
i

HomG(W,Vi)⊗W −→
⊕
i

Vi⊕
i

⊕
W∈Irr(G,C)

HomG(W,Vi)⊗W −→
⊕
i

Vi
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And therefore the study of the map d is reduced to the study its restriction to
each irreducible representation contained in V . It is going to be an isomorphism iff
every restriction to Vi is. This is, to the study of

di :
⊕

W∈Irr(G,C)

HomG(W,Vi)⊗W −→ Vi

Let now Vi be irreducible. In Irr(G,C) there is exactly one element isomorphic to
Vi by definition (its equivalence class). And by Schur’s Lemma, dimCHomG(W,Vi,)
will be zero for every element in Irr(G,C) but for the mentioned one. And also by
Schur’s Lemma, for this one, it will be 1. Therefore,⊕

W∈Irr(G,C)

HomG(W,Vi)⊗W = dimCHomG(Vi, Vi,⊗)Vi = C⊗ Vi ∼= Vi

and the map di becomes

di : C⊗ Vi −→ Vi

λ⊗ v 7→ λv

which is clearly an isomorphism of vector spaces and also a G-morphism for the
action of G is linear. Therefore, the two spaces are isomorphic as G-representations
and by extension d is an isomorphism.

A.4 Representations of SU(2)

Let Vℓ ⊂ Cℓ[z1, z2] be the space of homogeneous polynomials on the variables
z1, z2 of degree ℓ (without caring of the degree of the 0 polynomial).

Observe that V0 = C and V1 = C2, in V . Then, in V0, SU(2) acts as the identity
and in V1 acts by matrix multiplication given any matrix realization of the group.
And this representations are consistent with the general representation on Vℓ that
we are going to describe:

ρℓ : SU(2)× Vℓ −→ Vℓ

(g, p(z)) 7→ p(zg)

where z = (z1, z2) and g−1 acts on it by matrix multiplication.

Proposition A.7. Vℓ is a representation of SU(2).
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Proof. We assume it is clear that ρℓ is a left linear action. So it rests to see that the
image of ρℓ is actually Vℓ. But since, for λ ∈ C, g ∈ SU(2), λ(zg) = (λz)g, then it is
clear that, for p ∈ Vℓ,

gp(λz) = p(λ(zg)) = p((λz)g) = λℓp(zg) = λℓgp(z)

and hence gp ∈ Vℓ.

We will use the basis

Bn := {Pk(z1, z2) = zk1z
n−k
2 }k=0,...,n

for Vn in the following part.

Proposition A.8. Vℓ is an irreducible representation of SU(2).

Proof. As seen in (4.27), it is enough to see that any SU(2)-morphism f : Vn −→ Vn
is a multiple of the identity. Let A be the matrix of f under Bn. We will denote the
representation by ρ, dropping the dimension index.

We start by seeing how is A for some easy element in G:

ga :=

(
a 0

0 a−1

)

Then, zk1z
n−k
2 ga = akzk1a

k−nzn−k2 = a2k−nzk1z
n−k
2 . So, the matrix of ρga in this

basis is Diag({a2k−n}k=0,...,n). Knowing that [A, ρa] = 0, we can force A to be diag-
onal by taking a such that all the powers {a2k−n}k=0,...,n are different. Then, since
(see 2.1) A will therefore respect each ρa-eigenspace. Then, Azk1z

n−k
2 = ckz

k
1z

n−k
2

∃ck for each k.
Being now diagonal, it just suffices to see that ck = c ∀k. Let’s consider, for this,

a different element of SU(2):

rt :=

(
cos t − sin t

sin t cos t

)

See first that

(z1, z2)rt = (z1, z2)

(
cos t − sin t

sin t cos t

)
= (z1 cos t+ z2 sin t,−z1 sin t+ z2 cos t)

so, in the last element of B rt acts as rtzn1 = (z1 cos t + z2 sin t)
n. If this is

confusing, denote Pn(z1, z2) = zn1 and compute it again.
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We now take a look at what A-commutativity implies for this element.

ArtPn = A(z1 cos t+ z2 sin t)
n

= A

n∑
k=0

(
n

k

)
cosk t sinn−k t zk1z

n−k
2

= A

n∑
k=0

(
n

k

)
cosk t sinn−k t Pk

=

n∑
k=0

(
n

k

)
cosk t sinn−k t APk

=

n∑
k=0

(
n

k

)
cosk t sinn−k t ckPk

Remember that we are taking an element rt, so t is a fixed number in T. Con-
sidering now rtA,

rtAPn = rtcnPn = cnrtPn = cn(z1 cos t+ z2 sin t)
n

= cn

n∑
k=0

(
n

k

)
cosk t sinn−k t zk1z

n−k
2

= cn

n∑
k=0

(
n

k

)
cosk t sinn−k t Pk

=

n∑
k=0

(
n

k

)
cosk t sinn−k t cnPk

Comparing now coefficients and using that B is a basis, we get ck = cn ∀k.
Therefore, A = cnI and so is f = cnId.

Computing the character of the representation as a function of SU(2) is not easy.
Instead, we will only compute it for one representative of each conjugacy class.

Let ∼ the equivalence relation of being conjugate.

Definition A.9. A function ζ : G −→ C is called a class function if it factors
through

G C

G/∼

ζ

π
ζ
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Remark A.1. Throughout this section we will be denoting ζ as the factoring function
from (A.9). It will not denote the conjugate function as in the previous sections. We
do it as it is common in the linear algebra literature to denote factoring maps through
the quotient by an over bar.

In SU(2), every element is conjugate to one of the form

e(t) =

(
eit 0

0 e−it

)
And

e(t) ∼ e(s) ⇐⇒ t ≡ ±s(mod 2π)

Note that if t ≡ ±− s(mod 2π), then e(t) and e(s) are conjugated by the matrix(
0 1

1 0

)

We can then explicitly give ζ for any ζ class function of SU(2) by

ζ = ζ ◦ e

where e is defined as T ∋ t 7→ e(t), the matrix given before.
This discussion implies that

SU(2)/∼ ∼= T/∼t=−t

And therefore C (SU(2)/∼,C) ∼= C (T/∼t=−t,C). But the second one is the space
of even 2π-periodic continuous functions.

Lemma A.10. For Vn, χn : T −→ C values

χn(t) = cosnt+ χn−1(t) cos t

Proof. We compute it on the basis Bn. Following the same computation than in the
proof of (A.8), we obtain e(t)Pk = e2ikt−itn = ei(2k−n)t and therefore

χ(t) =

n∑
k=0

ei(2k−n)t

Which can be proven to be equal to

sin(n+ 1)t

sin t
=

sinnt cos t+ cosnt sin t

sin t
=

sinnt

sin t
cos t+ cosnt = χn−1(t) cos t+ cosnt
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Lemma A.11. The characters {χn}n∈N are dense in the the space C (T/∼t=−t,C).

Note that since we are talking of functional spaces, by dense, we mean uniformly
dense, that is, dense with the supremum distance defined in the compact G. And the
result used in this proof states that the considered functions are uniformly dense.

Proof. First of all, the functions {cosnt}n∈N not only form a vector space but also
an algebra, for

cosnt cosmt =
1

2
(cos(n+m)t+ cos(n−m)t)

And then, so do {χn}n∈⋉. Moreover, it can be proven that

SpanC({χn}n∈N) = SpanC({cosnt}n∈N)

And it is a general result from Fourier analysis that the second one is dense in
the space of even 2π-periodic functions, so it is the first in C (T/∼t=−t,C) according
to our discussion.

Now we are ready to prove that the Vℓ are indeed all the irreductible representa-
tions of SU(2).

Theorem A.12. Every irreductible representation of SU(2) is isomorphic to one of
the Vℓ.

Proof. Let V be an irreducible representation which is not isomorphic to any Vℓ. Let
χV be its trace and χV its factorization through T/∼t=−t. Then, by (A.11), we have

χV =
∑
n∈N

anχn

And using (4.24),

1 = ⟨χV , χV ⟩ = ⟨χV ,
∑
n∈N

anχn⟩ =
∑
n∈N

an⟨χV , χn⟩ =
∑
n∈N

an0 = 0

which is a contradiction, so V ∼= Vℓ ∃ℓ.

A.5 Representations of SO(3)

Proposition A.13. The polynomial x21 + x22 + x23 is fixed for every g ∈ SO(3).
Therefore, C[x1, x2, x3]3 is not irreducible.
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Proof. A homogeneous polynomial of degree 2 is a bilinear form in R3 and is therefore
characterized by a matrix (once we fix the basis {x21, x22, x23}). The correspondence
between these polynomials and their corresponding matrix is given by

P (x1, x2, x3) =
(
x1 x2 x3

)
AP

x1x2
x3



Now, considering a matrix realization of SO(3), since their elements will be or-
thogonal matrices, any element M ∈ SO(3) acts as

P (x1, x2, x3) =
(
x1 x2 x3

)
MAPM

t

x1x2
x3



And since the matrix corresponding to x21+x22+x23 is I, the result follows immediately
from MM t = I.

Proof. (of 5.7) There is no easy basis for the harmonic polynomials in general, so
we will try a recursive approach. We observe the following, any polynomial P ∈ Hℓ
can be factored as

P (x1, x2, x3) =
ℓ∑

k=0

xk1
k!
Pk(x2, x3), Pk(x2, x3) ∈ C[x2, x3]≤ℓ−k

by grouping all the monomials depending on the degree of x1, which will be between
0 and ℓ. Then, the remaining elements of each monomials will be of the form xj12 x

j2
3 .

And since P has degree ℓ, then they will satisfy j1 + j2 + k = ℓ. We then divide and
multiply by k! because it will be useful for the differentiation that is to come. Also
note that if for some k, there is no monomial with xk1, we can just take Pk = 0. This
splitting of variables will be useful for:
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∆P (x1, x2, x3) =
ℓ∑

k=0

∆(
xk1
k!
Pk(x2, x3))

=

ℓ−2∑
k=0

∆
xk1
k!
Pk+2(x2, x3) +

ℓ∑
k=0

xk1
k!

∆Pk(x2, x3)

=
ℓ−2∑
k=0

∆
xk1
k!
Pk+2(x2, x3) +

ℓ∑
k=0

xk1
k!

(
∂2

∂x22
Pk(x2, x3) +

∂2

∂x23
Pk(x2, x3))

=

ℓ−2∑
k=0

∆
xk1
k!

(Pk+2(x2, x3) +
∂2

∂x22
Pk(x2, x3) +

∂2

∂x23
Pk(x2, x3))

+
ℓ∑

k=ℓ−1

xk1
k!

(
∂2

∂x22
Pk(x2, x3) +

∂2

∂x23
Pk(x2, x3))

The term
∑ℓ−2

k=0∆
xk1
k! (Pk+2(x2, x3) +

∂2

∂x22
Pk(x2, x3) +

∂2

∂x23
Pk(x2, x3)) is our actual

interest because, using that the monomials in x1, x2, x3 form a basis of C[x1, x2, x3]ℓ,
if ∆P = 0, then

∆
xk1
k!
Pk+2(x2, x3) +

∂2

∂x22
Pk(x2, x3) +

∂2

∂x23
Pk(x2, x3) = 0 ∀k = 0, ..., ℓ− 2

And it sets a recursive relation between each Pk, namely:

Pk+2 = −(
∂2

∂x22
Pk +

∂2

∂x23
Pk) k = 0, ..., ℓ

This is a linear recursive equation and therefore its solutions form a vector space.
This is evident since its solutions are actually the harmonic polynomials. But the
interesting part is that it has two initial conditions P0 ∈ C[x1, x2, x3]ℓ and P1 ∈
C[x1, x2, x3]ℓ−1. Therefore, its dimension is the sum of the dimensions of the spaces
for each initial condition, so ℓ+ 1 + ℓ = 2ℓ+ 1.

Proof. (of 5.8) It is, of course, enough to prove that it is isomorphic to an irrep.
Since the irreps of SO(3) are {Wn}n and dimWℓ = dimHℓ, the only option we have
is to try to see Wℓ

∼= Hℓ. By (4.10), it admits a decomposition as a direct sum of
irreducible representations, so

Hℓ =
⊕
ni∈I

Wni

With I ⊂ N. Then, 2ℓ + 1 = dimHℓ =
∑

ni∈I dimWni =
∑

ni∈I 2ni + 1. If we see
that ℓ ∈ I, then, it must be I = {ℓ} (otherwise, the dimensions equality would not
hold). Under this reasoning max I ≤ ℓ. Then, if we show max I ≥ ℓ, it will imply
ℓ ∈ I.
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By (4.1, ii), χHl
=
∑

ni∈I χWni
. And χWni

= e−niit + · · ·+ eniit. Therefore,

χHl
=

∑
|mi|≤max I

aje
mjit, aj ∈ N (A.1)

So, if we see eℓit ∈ χHl
(by this meaning that there is a summand which is a multiple

of it), we will have proven max I ≥ ℓ.
If we find {0} ̸= U ⊂ Hℓ such that is a subrepresentation of T , in which T acts

as eℓit or e−ℓit, then, since χHl
= χHl

◦ π it will mean that such summand is present
in the sum.

Let U = ⟨(x2 + ix3)
ℓ⟩. Then,

∆f =
∂2

∂x22
(x2 + ix3)

ℓ +
∂2

∂x23
(x2 + ix3)

ℓ

=
∂

∂x2
ℓ(x2 + ix3)

ℓ−1 +
∂

∂x3
iℓ(x2 + ix3)

ℓ−1

= ℓ(ℓ− 1)(x2 + ix3)
ℓ−2 + i2ℓ(ℓ− 1)(x2 + ix3)

ℓ−2

= ℓ(ℓ− 1)(x2 + ix3)
ℓ−2 − ℓ(ℓ− 1)(x2 + ix3)

ℓ−2 = 0

So U ⊂ Hℓ. Now, R(t) maps

(x2 + ix3)
ℓ 7→ (cos tx2 + sin tx3 + i(− sin tx2 + cos tx3))

ℓ

= (x2(cos t− i sin t) + x3(i cos t+ sin t))ℓ

= (x2(cos t− i sin t) + ix3(cos t− i sin t))ℓ

= (x2(cos−t+ i sin−t) + ix3(cos−t+ i sin−t))ℓ

= (x2e
−it + ix3e

−it)ℓ

= (e−it)ℓ(x2 + ix3)
ℓ

= e−ℓit(x2 + ix3)
ℓ

As wanted.

A.6 Induced representations in linear spaces

We will see how representations in vector spaces yield representations in more
complicated linear structures built on top of them.

Let (ρV , V ) and (ρW ,W ) be two finite-dimensional representations over C of a
group G.
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A.6.1 Direct sum

ρV ⊕ ρW : G× (V ⊕W ) −→ V ⊕W

(g, v + w) 7→ ρV (g, v) + ρW (g, w) = gv + gw

A.6.2 Tensor product

ρV ⊗ ρW : G× (V ⊕W ) −→ V ⊕W

(g, v ⊗ w) 7→ ρV (g, v)⊗ ρW (g, w) = gv ⊗ gw

A.6.3 Dual space

ρ∗V :G× V ∗−→V ∗

(g, f) 7→fg−1 :V −→K

v 7→ f(g−1v)

To see that it is indeed a left action of G, take g, h ∈ G, f ∈ V ∗ and v ∈ V . Then

ρ(gh)(f)(v) = f((gh)−1v) = f(h−1g−1v)

while

[ρ(g)ρ(h)(f)](v) = [ρ(g)fh−1](v) = [fh−1g−1](v) = f(h−1g−1v)

What one should notice is that we make h act on f by acting in its argument.
Then, after applying h to f , the new morphism we get is fh−1, and making g act
again on it means to transform the argument of the new automorphism, so taking it
to fh−1g−1.

When there may be risks of confusion, we will denote the action of g in f ∈ V ∗

by g · f = fg−1.

A.6.4 Conjugate space

ρV : G× V −→ V

(g, v) 7→ gv = ρg(v)

That is, the exact same representation for V is a representation for V . The only
doubt could be for its linearity. Let’s see that it is still linear. For this, let λv denote
the scalar product in V and λ · v = λv denote the one in V .
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ρg(λ · v) = ρg(λv) = λρg(v) = λ · ρg(v)

Though the representation is the same, its matrix expression in a given basis will
be the conjugate to the one in V , as showed the next proposition.

Proposition A.14. If an endomorphism of V has a matrix A in a given basis, then,
taking in V the same basis, its matrix becomes A.

Proof. Let f : V −→ V be an endomorphism of a finite-dimensional vector space V
for which we take B = {v1, ..., vn} as a basis. Suppose that the matrix of f in this
basis is (aj,i)j,i. Then, the matrix of f : V −→ V , v 7→ f(v) = f(v) satisfies that
f(vi) =

∑
j aj,ivj =

∑
j aj,i · vj and therefore has matrix (aj,i)j,i in the basis B of

V .

It will be important for later to notice the following.

Proposition A.15. For a compact Lie group G, the induced representations in V

and V ∗ are isomorphic.

Proof. In (4.7) we showed that it exists a G-invariant inner product, which we will
denote by ⟨·, ·⟩. Remember that we are assuming it to be conjugate-linear in the first
argument and linear in the second. The following is an isomorphism of representa-
tions:

φ : V −→ V ∗

v 7→ ⟨v, ·⟩

Since the remaining is quite easy to see, we will just prove that it respects the
scalar product and that it is a G-morphism. For the first part, let v ∈ V and λ ∈ C.
Then, φ(λ · v) = φ(λv) = ⟨λv, ·⟩ = λ⟨v, ·⟩ = λφ(v). And for the second, we will
use the G-invariance of the inner product. We want to see that φ(gv) = g · φ(v) =
φ(v)g−1. So, let u ∈ V . Then

φ(gv)(u) = ⟨gv, u⟩ = ⟨g−1gv, g−1u⟩ = ⟨ev, g−1u⟩
= ⟨v, g−1u⟩ = φ(v)(g−1u) = (g · φ(v))(u)
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A.6.5 Linear maps between representations

ρHom(V,W ) :G×Hom(V,W )−→Hom(V,W )

(g, f) 7→ gfg−1 :V−→W

v 7→gf(g−1v)

And since Hom(V,W ) ∼= V ∗ ⊗W , this is indeed a particular case of the repre-
sentation induced in a tensor product, so equivalent to:

ρV ∗ ⊗ ρW :G× V ∗ ⊗W−→ V ∗ ⊗W

(g, u⊗ w) 7→ug−1 ⊗ gw :V−→W

v 7→u(g−1v)gw

A.7 Hilbert spaces

Recall that we have defined a Hilbert space as a C-vector space H with an inner
product ⟨·, ·⟩ such that it is complete with the topology inherited from this inner
product. The purpose of this section is to show that H has an orthonormal basis
(in the sense of its span being dense, as we said in §2.1) and that there is a canonical
isometry between H and its dual H ∗.

A.7.1 The (C ∞(K), ∥·∥) normed space

Let K be a compact topological set and ∥·∥ be the supremum norm. We will
show here that (C∞(K), ∥·∥) is not a Hilbert space.

Proposition A.16. The infinite norm ∥·∥∞ defined on C∞(K) where K is a com-
pact metric space with distance |·| as follows

∥f∥∞:= sup
x∈K

|f(x)|

does not come from any inner product on C∞(M).

Proof. If a norm ∥·∥ comes from an inner product ⟨·, ·⟩, then the following equality
must hold

2∥x∥2+2∥y∥2= ∥x+ y∥2+∥x− y∥2

since

⟨x+ y, x+ y⟩+ ⟨x− y, x− y⟩ = ⟨x, x⟩+ 2⟨x, y⟩+ ⟨y, y⟩+ ⟨x, x⟩ − 2⟨y, x⟩+ ⟨y, y⟩
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= 2⟨x, x⟩+ 2⟨y, y⟩+ 2(⟨x, y⟩ − ⟨x, y⟩)

And since the left hand-side is real, and all the remaining terms of the right
hand-side so are, then it must hold that ⟨x, y⟩ − ⟨x, y⟩ is real, but the difference of a
complex number by its conjugate equals the double of its imaginary part and hence
must be zero.

And this equality does not hold for the ∥·∥∞ norm. As a counter-example, take
the functions 1 and x2 in K = [0, 1].

2∥1∥2∞+2∥x2∥2∞= 2 + 2 ̸= 4 + 1 = ∥1 + x2∥2∞+∥1− x2∥2∞
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Appendix B

Analytic appendix

B.1 Smooth manifolds

We provide here with a basic definition of what is a smooth manifold and some
intuition behind it.

Definition B.1. A set M is called an n-dimensional manifold if it is a Hausdorff
topological space which is locally homeomorphic to Rn.

Definition B.2. A set A = {(φi, Ui)}i of maps φi : Ui → Rn is a differentiable
atlas of M if every Ui ⊂ M is an open set, the sets {Ui}i are an open cover of
M , the maps φi : Ui → φi(Ui) ⊂ Rn are homeomorphisms and the transition maps
φ2 ◦ φ−1

1 : φ1(U1 ∩ U2) → φ2(U1 ∩ U2) are differentiable.

Definition B.3. A pair (M,A) is called a smooth manifold if M is a manifold and
A is a differentiable atlas of M .

Definition B.4. For an open set V ⊂ M , a function f : V → Rm is smooth if, for
every chart (φ,U) such that U ∩ V ̸= ∅, the function f ◦ φ−1 : φ(U ∩ V ) → Rm is
smooth.

Intuition B.1. Even though the definition of a smooth manifold may seem weird,
it is the simplest way to create a structure which allows us to differentiate in it.
Since differentiability is typically defined for functions from Rn to Rm, we can not
impose the charts to be differentiable directly as maps M → Rn. However, we do
impose the smoothness condition to the very first maps from and to Rn which we can
construct from them: the transition maps. Moreover, the differentiability condition
of transition maps assures us that, in order to check if a function f : M → Rm is
continuous, we only need to check it in an open cover of M , not for every single chart
of A.
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Proposition B.5. Let M ⊂ Rm be an n-dimensional manifold. For V ⊂M an open
subset, TpV = TpM ∀p ∈ V .

Proof. Each chart (U,φU ) ∈ AM with U ∩ V ̸= ∅ induces a chart for V (since
U ∩ V is an open subset of V and if the open sets of AM cover M , then so do their
intersection with V for V ). So, we consider in V the differential structure inherited
from the one in M in this way.

Now, for p ∈ V , take φU∩V a chart of V . TpV = ⟨∂x1φU∩V , ..., ∂xnφU∩V ⟩. But
since φU∩V and φU coincide in a neighbourhood of p, their derivatives are equal and
so is their tangent space.

Proposition B.6. For V a finite-dimensional vector space, LAut(V ) ∼= End(V ),
canonically.

Proof. A direct consequence of (B.5) for Aut(V ) is an open subset of Rn.

B.2 The Lie algebra

We start this section by giving an algebraic definition of the tangent space to a
manifold on a point.

Definition B.7. Let E(p,M) := {f ∈ C∞(U,R) | ∃U ∋ p open}.
A map Dp : E(p,M) −→ R is called a p-derivation if it satisfies both of the

following conditions:

• D is linear.

• D acts as a derivation at p. This is: Dp[fg] = D[f ]g(p) + f [p]D(g) ∀f, g ∈
C∞(M).

Definition B.8. Given M an n − dimensional manifold, and p ∈ X, let TpM be
the space of on M at the point p.

Intuition B.2. This construction is hard to understand but it can be more compre-
hensible if we consider the following.

If M ⊂ Rm, and has dimension n, each variable xi of a local chart centered at
p induces a curve γi(t) := φ(0, ..., txi, ..., 0) ⊂ M . Then, γ′i(0) will be a tangent
vector of Tp and the {γ′i := γ′i(0)}i=1,...,n will be linearly independent. And each γ′i
induces induces a p-derivation as f 7→ ∂f(γi(t))

∂t (0). And it is the derivation along the
direction γ′i. We can define then Tp as the vector space generated by velocity vectors
at p of curves along p and prove that Tp = ⟨{γ′i}i=1,...,n⟩.
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The intuition that one can extract of this is that, roughly speaking, on an n-
dimensional manifold, the directions in which one can leave a point p have dimension
n. And any vector in Tp induces a p-derivation given by the directional derivative
in the direction at p it corresponds to. So, when M ⊂ Rn, the tangent space at p
corresponds to the vector space of p-derivations.

It can be proven that the space of differential operators of an n-dimensional
smooth manifold has dimension n. Then, it seems reasonable to extend the defini-
tion in this way.

If we let move p along M , and consider a p-derivation Dp for each p, the previous
definition allows us to transform functions into new functions:

F (x) := Dx[f ]

This motivates the following definition:

Definition B.9. A map D : C∞(M,R) −→ C∞(M,R) is called a global derivation
operator if it satisfies both of the following conditions:

• D is linear.

• D acts as a derivation. This is: D[fg](x) = D[f ](x)g(x)+f(x)D[g](x) ∀f, g ∈
C∞(M).

Remark B.1. In particular, a differential operator is an operator, so it can be com-
posed. However, the space of differential operators ∆(C∞(M,R)) is not closed under
composition. One can easily see that the composition of two differential operators
does not behave as a derivation in general.

Though, ∆(C∞(M,R)) ⊂ L(C∞(M,R)) and as the composition of linear opera-
tors is still a linear operator, composing two differential operators will yield another
operator that, though potentially not acting as a derivation, will still be linear.

And equivalently:

Definition B.10. A map X :M −→ TM is called a vector field if π◦M :M −→M

is IdM .

Note that a differential operator is therefore a section of the tangent bundle TM .
The differentiable structure of TM allows us to have a notion of differentiability for
vector fields.

Definition B.11. We will say that a vector field X is differentiable if it is a differ-
ential map as M −→ TM . And we shall denote the set of vector fields on M , seen
as operators in C∞(M) as X .
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This may seem complicated but can be made easier if one takes a basis for the
spaces TpM .

Definition B.12. Let ∂
∂xi

|p∈ TpM be the p-derivation along the curve γi given as
in (B.2) by a local chart (φ,U).

The p-derivation ∂
∂xi

|p can be extended to a differential operator over C∞(U,R)
by

∂

∂xi
[f ](x) :=

∂

∂xi

∣∣∣∣
x

[f ]

which we will denote from now on as ∂
∂xi

. Then, each one of this operators is a
continuous section of the tangent bundle, so altogether form a continuous basis for
the tangent spaces TpM p ∈ U .

As a consequence, a vector field X will be smooth iif, for every chart (φ,U) with
local coordinates x1, ..., xn,

X(x) =

n∑
i=1

ai(x)
∂

∂xi

with ai ∈ C∞(U).

Proposition B.13. (X , [·, ·]) is a Lie algebra. In particular, X is closed under [·, ·].

Proof. There is no big deal here, just the degree two monomials cancelling each other.
We need to use the Schwarz’ theorem and we are allowed to do so because we are
considering X as a space of vector fields acting on C∞-functions.

According to the previous discussion, if X,Y ∈ X , then, taking a chart (U,φ) of
M with local coordinates x1, ..., xn, any two elements X,Y ∈ X can be expressed in
U as

X =

n∑
i=1

ai(x)
∂

∂xi
Y =

n∑
j=1

bj(x)
∂

∂xj

then,

XY =

n∑
i=1

ai(x)
∂

∂xi
(
n∑
j=1

bj(x)
∂

∂xj
)

=
n∑
i=1

ai(x)(
n∑
j=1

∂

∂xi
bj(x)

∂

∂xj
+ bj(x)

∂

∂xi

∂

∂xj
)

=

n∑
i=1

ai(x)(

n∑
j=1

∂xibj(x)
∂

∂xj
+ bj(x)

∂2

∂xi∂xj
)
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=
∑
i,j

ai(x)∂xibj(x)
∂

∂xj
+
∑
i,j

ai(x)bj(x)
∂2

∂xi∂xj

Analogously,

Y X =
n∑
j=1

bj(x)
∂

∂xj
(
n∑
i=1

ai(x)
∂

∂xi
)

=
n∑
j=1

bj(x)(
n∑
i=1

∂

∂xj
bi(x)

∂

∂xi
+ ai(x)

∂

∂xj

∂

∂xi
)

=
n∑
j=1

bj(x)(
n∑
i=1

∂xjai(x)
∂

∂xi
+ ai(x)

∂2

∂xj∂xi
)

=
∑
i,j

bj(x)∂xjai(x)
∂

∂xi
+
∑
i,j

bj(x)ai(x)
∂2

∂xj∂xi

Now, we can already see that when we substract both expressions the terms with
second derivatives will cancel each other.

B.2.1 The Lie algebra as derivations near the identity

The previous discussion let’s us see g as the space of e-derivations. Differentiable
functions allow us to transport derivations from one space to another. In G we have
the smooth functions lg given by left-translation. Then, any derivation X at e can
be extended to one at g by delg(X). It means that any X ∈ g defines a vector field
at the whole G. If we denote X(g) the value of this vector field at g ∈ G, it has the
particularity that X(g) = delgX(e).

Definition B.14. A vector field X in G is called left-invariant if X(g) = delgX(e).
Let X (G) be the vector space of all left-invariant vector fields in G.

B.2.2 The Lie algebra as the left-invariant vector fields

We want to define a Lie bracket in g, but there is no composition law for e-
derivations. Where we do have it defined is in X (G). We will see that these two
spaces are isomorphic and then give the Lie algebra structure to g by making the
isomorphism between them also a Lie algebra isomorphism.

Proposition B.15. g ∼= X (G).

Proof. The isomorphism between them will be given by the following linear map:
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Ξ : g −→X (G)

X 7→ LX : G −→ TG

g 7→ delgX

It is injective because if Ξ(X) = Ξ(Y ), in particular they must be equal at the
identity, so X = Y . And surjective because if T ∈ X (G), then T (g) = delgT (e)

with T (e) ∈ g and therefore T = Ξ(T (e)).

Definition B.16. Define in g the Lie claudator as [X,Y ] = Ξ−1([Ξ(X),Ξ(Y )]).

B.3 The Casimir operator

B.3.1 Proofs

Proof. We will use the fact that the commutator in Im(Lρ) preserves the commuta-
tion relations (5.9). To simplify notation, we will introduce an antisymmetric map
εi,j,k which satisfies ε1,2,3 = 1, and therefore is 1 in the even permutations of {1, 2, 3},
negative for the odd ones and 0 if any index is repeated. Then, the commutation
relations (5.9) can be summarized in:

[Zi, Zj ] =
∑
k

εi,j,kZk.

and therefore,

[LZi , LZj ] =
∑
k

εi,j,kL[Zi,Zj ] =
∑
k

εi,j,kLZk
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Our goal is to show [C,LZj ] = 0.

[C,LZj ] = [
∑
i

L2
Zi
, LZj ]

=
∑
i

[L2
Zi
, LZj ]

=
∑
i

LZiLZiLZj − LZjLZiLZi

=
∑
i

LZiLZiLZj − LZiLZjLZi + LZiLZjLZi − LZjLZiLZi

=
∑
i

LZi [LZi , LZj ] + [LZi , LZj ]LZi

=
∑
i

LZi

∑
k

εi,j,kLZk
+
∑
k

εi,j,kLZk
LZi

=
∑
i

LZi

∑
k

εi,j,kLZk
+
∑
k

εk,j,iLZiLZk

=
∑
i

LZi

∑
k

εi,j,kLZk
+ (
∑
k

εk,j,iLZi)LZk

=
∑
i,k

εi,j,kLZiLZk
+
∑
i,k

εk,j,iLZiLZk

=
∑
i,k

(εi,j,k + εk,j,i)LZiLZk
LZiLZk

=
∑
i,k

(εi,j,k − εi,j,k)LZiLZk
LZiLZk

And therefore, the whole expression vanishes.

B.3.2 Casimir computations in spherical coordinates

Lemma B.17. Let us write the spherical coordinates as:

x = r cos θ cosϕ r =
√
x2 + y2 + z2 r > 0

y = r sin θ cosϕ θ = arctan(
y

x
) θ ∈ (0, 2π)

z = r sinϕ ϕ = arcsin(
z√

x2 + y2 + z2
) ϕ ∈ (−π

2
,
π

2
)

Then:
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∂r

∂x
= cos θ cosϕ

∂θ

∂x
= − sin θ

r cosϕ

∂ϕ

∂x
= −cos θ sinϕ

r

∂r

∂y
= sin θ cosϕ

∂θ

∂y
=

cos θ

r cosϕ

∂ϕ

∂y
= −sin θ sinϕ

r

∂r

∂z
= sinϕ

∂θ

∂z
= 0

∂ϕ

∂z
=

cosϕ

r

The chain rule
∂

∂xi
=

∂r

∂xi

∂

∂r
+
∂θ

∂xi

∂

∂θ
+
∂ϕ

∂xi

∂

∂ϕ

yields:

∂

∂x
= cos θ cosϕ

∂

∂r
− sin θ

r cosϕ

∂

∂θ
− cos θ sinϕ

r

∂

∂ϕ

∂

∂y
= sin θ cosϕ

∂

∂r
+

cos θ

r cosϕ

∂

∂θ
− sin θ sinϕ

r

∂

∂ϕ

∂

∂z
= sinϕ

∂

∂r
+

cosϕ

r

∂

∂ϕ

For the upcomming computations, note that we are defining C as an operator in
C∞ and Schwarz’s Theorem ensures that then

∂2

∂z1∂z2
=

∂2

∂z2∂z1

The following results follow straightforwardly from them.

Proposition B.18. Each LZi is expressed under spherical coordinates as:

LZ1 = cos θ tanϕ
∂

∂θ
− sin θ

∂

∂ϕ

LZ2 = sin θ tanϕ
∂

∂θ
+ cos θ

∂

∂ϕ

LZ3 = − ∂

∂θ
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Proposition B.19. Each L2
Zi

is expressed under spherical coordinates as:

L2
Z1

= − cos θ sin θ(tan2 ϕ+
1

cos2 ϕ
)
∂

∂θ
+ tan2 ϕ cos2 θ

∂2

∂θ2

− tanϕ cos2 θ
∂

∂ϕ
− 2 tanϕ cos θ sin θ

∂2

∂θ∂ϕ
+ sin2 θ

∂2

∂ϕ2

L2
Z2

= cos θ sin θ(tan2 ϕ+
1

cos2 ϕ
)
∂

∂θ
+ tan2 ϕ sin2 θ

∂2

∂θ2

− tanϕ sin2 θ
∂

∂ϕ
+ 2 tanϕ cos θ sin θ

∂2

∂θ∂ϕ
+ cos2 θ

∂2

∂ϕ2

L2
Z3

=
∂2

∂θ2

B.4 Theorems on Lie groups

We have assumed throughout the work the following theorems on the smooth
manifold structure of a Lie group.

Theorem B.20. Let G be a Lie group and H a closed subgroup. Then, G/H is a
differentiable manifold and the projection π : G −→ G/H is a differentiable map.

For a proof, see ([1], Ch 1).

Theorem B.21. Let G,H be Lie groups and N◁G a closed normal subgroup. Then,
G/N is a differentiable manifold and the projection π : G −→ G/N is a differentiable
map. Moreover, if N ⊂ Ker f for some f : G −→ H a morphism of Lie groups, then
∃! f morphism of Lie groups making the following diagram commute:

G H

G/∼

f

π
f

For a proof, see ([1], Ch 1).

Theorem B.22. There is an epimorphism of Lie groups π : SU(2) −→ SO(3) with
kernel {Id,−Id}. And therefore, SO(3) ∼= SU(2)/{Id,−Id} as Lie groups.

For a proof, see ([4], ch 2).
In particular, under this morphism,(

eit 0

0 e−it

)
7→

1 0 0

0 cos t − sin t

0 sin t cos t
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B.5 The SO(3) and SU(2) groups

Definition B.23. Let GL(n,K) be the group of invertible n×n matrices over a field
K. We provide it with the structure of group by matrix multiplication and of smooth
manifold by it being an open subset of Kn2.

Note that the multiplication map is smooth under the smooth manifold structure
of GL(n,K) since it is given by polynomial functions on the coordinates.

B.5.1 The U(n) and SU(n) groups

Definition B.24. Let

U(n) := {f ∈ GL(n,C) | ⟨f(x), f(y)⟩ = ⟨x, y⟩ ∀x, y ∈ V }

be the unitary group.

Giving it the topology as a subspace of GL(n,C), let’s see that it is a bounded
subset (or homeomorphic to it) of R2n

2

. It will be of later usages to be able to see
the compacity of SU(n).

Proposition B.25. U(n,C) is homeomorphic to a bounded subset of R2n
2

.

Proof. The euclidean topology in Rm corresponds to the euclidean metric, which is
inherited by the euclidean norm. But since all norms in Rm are equivalent, if we
show boundedness of a set under any norm, it will be bounded for this norm and
hence for our topology.

Therefore, we will take a matrix norm in Rn2 being defined by

∥A∥:= sup
∥x∥=1

∥Ax∥

where in Rn we take the euclidean norm, even though we denote them equally.
This is a norm and every A ∈ U(n,C) has norm 1 for being unitary.

Definition B.26. Let

SU(n) := {f ∈ U(n) | det(f) = 1}

be the special unitary group n.

Proposition B.27. SU(n) is compact.
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Proof. SU(n) is a subset of a bounded set and hence bounded. Also, it is closed
because it is the preimage by det, which is a continuous function in this topology, of
{1}, a closed set.

Therefore, SU(n) is homeomorphic to a bounded and closed set of Rm and, by
the Heine-Borel theorem, it is compact.

B.5.2 The O(n) and SO(n) groups

Definition B.28. Let

O(n) := {f ∈ GL(n,R) | ⟨f(x), f(y)⟩ = ⟨x, y⟩ ∀x, y ∈ V }

be the orthogonal group n,

SO(n) := {f ∈ O(n) | det(f) = 1}

be the special orthogonal group n.

Proposition B.29. O(n) is a bounded subset of Rn2 and SO(n) is bounded and
closed and therefore compact.

Proof. The proof to this proposition is exactly the same one than for the previous
section.
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