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Abstract

This work aims to explore the foundations of partial differential equations
(PDEs) by focusing specifically on Poisson’s equation with Dirichlet boundary
conditions and the eigenvalue problem for the Laplacian. These equations are
of special interest in both mathematics and physics. Although they are among
the simplest cases of PDEs, they introduce techniques and results that are key
to solving more complex equations. In particular, we will introduce the weak
formulation of both equations and prove the existence of weak solutions in two
different ways. The first method uses Hilbert space techniques, such as the Lax-
Milgram theorem and the Spectral theorem, while the second method involves
the minimization of functionals. Ultimately, we will study the regularity of weak
solutions and examine a practical case in which the previous theory is very useful.

.

2020 Mathematics Subject Classification. 35-01, 35A01, 35A15



Chapter 1

Introduction

In my final years of studying mathematics and physics, I was introduced to
functional analysis, which turned out to be one of my favourite subjects through-
out college. I found it particularly beautiful how it smoothly connected concepts
from both analysis and linear algebra, while also generalizing many concepts we
learn during the first year at college to infinite-dimensional spaces. Around that
same time, I was also introduced to quantum mechanics, and suddenly realized
the power of the theoretical concepts learned in functional analysis, and the direct
applications they had. And that is why I decided to expand my knowledge in
functional analysis and its applications and choose a related topic to work on for
this project.

Partial differential equations are crucial for describing a wide range of physical
phenomena, including heat conduction, fluid dynamics, electrostatics, and even
quantum mechanics. That is why their study has attracted so many prominent
mathematicians for centuries. However, it wasn’t until the twentieth century that
the ideal framework to study them was developed. Specifically, through the use of
Sobolev spaces. For instance, one of the most historically studied PDE is Laplace’s
equation, which consists on finding a solution u satisfying:{

∆u = 0 in Ω

u = f on ∂Ω

where ∆ is known as the Laplacian operator and it is defined as ∆ :=
n
∑

i=1

∂2

∂x2
i
.

In the 19th century, Dirichlet realized that Laplace’s equation arises when trying
to minimize the functional J :=

∫
Ω |∇v|2, and that a function is a solution of

Laplace’s equation if and only if it minimizes J , which is known as the Dirichlet
principle. However, trying to prove the existence of a minimizer of J in C2(Ω) is
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2 Introduction

not an easy task either. Instead, it is much easier to prove that exists a less regular
minimizer of J in certain Sobolev spaces.

Throughout this project, we are first going to study the similar case of Poisson’s
equation, which will help us to study the eigenvalue problem later on:{

∆u = f in Ω

u = 0 on ∂Ω

and prove the existence of weak solutions, which are functions solving a less re-
strictive form of the equation. We will provide two different proofs, one relying in
Lax-Milgram or Riesz-Fréchet representation theorem, and the other one by mini-
mizing an energy functional (similarly to Dirichlet’s principle).

Afterwards, we will study the Helmholtz equation (or the eigenvalue problem
for the Laplacian): {

∆u = λu in Ω

u = 0 on ∂Ω

and show that the eigenfunctions of the Laplacian are orthogonal and form a
Hilbert basis of L2(Ω). Again, we are going to provide two different proofs, one
relying on the spectral theorem for compact self-adjoint operators and the other
one via minimization of energy functionals.

To conclude, we will study the regularity of the weak solutions for both Pois-
son’s and Helmholtz’s equations and see how these results can be applied to
the practical case of the quantum system consisting of a particle confined in an
infinite-potential well.



Chapter 2

Preliminaries

Before proving the existence of solutions of Poisson’s equation we need to pro-
vide some results of functional analysis that will be used in the following chapters.

First of all we need to define the spaces in which we might seek a solution of
Poisson’s equation and recall some of their properties.

2.1 Lp spaces

Definition 2.1. A Banach space is a complete normed vector space.

Definition 2.2. A Hilbert space is a complete normed vector space equipped with an inner
product.

The firsts Banach spaces that we need to introduce are the LP spaces.

Definition 2.3. Let Ω be an open domain Ω ⊂ Rn and p a real number 1 ≤ p < ∞.
We define the Lp(Ω) space as:

Lp(Ω) = { f : Ω → R measurable ,
∫

Ω
| f |p < ∞}. (2.1)

The definition is the same for the more general case where f : Ω → C. Identifying all
functions that differ up to a set of measure zero and equipped with the following norm, Lp

spaces have the structure of Banach spaces:

∥ f ∥Lp(Ω) :=
(∫

Ω
| f |p

) 1
p

. (2.2)

Notice that without identifying functions that are equal almost everywhere, there would
be non-zero functions whose norm is zero, and hence, ∥ · ∥Lp(Ω) would not be a norm.

3



4 Preliminaries

We can define ∥ f ∥L∞(Ω) := ess sup f = in f {a ∈ R : µ( f (x) > a) = 0} and it
can be shown that it is equivalent to ∥ · ∥Lp(Ω) when taking the limit p → ∞.

The L2(Ω) space is of special interest since it can be equipped with an inner prod-
uct endowing it with a Hilbert space structure:

⟨ f , g⟩L2(Ω) :=
∫

Ω
f g (2.3)

Notice that the norm induced by this inner product is exactly ∥ · ∥L2(Ω).
We are now going to introduce some theorems that are going to be very helpful

when trying to prove the existence of solutions to certain equations within Hilbert
spaces. These results can be found in Chapter 1 of [5] and Chapter 6 of [1]. For
the Lax-Milgram theorem see Chapter 5 of [6].

Theorem 2.4. The space of smooth functions with compact support, C∞
c (Ω) is dense in

Lp(Ω), for 1 ≤ p < ∞.

The following theorems will allow to provide a very straight-forward proof for
the existence and uniqueness of weak solutions to Poisson’s equation.

Theorem 2.5. Riesz-Fréchet representation Let H be a Hilbert space and H∗ its dual.
Then, for all linear functional h∗ ∈ H∗, exists a unique function h ∈ H such that
h∗(v) = ⟨h, v⟩, ∀v ∈ H.

Moreover, ∥h∗∥ := sup
v ̸=0

∥h∗(v)∥
∥v∥ = ∥h∥.

Theorem 2.6. Lax-Milgram Let H be a Hilbert space and a : H × H → R a bilinear
form satisfying:

1. a is continuous: ∃ c1 > 0 such that |a (f , g)|≤ c1 ∥ f ∥ ∥g∥

2. a is coercive: ∃ c2 > 0 such that a (f , f)≥ c2 ∥ f ∥2

for all f , g ∈ H. Then, for all linear functional h∗ ∈ H∗, exists a unique function f ∈ H
such that a (f , g) = h∗(g) for all g ∈ H.

Additionally, if a is also symmetric, then f is the unique minimizer in H of
J (u) := 1

2 a (u , u)− h∗(u).

We are now going to introduce the idea of weak convergence and two theorems
realted to it.



2.2 Sobolev Spaces 5

Definition 2.7. Let H be a Hilbert space with inner product ⟨·, ·⟩H. A sequence {xk}k ⊂
H converges weakly to x ∈ H if

lim
k→∞

⟨xk, y⟩H = ⟨x, y⟩H for all y ∈ H,

and we write xk ⇀ x.

Theorem 2.8. Let H be a Hilbert space, x ∈ H and {xk}k ⊂ H such that xk ⇀ x. Then,
{xk} is bounded and

∥x∥H ≤ lim in f
k→∞

∥xk∥H,

this last property is called the lower semicontinuity of the norm with respect to weak
convergence.

Theorem 2.9. Let H be a Hilbert space and {xk}k ⊂ H a bounded sequence. Then, there
exist x ∈ H and a subsequence {xk j}j ⊂ {xk}k such that xk j ⇀ x.

It is worth mentioning that Theorem 2.9 is a consequence of the Theorem of
Banach-Alaoglu.

2.2 Sobolev Spaces

As stated before, one of the crucial points when solving partial differential
equations, or when trying to prove that a solution does in fact exist, is to work
over an appropriate space of functions. We have already talked about the Lp

spaces, and specifically about L2, which is a Hilbert space. Seeking solutions to
PDEs within these spaces is still too hard, since functions in there are integrable
to a certain power, but their derivatives may not be, or they may even not exist.
That is why we will introduce Sobolev spaces (or Wk,p spaces) where all functions
are differentiable (in a more general, weaker sense) up to a certain order and have
also the structure of Banach spaces and even of Hilbert spaces in the case of Wk,2.

Theorem 2.10. Integration by parts Let Ω ∈ Rn be an open bounded Lipschitz domain
and f,g ∈ C1(Ω). Then: ∫

Ω
f

∂g
∂xi

= −
∫

Ω

∂ f
∂xi

g +
∫

∂Ω
f g νi (2.4)

where ν is the unit normal vector outwards to the boundary.
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Definition 2.11. Let Ω ∈ Rn be an open set, α ∈ Nn and f,g ∈ L1
loc(Ω). Then, g is the

weak derivative of order α of f if:∫
Ω

f Dα ϕ = (−1)|α|
∫

Ω
g ϕ for all ϕ ∈ C∞

c (Ω), (2.5)

where |α| =
n
∑
i

αi and Dα = ∂|α|

∂x1···∂xn
.

Notice that the weak derivative is unique (identifying equal functions almost
everywhere). Moreover, if f is α times differentiable, integrating the left-hand side
of the equation by parts we obtain

∫
Ω f Dαϕ =

∫
Ω Dα f ϕ and hence, if the classical

derivative exists it is equal to the weak derivative (almost everywhere).

Proposition 2.12. Let Ω ∈ Rn an open set, 1 ≤ p ≤ ∞ and f ∈ Lp(Ω). Then,
f ∈ L1

loc(Ω).

The proof of is straightforward by taking any compact K ⊂ Ω, integrating
| f |χK and using Hölder inequality.
See that this result allows to consider weak derivatives for functions in Lp(Ω).

Having defined the concept of weak derivatives, we can finally introduce the
Sobolev spaces.

Definition 2.13. Let Ω ∈ Rn be an open set, k ∈ N and 1 ≤ p ≤ ∞. The Sobolev space
Wk,p(Ω) is:

Wk,p(Ω) = { f ∈ Lp(Ω) : Dα f ∈ Lp(Ω), for all |α| ≤ k}. (2.6)

Where α ∈ Nn and Dα f is the weak derivative of order α of f. These are Banach spaces
with the following norm:

∥ f ∥Wk,p(Ω) :=

(
∑
|α|≤k

∥Dα f ∥p
Lp(Ω)

) 1
p

, if 1 ≤ p < ∞ (2.7)

and ∥ f ∥Wk,∞ := max
|α|≤k

∥Dα f ∥L∞(Ω).

As mentioned earlier, the Sobolev spaces Wk,2(Ω), which will be referred to
as Hk(Ω) from now on, can be equipped with an inner product that gives them
a Hilbert space structure. We are now going to delve specifically into the space
H1(Ω), which will be crucial for reaching the main results of this work.
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Proposition 2.14. The Sobolev space H1(Ω) is a Hilbert space with the following inner
product:

⟨ f , g ⟩H1(Ω) :=
∫

Ω
f g +

∫
Ω
∇ f · ∇g (2.8)

and associated norm ∥ f ∥H1(Ω) :=
(∫

Ω | f |2 +
∫

Ω |∇ f |2
) 1

2

Now a compactness result.

Theorem 2.15. Rellich-Kondrachov Let Ω ⊂ Rn be an open, bounded and Lipschitz
domain. Let 1 ≤ p < n and p∗ := np

n−p . Then, the embedding from W1,p(Ω) to Lp∗(Ω)

is continous and the embedding from W1,p(Ω) to Lq(Ω) is compact, for q < p∗. We write
it as:

W1,p(Ω) ↪→ Lp∗(Ω), W1,p(Ω) ⊂⊂ Lq(Ω).

Corollary 2.16. Let Ω ⊂ Rn be an open, bounded and Lipschitz domain, and n ≥ 3.
Then, the space H1(Ω) is compactly embedded in L2(Ω).

We are now going to introduce a subspace of H1(Ω) which will be necessary
to properly define the boundary condition of Poisson’s equation in H1(Ω).

Definition 2.17. Let Ω ∈ Rn be an open set. We define the subspace H1
0(Ω) ⊂ H1(Ω)

as:
H1

0(Ω) := C∞
c (Ω)

∥·∥H1(Ω) , (2.9)

the closure of smooth functions with compact support with respect to the H1(Ω) norm.

Since functions in C∞
c (Ω) vanish on the boundary of Ω, ∂Ω, it is intuitive to

think of H1
0(Ω) as the space of H1(Ω) functions that vanish on ∂Ω. However, if

Ω is sufficiently regular, ∂Ω has measure zero, and hence the boundary values
of functions in H1

0(Ω) are not well defined in the traditional sense. The tool that
allows us to understand the behaviour of H1(Ω) functions on the boundary is
the Trace operator, which extends the idea of boundary values to functions in
W1,p(Ω).

Theorem 2.18. Trace Theorem Let Ω ∈ Rn be an open, Lipschitz domain and 1 ≤
∞ < p. Then, there exists a bounded linear operator

T : W1,p(Ω) → Lp(∂Ω) (2.10)

such that
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1. T f = f |∂Ω , if f ∈ W1,p(Ω) ∩ C(Ω)

2. ∥T f ∥Lp(∂Ω) ≤ C∥ f ∥W1,p(Ω) ,

for each f ∈ W1,p(Ω), with C being a constant depending only on p and Ω. We refer to T
as the Trace operator and say that T f is the trace of f on ∂Ω.

The following result provides a characterization of the functions in H1
0(Ω) in

terms of their trace.

Theorem 2.19. Trace-zero functions Let Ω ∈ Rn be an open Lipschitz domain. Then,

H1
0(Ω) = { f ∈ H1(Ω) : T f = 0}. (2.11)

Now that we have properly defined H1
0(Ω) and seen in what sense do its

elements vanish on ∂Ω, we are going to present some results that will be very
important throughout the rest of this work.

Theorem 2.20. Let Ω ∈ Rn be an open Lipschitz domain. Then, H1
0(Ω) equipped with

the scalar product ⟨·, ·⟩H1(Ω) and its associated norm, is a Hilbert space.

The proof follows from the fact that H1
0(Ω) is closed (by definition) and is a

subset of H1(Ω), which is complete. Therefore, H1
0(Ω) is also complete.

Theorem 2.21. Poincaré inequality Let Ω be a bounded open set and 1 ≤ p < ∞.
Then there exists a constant CΩ,p, depending only on Ω and p, such that

∥ f ∥Lp(Ω) ≤ CΩ,p ∥∇ f ∥Lp(Ω) , for all f ∈ W1,p
0 (Ω). (2.12)

Corollary 2.22. The norms ∥ f ∥H1(Ω) and ∥∇ f ∥L2(Ω) are equivalent in H1
0(Ω) and the

inner product associated with the norm ∥∇ f ∥L2(Ω) is ⟨∇ f ,∇g⟩L2(Ω).

Proof. It is clear that ∀ f ∈ H1
0(Ω):

∥∇ f ∥L2(Ω) ≤ ∥ f ∥H1(Ω) ≤ (1 + C2
Ω,2)

1
2 ∥∇ f ∥L2(Ω). (2.13)



Chapter 3

Poisson’s equation

3.1 Classical approach

Poisson’s equation is an elliptic partial differential equation of special interest
in physics. For instance, it allows us to obtain the electric and gravitational poten-
tial fields generated by a charge/mass distribution, respectively.

We are now going to define Poisson’s equation in the classical sense.

Definition 3.1. Poisson’s equation. Let Ω ⊂ Rn be an open, bounded, smooth domain
and let g ∈ C(Ω). A classical solution of Poisson’s equation is a function u ∈ C2(Ω) ∩
C(Ω) satisfying: {

−∆u = g in Ω.

u = 0 on ∂Ω.
(3.1)

We want to show that there exists a unique solution to eq. (3.1).

Notation. Throughout this section, Ω will be an open, bounded, smooth domain
of Rn.

Proposition 3.2. A function u∈ C2(Ω)∩ C(Ω), with u|∂Ω = 0, is a solution of eq. (3.1)
if and only if it satisfies:∫

Ω
(−∆u) ϕ =

∫
Ω

g ϕ, for all ϕ ∈ C∞
c (Ω). (3.2)

Proof. It is evident that a solution to eq. (3.1) will also satisfy eq. (3.2).
Now for the other implication, assume that u∈ C2(Ω) ∩ C(Ω) satisfies eq. (3.2).
Then, it is clear that

∫
Ω(−∆u − g)ϕ = 0 for all ϕ ∈ C∞

c (Ω). Now assume (−∆u −
g) ̸= 0 and let U = {x ∈ Ω : −∆u − g > 0} (or < 0 if U is empty), since

9



10 Poisson’s equation

(−∆u − g) ∈ C(Ω), U ⊂ Ω is open and exists a compact subset K ⊂ U with non-
zero measure. Take ϕK ∈ C∞

c (Ω) such that ϕK ≥ 0 and use it as our test function in
eq. (3.2), we reach

∫
Ω(−∆u − g)ϕK > 0 (< if U is empty). We have a contradiction

and therefore, −∆u = g.

We have already seen that eq. (3.1) and eq. (3.2) are equivalent. Now, integrat-
ing by parts the left-hand side of eq. (3.2) we reach

∫
Ω(−∆u) ϕ =

∫
Ω ∇u · ∇ϕ −∫

∂Ω(∇u · ν)ϕ, where the last integral over ∂Ω is zero since ϕ ∈ C∞
c (Ω). Hence,

Proposition 3.2 is also valid replacing eq. (3.2) with:∫
Ω
∇u · ∇ϕ =

∫
Ω

g ϕ, for all ϕ ∈ C∞
c (Ω). (3.3)

Proposition 3.3. Assume that exists u ∈ C2(Ω) ∩ C(Ω) a classical solution of eq. (3.1).
Then, u is the unique classical solution of eq. (3.1).

Proof. Assume that u, v ∈ C2(Ω) ∩ C(Ω) solve eq. (3.1) and u ̸= v. We have
seen that any f ∈ C2(Ω) ∩ C(Ω) solves eq. (3.1) if and only if it satisfies eq.
(3.3). Therefore,

∫
Ω ∇u · ∇ϕ =

∫
Ω ∇v · ∇ϕ for all ϕ ∈ C∞

c (Ω), which yields
∇u = ∇v almost everywhere, but since u, v ∈ C2(Ω)∩C(Ω), ∇u = ∇v pointwise.
Finally, see that u|∂Ω = v|∂Ω and we conclude that u = v and the solution must be
unique.

Expressing our problem as finding a solution to eq. (3.3) is particularly conve-
nient because this condition appears when trying to minimize a certain functional,
as we will show next.

Notation. For simplicity let’s call Q(Ω) := C2(Ω) ∩ C(Ω) ∩ { f : f |∂Ω = 0}.

Definition 3.4. We define Poisson’s energy functional, J as:

J : Q(Ω) −→ R

u 7−→ 1
2

∫
Ω
|∇u|2 −

∫
Ω

gu
(3.4)

Now assume that u is a minimizer of J , this is: min
v∈Q(Ω)

J (v) = J (u). Then,

for any variation h ∈ C∞
c (Ω), dJ (u+ϵh)

dϵ |ϵ=0 = 0. Notice that the derivative is well
defined since for u, h fixed J (ϵ) ∈ C1(R). Let’s compute the derivative:

dJ (u + ϵh)
dϵ

= ϵ
∫

Ω
|∇h|2 +

∫
Ω
∇u · ∇h −

∫
Ω

gh
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and setting ϵ = 0 we reach the expression:

dJ (u + ϵh)
dϵ |ϵ=0

=
∫

Ω
∇u · ∇h −

∫
Ω

gh = 0 ⇔
∫

Ω
∇u · ∇h =

∫
Ω

gh ,

for all h ∈ C∞
c (Ω). Therefore, a minimizer of J satisfies eq. (3.3) and hence, it is a

solution of Poisson’s equation.

To prove that there exists a minimizer of J we first need to see that it is infe-
riorly bounded in Q(Ω). After that, we could construct a minimizing sequence
{vk}k such that lim

k→∞
J (vk) → in f

v∈Q(Ω)

J (v) and then prove that the sequence con-

verges in Q(Ω). However, proving such properties in Q(Ω) turns out to be very
difficult. The natural space to address these problems is, in fact, H1

0(Ω), and its
Hilbert space structure and compactness results make these issues much more ap-
proachable. Note that even though it is more convenient, proving the existence
of a minimizer of J in H1

0(Ω) does not guarantee that it is a classical solution of
eq. (3.1), since it may even not be continuous. Instead, as we will see in the next
section, it will satisfy Poisson’s equation in a weaker, more suitable sense, called
its weak formulation. After that, we will dedicate a chapter to study the regularity
of weak solutions and see that they will indeed be classical solutions as well.

3.2 Weak formulation of Poisson’s equation

Definition 3.5. Weak formulation of Poisson’s equation. Let Ω ⊂ Rn be an open,
bounded, Lipschitz domain and let g ∈ L2(Ω). A weak solution of Poisson’s equation is a
function u satisfying: u ∈ H1

0(Ω)∫
Ω
∇u · ∇ϕ =

∫
Ω

g ϕ, for all ϕ ∈ H1
0(Ω).

(3.5)

Notice that if a solution of eq. (3.5), or simply, a weak solution, happens to be
twice differentiable in Ω and continuous in Ω, it will also be a classical solution,
thanks to Proposition 3.2. Now see that to ensure that the second part of eq. (3.5)
is well defined, we require g ∈ L2(Ω) and u ∈ H1(Ω), resulting in less restrictive
conditions for the weak solution, which needs to have first-order weak derivatives
instead of being C2(Ω). Thanks to Theorem 2.18 and Theorem 2.19 we can gener-
alize the boundary condition u|∂Ω = 0 to functions in H1(Ω) and that is precisely
that u must have zero-trace, or equivalently, u ∈ H1

0(Ω). Lastly, since H1
0(Ω) is

also the closure of C∞
c (Ω) with respect to the H1(Ω)-norm, we can require the test

functions ϕ to be in H1
0(Ω) instead of C∞

c (Ω).
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Notation. Throughout this section Ω will be an open, bounded, Lipschitz domain
in Rn.

Proposition 3.6. If there exists a weak solution of Poisson’s equation it must be unique.

Proof. The argument is the same as in Proposition 3.3 and concludes that two
different weak solutions must be equal almost everywhere.

Having properly defined the weak formulation of Poisson’s equation, let’s re-
take the minimizing problem we introduced in the previous section.

Proposition 3.7. A function u ∈ H1
0(Ω) is a weak solution of Poisson’s equation if and

only if it minimizes J over H1
0(Ω).

Proof. We had previously seen that a minimizer of J in Q(Ω) was a solution of
Poisson’s equation. The exact same arguments apply for a minimizer in H1

0(Ω)

and taking the variations h ∈ H1
0(Ω) we conclude that it satisfies exactly eq. (3.5),

and hence, it is a weak solution.

Now assume that u is a weak solution of Poisson’s equation and let v ∈ H1
0(Ω) be

an arbitrary function and h = v − u. Then,

J (v) = J (u + h) =
1
2

∫
Ω
|∇h|2 +

∫
Ω
∇u · ∇h −

∫
Ω

gh︸ ︷︷ ︸
0 by hypothesis

+
1
2

∫
Ω
|∇u|2 −

∫
Ω

gu︸ ︷︷ ︸
J (u)

> J (u) since h ̸= 0. Therefore, J (u) = min
s∈H1

0 (Ω)
J (s).

The next step is proving the existence of weak solutions. We are going to
prove in two different ways that there exist a weak solution of Poisson’s equation.
The first one will be taking advantage of the Hilbert space structure of H1

0(Ω)

and using either Riesz-Fréchet or Lax-Milgram (Theorem 2.5 and Theorem 2.6
respectively).
The other way to prove the existence of a weak solution will consist in constructing
a minimizing sequence of J and using compactness properties of H1

0(Ω) to show
that it converges.
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3.3 Existence of weak solution by Hilbert space techniques

Proposition 3.8. For a given function g ∈ L2(Ω) there exists a unique solution to eq.
(3.5).

Proof. Recall that from Poincaré inequality (Theorem 2.21) and Corollary 2.22,
⟨ u, v ⟩H1

0 (Ω) :=
∫

Ω ∇u · ∇v is an inner product in H1
0(Ω) endowing it with a Hilbert

space structure.

We can now define the linear form h∗ ∈ (H1
0(Ω))∗ as h∗(ϕ) :=

∫
Ω gϕ, for ϕ ∈

H1
0(Ω) and a given g ∈ L2(Ω). Notice that this is exactly the right-hand side term

in the second part of eq. (3.5). Now Theorem 2.5, (Riesz-Fréchet) ensures that
there exist a unique u ∈ H1

0(Ω) such that:

⟨ u, ϕ ⟩H1
0 (Ω) =

∫
Ω
∇u · ∇ϕ =

∫
Ω

gϕ , for all ϕ ∈ H1
0(Ω),

which is exactly the weak formulation of Poisson’s equation, or eq. (3.5).

Next, we are going tho prove Proposition 3.8 using the Lax-Milgram theorem.
The proof is similar to the previous one using Riesz-Fréchet, but it shows also that
the weak solution minimizes J .

Proof. First, see that the inner product ⟨ u, ϕ ⟩H1
0 (Ω) =

∫
Ω ∇u · ∇ϕ is a continuous

and coercive bilinear form. Cauchy-Schwarz inequality yields its continuity and
since it is an inner product, it is coercive, with constants c1 = c2 = 1.
Theorem 2.6 states that for any linear functional h∗ ∈ (H1

0(Ω))∗, there exists a
unique function f ∈ H1

0(Ω) such that
∫

Ω ∇ f · ∇ϕ = h∗(ϕ) for all ϕ ∈ H1
0(Ω).

Again, taking h∗(ϕ) =
∫

Ω gϕ yields that there exists a unique weak solution of
Poisson’s equation.
Additionally, this function is the unique minimizer in H1

0(Ω) of S(v) = 1
2

∫
Ω |∇v|2 −

h∗(v) = 1
2

∫
Ω |∇v|2 −

∫
Ω gv , which is precisely J (v).
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3.4 Existence of weak solution by constructing a minimiz-
ing sequence

As we advanced before, another interesting way to prove that there exists a
weak solution of Poisson’s equation, consists in constructing a minimizing se-
quence of Poisson’s energy functional, J , and then using compactness proper-
ties of H1

0(Ω) to show that the sequence converges to a minimizer that is also in
H1

0(Ω). In this section we will complete this proof, and the first thing we need to
do is prove that J is bounded below in H1

0(Ω).

Proposition 3.9. Poisson’s energy functional J is inferiorly bounded in H1
0(Ω). That is,

for a fixed g ∈ L2(Ω), there exists a constant Kg,Ω, depending only on g and Ω, such that
J (v) ≥ Kg,Ω for all v ∈ H1

0(Ω).

Proof. Let’s recall that J (v) = 1
2

∫
Ω |∇v|2 −

∫
Ω gv.

Let v ∈ H1
0(Ω) be an arbitrary function. We are going to consider two cases re-

garding the sign of
∫

Ω gv.

First see that if
∫

Ω gv ≤ 0 it is clear that J (v) ≥ 0.

Now assume that
∫

Ω gv > 0. See that
∫

Ω gv = ⟨ g, v ⟩L2(Ω) ≤ ∥g∥L2(Ω)∥v∥L2(Ω),
where we used Cauchy-Schwarz inequality. Now see that for any a, b, ϵ ∈ R:(

ϵa − b
2ϵ

)2

= ϵ2a2 − ab +
b2

4ϵ2 ≥ 0, and then, ab ≤ ϵ2a2 +
b2

4ϵ2 ,

then, ∥g∥L2(Ω)∥v∥L2(Ω) ≤ ϵ2∥g∥2
L2(Ω)

+ 1
4ϵ2 ∥v∥2

L2(Ω)
≤ ϵ2∥g∥2

L2(Ω)
+

C2
Ω,2

4ϵ2 ∥∇v∥2
L2(Ω)

,

where we used Poincaré inequality and CΩ,2 is Poincaré’s constant for H1
0(Ω).

Finally, setting ϵ = CΩ,2
1√
2

, we reach:

J (v) ≥ 1
2
∥∇v∥2

L2(Ω) −
C2

Ω,2

2
∥g∥2

L2(Ω) −
1
2
∥∇v∥2

L2(Ω) = −
C2

Ω,2

2
∥g∥2

L2(Ω) = Kg,Ω.

And therefore, J (v) is inferiorly bounded.

Now that we have seen that J is bounded below in H1
0(Ω), we can ensure the

existence of in f
v∈H1

0 (Ω)

J (v), and we can construct a minimizing sequence.
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Proposition 3.10. There exists a minimizer u of J in H1
0(Ω). That is, J (u) =

in f
v∈H1

0 (Ω)

J (v).

To prove the proposition, we will construct a minimizing sequence and see
that it must be bounded. Then, Theorem 2.9 yields that it exists a subsequence
converging weakly to a certain vF ∈ H1

0(Ω) and then we will use the lower semi-
continuity of the norm to show that vF minimizes J .

Proof. Let {vk}k be a sequence such that vk ∈ H1
0(Ω) for all k ∈ N and lim

k→∞
J (vk) −→

in f
v∈H1

0 (Ω)

J (v). See that by recovering the inequality

J (v) ≥ 1
2
∥∇v∥2

L2(Ω)2 − ϵ2∥g∥2
L2(Ω) −

C2
Ω,2

4ϵ2 ∥∇v∥2
L2(Ω),

and setting ϵ = CΩ,2 we reach

J (v) ≥ 1
4
∥∇v∥2

L2(Ω) −C2
Ω,2∥g∥2

L2(Ω) and hence, J (v) +C2
Ω,2∥g∥2

L2(Ω) ≥ K∥v∥2
H1(Ω)

where we have used Poincaré inequality once again and K =
1+C2

Ω,2
4 is a constant.

Finally, since J (vk) −→k in f
v∈H1

0 (Ω)

J (v), there exists k0 such that:

∥vk∥H1(Ω) ≤
[

4
1 + C2

Ω,2

(
J (vk0) + C2

Ω,2∥g∥L2(Ω)

)] 1
2

= Kg,Ω,k0 for all k > k0,

and therefore, {vk}k is a bounded sequence in H1
0(Ω). Becuase of Theorem 2.9,

there exist vF ∈ H1
0(Ω) and {vk j} ⊂ {vk} such that vk j ⇀ vF in H1

0(Ω). Moreover,
as a consequence of Theorem 2.15, ∥vk j − vF∥L2(Ω) →j 0 or vk j converges strongly
to vF in L2(Ω).

See that J (vF) =
1
2∥∇vF∥L2(Ω) − ⟨g, vF⟩L2(Ω) =

1
2∥vF∥H1

0 (Ω) − ⟨g, vF⟩L2(Ω). Finally,
from Theorem 2.8, ∥vF∥H1

0 (Ω) ≤ lim in f
j→∞

∥vk j∥H1
0 (Ω) and since strong convergence

implies weak convergence, ⟨g, vF⟩L2(Ω) = lim
j→∞

⟨g, vk j⟩L2(Ω) and we conclude that

J (vF) ≤ lim in f
j→∞

∥vk j∥H1
0 (Ω) − lim

j→∞
⟨g, vk j⟩L2(Ω) ≤ in f

v∈H1
0 (Ω)

J (v)

and hence, the minimum of J in H1
0(Ω) exists and is attained by vF.

Finally, thanks to Proposition 3.7, vF is the unique weak solution of Poisson’s
equation.
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Chapter 4

Eigenfunctions of the Laplacian

In the previous chapter, we saw that for any given function g ∈ L2(Ω), there
exists a unique weak solution to Poisson’s equation. Throughout this chapter we
are going to study the existence of eigenfunctions of the Laplacian. Similarly to
the previous chapter, we are going to present the eigenvalue problem, which is
often called the Helmholtz equation, deduce its weak formulation and then show
that there exist weak solutions to it. As before, we are going to prove it in two
different ways, one relying on Hilbert space techniques, specifically the spectral
theorem for compact self-adjoint operators, and the other one by minimizing a
certain functional. Finally, we will see that the eigenfunctions of the Laplacian
form an orthonormal basis of L2(Ω).

The eigenfunctions of the Laplacian are of special interest in different areas of
physics. For instance, when the domain Ω is a surface, the eigenfunctions rep-
resent its vibration modes, and their eigenvalues are related to its respective vi-
bration frequence. They play also a very important role in the heat and wave
equations, and in quantum mechanics, as we will see in a subsequent chapter.
Computing the firsts eigenfunctions of the Laplacian provide a general way of ap-
proximating solutions of Poisson’s equation for any function g ∈ L2(Ω), consisting
on representing both g and our solution as Fourier series.

17
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4.1 The eigenvalue problem

Definition 4.1. Helmholtz equation. Let Ω ⊂ Rn be an open, bounded and Lipschitz
domain. The eigenvalue problem for the Laplacian, or Helmholtz equation is finding non-
trivial solutions u ∈ C2(Ω) ∩ C(Ω) of:{

−∆u = λu in Ω.

u = 0 on ∂Ω.
(4.1)

Similarly to Poisson’s equation, it will be far more convenient to introduce a
weak formulation of eq. (4.1) and seek weak solutions in H1

0(Ω).

Definition 4.2. Weak formulation of the Helmholtz equation. Let Ω ⊂ Rn be
an open, bounded and Lipschitz domain. We say u is a weak solution of the Helmholtz
equation, or a weak eigenfunction of the Laplacian, if: u ∈ H1

0(Ω)∫
Ω
∇u · ∇ϕ = λ

∫
Ω

uϕ for all ϕ ∈ H1
0(Ω)

(4.2)

The way to derive the weak formulation of the eigenvalue problem is the same
as we did for Poisson’s equation. First, we integrate both sides of the first equality
in eq. (4.1) against test functions ϕ ∈ H1

0(Ω), and then use integration by parts.

Proposition 4.3. Let u be a weak eigenfunction of the Laplacian. Then, if u ∈ C2(Ω) ∩
C(Ω), it is an eigenfunction in the classical sense.

Proof. Since u ∈ H1
0(Ω), the Trace theorem ensures that if u ∈ C(Ω), then u|∂Ω = 0.

Finally, integrating by parts the left-hand side term of the integral equality in
eq. (4.2) we deduce that −∆u = λu. Thereofre, u solves the classical Helmholtz
equation (eq. (4.1).

Similarly as in the previous chapter, we are now going to use Hilbert space
techniques, specifically the spectral theory for compact operators, to show that
there exists an orthonormal Hilbert basis of L2(Ω) of eigenfunctions of the Lapla-
cian, with eigenvalues λn −→

n→∞
∞.

4.2 Spectral theorem

First we need to introduce some results that we will need to complete the
proof.



4.2 Spectral theorem 19

Definition 4.4. We say that a vector space is separable if it contains a dense, countable
subset.

Theorem 4.5. Let Ω ⊂ Rn be an open set. Then, Lp(Ω) is separable for any p, 1 ≤ p <

∞.

There is a detailed proof of the theorem in Chapter 4 of [4].

We need to define a couple of terms regarding the spectrum of a compact op-
erator in a Hilbert space.

Definition 4.6. Let H be a Hilbert space and K : H → H a compact operator. We define
the spectrum of K as:

σ(K) = R \ {λ ∈ R : (K − λI) is bijective within H},

and we say that λ ∈ R is an eigenvalue of K if ker(K − λI) ̸= {0}.

From now on we will call EV(K) the set of eigenvalues of K. See that EV(K) ⊂
σ(K).

Finally, we are going to introduce a couple of theorems, with detailed proofs in
Appendix D. of [2] and Chapter 6 of [7], that will be key to our proof.

Theorem 4.7. Let H be an infinite-dimension Hilbert space and K : H → H a compact
operator. Then,

1. 0 ∈ σ(K)

2. σ(K) \ {0} = EV(K) \ {0}

3. σ(K) \ {0} is finite or a sequence tending to zero.

Theorem 4.8. Let H be a separable Hilbert space and K : H → H a compact, self-adjoint
operator. Then, there exists a countable set {en}n of eigenfunctions of K that form an
orthonormal Hilbert basis of H.

Notice that if the Laplacian was compact in L2(Ω), our proof would be almost
complete. However, this is not the case. To prove that the eigenfunctions of the
Laplacian form an orthonormal basis of L2(Ω), we are going to study the inverse
of the (negative) Laplacian.
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Consider the operator D : L2(Ω) → H1
0(Ω) that maps any function g ∈ L2(Ω)

to u ∈ H1
0(Ω) the weak solution of Poisson’s equation for g, eq. (3.5). Notice that

since the weak solution to Poisson’s equation for a given g ∈ L2(Ω) exists and is
unique, as we saw in the previous chapter, D is well-defined. We are now going
to prove that there exists an orthonormal Hilbert basis of L2(Ω) of eigenfunctions
of D, which by the definition of D will be also eigenfunctions of the Laplacian.

Proposition 4.9. There exists an orthonormal Hilbert basis of L2(Ω) consisting of eigen-
functions of the Laplacian.

Proof. Let’s consider the operator L := i ◦ D : L2(Ω) → L2(Ω), where i is the
inclusion map from H1(Ω) to L2(Ω). Now, we want to see that L is compact and
self-adjoint to apply Theorem 4.8.

L is self-adjoint:
Let f , g ∈ L2(Ω) be arbitrary functions and u = L f , v = Lg. Now, by the defini-
tion of D we have that

⟨L f , g⟩L2(Ω) =
∫

Ω
ug =

∫
Ω
∇u · ∇v =

∫
Ω

f v = ⟨ f ,Lg⟩L2(Ω),

and therefore L is self-adjoint.

L is compact:
Notice that since L = i ◦ D and i is already a compact operator by Rellich-
Kondrachov, (Theorem 2.15), we only need to see that D is bounded. Let g ∈
L2(Ω) and Dg = u. Now see that using the definition of D,

∥∇u∥2
L2(Ω) =

∫
Ω
|∇u|2 =

∫
Ω

ug ≤ ∥g∥L2(Ω)∥u∥L2(Ω) ≤ ∥g∥L2(Ω)CΩ,2∥∇u∥L2(Ω),

where we have used Cauchy-Schwarz and Poincaré inequalities respectively. Fi-
nally, see that

∥Dg∥H1
0 (Ω

= ∥u∥H1
0 (Ω

= ∥∇u∥2
L2(Ω) ≤ CΩ,2∥g∥L2(Ω).

Therefore, L is compact. Since L2(Ω) is a separable Hilbert space (Theorem 4.5),
and we have seen that L is a compact and self-adjoint operator from L2(Ω) into
L2(Ω), Theorem 4.8 yields that there exist µn ∈ R and {en}n such that Len = µnen

and {en}n is an orthonormal Hilbert basis of L2(Ω). Finally, see that, if en is an
eigenfunction of L:∫

Ω
enϕ =

∫
Ω
∇(Len) · ∇ϕ = µn

∫
Ω
∇en · ∇ϕ, for all ϕ ∈ H1

0(Ω)
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and hence,
∫

Ω ∇en · ∇ϕ = 1
µn

∫
Ω enϕ, for all ϕ ∈ H1

0(Ω) and {en} are eigenfunctions

of −∆ with eigenvalues λn = 1
µn

.

The last step in this section is proving that λn −→
n→∞

∞.

Proposition 4.10. Let {en}n be an orthonormal Hilbert basis of L2(Ω) of eigenfunctions
of the Laplacian with eigenvalues {λn}n. Then, λn −→

n→∞
∞.

Proof. Recall that as we saw in the last proof, if en is an eigenfunction of the
Laplacian in Ω, then it is also an eigenfunction of L with eigenvalue µn = 1

λn
.

Now see that since L is a compact operator within L2(Ω), Theorem 4.7 yields
that EV(L) = σ(L) \ {0} is either finite or a sequence tending to 0. Assume that
EV(L) is finite and let m = min

n
µn. Now, consider the sequence of eigenfunctions

{en}n ⊂ H1
0(Ω). See that ∥en∥2

H1
0 (Ω)

=
∫

Ω |∇en|2 = 1
µn

∫
Ω e2

n = 1
µn

≤ 1
m , so {en}n

is a bounded sequence in H1
0(Ω) and therefore it is a Cauchy sequence in L2(Ω).

However, {en}n is a set of orthonormal functions and, then,
∫

Ω(en − ek)
2 =

∫
Ω e2

n +∫
Ω e2

k = 2 for all k, n, and we reach a contradiction. We conclude that EV(L) is an
infinite sequence tending to zero, and the eigenfunctions of the Laplacian λn = 1

µn

tend to infinity.

We are now going to show how when trying to minimize a certain func-
tional, called the Rayleigh quotient, eq. (4.2) appears, and how minimizers of
the Rayleigh quotient will actually be weak eigenvalues of the Laplacian. More-
over, we can prove that the eigenfunctions of the Laplacian form an orthonormal
basis of L2(Ω) without using the spectral theory results that we have just seen.

4.3 Rayleigh quotients

Definition 4.11. Rayleigh quotient. The Rayleigh quotient is a functional defined by:

R : H1
0(Ω) \ {0} −→ R

u 7−→
∫

Ω |∇u|2∫
Ω u2

(4.3)

Notice that R(u) > 0 for all u ∈ H1
0(Ω) \ {0}, since ∥∇u∥L2(Ω) = 0 implies

that ∥u∥L2(Ω) = 0 in H1
0(Ω). And the infimum of the quotient exists. Moreover,

Let λ1 = in f
v∈H1

0 (Ω)

R(v) and note that R(v) =
∥∇v∥2

L2(Ω)

∥v∥2
L2(Ω

. Now recalling Poincaré

inequality, we deduce that λ1 = 1
C2

Ω,2
, being CΩ,2 the best Poincaré constant (i.e.
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the smallest such that Poincaré inequality holds). Additionally, if u is a minimizer
of R, then ∥u∥L2(Ω) = CΩ,2∥∇u∥L2(Ω).

Proposition 4.12. Let u be a function in H1
0(Ω) such that R(u) = in f

v∈H1
0 (Ω)

R(v) = λ1.

Then, u is a weak eigenfunction of the Laplacian with eigenvalue λ1.

Proof. Let’s assume u is a minimizer of R in H1
0(Ω). Then, for any ϕ ∈ H1

0(Ω)
dR(u+ϵϕ)

dϵ |ϵ=0 = 0. Let’s compute R(u + ϵϕ):

R(u + ϵϕ) =

∫
Ω |∇u|2 + 2ϵ∇u · ∇ϕ + ϵ2|∇ϕ|2∫

Ω u2 + 2ϵuϕ + ϵ2ϕ2

and then,

dR(u + ϵϕ)

dϵ
|ϵ=0 =

2
∫

Ω ∇u · ∇ϕ
∫

Ω u2 − 2
∫

Ω |∇u|2
∫

Ω uϕ(∫
Ω u2

)2

finally we set the numerator equal to zero and get:∫
Ω

u2
∫

Ω
∇u · ∇ϕ =

∫
Ω
|∇u|2

∫
Ω

uϕ , and hence,
∫

Ω
∇u · ∇ϕ = λ1

∫
Ω

uϕ.

Notice that since the choice of ϕ is arbitrary, the last equality must hold for all
ϕ ∈ H1

0(Ω). Therefore, u is a weak solution of the eigenvalue problem with
λ = λ1.

We have seen that a minimizer of the Rayleigh quotient is an eigenfunction of
the Laplacian (in the weak sense, at least). We will now prove that such minimizer
exists.

Proposition 4.13. There exists e1 ∈ H1
0(Ω), e1 ̸= 0, such that R(u) = λ1. That is, it

minimizes R over H1
0(Ω).

Proof. Let {uk}k ⊂ H1
0(Ω) be a sequence such that R(uk) −→

k→∞
λ1 = in f

v∈H1
0 (Ω)

R(v).

Now let {ũk}k be a sequence such that ũk = akuk with ∥akuk∥L2(Ω) = 1 for all
k ≥ 1, so that {ũk}k is the sequence of uk functions normalized in L2(Ω). Notice
that R(ũk) = R(uk) and therefore {ũk}k is still a minimizing sequence of R.
Now, it is clear that {ũk}k is bounded, since ∥ũk∥H1

0 (Ω) = ∥∇ũk∥L2(Ω) −→
k→∞

√
λ1.

Therefore, recalling Theorem 2.9, there exist e1 ∈ H1
0(Ω) and a subsequence
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{ũk j}j ⊂ {ũk}k such that ũk j ⇀ e1. See that ũk j converges strongly to e1 in L2(Ω).
Hence, ∥e1∥L2(Ω) = 1 and

R(e1) =
∫

Ω
|∇e1|2 = ∥e1∥2

H1
0 (Ω)

≤ lim in f
j→∞

∥ũk j∥
2
H1

0 (Ω)
= λ1,

where we used the lower semicontinuity of the norm, or Theorem 2.8. We con-
clude that e1 is a minimizer of R in H1

0(Ω) and a weak eigenfunction of the Lapla-
cian with eigenvalue λ1.

Notice that we have proved the existence of a global minimizer e1 of R in
H1

0(Ω). However, there could be other minimizers of R in some subspaces of
H1

0(Ω).
See that in order to find a local minimizer different than e1, we need to do so in
a subset of H1

0(Ω) not containing e1. Moreover, we want to do it in a subset such
that no sequence converges to e1 (even in the weak sense). It is natural then to
think of the orthogonal complement of e1.

Proposition 4.14. Let u, h ∈ H1
0(Ω) be weak eigenfunctions of the Laplacian with eigen-

values λu ̸= λh. Then, u and v are orthogonal both in L2(Ω) and H1(Ω).

Proof. Notice that by definition of weak eigenfunction:∫
Ω
∇u · ∇h = λu

∫
Ω

uh = λh

∫
Ω

uh

Therefore,
∫

Ω uh = 0 =
∫

Ω ∇u · ∇h.

Proposition 4.15. There exist a sequence {ek}k ⊂ H1
0(Ω) of weak eigenfunctions of the

Laplacian, with eigenvalues λk ∈ R such that:

1. The eigenfunctions ek form an orthogonal set.

2. The sequence of eigenvalues is monotone non-decreasing, λk+1 ≥ λk and λk −→
k→∞

∞.

To prove this proposition we are first going to show that there exists a weak
eigenfunction orthogonal to e1. Then, we will use the same argument recursively
to show the existence of the infinite orthogonal set of eigenfunctions. Finally, we
will show that λk must go to infinity.
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Proof. Let e1 be the first (weak) eigenfunction, that is the global minimizer of R
with eigenvalue λ1. Let’s now define the orthogonal complement of e1, which we
will call X1:

X1 := {x ∈ H1
0(Ω) : ⟨e1, x⟩L2(Ω) = 0}

We will show now that there exists a local minimizer of R in X1.
Clearly λ2 = in f

X1\{0}
R exists. Let { fk}k ⊂ X1 be a sequence of functions such that

R( fk) −→
k→∞

λ2. Using the same arguments as in the proof of Proposition 4.13, we

conclude that exists a subsequence { fk j}j converging weakly to e2 ∈ H1
0(Ω) such

that R(e2) = λ2. By the definition of weak converge, it is clear that ⟨e2, e1⟩L2(Ω) =

0 and hence, e2 ∈ X1. Notice that since e2 minimizes R in X1 we know that
dR(e2+ϵϕ)

dϵ |ϵ=0 = 0, for all ϕ ∈ X1. From Proposition 4.12, it follows that
∫

Ω ∇e2 ·
∇ϕ = λ2

∫
Ω e2ϕ, for all ϕ ∈ X1. Finally, let v ∈ H1

0(Ω) be an arbitrary function.
Thanks to the Hilbert projection theorem, v can be expressed as: v = ϕ + ce1, with
c ∈ R and ϕ ∈ X1. See that∫

Ω
∇e2 · ∇v =

∫
Ω
∇e2 · ∇ϕ + c

∫
Ω
∇e2 · ∇e1 = λ2

∫
Ω

e2ϕ + λ1c
∫

Ω
e2e1,

where we used that e1 is an eigenfunction with eigenvalue λ1. Finally, since
⟨e1, e2⟩L2(Ω) = 0 we reach:

∫
Ω
∇e2 · ∇v = λ2

∫
Ω

e2(ϕ + ce1) = λ2

∫
Ω

e2v

and since v is an arbitrary function, the equality holds for all functions in H1
0(Ω)

and e2 is a weak eigenfunction with eigenvalue λ2.

Now, we can define recursively Xn := {x ∈ Xn−1 : ⟨en, x⟩L2(Ω) = 0} and the same
arguments that yield the existence of e2, give the existence of eigenfunctions ek for
all k, with eigenvalues λk. By construction it is clear that {ek} is an orthogonal set,
and since we have the inclusions

· · · Xk ⊂ Xk−1 ⊂ · · · ⊂ X1 ⊂ H1
0(Ω)

we have λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , and we finally need to prove that λK −→ ∞ as
k → ∞.

Let’s assume that there exists M = sup λk and let {ẽk}k be the set of orthog-
onal eigenfunctions of the Laplacian normalized in L2(Ω). Then, we have that
∥ẽk∥H1

0 (Ω) =
∫

Ω |∇ẽk|2 = λk. Hence, {ẽk}k is a bounded sequence and it has a
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subsequence, {ẽk j}j, converging strongly in L2(Ω) by the Rellich-Kondrachov the-
orem. Therefore, {ẽk j}j is a Cauchy sequence and ∥ẽk j − ẽk j−1∥L2(Ω) → 0 as j → ∞.
However,

∥ẽk j − ẽk j−1∥
2
L2(Ω) = ∥ẽk j∥

2
L2(Ω) + ∥ẽk j−1∥

2
L2(Ω) − 2⟨ẽk j , ẽk j−1⟩L2(Ω) = 1

since ẽk j and ẽk j−1 are orthogonal for all j. We conclude then that the supremum of

k does not exist, and since they are non decreasing, λk → ∞ as k → ∞.

We have already seen that there exist an infinite set of orthonormal (with re-
spect to the L2 norm) eigenfunctions of the Laplacian. We will see now that,
additionally, they form a Hilbert of L2(Ω).

Proposition 4.16. The set {ẽk} of weak eigenfunctions of the Laplacian is an orthonormal
Hilbert basis of L2(Ω).

Proof. We have already seen that {ẽk} is an orthogonal set and that ∥ẽk∥L2(Ω) = 1
for all k. To prove that they form a Hilbert basis of L2(Ω) we will first show that
they are a Hilbert basis of H1

0(Ω) and then use a density argument to show it for
L2(Ω).

Let f ∈ H1
0(Ω) be an arbitrary function and fn =

n
∑

k=1
ẽk ⟨ f , ẽk ⟩L2 . Now, let’s

consider the function vn = f − fn. Notice that for any k ≤ n,

⟨ vn, ẽk ⟩L2 = ⟨ f − fn, ẽk ⟩L2 = ⟨ f , ẽk ⟩L2 − ⟨ fn, ẽk ⟩L2

= ⟨ f , ẽk ⟩L2 −
n

∑
j=1

⟨ f , ẽj ⟩L2⟨ ẽj, ẽk ⟩L2 = ⟨ f , ẽk ⟩L2 − ⟨ f , ẽk ⟩L2∥ẽk∥2
L2 = 0,

where we have used the orthogonality of the eigenfunctions and that they are
normalized in L2(Ω).
We have seen that vn is orthogonal in L2 to ẽk, for all k ≤ n. This means that
vn ∈ Xn and therefore

∫
Ω |∇vn|2 ≥ λn+1

∫
Ω v2

n, since λn+1 is the infimum of the
Rayleigh quotient over Xn. Moreover,

∫
Ω ∇vn∇ẽk = 0 for all k ≤ n, since ẽk are

eigenfunctions and satisfy eq. (4.2).
See that

∥∇ f ∥2
L2 = ∥∇ fn +∇vn∥2

L2 = ∥∇ fn∥2
L2 + 2⟨∇ fn,∇vn⟩L2 + ∥∇vn∥2

L2

and using that ⟨∇vn, ẽk⟩2
L = 0 and that

∫
Ω |∇vn|2 ≥ λn+1

∫
Ω v2

n we reach:

∥∇ f ∥2
L2 = ∥∇ fn∥2

L2 + ∥∇vn∥2
L2 ≤ ∥∇ fn∥2

L2 + λn+1∥vn∥2
L2 .
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Since λn → ∞ as n → ∞ we deduce that ∥vn∥2
L2 → 0 as n → ∞, and therefore,

fn −→
n→∞

f . This result holds for any f ∈ H1
0(Ω) and {ẽk} is a Hilbert basis.

Now let’s see that {ẽk} is actually a Hilbert basis for the wider space L2(Ω).
Let f be an arbitrary function f ∈ L2(Ω) and { fk}k ⊂ H1

0(Ω) a sequence of func-
tions such that fk → f in L2(Ω) as k → ∞ (notice that since H1

0(Ω) is dense in
L2(Ω) such sequence exists). Let’s consider now the functions:

fn =
n

∑
j=1

ẽj⟨ f , ẽj⟩L2 and fkn =
n

∑
j=1

ẽj⟨ fk, ẽj⟩L2

We want to see that fn converges to f . Notice that since fk ∈ H1
0(Ω) we have

that fkn → fk, as n → ∞. Additionally, since fk converges to f in L2 see that
⟨ fk, v⟩L2 → ⟨ f , v⟩L2 as k → ∞, for all v ∈ L2(Ω). Therefore, fkn → fn as k → ∞.
Lastly, see that for all ϵ > 0 there exists k0 such that ∥ f − fk∥L2 < ϵ

3 , for all k ≥ k0.
Now, for k = k0, there exists n0 such that ∥ fk0 − fk0n

∥ < ϵ
3 , for all n ≥ n0. Now see

that

∥ fk0n
− fn∥2

L2 =
n

∑
j=1

⟨( fk0 − f ) , ẽj⟩2
L2 ≤

∞

∑
j=1

⟨( fk0 − f ) , ẽj⟩2
L2 ≤ ∥ fk0 − f ∥2

L2 <
ϵ2

9

where in the last step we used Bessel’s inequality. Hence, ∥ fk0n
− fn∥L2 < ϵ

3 .
The last step of the proof will consist on using the triangle inequality:

∥ f − fn∥L2 ≤ ∥ f − fk0∥L2 + ∥ fk0 − fn∥L2

<
ϵ

3
+ ∥ fk0 − fk0n

∥L2 + ∥ fk0n
− fn∥L2 < ϵ

and finally we conclude that fn converges to f in L2(Ω) and hence, {ẽk}k is a
Hilbert basis of L2(Ω).



Chapter 5

Regularity and properties of the
solutions

We have already seen that there exist weak solutions both for Poisson’s equa-
tion and the eigenvalue problem. Additionally, we have shown that the weak
eigenfunctions of the Laplacian form an orthonormal Hilbert basis of L2(Ω).

Throughout this chapter we are going to study the regularity of the weak so-
lutions of Poisson’s equation, depending on the regularity of the function g for
which we solve the equation and the regularity of ∂Ω. We are then going to show
that the eigenfunctions of the Laplacian are actually smooth functions and hence,
solve the Helmoltz equation in the classical sense, provided that Ω is sufficiently
regular.
Lastly, we are going to use these regularity results to characterize some properties
of the first eigenfunction.

5.1 Regularity

Let’s introduce first the results that will allow us to show the regularity of weak
solutions. These theorems and their respective proofs can be found in sections 5.6
and 6.3 of [2].

Theorem 5.1. Morrey’s inequality. Let Ω ∈ R be an open, bounded and C1 domain.
Assume u ∈ W1,p(Ω) and n < p ≤ ∞. Then, there exists u∗ = u a.e, such that
u∗ ∈ C0,γ(Ω) for γ = 1 − n

p .
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Notice that when m = 0, the space Hm(Ω) becomes simply L2(Ω).

Theorem 5.2. General Sobolev inequalities. Let Ω ∈ R be an open, bounded and C1

domain. Assume u ∈ Wk,p(Ω). Then, if k < n
p

u ∈ Lq(Ω), where
1
q
=

1
p
− k

n
.

And if k > n
p then u∗ ∈ Ck−⌊ n

p ⌋−1,γ(Ω), where

γ =


⌈n

p
⌉ − n

p
if

n
p
̸∈ Z

any positive number <1 if
n
p
∈ Z .

Theorem 5.3. Let Ω ⊂ Rn be a bounded, open set, 0 ≤ m ∈ N, and let u be a weak
solution of Poisson’s equation (eq. (3.1)). Then, if g ∈ Hm(Ω), u ∈ Hm+2

loc (Ω).

Theorem 5.4. Let m ∈ N greater or equal than zero and Ω ⊂ Rn an open, bounded
domain. Assume g ∈ Hm(Ω) and that Ω is Cm+2. Then, if u ∈ H1

0(Ω) is a weak solution
of Poisson’s equation (−∆u = g), u ∈ Hm+2(Ω).

With these results we can already prove that the eigenfunctions of the Lapla-
cian are smooth functions in Ω. Moreover, we can show that if Ω is regular
enough, they will be continuous up to ∂Ω.
The idea, is that Theorem 5.3 and Theorem 5.4 show that weak solutions of Pois-
son’s equation gain two differentiability orders with respect to the function g for
which they solve the equation (in the interior and up to the boundary, respec-
tively). Now, since an eigenfunction, u, is a solution of Poisson’s equation for
g = u, we can iterate the argument and see that u must be infinitely times differ-
entiable.

For the sake of simplicity and readability of the proofs, we will prove first a more
elementary result.

Notation. In all the subsequent propositions of this section, we assume Ω ⊂ Rn to
be an open, bounded and C1 domain, unless specified differently. Additionally, we
will always identify u ∈ H1

0(Ω) with its continuous version (u∗ such that u∗ = u
a.e), in the case that it exists.
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Proposition 5.5. Let u ∈ H1
0(Ω) be an eigenfunction of the Laplacian in Ω (in the weak

sense). Then, u ∈ Hk
loc(Ω) for any k ∈ N.

Proof. Let u ∈ H1
0(Ω) be a weak eigenfunction of the Laplacian with eigenvalue

λ. Notice that u is a weak solution of Poisson’s equation for g = λu ∈ L2(Ω).
Therefore, aaplying Theorem 5.3 we see that u ∈ H3

loc(Ω).
Now let K be a compact subset of Ω, k > 3 an integer and let m = ⌈ k−3

2 ⌉. See that
we can construct a sequence of open sets Uj, with 1 ≤ j ≤ m such that

K ⊂ U1 ⊊ U2 ⊊ · · · ⊊ Um ⊊ Ω .

Since Uj is open and bounded, U j is compact, and we have the following inclusion
chain:

K ⊂ U1 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Um ⊂ Um ⊂ Ω.

Now, since u ∈ H3
loc(Ω) then u ∈ H3(Um). See that u = λu in Um and applying

Theorem 5.3 we see that u ∈ H5
loc(Um). Notice that iterating this process we deduce

that u ∈ H3+2m(K) and since m ≥ k−3
2 we reach that u ∈ Hk(K) for any k. Finally,

notice that K is an arbitrary compact subset of Ω, therefore, u ∈ Hk
loc(Ω) for any

k.

Proposition 5.6. Let u ∈ H1
0(Ω) be an eigenfunction of the Laplacian in Ω (in the weak

sense). Then, u is smooth inside Ω (i.e. u ∈ C∞(Ω)).

Proof. Firstly, notice that from Proposition 5.5, u ∈ Hk
loc(Ω) for any k.

Let x ∈ Ω and d = dist(x, ∂Ω) > 0. Let 0 < ϵ < d and let’s consider now
Bϵ(x), the open ball of radius ϵ centered at x. Clearly, Bϵ(x) is compact and,
therefore, u ∈ Hk(Bϵ(x)). Finally, let’s choose k to be sufficiently big so that k > n

p ,
now we can apply the General Sobolev Inequality (Theorem 5.2) and we see that
u ∈ Ck−⌊ n

p ⌋−1,γ(Bϵ(x)). Notice that ⌊ n
p⌋+ 1 is a fixed quantity, and since k ∈ N is

arbitrary, we have that u ∈ C∞(Bϵ(x)). To conclude, see that u ∈ C∞(Bϵ(x)) for all
x ∈ Ω, and hence, u ∈ C∞(Ω).

Proposition 5.7. Let u ∈ H1
0(Ω) be an eigenfunction of the Laplacian in Ω ⊂ Rn (in

the weak sense). Assume that Ω is Cm+2 for a certain m ∈ N. Then, u ∈ C∞(Ω)∩ C(Ω)

and u is an eigenfunction of the Laplacian in the classical sense for n < 2m + 4.

Proof. We have already seen that u is smooth in Ω. We need to see now that u is
actually continuous up to ∂Ω.

Since Ω is Cm+2, Theorem 5.4 yields that u ∈ Hm+2(Ω) = Wm+2,2(Ω). There-
fore, kp = 2m + 4 > n and hence, Theorem 5.2 guarantees that u ∈ C(Ω).



30 Regularity and properties of the solutions

Corollary 5.8. Let Ω be an open, bounded, smooth domain, and u ∈ H1
0(Ω) a weak

eigenfunction of the Laplacian. Then, u ∈ C∞(Ω).

We have shown how the eigenfunctions of the Laplacian are smooth inside Ω
provided that it is at least C1. And how its continuity and smoothness up to the
boundary requires higher regularity of Ω for higher dimensional spaces.
Theorems 5.3 and 5.4 already show that the regularity of a solution of Poisson’s
equation depend on the regularity of g.

Corollary 5.9. Assume Ω is C∞ and g ∈ C∞(Ω). Assume u ∈ H1
0(Ω) is a weak solution

of Poisson’s equation (−∆u = g). Then, u ∈ C∞(Ω).

The proof is straightforward from Theorems 5.4 and 5.2.

5.2 Maximum principle

Notice that an interesting particular case of Corollary 5.9 is when g = 0. So-
lutions of −∆u = 0 in a domain Ω are called harmonic functions. Likewise,
functions satisfying −∆u ≥ 0 (≤), are called super-harmonic (sub-harmonic).

Harmonic functions are of special interest in both mathematics and physics, and
their properties are key to prove the results we will show subsequently.
Additionally, there exists a unique harmonic function u satisfying u = g|∂Ω, with g
a given function (see Chapter 1 of [8]), and therefore adding a harmonic function
u to a solution of Poisson’s equation v with v|∂Ω = 0, we can get a solution to
Poisson’s equation with non-homogeneous Dirichlet boundary conditions.

Theorem 5.10. Weak maximum principle Let Ω ⊂ Rn be an open, bounded set, and
let u ∈ H1(Ω) such that, −∆u ≥ 0, in the weak sense, and u = 0 on ∂Ω. Then, u ≥ 0
in Ω.

Before proving the theorem, we are going to prove a technical proposition.

Proposition 5.11. Let u be a function in H1(Ω). We define u+ := max{u, 0} and
u− := {max(−u, 0)}. Then, both u+ and u− are also in H1(Ω).

Proof. We are going to prove the proposition for u+ only, since the proof for u− is
done similarly.

First of all let’s define the set Ω+ ⊂ Ω as Ω+ := {x ∈ Ω : u > 0}, and
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Ω− := Ω \ Ω+. It is clear that u+ ∈ L2(Ω):
∫

Ω(u
+)2 =

∫
Ω+ u2 +

∫
Ω− 0 ≤ ∥u∥2

L2(Ω)
.

We are going to show now that ∇u+ ∈ L2(Ω) is a weak derivative of u+, with
∇u+ = ∇u in Ω+ and ∇u+ = 0 in Ω−. Let ϕ ∈ C∞

c (Ω),∫
Ω

u+∇ϕ =
∫

Ω+
u∇ϕ = −

∫
Ω+

∇uϕ = −
∫

Ω
∇u+ϕ,

where we have used the definitions of Ω+,∇u+ and integrated by parts. Recall-
ing the definition of weak derivative, and since ϕ is arbitrary, ∇u+ is the weak
derivative of u+. It is clear that since ∇u ∈ L2(Ω), ∇u+ ∈ L2(Ω) and therefore,
u+ ∈ H1(Ω).

We can now prove the weak maximum principle (Theorem 5.10).

Proof. Assume that u ∈ H1
0(Ω) and −∆u ≥ 0 in Ω. Recall that −∆u ≥ 0 in

the weak sense if and only if
∫

Ω ∇u∇ϕ ≥ 0 for all ϕ ∈ H1
0(Ω). Now, from

Proposition 5.11 we know that u+, u− ∈ H1
0(Ω) Now, see that u− ≥ 0 in Ω, but∫

Ω ∇u · ∇u− = −
∫

Ω− |∇u|2 ≤ 0, which means that u− = 0 in Ω and therefore,
u+ = u ≥ 0 in Ω.

We are now going to see the strong maximum principle, which can be proved
using Hopf’s lemma, or the mean-value property of harmonic functions (see Sec-
tion 6.4 in [2] and Chapter 1 in [8]).

Theorem 5.12. Strong maximum principle Let Ω ⊂ Rn be a connected, open and
bounded domain. Assume that u ∈ C2(Ω) ∩ C(Ω) satisfies −∆u ≤ 0 in Ω. Then, if
max
x∈Ω

u(x) = max
x∈∂Ω

u(x), u is constant within Ω.

Similarly, if −∆u ≥ 0 and min
x∈Ω

u(x) = min
x∈∂Ω

u(x), then u is constant within Ω.

5.3 First eigenfunction

In this section we are going to show how the Strong maximum principle yields
a geometric characterization of the first eigenfunction of the Laplacian (the global
minimizer of the Rayleigh quotient).

Proposition 5.13. Let Ω be an open, bounded domain, smooth enough so that if v is
an eigenfunction of the Laplacian in Ω, v ∈ C∞(Ω) ∩ C(Ω). Assume u is the first
eigenfunction of the Laplacian in Ω. Then, |u| > 0 in Ω.
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Proof. Let λ1 be the eigenvalue of u and let’s consider the functions u+ and
u−. Proposition 5.11 ensures that both are in H1

0(Ω). Now, see that u+ and
u− are orthogonal and, therefore,

∫
Ω u2 =

∫
Ω(u

+)2 +
∫

Ω(u
−)2 and

∫
Ω |∇u|2 =∫

Ω |∇u+|2 +
∫

Ω |∇u−|2. It is clear that both u+ and u− are eigenfunctions of the
Laplacian in Ω, let’s see now that their eigenvalue must be λ1 as well. Assume∫

Ω |∇u+|2 > λ1
∫

Ω(u
+)2, and the same for u−. Then,

∫
Ω |∇u|2 =

∫
Ω |∇u+|2 +∫

Ω |∇u−|2 > λ1
∫

Ω(u
+)2 + λ1

∫
Ω(u

−)2 = λ1
∫

Ω u2, which is a contradiction, and
since u is the global minimizer of the Rayleigh quotient we deduce that λ1 is the
eigenvalue of u+ and u−. Now, since u+ and u− are eingenfunctions of the Lapla-
cian in Ω, we know that u+, u− ∈ C∞(Ω) ∩ C(Ω). Finally, see that ∇u+,∇u− ≥ 0
and we the strong maximum principle tells us that u+ > 0, u− = 0 in Ω (or the
other way around), hence, |u| > 0 in Ω.

Corollary 5.14. Assume u is an eigenfunction of the Laplacian (different than zero) that
does not change sign in Ω. Then, u is the first eigenfunction of the Laplacian.

We have previously seen that eigenfunctions with different eigenvalue have to
be orthogonal, and since the first eigenfunction is positive in Ω, eigenfunctions
with different eigenvalue must change sign in Ω.

These last results allow us to prove that the first eigenvalue of the Laplacian must
be simple.

Proposition 5.15. Let λ1 be the smallest eigenvalue of the Laplacian in Ω, and let S1 :=
span{u ∈ H1

0(Ω) : −∆u = λ1u, in Ω}. Then, dim S1 = 1.

Proof. Assume dim S1 > 1. Now consider u, v ∈ S1 such that they are not propor-
tional. Since both are eigenfunctions with eigenvalue λ1, they don’t vanish in Ω,

and the same must happen for any linear combination of u, v. Let a =
∥v∥L2

∥u∥L2
. Then,

(au + v) and (v − au) are orthogonal, but this is not possible since both functions
do not vanish inside Ω. Therefore, dim S1 = 1 and λ1 is simple.



Chapter 6

A practical case: Particle in an
infinite potential well

As we have stated throughout this project, both Poisson’s equation and the
eigenvalue problem are of special interest in different physical processes, such as
the wave equation, the heat diffussion and Schrödinger equation in quantum me-
chanics.
In this chapter will focus on the later. We will study the problem of a particle con-
fined in an infinite potential well and show that it is, essentially, the eigenvalue
problem for the Laplacian operator.

First we are going to provide some background about quantum mechanics.

Definition 6.1. A wavefunction is a complexed valued function ψ(x, t) : Rn × R 7−→ C

such that ψ ∈ L2(Rn) and ∥ψ(x, t)∥L2 = 1 , for all t ∈ R.

Where ⟨ψ, ϕ⟩L2 =
∫

Rn ψ(x, t)ϕ(x, t)dx, and ψ denotes the complex conjugate.
The wavefunctions are the mathematical objects that describe quantum states.
When the quantum system is a particle, the spatial part of the wavefunction is
related to the probability density of the particle being at a given place.

From now on, whenever we talk about a wavefunction, we will assume that it
is in H2(Rn).

When a self-adjoint operator returns measurements of a certain physical mag-
nitude it is called an observable. In that case, the only possible outcomes of a
measurement of that magnitude are the eigenvalues of the observable.

Definition 6.2. Let Â be an observable and ψ the wavefunction of a certain quantum
state. Then, we define the expectation value of Â as ⟨Â⟩ := ⟨ψ, Âψ⟩.
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Assume there exist a Hilbert basis of L2 of eigenstates (eigen-wavefunctions)

{ψi} of a certain observable Â, with eigenvalues λi. Let ϕ =
∞
∑

i=1
aiψi be the normal-

ized wavefunction of a certain quantum state. Then, ⟨Â⟩ =
∞
∑

i=1
a2

i λi is the expected

value of the measurement.

Definition 6.3. The Hamiltonian operator Ĥ is an observable corresponding to the energy
of a quantum system. It is defined as Ĥ = T̂ + V̂, where T̂(ψ) = − h̄2

2m ∆ψ, V̂ = V(x)ψ
are observables corresponding to the kinetic and the potential energy respectively.

Proposition 6.4. Given a quantum system, the possible quantum states are described by
wavefunctions ψ that solve

Ĥψ(x, t) = ih̄
∂

∂t
ψ(x, t) , (6.1)

where Ĥ is the Hamiltonian of the system and eq. (6.1) is known as Schrödinger’s equation.

Let’s consider the cases where the potential energy is independent of time,
V = V(x). In such cases, we may consider wavefunctions of the form ψ(x, t) =

ϕ(x) f (t), and eq. (6.1) becomes:

f (t)

(
− h̄2

2m
∆ϕ(x) + V(x)ϕ(x)

)
= ϕ(x)ih̄ f ′(t) .

Now we can divide both sides of the equation by ϕ(x) f (t) (where we only consider
the points for which ϕ(x) ̸= 0) and get:

− h̄2

2m
∆ϕ(x)
ϕ(x)

+ V(x) = ih̄
f ′(t)
f (t)

= E,

where E is a constant, since the left-hand side of the equation depends only on x
and the right-hand depends only on t.
We have now two independent differential equations, f ′ = − iE

h̄ f , with solu-
tion f (t) = Ce−i Et

h̄ ; and Ĥϕ = Eϕ, which is known as the time-independent
Schrödinger equation. Notice that taking the inner product of ϕ against both sides
of the time-independent Schrödinger equation we get ⟨ϕ, Ĥϕ⟩ = ⟨Ĥ⟩ = ⟨ϕ, Eϕ⟩ =
E. Therefore, E is the total energy of the quantum state represented by ϕ. The
quantum states with wavefunctions of the form ϕ(x) f (t) are called stationary.

We now want to study Schrödinger’s equation for the quantum system of a par-
ticle confined in an infinite potential well. This system consists on a potential of
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the form V(x)=

{
0 in Ω

∞ in Rn \ Ω
, where Ω ⊂ Rn is an open, bounded domain. We

are now going to see that in such systems the wavefunction must vanish outside
Ω and, therefore, the system becomes a free particle confined in the region Ω.

Let’s consider first a potential of the form V(x) =

{
0 in Ω

M in Rn \ Ω
, with M > 0

a real number. Now, let ϕ be a solution of the time-independent Schrödinger
equation for this system, and take the inner-product at both sides of the equation:

h̄2

2m

∫
Rn

−ϕ(∆ϕ) +
∫

ΩC
ϕMϕ =

∫
Rn

ϕEϕ = E

where we have used that ϕ is normalized. Now integrating by parts the first
integral,

h̄2

2m

∫
Rn

−ϕ(∆ϕ) =
∫

Rn
∇ϕ · ∇ϕ = ∥∇ϕ∥2 ≥ 0

where we have omitted the boundary term since both ϕ and ∇ϕ must vanish at
infinity. We finally reach:∫

ΩC
ϕMϕ = M

∫
ΩC

|ϕ|2 ≤ E, hence,
∫

ΩC
|ϕ|2 ≤ E

M
,

and we conclude that in the limit where M → ∞, then ϕ must vanish outside Ω.

Therefore, we can restric our problem to Ω and the solutions of the time-independent
Schrödinger equation are those that satisfy:{

Ĥϕ = Eϕ in Ω.

u = 0 on ∂Ω.
(6.2)

But since V(x) = 0 in Ω, the first part of eq. (6.2) becomes − h̄2

2m ∆ϕ = Eϕ and it is
exactly the eigenvalue problem of the Laplacian that we have previously studied
in Chapter 4. Therefore, the eigenfunctions of the Laplacian ϕn are the solutions
to the time-independent Schrödinger equation for the infinite potential well.

Notice that if ϕn is a normalized eigenfunction of the Laplacian with eigenvalue
λn, then En = h̄2

2m λn, and ψn(x, t) = ϕne−i Ent
h̄ is a solution of the time-dependent

Schrödinger equation. The states corresponding to the wavefunctions ψn(x, t) are
called stationary states, since their spatial time is constant over time, and their
energy En is fully determined.
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Now, since ϕn form an orthonormal basis of L2(Ω), the form of the general solu-
tions of Schrödinger equation for the infinite potential well is:

ψ(x, t) =
∞

∑
n=1

anϕne−i Ent
h̄ , (6.3)

where ∑
n
|an|2 = 1 so as to have ∥ψ(x, t)∥L2 = 1. Additionally, knowing the spa-

tial part of a wavefunction in a specific instant of time ψ(x, 0) = ψ(x) allows us
to decompose it in terms of the stationary states and obtain its time-evolution:
ψ(x) = ∑

n
anϕn, with an = ⟨ψ(x), ϕn⟩L2 ϕn.

Finally, see that given any wavefunction ψ(x, t), of which we know its initial state
ψ(x, 0), we can construct an approximated wavefunction ψ̃(x, t) with a bounded
error as small as we desire, computing only a finite amount of the coefficients an.

Let ϵ > 0 and consider the partial sum
k
∑

n=1
anϕne−i Ent

h̄ −→
k→∞

ψ(x, t). Now taking the

norm of the sum and recalling that ψ(x, t) is normalized we reach
k
∑

n=1
|an|2 −→

k→∞
1.

Therefore, there exists k0 such that
k0

∑
n=1

|an|2 > 1 − ϵ and finally defining ψ̃(x, t) =

k0

∑
n=1

anϕne−i Ent
h̄ we conclude:

∥ψ̃(x, t)−ψ(x, t)∥2
L2 =

∫
Ω
(

k0

∑
n=1

anϕne−i Ent
h̄ −

∞

∑
n=1

anϕne−i Ent
h̄ )2 =

∫
Ω
(

∞

∑
n=k0+1

anϕne−i Ent
h̄ )2

=
∞

∑
n=k0+1

|an|2 < ϵ,

and ψ̃(x, t) is a good approximation of ψ(x, t) with the error bounded by ϵ for all
t.



Chapter 7

Conclusions

Throughout this project, we have been able to see different techniques used to
approach PDEs and prove the existence of solutions, as well as other properties,
such as their orthogonality in the case of the eigenfunctions of the Laplacian. We
have also seen that it is sometimes more convenient to prove the existence of weak
solutions, not necessarily satisfying the original equation in the classical sense,
and then showing that they are actually sufficiently regular to satisfy the orginial
equation in the classical way.

Although we have studied the simple cases of Poisson’s equation and the eigen-
value problem, both with Dirichlet homogeneous boundary conditions, most of
the results we have used apply also to more general elliptic operators than the
Laplacian, even with different boundary conditions such as the Neumann con-
ditions, which instead of requiring the solutions to attain specific values at the
boundary, they require its normal derivative to the boundary to be a certain func-
tion.

Therefore, completing this project has provided me with meaningful insights into
the mathematical theory behind partial differential equations and the various tech-
niques involved in solving and studying them.
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