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Abstract: It is essential to establish the validity of Ohm’s law in any reference frame if we aim
to implement a relativistic approach to brain dynamics based on a Lorentz covariant microscopic
response relation. Here, we obtain a covariant formulation of Ohm’s law for an electromagnetic field
tensor of any order derived from the emergent conductivity tensor in highly non-isotropic systems,
employing the bidomain theory framework within brain tissue cells. With this, we offer a different
perspective that we hope will lead to understanding the close relationship between brain dynamics
and a seemingly ordinary yet profoundly crucial element: space.
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1. Introduction

The spatial distribution of the structural elements that make up brain tissue is highly
complex, featuring structural details that unfold over very short distances in the order
of microns. This, in turn, gives rise to a highly intricate distribution of the electrical
conductivity field. Such non-uniform and unequal anisotropy should be considered in
mathematical models designed to describe the flow of electric current in the brain [1].
However, no mathematical theory has yet been formulated to account for the effects of
numerous spatial scales of structural discontinuity at the electrophysiological level, as
revealed by histological studies of the brain [2]. One of the objectives of this work is
precisely to provide a new approach that aids in formulating this theory.

Unlike the classic one-dimensional cable models or the giant flat cell model, in the
three-dimensional structure concept we propose, the intracellular and extracellular spaces
share the same volume on a relatively mesoscopic scale. The idea of intracellular and
interstitial domains overlapping in space naturally leads to two questions: How do these
domains relate to the histological structure of the brain? What is the relationship between
the fields associated with these domains and electrophysiological measurements?

Information is encoded within the brain by specialized molecules, with the topological
structure providing an ideal framework for studying the extensive range of physicochem-
ical processes related to neuronal connections and their operational dynamics. In this
line of work, Gardner et al. [3] studied the topological shape of brain activity within the
visual nervous system of certain mammals. Through a theoretical-experimental approach
based on algebraic topology, they determined that this activity takes on a toroidal shape.
Although they demonstrated that the invariance of the toroidal manifold across environ-
ments and brain states offers insights into the mechanisms underlying neuronal activity,
they did not determine what kind of network architecture maintains activity on a toroidal
manifold—whether it is geometrically organized or emerges from random connectivity
through synaptic weight adjustments during learning.

In this regard, we propose that the use of differential geometry tools could enable
the mapping of brain regions through mathematical segmentations, allowing for localized
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analysis of the distribution and storage of information processed within synaptic activity.
By extending the frameworks used in general relativity to neurotopology, it becomes
possible to analyze the electrochemical information flow across the neuronal network using
metrics associated with brain tissue.

Ironically, the physics of the last century, including relativity and quantum mechanics,
has seen far fewer natural and effective processes of refoundation compared to 19th-century
physics, which encompassed electromagnetism and thermodynamics. Consequently, both
relativity and quantum mechanics have largely remained distant from the domain of
biology in terms of their conventional expressions. However, there are numerous potential
applications for this relativistic geometric approach [4].

A noteworthy aspect, common to all physics theories admitting the Galileo group as
a symmetry group, is the invariance of Maxwell’s equations under a change in the scale
of fields, valid in any inertial reference system. Therefore, a consistent non-relativistic
theory of electromagnetism can be derived by imposing the requirements of Galilean and
scaling invariance from Maxwell’s equations alongside constitutive relations. However,
the solution to the Galilean system can only be considered a good approximation of the
relativistic solution where Galilean spacetime is replaced by Minkowskian spacetime [5].
While studying the various Galilean limits of the relativistic equations of electromagnetism
in a vacuum is interesting in itself, the primary aim of this work is to examine a covariant
theory of the electromagnetic (EM) field. In considering an isolated system of interacting
particles moving freely, both in classical mechanics and relativistic mechanics, certain
conservation laws are upheld regardless of the type of interaction. These conservation laws
can be derived by introducing an emergent form of these same laws stemming from the
natural anisotropy of space.

At what stage of the transition from the microscopic to the macroscopic does the
emergence occur? The definition of conservation laws, such as the law of charge and Ohm’s
law, is quite precise: the steady state towards which the system evolves is characterized by
non-zero rates of dissipative processes (i.e., irreversible), but this speed adjusts as a function
of the imposed force, ensuring that all magnitudes describing the system globally maintain
their values regardless of time and reference coordinate systems [6]. In this representation,
the dynamics focus on correlations (and the energy of the correlations) rather than the
coordinates of individual particles. Therefore, there arises a natural need to establish a
covariant emergent form of generalized Ohm’s law in highly non-isotropic media, such as
brain tissue. At the microscopic level, the emerging deterministic dynamics serve as the
true causes of the relativistic spacetime electromagnetic tensor, which, at the macroscopic
level, alters the curvature of the associated affine manifold.

The conventional formalism of EM theory usually starts with static cases (electrostatics
and magnetostatics), progresses to adjustments in the equations for temporal variations of
electric and magnetic fields, and subsequently derives Maxwell’s equations. Afterward,
there is a revisit of Newtonian mechanics, transitioning to relativistic mechanics before
returning to electromagnetism. Consequently, EM theory and relativistic mechanics are
frequently presented as disconnected theories [7].

However, electromagnetism inherently embodies relativistic principles, a characteristic
evident since the founding of Maxwell’s equations [8]. We postulate that this aspect must
be leveraged in transitioning from the three-dimensional formulation of electromagnetism
to the four-dimensional formulation. In this study, our objective is to construct an energy-
impulse tensor for the local (brain) EM field, incorporating an emergent Ohm’s law based
on an encompassing conductivity tensor (with non-zero elements beyond its diagonal).
This non-isotropy of brain tissue and non-zero magnetic fields induced by exogenous EM
fields or endogenous activity contribute to the tensor’s completeness. Below, we illustrate
how the emergent formulation of Ohm’s law can guide us through formal considerations
towards a four-dimensional covariant formulation.

The classical approach to this issue involves postulating a principle of extremes, which
extends Hamilton’s principle of least action initially proposed within the framework of
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classical analytical mechanics. Symmetry considerations are then employed to derive the
Lagrangian function, initially for a free particle and subsequently for a charged particle
within an EM field. Although the relativistic formulation of Hamilton’s first principle
naturally extends to a particle system within a given EM field, we adopt an alternative
approach in this study. We utilize Lorentz transformations on local topological relations,
wherein such relations remain preserved under arbitrary changes of coordinates, provided
they maintain one-to-one regularity and preserve causal connections between events [9].

Le Bihan [10] has proposed a relativistic framework for the brain aimed at optimizing
time efficiency through the spatial organization of the brain connectome. His goal so far has
been limited to demonstrating computational simulations of this conceptual framework,
attempting to adapt concepts from the original theory of general relativity to spacetime
diagrams for the brain connectome, without delving into the intrinsic characteristics of
brain tissue.

In the approach we support, global symmetries are supplanted by local symmetries.
Nonetheless, we stipulate that the mathematical representation of physical laws assumes
an invariant form enclosed by changes in coordinates; in other words, the equations are
articulated in covariant form. Consequently, the invariance condition enables us to propose
relativistic equations for particles. The equations of electrodynamics are already framed in
a manner compatible with the restricted (or special) theory of relativity, and the ultimate
adjustment is achieved by defining the transformation formulas for our local EM field as it
transitions from one reference frame to another [11].

In general, the attenuation of structural complexities within the domains is perceived
as a distinctive averaging process of voltages and currents within the intracellular and
interstitial spaces, thus eliminating unnecessary details. This facilitates the effective es-
tablishment of domains through the emergent fields of the averaging operations and the
deduction of laws governing the interrelation of emerging fields. The extensive inter-
connectivity observed in brain tissue warrants considering the intracellular space as a
unified continuum that is merely connected. A similar treatment can be applied to the
interstitial space. In the three-dimensional cable model, these continua, both interstitial
and intracellular, are envisioned to cohabit the same volume on a relatively microscopic
scale [12].

Ohm’s law states the relationship between electric current, resistance, and potential
difference in an electric circuit. By the principle of charge conservation, the current intensity
in a closed circuit must be constant. However, Einsteinian relativity deprives the previous
statement of absolute significance: the simultaneity of two distant events depends on
the frame of reference, so the appearance of opposite charges at two different points
could not be simultaneous in all reference frames [13]. Therefore, charge conservation is a
local property.

Certain aspects of the theory are challenging to elucidate without searching into a
discourse on special relativity. Specifically, we will elucidate Lorentz’s law, the energy-
momentum tensor, and the energy-momentum conservation equation, as they predomi-
nantly necessitate the definition of four-velocity and proper time. An equation is said to be
covariant when it takes the same invariant tensor form in all inertial systems. The equations
of electromagnetism, including Ohm’s law, are invariant under Lorentz transformations. It
is imperative, given our aim to encapsulate electromagnetism equations within the four-
dimensional formalism via special relativity, with the objective of establishing a covariant
formulation of Ohm’s law that naturally emerges in tissues with complex geometry from a
full conductivity tensor with non-zero off-diagonal terms.

Since its discovery and initial technological applications in engineering, [14] Ohm’s law
has been applied in nearly every branch of the physical sciences to describe diverse systems
such as plasmas (in astrophysics and cosmology), [15] black hole membranes, [16] atomic-
scale logic circuits, [17] and neuron cells in medical physiology [18]. On the theoretical side,
the challenge of deriving Ohm’s law for microscopic biological applications continues to
attract significant interest.
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The implications of uneven anisotropy and the non-uniform propagation of the ac-
tion potential make it challenging to interpret experiments designed to study the effect
of brain anisotropy on the electrotonic propagation of depolarization, especially when
using one-dimensional electric current flows at the mesoscopic scale. In this work, we
propose reinterpreting these experiments through the application of tensor analysis meth-
ods, particularly under the covariant form of Ohm’s law. Riemannian manifolds allow
this physiological problem to be translated into geometric language. This new approach
enables us to describe the effects associated with the dispersion of electrotonic propagation
by studying the curvature of the associated wavefront and introducing defined metrics for
the tensorial conductivity fields emerging at the mesoscopic scale, corresponding to the
intracellular, interstitial, active bioelectric, and passive bioelectric continua.

Until now, only Starke et al. [19] have discussed Ohm’s law in its covariant form.
However, this study only addresses the special case of constant, scalar conductivity. Fur-
thermore, their work did not describe the role of surfaces and hypersurfaces embedded in
the four-dimensional spacetime over which brain Ohm’s law is applied, a crucial point in
our formulation.

Our presentation is as follows. Section 3 is focused on the formulation of the emergent
Ohm’s law in covariant form for four-dimensional EM tensors. However, as a preamble and
to introduce our notation, Section 2 begins with a brief review of the procedure to derive
the results in Section 3. In Section 2.1, we derive the generalized Ohm’s equation in terms
of potentials. In Section 2.2, we explain the fundamentals of the bidomain theory in the
context of EM field theory averaged over different scales. The objective of Section 3.1 is to
analyze the formulation of the emergent Ohm’s law in biological tissues. In Section 3.2, we
derive the emergent Ohm’s law from the bidomain theory. Section 3.3 is the most important
and interesting; it contains the formulation of the emergent Ohm’s law in covariant form
for full (non-diagonal) conductivity tensors for four-dimensional EM tensors. This section
includes many crucial and non-trivial details that must be considered, which, unfortunately,
are almost absent in the literature. Finally, in Section 3.4, we extend the results of Section 3.3
to EM tensors of any order.

The summary of Sections 2 and 3 can be written symbolically as follows:

2.1 Potencial formulation of EM fields → 3.1 Emerging Ohm′s law formulation (EOLF)
2.2 Bidomain theory in biological tissues

+
3.1 EOLF

→ 3.2 EOLF in electrophysiological tissues (EOLFET)

3.2 EOLFET → 3.3 Covariant Ohm′s law in cuadrimensional EM tensor (COL4EMT)

3.3 COL4EMT → 3.4 Covariant Ohm′s law in n-dimensional EM tensor

We include summarizing key mathematical variables in the Supplementary Information
section.

2. Methodology
2.1. Potential Formulation of Generalized Ohm’s Law

The force exerted on a particle with charge q and velocity
→
v when it interacts with

other charged particles is described by the Lorentz force,

→
F = q

(→
E +

→
v ×

→
B
)

(1)

In this context,
→
E and

→
B symbolize the electric and magnetic fields, respectively.

The EM field, denoted as
(→

E ,
→
B
)

, corresponds to the arrangement of density charge
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and currents
(

j and
→
J
)

as articulated by the four Maxwell equations for vacuum. These

equations furnish us with the scalar and vector origins of
→
E and

→
B at the microscopic

level [20].
The relation between the electric field and the current density may be written by an

equation formally similar to Equation (1),

→
J = σ

(→
E +

→
v ×

→
B
)

(2)

where the conductivity σ is a tensor. The conductivity is different in different directions and
an electric field in one direction may be rise to a current component in another direction.

We may refer to Equation (2) as a “generalized Ohm’s law”. The expression
→
E +

→
v ×

→
B

is the electric field measured in an appropriate frame of reference. Note that the electric

field
→
E is different in different frames of reference while

→
E +

→
v ×

→
B is an invariant equal to

the electric field in the frame of reference where the velocity
→
v = 0. In the reference frame

of the charged particle, a Laplace–Lorentz force and an electric force q
→
E are exerted. In a

uniform magnetic field,
→
B and zero electric field,

→
E = 0, the motion of the charged particles

is helical, with a constant velocity in the direction of
→
B , and spirals around the magnetic

field line (Figure 1).
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The influence of an EM field on a material medium can be characterized at a macro-
scopic level by three parameters: polarization

→
P (electric dipole moment density), magne-

tization
→
M (magnetic dipole moment density), and current density

→
J . These parameters

represent the medium’s reaction to the field. It is noteworthy that within a material medium,
there are corresponding macroscopic charge and current densities, denoted as [21]

ρP = −∇
→
P (3)

→
J M = ∇×

→
M (4)

→
J P =

∂
→
P

∂t
(5)

Incorporating these charge and current densities into Maxwell’s equations for vacuum
yields equations conducive to a macroscopic analysis of material media. To solve these
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equations, it is crucial to hold the connection between the EM field
(→

E ,
→
B
)

and the response(→
P ,

→
M,

→
J
)

; this relationship is determined by the constitutive relations of the medium.

→
P = ε0χ

→
E (6)

→
M =

1
µ0

· χm

1 + χm
·
→
B (7)

→
J = σ·

→
E (8)

where ε0, µ0, χ, χm, and σ represent, respectively, the electrical constant, the magnetic
constant, the electrical susceptibility, the magnetic susceptibility, and the conductivity.
These three parameters provide a macroscopic characterization of the material medium.

It is often more convenient to manipulate the macroscopic equations by introducing

auxiliary fields: the electric displacement
→
D and the magnetic intensity

→
H. From Maxwell’s

equations, it is evident that the polarization charges do not impact the scalar sources of
→
D, and the magnetization currents do not affect the vector sources of

→
H. Consequently,

computing the auxiliary fields can be simpler than computing the EM fields [22,23].
Therefore, the constitutive relations can be expressed using the auxiliary fields in the

following manner,
→
D = ε·

→
E (9)

→
B = µ·

→
H (10)

where ε and µ represent, respectively, the relative electrical constant and the relative
magnetic constant.

Introducing EM potentials (φ,
→
ϕ ) → (

→
E ,

→
B), only two potentials (φ and

→
ϕ ) are neces-

sary because
→
E and

→
B are not independent. The property

∇
→
B = 0 (11)

which characterizes magnetic fields, allows us to define the vector potential magnetic field
→
ϕ , such that

→
B = ∇×

→
ϕ (12)

The relationship between
→
ϕ and

→
B is similar to that between the corresponding

electrostatics
→
ϕ and

→
B , particularly in that the field

→
B is derived from

→
ϕ , as

→
E is from φ (the

potential electric field). However, its vector nature significantly reduces its utility compared
to the electric potential, which is scalar.

In certain instances, computing
→
ϕ proves advantageous, not solely as a means to

derive
→
B . For example, in inductive processes, it becomes imperative to compute fluxes of

→
B to determine induced EM forces. The flux of

→
B , denoted as

Ω =
x →

B ·dS (13)

can be calculated more efficiently as

Ω =
∮ →

ϕ ·dl (14)
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where the line integral is computed over the boundary of the surface through which
→
ϕ is to

be computed.
In approaches to the physics of electric dipoles in solution, where the magnetic flux

is influenced by the macroscopic motion of the system—see Equation (12)—computing
→
ϕ

may offer advantages. The field line equations
→
B , which can be formulated in Hamiltonian

form, can be derived from a variational principle where the “action” can also be represented

as the line integral of
→
ϕ . The condition

→
B = ∇×

→
ϕ does not uniquely determine

→
ϕ , thus

additional conditions must be imposed. The expression, which we can term the “Bio-Savart”

for
→
ϕ , is

→
ϕ =

µ0

4π

∫ J(x′)
r

d3x′ (15)

The equation utilizes r = x− x′ and r = |r|, which is applicable for a three-dimensional
electric current distribution defined by the current density J. This expression bears analogy
to, but is simpler in form than, the Biot–Savart law expression for the magnetic field of a
three-dimensional current distribution,

→
B =

µ0

4π

∫
r × J(x′)

r3 d3x′ (16)

The contribution to the vector
→
ϕ from the current element Jd3x′ aligns with the

direction of J, whereas the contribution to
→
B takes on a perpendicular direction defined by

the cross product of the integrand of Equation (16).

2.2. Bidomain-Based EM Mesoscopic Fields

The fundamental concept of averaged field theory involves assigning three spatial
scales, denoted by d, l and L, to a complex polyphasic medium. These scales are known
as microscopic, mesoscopic, and macroscopic, respectively. This terminology reflects the
numerical order maintained by these scales, where d ≪ l ≪ L [24].

The geometric determination of the microscopic scale, denoted by d, can be achieved
through quantitative three-dimensional reconstruction of tissue structure from electron
micrographs. The macroscopic scale (L) can be estimated using the space constant cor-
responding to the electrotonic propagation of depolarization, as determined in globally
one-dimensional experiments. Finally, it is essential to estimate the mesoscopic scale
(l), which characterizes the dimensions of the regions over which the fields will be aver-
aged [25,26].

At the l-scale, where the averaged fields are formulated, the bidomain boundary
serves as a singularity where the relationship between the three spatial scales d, l, and L
breaks down. However, primarily, it is a geometric singularity, thus defining it necessitates
resorting to an essentially morphological property. This property can be translated into an
averaged local field, where the order relationship between the microscopic, mesoscopic, and
macroscopic scales is disrupted. This property refers to the volume fraction corresponding
to the intracellular space. The scale l must be at least one order of magnitude smaller than L
and at least one order of magnitude greater than d. An estimate maintaining the necessary
differences in orders of magnitude is l =

√
d·L. For instance, considering L ≈ 4 mm and

d ≈ 0.1 µm, an estimate for l coinciding with the diameter of a neuron (20 µm) would be
obtained [27].

The polyphasic medium is inherently disordered at the d scale, where the field vari-
ables can be considered as random functions of position. Conversely, the medium is
statistically homogeneous at the l scale. Consequently, the average values of the field
remain constant at the mesoscopic scale [28]. The incorporation of the three spatial scales
eliminates numerous details related to irregularities in the spatial distribution and temporal
evolution of the fields at the microscopic scale, details which are currently inaccessible to
measurement in the state of the art [29].
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The averaged field theory facilitates a systematic definition of the fields proposed in the
bidomain theory, connecting them to the irregular spatial distribution of microscopic fields
(at the d scale) and to phase boundaries through averaging operations at a mesoscopic scale
(l). The averaged local fields thus formulated exhibit substantial variation on a macroscopic
(L) scale [30].

The application of the bidomain theory to the EM field in biological tissues postulates
the existence of two overlapping continuous media (domains) that cover the entirety of
tissue space: the intracellular domain and the interstitial domain. These domains are
interconnected through excitable membranes distributed throughout the tissue space. Each
domain is considered an ohmic yet anisotropic volume conductor. An electrical potential
and a conductivity tensor field are assigned to every point within the tissue’s space. The
electric current density within the domain is then computed using Ohm’s law for an
anisotropic conductor. The divergence of this current density equals the current passing
through the membranes, transitioning from the considered domain to the other domain,
per unit volume of tissue [31].

Let us consider the volume V over which the averaging is conducted and a point P,
which may belong to phase 1, phase 2, or even lie on the border between both phases. We
construct a cube with side length l whose center aligns with point P. This cube will be
denoted as B(P) generally, B(P) may represent a region with dimensions on the order of
l and whose centroid is at P. It is assumed that the boundary between the phases has a
negligible volume compared to the region of B(P) (which is the case if the boundary is
formed by membranes) [32]. The volume V(B) of the region is the sum of volumes V(B1)
and V(B2) corresponding to the parts B1 and B2 occupied by phases 1 and 2, respectively.
Then, the volume fractions of phases 1 and 2, attributable to point P via the region B(P),
will be [33]

f1(P) =
V(B1)

V(B)
(17)

f2(P) =
V(B2)

V(B)
(18)

that satisfy the condition:
f1(P) + f2(P) = 1 (19)

Two fields, f1(P) and f2(P), have been constructed in this manner, defined for each
point in the biphasic medium, regardless of the point’s location (thus, a point situated in
phase 2 will correspond, through this procedure, to a volume fraction assigned in phase 1).

3. Results
3.1. Generalized Emerging Ohm’s Law

Introducing the indicator function Jµ(Q) of phase (which equals 1 if point Q belongs
to the said phase and 0 otherwise), and if Ψ(t, Q) represents the value corresponding to a
field at time t and point Q, define

Ψµ(t, Q) = Jµ(Q)· Ψ(t, Q) (20)

We will refer to the field Ψ(t, Q) as the microscopic field or local point-wise field [34].

Thus, any point Q belonging to the region B(P) has a position vector
→
r +

→
ξ (

→
ξ refers to

a coordinate system centered on P, parallel to the x, y, z axes). We define the phase-specific
average of the local point-wise field Ψ(t, Q) at point P with respect to phase µ by means of
the volume integral [35]

〈
Ψµ

〉
(t, P) =

〈
Ψµ

〉(
t,
→
r
)
=

1
V(B)

∫
B(P)

Ψµ

(
t,
→
r +

→
ξ

)
dVξ (21)
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The intrinsic phasic-average at point P will be

〈
Ψµ

〉 f
(t, P) =

1
V
(

Bµ

)∫
B(P)

Ψµ

(
t,
→
r +

→
ξ

)
dVξ (22)

where dVξ is the differential volume element. Then, if fµ

(→
r
)

represents the volume fraction
of the µ phase at point P, we have〈

Ψµ

〉(
t,
→
r
)
= fµ

(→
r
)〈

Ψµ

〉
f
(

t,
→
r
)

(23)

Note that, regardless of the location of point P, this procedure associates it with an aver-
age field constructed from the microscopic field (local point-wise) and attributed to phase µ.
The phase and intrinsic phase-averaged fields can be denoted as local averaged fields. They
are considered local because they are assigned to each point in the multiphase medium.

To derive the emergent form of Ohm’s law, it is necessary to analyze the transmem-
brane current density Jm. In the bidomain theory, Jm is assigned to each point in the space
occupied by the tissue and is expressed as the sum of a displacement current density ∂Vm

∂t ,

which depends on φ and
→
ϕ , and a density of ionic current Jion(Vm, {W}) [36]. Where {W}

corresponds to variables describing the activation, recovery, and adaptation of excitable
membranes in brain tissue.

The transmembrane voltage Vm is assumed to be equal to θi − θe, where θi and θe are
two scalar fields representing the electrical potential in the intracellular and interstitial
continua, respectively. Next, the decomposition of the transmembrane current density
into an l-scale displacement current and an l-scale ionic current will be studied, and the
significance of the relation Vm = θi − θe will be examined [37].

Referring to Am as the membrane surface, we can express Jm as

Jm

(
t,
→
r
)
=

1
A(Am)

∫
Am

jm
(

t,
→
r
)

dA (24)

where jm is the current density flowing through surface A.
To derive the expression for Jm used in bidomain theory, it is sufficient to start with a

single membrane unit on the scale d.
The question then arises regarding the interpretation of the transmembrane potential

that appears in these models as an average. To illustrate this, consider the displacement
current term in Equation (24). Two new locally averaged fields emerge there, but they
concern to the surface Am of the connecting membranes between the intracellular space
and the interstitial space, [38]

φm

(
t,
→
r
)
=

1
A(Am)

∫
Am

φm

(
t,
→
r
)

dA (25)

→
ϕ m

(
t,
→
r
)
=

1
A(Am)

∫
Am

→
ϕ m

(
t,
→
r
)

dA (26)

The point-wise local transmembrane potential is expressed by the formula

φm

(
t,
→
r
)
+

→
ϕ m

(
t,
→
r
)
= Vi

(
t,
→
r
)
− Ve

(
t,
→
r
)

(27)

Here, Vu
(

t,
→
r
)

represents the limit, at point
→
r , of Am, where Am is restricted to the

values taken by the electric potential V
(

t,
→
r
)

at points of the phase ( u = i or e). If we
introduce the additional hypothesis

1
A(Am)

∫
Am

Vu
(

t,
→
r
)

dA =
1

V(Du)

∫
D

Vu
(

t,
→
r
)

dV (28)
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where D is a volume element (centered at point P with the position vector
→
r ). Substituting

(27) into (25) and (26) and considering (28), we obtain

φm

(
t,
→
r
)
+

→
ϕ m

(
t,
→
r
)
=

1
V(Di)

∫
D

Vi
(

t,
→
r
)

dV − 1
V(De)

∫
D

Ve
(

t,
→
r
)

dV (29)

However, since θu

(
t,
→
r
)

is, by definition, the intrinsic phase average of V
(

t,
→
r
)

, it
ultimately follows

φm

(
t,
→
r
)
+

→
ϕ m

(
t,
→
r
)
= θi

(
t,
→
r
)
− θe

(
t,
→
r
)

(30)

The average of the local transmembrane punctual field, taken with respect to the
membrane surfaces, equals the difference between the potentials of the intracellular and

interstitial continua [39]. Denoting Vm

(
t,
→
r
)

as φm

(
t,
→
r
)
+

→
ϕ m

(
t,
→
r
)

, we derive both the

relation Vm = θi − θe and the expression ∂Vm(Cm ,µ)
∂t for the scaled displacement current J.

Where Cm is the average electrical capacitance per membrane unit. The hypothesis stated
in Equation (28) can be substantiated by considering the relationship between volume
averages and surface averages.

3.2. Derivation of Emerging Ohm’s Law from a Bidomain-Based Mesoscopic Potential

An emerging Ohm’s law represents a linear relationship between the phase-average cur-

rent density
→
J

f

µ =

〈→
j µ

〉 f
and the phase-average electric potential gradient ∇θµ = ∇

〈
Vµ

〉 f

observed at every point within the bidomain, describing the electrical behavior of the µ
domain under consideration. In concise notation, it can be expressed as follows:

→
J

f

µ = −Ĝµ·∇θµ (31)

Here, Ĝµ denotes a symmetric and positive definite tensor field. Essentially, within
each orthogonal Cartesian coordinate system, Ĝµ is denoted by a symmetric matrix. There
exists a coordinate system where this matrix adopts a diagonal form, with strictly positive
coefficients Gµ,1, Gµ,2, and Gµ,3. As we move from one point to another within the bidomain,
the tensor Ĝµ typically varies, causing the principal directions and principal values Gµ,i
with i = 1, 2, 3 to also vary. The principal conductivities represent the eigenvalues of the
linear operator Ĝµ [40]. Where Gµ,1 is the interstitial continuum conductivity value, Gµ,2
the intracellular continuum conductivity value, and Gµ,3 the passive bioelectric medium
conductivity value.

The law is considered emergent to the extent that the tensor (linear operator) Ĝµ

encapsulates, at the l scale, the charge transport processes and the intricate boundary
conditions that, at the d scale, manifest the electrical behaviour of the polyphase medium
in the µ phase.

The challenge now is to establish how the emerging Ohm’s law can be anchored in
the geometry of the medium at a mesoscopic scale and in the equations of EM theory. The

core lies in demonstrating that if there exists a functional relationship between
→
J

f

µ and ∇θµ,
this relationship must be inherently linear, resembling the form expressed in Equation (30),
with an operator Ĝµ that is proven to be symmetric and positive definite [41].

The proof that the relationship between
→
J

f

µ and ∇θµ is linear relies on a reciprocal
relationship formulated as follows: Let ∇θµ,1 be a potential gradient in the continuum µ

and
→
J

f

µ,1 the corresponding generated current density field. Similarly, let ∇θµ,2 be another
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gradient and
→
J

f

µ,2 the corresponding current density field. In principle, ∇θµ,1 and ∇θµ,2
are arbitrary vectors. Then, the reciprocity relation is as follows:

→
J

f

µ,2·∇θµ,1 =
→
J

f

µ,1·∇θµ,2 (32)

Consequently,
→
J

f

µ is linearly related to ∇θµ The most general form of this linear

relationship between two vectors
→
J

f

µ and ∇θµ is expressed as
→
J

f

µ = −Ĝµ·∇θµ, where Ĝµ is
an unknown operator (tensor) [42].

By substituting this linear relationship into the reciprocity law (32), we obtain the
symmetry of the tensor Ĝµ. The fact that this tensor is symmetric and positive definite can
be demonstrated from the relation

→
J

f

µ·∇θµ ≤ 0 (33)

which is a strict inequality except in the case where ∇θµ =
→
0 .

Consequently, it is necessary to justify three hypotheses:

1. There is a functional relationship between
→
J

f

µ =

〈→
J µ

〉 f
and ∇θµ = ∇

〈
Vµ

〉 f , where

∇θµ is considered the independent variable.

2. For any pair of fields linked by this functional relationship, it is verified that
→
J

f

µ·∇θµ ≤ 0

(with the equality holding if and only if ∇θµ =
→
0 ).

3. For any two pairs of fields
→
J

f

µ and ∇θµ (with subscripts 1 and 2) being functionally

related layer fields, the following holds:
→
J

f

µ,2·∇θµ,1 =
→
J

f

µ,1·∇θµ,2 .

To justify these hypotheses, it is convenient to begin with the concept that the polypha-
sic environment is intrinsically disordered on the scale of d but statistically homogeneous
on the scale of l. This implies that point-local field variables can be regarded as random
functions of position in space, whose moments remain stationary over distances of the
order of l, even though they vary significantly over distances of the order of L. Regarding
phase µ, the Ψ can then be decomposed as follows (gray decomposition), [43,44]

Ψµ =
〈
Ψµ

〉 f
+

∼
Ψµ (34)

The intrinsic phasic average corresponds to the first-order moment of the field, re-

maining stationary on the l scale. The field
∼
Ψµ represents a random fluctuation satisfying〈∼

Ψµ

〉 f
= 0 (35)

since
〈〈

Ψµ

〉 f
〉
=
〈
Ψµ

〉 f . Thus, while
〈
Ψµ

〉 f varies significantly with position only at the

macroscopic scale (L), the term
∼
Ψµ varies significantly and randomly at the microscopic

scale d. The fields necessary to describe charge transport in the brain on a microscopic scale
can be understood from this perspective.

Although the equations governing these fields are non-linear and non-stationary, the
resulting overarching law is linear and stationary. It remains stable on the timescales
associated with the processes of excitation and propagation of action potentials in brain
tissue. However, the conductivity operator characterizing each of the continua may exhibit
gradual variations associated with physiological or pathophysiological processes.
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3.3. Transitioning to the Covariant Formulation of the Emerging Ohm’s Law

Given that the magnetic field can be calculated as
→
B = ∇×

→
ϕ where

→
ϕ is the magnetic

potential vector, if we substitute this expression for the magnetic field into Faraday’s law,
we obtain the following,

∇×
→
E = − ∂

∂t

(
∇×

→
ϕ
)

(36)

If we simplify this expression now, we obtain [45]

∇×
(→

E +
∂

∂t
→
ϕ

)
= 0 (37)

Most theories can be mathematically formulated to be covariant under a group of
transformations associated with the principle of relativity. Electromagnetism’s consistency
with the theory of special relativity imposes a primary constraint on the nature of the
spacetime continuum. Let us consider it initially as a regularly curved manifold where
events constitute the points. At each point P, a manifold is defined. Consistency with
special relativity demands that the manifold representing the spacetime continuum can be
locally approximated, at each of its points, by a tangent Minkowski spacetime.

The Minkowski spacetime is a Lorentzian manifold with zero curvature and isomor-
phic to M0 =

(
R4, η

)
where the metric tensor can be expressed in a Cartesian coordinate

system as [46]

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (38)

We define the contravariant four-vector Xµ = {ct, x, y, z} and its covariant form as
Xµ = ηXµ = {ct,−x,−y,−z} to derive

ds2 = XµηXµ = Xµ Xµ = c2dt2 −
(

dx2 + dy2 + dz2
)

= c2dt2 − dx2 − dy2 − dz2
(39)

Exploiting the Lorentzian manifold structure of a Minkowski spacetime, we can

construct a four-vector, which we denote as ϕµ =
(

σ,
→
ϕ
)

, existing in the cotangent space of
the Lorentzian manifold. Hence, we represent this four-vector as a 1-form differential [47].

ϕ = σdt + ϕxdx + ϕydy + ϕzdz (40)

Now, if we calculate the exterior derivative of ϕ, we obtain the EM field tensor,

T =
(

∂
∂x σ − ∂

∂t ϕx

)
dxdt +

(
∂

∂y σ − ∂
∂t ϕy

)
dydt

+
(

∂
∂z σ − ∂

∂t ϕz

)
dzdt +

(
∂

∂x ϕy − ∂
∂y ϕx

)
dxdy

+
(

∂
∂z ϕx − ∂

∂x ϕz

)
dxdz +

(
∂

∂y ϕz − ∂
∂z ϕy

)
dydz

(41)

From here, we can observe how the electric and magnetic fields, which appeared in
Equations (36) and (37), emerge naturally [48].

Ex =

(
∂

∂x
σ − ∂

∂t
ϕx

)
= E1 (42)

Ey =

(
∂

∂y
σ − ∂

∂t
ϕy

)
= E2 (43)
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Ez =

(
∂

∂z
σ − ∂

∂t
ϕz

)
= E3 (44)

Bx =

(
∂

∂x
ϕy −

∂

∂y
ϕx

)
= B1 (45)

By =

(
∂

∂z
ϕx −

∂

∂x
ϕz

)
= B2 (46)

Bz =

(
∂

∂y
ϕz −

∂

∂z
ϕy

)
= B3 (47)

Now we can express Equation (41) in a more concise form as

Tµυ =


0

−Ex

Ex
0

−Ey
−Ez

Bz
−By

Ey
−Bz

Ez
By

0
Bx

−Bx
0

 (48)

If we use the metric tensor to raise the indices, we obtain the contravariant form of the
EM tensor

Tαβ = ηαµTµυηυβ =


0

Ex

−Ex
0

Ey
Ez

Bz
−By

−Ey
−Bz

−Ez
By

0
Bx

−Bx
0

 (49)

The initial deduction from the premise that the Faraday curvature tensor equals the EM
field tensor (in the presence of an affine connection with local symmetry) suggests that we
can link an internal space to the electric charge four-vector. The electric and magnetic fields,

represented by
→
E and

→
B , emerge spontaneously when curvature exists in the associated

spatial differential manifold. In other words, the EM fields result from the curvature within
the internal differential manifold of the charge density four-vector.

In the non-relativistic limit, Ohm’s law—Equation (2)—assumes the following form: [49]

→
J = σ

(
→
E +

→
v
c
×

→
B

)
(50)

where
→
J , σ,

→
E ,

→
B ,

→
v , and c are the current, conductivity, electric field, magnetic field,

particle velocity, and light velocity, respectively.
Classical treatments of anisotropic media rely on diagonal conductivity tensors for

both the intracellular (i) and interstitial (e) domains, which, in cylindrical coordinates, are
represented as follows: σr

i 0 0
0 σθ

i 0
0 0 σz

i

 (51)

σr
e 0 0

0 σθ
e 0

0 0 σz
e

 (52)

The use of diagonal tensors does not accurately depict Ohm’s law in tissues with highly
intricate geometry. Such tissues would necessitate a more comprehensive conductivity
tensor that encompasses off-diagonal terms.σrr

i σrθ
i σrz

i
σθr

i σθθ
i σθz

i
σzr

i σzθ
i σzz

i

 (53)
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σrr
e σrθ

e σrz
e

σθr
e σθθ

e σθz
e

σzr
e σzθ

e σzz
e

 (54)

A nonrelativistic version of the “generalized Ohm’s law” is given by the expres-
sion, [50]

∂
→
J

∂t
+∇·

(
→
v ·

→
J +

→
J ·→v − 1

σ

→
v ·→v

)
= l

→
E +

→
v
c
×

→
B + h

→
J
c
×

→
B − η

→
J

 (55)

where ∇ is the three-space gradient operator and,

l = ∑
i

ni·q2
i

mi
(56)

h =
1
σ ∑

i

qi
mi

(57)

η =
υ

σ
(58)

where ni, qi, and mi represent the number density, charge, and mass of particle species i,
respectively. The conductivity term arises from integrating particle collisions over velocity
and approximating it as an effective collision frequency υ. Equation (55) captures most of
the effects sought in a description of relativistic electromagnetism; however, its validity is
restricted to flat space.

The equations describing the EM field, including Maxwell’s equations and their
derived equations such as Ohm’s law, are consistent with relativistic principles when they
maintain a consistent mathematical formulation across all inertial reference frames. This
consistency is achieved by expressing them in a covariant form.

One approach to constructing a covariant Ohm’s law involves considering simultane-
ous events in the frame of each observer. It is acknowledged that despite both observers
dealing with the same system (the same universe tube in Minkowski space), they are no
longer working with identical events. Consequently, as these events differ, they cannot
be connected using Lorentz transformations. As a result, non-local physical quantities,
in general, may not be equivalent from the perspective of relativistic physics for the two
observers. Thus, this procedure can potentially yield seemingly paradoxical outcomes.

There is a straightforward way to circumvent these difficulties: constructing a local
version of the EM four-tensor that can be referenced in any inertial frame K. This math-
ematical object, characterized by 16 components in each reference frame, is organized in
a symmetric 4 × 4 matrix. It is a mixed tensor of type EM, with subscript 0 denoting the
time associated with the coordinate x0 = c·t, and subscripts 1, 2, and 3 referring to the
components x1 = x, x2 = y, and x3 = z of an orthogonal Cartesian coordinate system.
These components undergo covariant modifications when changing the inertial frame (the
tensor retains its structure unchanged under Lorentz transformations).

D.L. Meier [51] employed geometric tensor notation starting from Equation (55) to
derive a charge conservation equation that incorporates the EM tensor Tαβ, rendering it
causal, covariant, and applicable to any spacetime metric.

1
c

→
J ·

→
F = −∇xTαβ (59)

The interaction of an EM field with a particle relies on two fundamental quantities:
a scalar quantity, the charge, which characterizes the particles, and a vector quantity, the
speed of the particle relative to an inertial reference frame. The product of speed and
charge can be associated with the electric current (J). The electric current is quantified by
measuring the amount of charge that passes through an area per unit of time due to the
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movement of the particle set. Therefore, a natural approach to construct a covariant form of
an emerging Ohm’s law would involve introducing the covariant derivative of the mixed
EM tensor Tαβ

i with respect to the current density field into Equation (59).
Building upon the preceding developments, we propose to amend Equation (59) to

establish a covariant expression of the generalized emergent Ohm’s law in highly non-
isotropic media, such as brain tissue, characterized by a conductivity tensor σij featuring
non-zero off-diagonal terms.

1
c

F = −DJ Tαβ
i (60)

where D is the covariant derivative with respect to the current density field J = Ji ∂
∂xi of the

mixed EM tensor field T = Tαβ
i dxi ⊗ ∂

∂xj

⊗ ∂
∂xk and

⊗
denoting the tensor product opera-

tion. We provide a more detailed explanation in the Supplementary Information section.
Next, we will develop the right-hand side of Equation (60),

DJ T = DJh ∂

∂xh

(
T jk

i dxi ⊗ ∂
∂xj

⊗ ∂
∂xk

)
= Jh

[(
∂hT jk

i

)
dxi ⊗ ∂

∂xj

⊗ ∂
∂xk

+T jk
i

(
D ∂

∂xh
dxi
)⊗ ∂

∂xj

⊗ ∂
∂xk

+T jk
i dxi ⊗(D ∂

∂xh

∂
∂xj

)⊗ ∂
∂xk

+T jk
i dxi ⊗ ∂

∂xj

⊗(
D ∂

∂xh

∂
∂xk

)]
(61)

where,

D ∂

∂xh

∂

∂xj = Γ
j
hj

∂

∂xl (62)

where Γ represents the Christoffel symbols, and on the other hand,(
D ∂

∂xh
dxi
)(

∂
∂xl

)
= D ∂

∂xh

[
dxi
(

∂
∂xl

)]
− dxi

(
D ∂

∂xh

∂
∂xl

)
=

D ∂

∂xh

(
δi

l
)
− dxi

(
Γk

hl
∂

∂xk

)
= 0 − Γk

hldxi
(

∂
∂xk

)
= −Γk

hlδ
i
l = −Γi

hl

(63)

where δi
l defines the dual space of the linear manifold. In other words,

D ∂

∂xh
dxi = −Γi

hldxl (64)

Substituting, we finally obtain,

DJ T = Jh
[(

∂hT jk
i

)
dxi ⊗ ∂

∂xj

⊗ ∂
∂xk − T jk

i Γi
hldxl ⊗ ∂

∂xj

⊗ ∂
∂xk +

T jk
i Γl

hjdxi ⊗ ∂
∂xl

⊗ ∂
∂xk + T jk

i Γl
hkdxi ⊗ ∂

∂xl

⊗ ∂
∂xl

]
=

Jh
[(

∂hT jk
i

)
dxi ⊗ ∂

∂xj

⊗ ∂
∂xk − T jk

l Γl
hidxi ⊗ ∂

∂xj

⊗ ∂
∂xk +

Tlk
i Γ

j
hldx

i ⊗ ∂
∂xj

⊗ ∂
∂xk + T jl

i Γk
hldxi ⊗ ∂

∂xj

⊗ ∂
∂xk

]
= Jh

(
∂hT jk

i −

T jk
l Γl

hi + Tlk
i Γ

j
hl + T jl

i Γk
hl

)
dxi ⊗ ∂

∂xj

⊗ ∂
∂xk

(65)

In terms of components, the expression is as follows,(
DJ T

)jk
i = Jh

(
∂hT jk

i − Γl
hiT

jk
l + Γ

j
hlT

lk
i + Γk

hlT
jl
i

)
(66)
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3.4. Covariant Emerging Ohm’s Law in n-Dimensional EM Tensor

From this expression, (66) we can deduce the general case for an EM tensor field of
any order,

J = Ji ∂

∂xi , T = T
j1 ...jq
i1 ...ip

dxi1
⊗

. . .
⊗

dxip
⊗ ∂

∂xj1

⊗
. . .
⊗ ∂

∂xjq(
DJ T

)j1 ...jq
i1 ...ip

= Jh
(

∂hT
j1 ...jq
i1 ...ip

− Γl
hi1

T
j1 ...jq
i2 ...ip

− . . . − Γl
hip

T
j1 ...jq
i2 ...ip−1l + Γ

j1
hl T

j2 ...jq
i1 ...ip

+ . . . + Γ
jq
hl T

j2 ...jq−1l
i1 ...ip

) (67)

4. Discussion

In the context of relativistic transformations, the properties of the conductivity tensor
at the microscopic level are particularly important. All material responses to the EM field
can be analytically expressed in terms of the conductivity tensor. In turn, the properties
of the conductivity tensor determine the transformation properties of the EM field, and,
moreover, they determine the curvature of the spacetime where the phenomena take
place. In this context, the definition of a relativistic formulation of Ohm’s law at the
microscopic scale is essential. This involves starting from an appropriate conductivity
tensor (in the case of brain tissue, a full tensor with non-zero off-diagonal elements), and
the covariant formulation of Ohm’s law, as it relates the induced electric current density
and the applied external electric field. A microscopic Ohm’s law can be interpreted as a
non-local convolution.

Our objective is to highlight the stabilizing role of space in brain dynamics at the
microscopic scale and its contribution to emergent properties. The theory of special rela-
tivity is founded on the fundamental postulate that physical laws remain invariant in all
coordinate systems moving uniformly relative to each other. Its application to the classical
theory of electromagnetism requires an exploration of the geometric aspects in describing
the physical universe.

The EM field is now considered as a whole and described with respect to any inertial
reference frame by establishing how its components transform when passing from one
frame to another. The field transformation laws demonstrate that the electric and magnetic
fields, when taken separately, can be zero with respect to one inertial reference frame and
non-zero with respect to another. By deducing the electromagnetic field tensor according
to the special theory of relativity and demonstrating the covariance of this tensor measured
in two inertial reference systems, we have found a covariant form of one of Maxwell’s
electromagnetic laws (Ohm’s law).

The Faraday curvature tensor equals the electromagnetic field tensor when there exists
an affine connection with local symmetry. Consequently, we can attribute an internal space
to the electric charge four-vector, which typically has dimensions distinct from spacetime. In
this formulation, the equations acquire a direct mathematical interpretation: the divergence
of the EM tensor equals the four-dimensional current vector. If curvature exists in the

differential variety associated with this internal space, electric and magnetic fields (
→
E

and
→
B) spontaneously emerge. In essence, the EM field arises from curvature within

the differential manifold internal to the charge density quadrivector. Moreover, charges
are associated with a 4-dimensional Minkowski spacetime featuring an affine connection,
allowing the measurement of electric and magnetic fields. However, the EM potential
four-vector correlates with the spacetime curvature, and only upon acknowledging this
non-Euclidean curvature does the EM field tensor manifest within the physical realm.

Parallel transport then provides a way to determine the curvature of a non-Euclidean
space. However, not all fields on a curve γ are restrictions to that curve defined on the

entire manifold. Consider now the curve γ on which tangent vectors identified as
→
U have

been drawn, and a vector
→
V to which the parallel transport procedure has been applied
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(Figure 2). Thus, the covariant derivative of a field along a curve γ depends only on the
values of the field on that curve. This allows for the definition of the covariant derivative
along γ of a field T on γ that does not necessarily originate from a field defined on the entire

manifold. Vectorially speaking, this means that a vector
→
V subjected to parallel transport

does not change in magnitude when displaced.
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Parallel transport, covariant derivative, geodesics, and curvature are intimately related
concepts. Thus, in any curved space, not necessarily Euclidean, a particle subjected to the
action of a force field follows a geodesic path (Figure 3).
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However, in a sufficiently small region, spacetime becomes practically flat. This
approximation allows us to consider a curved spacetime as being composed of an enormous
number of spacetime ‘tiles’ (Figure 4). In this way, the theory of averaged fields and an
emergent covariant formulation of Ohm’s law would allow us to establish a relationship
between the EM field variables and the peculiarities of the structure and function of brain
tissue. This involves expressing the fields and parameters at a mesoscopic scale in terms
of the morphological properties and the bioelectric and physicochemical parameters of
the tissues.
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5. Conclusions

One of the fundamental ideas in complexity is the concept of emergence. When we talk
about emergent properties, we refer to the characteristics that appear in a complex system
as a result of the interaction of its parts and cannot be explained by the sum of its individual
components. Furthermore, a key issue is that these emergent complex phenomena do not
derive from the underlying microscopic laws. In no way do they violate the microscopic
laws; however, they do not appear as logical consequences of these laws.

The theoretical development of classical electromagnetism is based on the formulation
presented by Maxwell, which condenses the properties of electromagnetic interaction into
four equations (inhomogeneous and homogeneous). Although the homogeneous Maxwell
equations do not change form under the Lorentz transformation, this is not the case for the
inhomogeneous equations. To address this issue and rewrite classical electromagnetism
in an explicitly Lorentz invariant (covariant) form, we define an electromagnetic energy-
momentum tensor such that the emergent Ohm’s law can be written in a covariant notation.

Electromagnetism can be geometrically described as the curvature of an internal
space. It bends spacetime due to its energy, as anything with energy affects spacetime
curvature. We propose an alternative perspective on brain activity within a relativistic
framework, incorporating a non-Euclidean manifold and an electrophysiological met-
ric that emerges more naturally than the Euclidean metric. This unveils a new physi-
cal geometry, significantly more abstract than Newtonian physical geometry or classical
Maxwellian electromagnetism.

If Maxwell’s electromagnetic theory exhibited a lack of symmetry for different ref-
erence systems due to the non-covariance of electromagnetic laws under the Galilean
transformation group, it was not unreasonable to expect electromagnetic phenomena to
vary when observed in different reference systems. This is where this work focused its
attention. This lack of symmetry can be addressed with the special theory of relativity,
reaffirming the reality of electromagnetic phenomena and their covariance for any inertial
reference system, characterized by electrical or electrical and magnetic effects depending
on each observer.

With the covariant formulation of Ohm’s law, it is shown that both time and spatial
coordinates are necessary to measure and describe certain biological systems with complex
geometry according to different reference systems. This is why the electromagnetic field
takes place in continuous spacetime, and the tensor Tµυ which models such a phenomenon,
makes it evident by expressing the relationships between spacetime coordinates as electric
and magnetic tensions generated at each point in continuous spacetime. This entails
the emergence of electric and magnetic fields that depend extremely sensitively on the
conductivity tensor.
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The geometric approach we propose eliminates the need to detail the dynamics gov-
erning the variables of excitation, recovery, and adaptation associated with the membrane
unit. All results involving these variables depend on a hierarchy of temporal scales asso-
ciated with their dynamics, leading to a high complexity of the field equations involved,
making computational simulation based on highly simplified models indispensable. The
geometric approach, based on Riemannian manifolds, removes numerous details related to
spatial irregularities and the temporal evolution of fields at the microscopic scale, which,
in the current state of the art, are not accessible to measurement. This necessitates the
covariant formulation of Maxwell’s laws, particularly the covariant Ohm’s law applicable
in media with uneven and non-uniform anisotropy, characterized by conductivity tensors
with non-zero off-diagonal elements.
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