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1. Introduction

Let (A, m) be a Noetherian local ring with an infinite residue field A/m and I an 
m-primary ideal. Let M be a finitely generated A-module of dimension d. Then the 
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Hilbert-Samuel function H1
I,M (n) := �A(M/In+1M) agrees with a polynomial, so-called 

Hilbert-Samuel polynomial, HP 1
I,M (n) for all n � 0. If we write

HP 1
I,M (n) = e0(I,M)

(
n + d

d

)
− e1(I,M)

(
n + d− 1
d− 1

)
+ · · · + (−1)ded(I,M),

then the integers e0(I, M), ..., e0(I, M) are called the Hilbert coefficients of M with respect 
to I.

There are intensive studies on finding bounds on several Hilbert coefficients. We refer 
the interested readers to the book [17] for main developments and rich references. Our aim 
is to give new bounds on the first two Hilbert coefficients in terms of e0(I, M) for Cohen-
Macaulay modules. Recall that e0(I, M), e1(I, M), e2(I, M) ≥ 0 and that e3(I, M) could 
be negative, see [12, Theorem 1], [11, Theorem 1 and Theorem 2] and [17, Introduction 
to Chapter 3].

In this paper we establish two upper bounds on e1(I, M). The first one (Proposi-
tion 3.1) holds for Cohen-Macaulay modules and is a slight improvement of the bound 
given by Rossi and Valla for filtrations in [17, Proposition 2.8 and Proposition 2.10]. 
Moreover, in the case of dimension one, we can give conditions for this bound to be 
attained (see Proposition 3.5 and Proposition 4.2). In difference to the approach in [17, 
Section 2.2], we use here local cohomology modules of the associated graded modules 
GI(M). As a consequence, we can show that if IM ⊆ mbM for some b ≥ 2, then 
e1(I, M) ≤

(
e0(I,M)−b

2
)
, see Proposition 3.2. In the ring case, this result was given by 

Elias [3, Proposition 2.5 and Remark 2.6] under an additional condition, which was then 
removed by Hanumanthu and Huneke in [6, Corollary 3.7]. This part can be also seen as 
a preparation for our study on the e2(I, M) in Section 5.

The second upper bound on e1(I, M) (Theorem 4.6) only holds for M = A and is 
based on the bound given by Elias [4] in the dimension one case. When b ≥ 2, this new 
bound provides a much better bound than the above mentioned bound 

(
e0(I,A)−b

2
)
, see 

Remark 4.7.
For e2(I, M) we can give a new upper bound in terms of e0(I, M) and b, see Theo-

rem 5.1. As we know that the first upper bound on e2(I, M) was given by Rhodes, see 
[15, Proposition 6.1(iv)] (also see [9, Corollary 4.2] for modules over a semi-local ring). 
In [5, Theorem 2.3] a much better bound is given. However, all bounds on e2(I, M) in 
[15,9,5] involve e1(I, M), while our bound only depends on e0(I, M) (and the largest 
number b such that IM ⊆ mbM). Moreover, we can characterize when this bound is 
attained (Theorem 5.3). Like Proposition 3.5, the conditions in Theorem 5.3 are given 
in terms of Hilbert series as well as in terms of the Castelnuovo-Mumford regularity of 
the associated graded module GI(M). In the case M = A and b ≥ 2, using Theorem 4.6
one can get a better bound than the one in Theorem 5.1, see Theorem 5.9.

We now give a brief content of the paper. In Section 2 we recall some basic no-
tions and give some estimations on the Hilbert function of GI(M) and of GI(M) =
GI(M)/H0

G (GI(M)). In Section 3 we give two bounds on e1(I, M) (see Propositions 3.1

+
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and 3.2) and characterize when the first bound in Proposition 3.1 is attained, provided 
dimM = 1. In Section 4 we restrict to the case M = A. Here we give further structures 
of I and A such that the first bound in Proposition 3.1 is attained, see Proposition 4.2. 
Then we prove an essentially new bound on e1(I) (Theorem 4.6). Main known upper 
bounds on e1(I) of an m-primary ideal I of an one-dimensional Cohen-Macaulay ring 
(A, m) such that I � m2 are summarized in Remark 4.8. In the last Section 5, we prove 
the new bounds on e2(I, M) (Theorems 5.1 and 5.9), and give equivalent conditions for 
the bound in Theorem 5.1 to be attained (Theorem 5.3).

2. Preliminaries

Let R = ⊕n≥0Rn be a Noetherian standard graded ring over a local Artinian ring 
(R0, m0). Let E be a finitely generated graded module of dimension d. The function 
HE(n) := �R0(En) is called Hilbert function of E. For all n � 0, it agrees with the 
so-called Hilbert polynomial denoted by HPE(t), that is a polynomial of degree d − 1. 
The number

pn(E) := min{n| HE(t) = HPE(t) for all t ≥ n},

is called the postulation number of HE .
If we denote by R+ := ⊕n>0Rn the irrelevant ideal of R, then we set

ai(E) := sup{n| Hi
R+

(E)n �= 0},

0 ≤ i ≤ d. The Castelnuovo-Mumford regularity of E is the number:

reg(E) := max{ai(E) + i| 0 ≤ i ≤ d}.

Let (A, m) be a Noetherian local ring with an infinite residue field A/m and I an 
m-primary ideal. Let

G(I) := ⊕n≥0I
n/In+1

be the associated graded ring of I. It is a standard graded A/I-algebra. If M is a finitely 
generated A-module, the associated graded module of I with respect to M is the following 
graded G(I)-module:

GI(M) := ⊕n≥0I
nM/In+1M.

There is another way to define the Hilbert coefficients ei(I, M) already defined in the 
introduction. We recall here this approach from [17, Section 1.3]. The function

HI,M (n) := HGI(M)(n) = �A(InM/In+1M)
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is called the Hilbert function of M . The Hilbert polynomial of M is HPI,M = HPGI(M).
By the Hilbert-Serre theorem, the Hilbert series

PI,M (z) :=
∑
n≥0

HI,M (n)zn, (2.1)

is a rational function of z, that means one can find a polynomial QI,M(z) ∈ Z[z] such 
that QI,M (1) �= 0 and

PI,M (z) = QI,M (z)
(1 − z)d .

Let dimM = d. If we set for every i ≥ 0

ei(I,M) =
Q

(i)
I,M (1)
i! , (2.2)

where Q(i)
I,M denotes the i-th derivation of QI,M , then for all 0 ≤ i ≤ d, this value of 

ei(I, M) agrees with the one defined in the introduction. Moreover, unlike the definition 
in the introduction, using (2.2) we can talk about the Hilbert coefficients ei(I, M) with 
i > d. This simple observation is useful in the study of the second Hilbert coefficient, 
where we can reduce the case of dimension two to dimension one.

Together with Hilbert series, the power series

P 1
I,M (z) :=

∑
n≥0

�(M/In+1M)zn = PI,M (z)
(1 − z)d+1

is also often used; this is called Hilbert-Samuel series.
In the sequel we use the following notations

pn(I,M) := pn(GI(M)) = min{n| HPI,M (t) = HI,M (t) for all t ≥ n},

and if M = A then we write HI := HI,A, HPI := HPI,A, pn(I) := pn(I, A), ei(I) :=
ei(I, A) and so on.

Recall that an element x ∈ I is called M -superficial (of order one) for I, if there 
exists a non-negative integer c such that

(In+1M : x) ∩ IcM = InM,

for all n ≥ c. When M = A we simply say that x is a superficial element for I. This 
is equivalent to the condition that its initial form x∗ ∈ G(I) has degree one and it is a 
filter-regular element on the associated graded module GI(M), which means

[0 :GI(M) x
∗]m = 0 for all m � 0.
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(See, e.g., the equivalence of (1) and (5) in [17, Theorem 1.2].) Note that if depth(M) > 0, 
then an M -superficial element is M -regular. A sequence x1, ..., xs ∈ I is called M -
superficial sequence for I if xi is an M/(x1, ..., xi−1)M -superficial element, for I for 
i = 1, ..., s.

The following result is now standard and useful for proceeding by induction.

Lemma 2.1. (See, e.g., [17, Proposition 1.2]) Let M be a d-dimensional A-module. Let 
x ∈ I be an M -superficial element for I. Then

(i) dim(M/xM) = d − 1,
(ii) ej(I, M/xM) = ej(I, M) for every j = 0, ..., d − 2,
(iii) ed−1(I, M/xM) = ed−1(I, M) + (−1)d−1�(0 : x),
(iv) There exists an integer n0 such that for every n ≥ n0 − 1 we have

ed(I,M/xM) = ed(I,M) + (−1)d
[

n∑
i=0

�(Ii+1M : x/IiM) − (n + 1)�(0 : x)
]
,

(v) x∗ is a regular element on GI(M) if only if PI,M (z) = P 1
I,M/xM (z) = PI,M/xM (z)

1−z if 
only if x is M -regular and ed(I, M) = ed(I, M/xM),

(vi) If depth(M) ≥ d − 1 then x is M -regular.

We would like to comment that in the above statements (iv) and (v), ed(I, M/xM)
is the one defined by (2.2).

The Ratliff-Rush closure of an ideal introduced in [14] plays an important role in the 
study of Hilbert functions, see e.g. [16,17]. It is defined by

ĨnM =
⋃
k≥1

In+kM : Ik = In+lM : I l for some l � 0. (2.3)

Using this notion, we can compute the zero-th local cohomology module of GI(M) with 
respect to G+ := ⊕n≥1I

n/In+1 as follows (see, e.g., [16, p. 26]):

[H0
G+

(GI)M))]n =
˜In+1M ∩ InM

In+1M
. (2.4)

We set GI(M) = GI(M)/H0
G+

(GI(M)).

Lemma 2.2. Let M be an one-dimensional A-module. Let b be a positive integer such that 
IM ⊆ mbM . Then

(i) ([1, Lemma 2.5]) �(GI(M)0) ≥ b.
(ii) If e0(I, M) �= e0(mb, M), then �(GI(M)0) ≥ b + 1.
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Proof. (i) is [1, Lemma 2.5]. It is based on the fact �(GI(M)0) = �(E), where E =
M/ĨM , and the strict inclusions:

E � mE � · · · � mbE. (2.5)

(ii) Assume that mbE = 0. Then mbM ⊆ ĨM . By (2.3), it implies that

I l+1M ⊆ I l(mbM) ⊆ I l+1M,

for some l � 0. Hence I l+1M = mbI lM . Let c be an integer such that mbc ⊆ I l, then 
for all n > 0, it yields

I l+nM = (mb)nI lM ⊇ (mb)n+cM.

Hence

(n + l)e0(I,M) − e1(I,M) = �(M/I l+nM)
≤ �(M/(mb)n+cM) = (n + c)e0(mb,M) − e1(mb,M),

for all n � 0. This implies e0(I, M) ≤ e0(mb, M), whence e0(I, M) = e0(mb, M), a 
contradiction to the assumption. So, we must have mbE �= 0. From (2.5) we then get 
�(GI(M)0) = �(E) ≥ b + 1, as required. �
Lemma 2.3. Let R be a Noetherian standard graded ring over a local Artinian ring and E
an one-dimensional Cohen-Macaulay graded R-module. Let Δ := Δ(E) be the maximal 
generating degree of E. Then

(i) HE(Δ) < HE(Δ + 1) < · · · < HE(pn(E)),
(ii) HE(n) ≥ (n − Δ) + HE(Δ) for all Δ + 1 ≤ n ≤ pn(E).

Proof. Let z ∈ R1 be an E-regular element. Since E is a Cohen-Macaulay module, 
pn(E) = pn(E/zE) − 1. Note that Δ(E/zE) ≤ Δ = Δ(E) and since dimE/zE = 0, 
HE/zE(t) ≥ 1 for all Δ(E/zE) ≤ t ≤ pn(E/zE) − 1 = pn(E). Hence the statements 
follow from the following equality

HE(n) = HE(Δ) +
∑

Δ+1≤i≤n

HE/zE(i). �

The following result is a slight improvement of [17, Proposition 2.7] and the remark 
after it.

Lemma 2.4. Let M be an one-dimensional Cohen-Macaulay A-module such that IM ⊆
mbM . Then
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(i) a1(GI(M)) = pn(I, M) − 1 > a0(GI(M)) and reg(GI(M)) = pn(I, M),
(ii) HI,M (n) ≥ n + b + �(H0

G+
(GI(M))n) for all 0 ≤ n ≤ pn(I, M),

(iii) ([17, Proposition 2.7(2)]) pn(I, M) ≤ e0(I, M) − b. If the equality holds, then 
�(GI(M)n) = n + b for all 0 ≤ n ≤ pn(I, M).

If, in addition, e0(I, M) �= e0(mb, M), then we further have:

(iv) HI,M (n) ≥ n + b + 1 + �(H0
G+

(GI(M))n) for all 0 ≤ n ≤ pn(I, M),
(v) ([17, Remark (b) after Proposition 2.7]) pn(I, M) ≤ e0(I, M) − b −1. If the equality 

holds, then �(GI(M)n) = n + b + 1 for all 0 ≤ n ≤ pn(I, M).

Proof. (i) By [10, Theorem 2.1] a0(GI(M)) < a1(GI(M)). From the Grothendieck-Serre 
formula

HI,M (n) −HPI,M (n) = HGI(M)(n) −HPGI(M)(n) =

= �(H0
G+

(GI(M))n) − �(H1
G+

(GI(M))n),

it follows that pn(I, M) = pn(GI(M)) = a1(GI(M)) + 1.
(ii) From the short exact sequence

0 −→ H0
G+

(GI(M)) −→ GI(M) −→ GI(M) := GI(M)/H0
G+

(GI(M)) −→ 0,

we get

HI,M (n) = �(GI(M)n) + �(H0
G+

(GI(M))n).

From (i) it follows that

pn(I,M) = a1(GI(M)) + 1 = pn(GI(M)).

Note that Δ(GI(M)) = 0, and by Lemma 2.2(i), �(GI(M)0) ≥ b. Since GI(M) is a 
Cohen-Macaulay module, by Lemma 2.3, we have

HI,M (n) = �(H0
G+

(GI(M))n) + HGI(M)(n)

≥ �(H0
G+

(GI(M))n) + HGI(M)(0) + n (2.6)

≥ �(H0
G+

(GI(M))n) + b + n, (2.7)

for all 0 ≤ n ≤ pn(GI(M)) = pn(GI(M)) = pn(I, M).
(iii) Since HI,M (n) ≤ e0(I, M) (see, e.g., the remark after Lemma 2.1 in [17]), from (ii) 
we immediately get

p ≤ e0(I,M) − b− �(H0
G (GI(M))p) ≤ e0(I,M) − b,
+
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where p := pn(I, M). If the equality holds, then from (2.6) and (2.7) we must have 
HGI(M)(0) = b and HGI(M)(p) = p + b. From Lemma 2.3 we then get

�(GI(M)n) = HGI(M)(n) = n + b

for all 0 ≤ n ≤ p.
(iv) and (v) If, in addition, e0(I, M) �= e0(mb, M), then using Lemma 2.3(ii), instead of 
(2.7), we get a little bit stronger inequality:

HI,M (n) ≥ �(H0
G+

(GI(M))n) + b + 1 + n,

which then implies (iv) and (v). �
3. The first Hilbert coefficient of a module

In this section we always assume that M is a Cohen-Macaulay module over a local 
ring (A, m) and I is an m-primary ideal. We start with a slight improvement of [17, 
Proposition 2.8 and Proposition 2.10]. Its proof is also a modification of the one of [17, 
Proposition 2.8]. Note that [17, Proposition 2.8 and Proposition 2.10] are formulated for 
an arbitrary filtered module (not necessarily Cohen-Macaulay).

Proposition 3.1. Let M be a Cohen-Macaulay module and of dimension d ≥ 1. Let b be 
a positive integer such that IM ⊆ mbM . Then

e1(I,M) ≤
(
e0(I,M) − b + 1

2

)
+ b− �(M/IM). (3.1)

If d = 1 and the equality in (3.1) holds, then we have

(i) a0(GI(M)) ≤ 0,
(ii) Either reg(GI(M)) = pn(I, M) = e0(I, M) − b or e0(I, M) ∈ {b, b + 1},
(iii) HI,M (n) = b + n for all 1 ≤ n ≤ pn(I, M) − 1.

If d = 1 and e0(I, M) > e0(mb, M), then

e1(I,M) ≤
(
e0(I,M) − b

2

)
+ b + 1 − �(M/IM). (3.2)

If the equality in (3.2) holds, then we have

(i’) a0(GI(M)) ≤ 0,
(ii’) Either reg(GI(M)) = pn(I, M) = e0(I, M) − b − 1 or e0(I, M) ∈ {b + 1, b + 2},
(iii’) HI,M (n) = n + b + 1 for all 1 ≤ n ≤ pn(I, M) − 1.
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Proof. For simplicity, set e0 := e0(I, M), e1 := e1(I, M) and p := pn(I, M). By standard 
technique (using Lemma 2.1) we may assume that d = 1. We have

e1 =
p−1∑
i=0

(e0 −HI,M (i)) = e0 −HI,M (0) +
p−1∑
i=1

(e0 −HI,M (i)).

Using Lemma 2.4(ii) and (iii), we get

e1 ≤ e0 −HI,M (0) +
p−1∑
i=1

(e0 − i− b− �(H0
G+

(GI(M))i)

≤
e0−b−1∑

i=1
(e0 − i− b− �(H0

G+
(GI(M))i) + e0 − �(M/IM) (3.3)

≤
e0−b−1∑

i=1
(e0 − i− b) + e0 − �(M/IM) (3.4)

=
(
e0 − b + 1

2

)
+ b− �(M/IM).

If e1 =
(
e0−b+1

2
)

+ b − �(M/IM), then from (3.3) and (3.4) we must have:

(a) H0
G+

(GI(M))i = 0 for all 1 ≤ i ≤ e0 − b − 1,
(b) HI,M (i) = b + i for all 1 ≤ i ≤ e0 − b − 1,
(c) p = e0 − b if e0 − b ≥ 2.

Since p ≤ e0−b by Lemma 2.4(iii), (b) implies (iii). By Lemma 2.4(i), p −1 > a0(GI(M)). 
Hence (a) implies (i). Since a1(GI(M)) > a0(GI(M)) (by Lemma 2.4(i)), reg(GI(M)) =
a1(GI(M)) + 1. Using again Lemma 2.4(i), we get reg(GI(M)) = p. Then (c) implies 
(ii).

Finally, if e0(I, M) > e0(mb, M), then by Lemma 2.4(v), p ≤ e0 − b − 1. Hence as 
above, we get

e1 ≤
e0−b−2∑

i=1
(e0 − i− b− 1 − �(H0

G+
(GI(M))i) + e0 − �(M/IM) (3.5)

≤
e0−b−2∑

i=1
(e0 − i− b− 1) + e0 − �(M/IM) (3.6)

=
(
e0 − b

2

)
+ b + 1 − �(M/IM).

The proof of (i’), (ii’) and (iii’) is similar to that of (i), (ii) and (iii), where (3.5) and 
(3.6) are used. �
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Assume that A is a Cohen-Macaulay ring. Elias [3, Proposition 2.5] showed that if 
I ⊆ mb for some b ≥ 2, then under an additional condition we have:

e1(I) ≤
(
e0(I) − b

2

)
.

Using integral closures of an ideal, Hanumanthu and Huneke were able to remove that 
additional condition (see [6, Corollary 3.7]). We can now extend this result to the case 
of modules.

Proposition 3.2. Assume that M is a Cohen-Macaulay A-module of positive dimension 
and I is an m-primary ideal of (A, m) such that IM ⊆ mbM for some b ≥ 2. Then

e1(I,M) ≤
(
e0(I,M) − b

2

)
.

Proof. Using standard technique we may assume that d = 1. If e0(I, M) > e0(mb, M), 
then the statement follows from Proposition 3.1 (3.2), since

�(M/IM) > �(M/mbM) ≥ b.

Assume now that e0(I, M) = e0(mb, M). For n � 0, we have

e0(I,M)(n + 1) − e1(I,M) = �(M/In+1M) ≥ �(M/(mb)n+1M)

= e0(mb,M)(n + 1) − e1(mb,M).

Hence e1(I, M) ≤ e1(mb, M). Note that for n � 0,

�(M/(mb)n+1M) = �(M/(m(n+1)bM) = e0(m,M)(n + 1)b− e1(m,M).

This implies e0(mb, M) = be0(m, M) and e1(mb, M) = e1(m, M). Applying Proposi-
tion 3.1 (3.1) to the case b = 1 we get

e1(m,M) ≤
(
e0(m,M)

2

)
.

(Of course, this inequality is known in [8, Theorem 2].) If e0(m, M) = 1, then the above 
inequality gives e1(I, M) ≤ e1(m, M) = 0 and the statement trivially holds. Assume 
e0 := e0(m, M) ≥ 2. Since b ≥ 2, we have be0 − b ≥ e0. Hence

e1(I,M) ≤ e1(mb,M) = e1(m,M) ≤
(
e0
)

≤
(
be0 − b

)
=

(
e0(I,M) − b

)
. �
2 2 2
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Let us examine when the bound in Proposition 3.1 (3.1) holds in the case dimM = 1. 
Let b be the largest positive integer such that IM ⊆ mbM . Note that e0(I, M) ≥
e0(mb, M) = be0(m, M) ≥ b.

Lemma 3.3. If e0(I, M) = b, then Proposition 3.1(3.1) becomes an equality. Moreover, 
e0(I, M) = b if and only if M ∼= A′, A′ is an one-dimensional regular ring and I = (xb), 
where m = (x).

Proof. We have b ≤ �(M/mbM) ≤ �(M/IM) ≤ e0(I, M). If e0(I, M) = b, then 
�(M/mM) = 1, e0(m, M) = 1, and from the inequality Proposition 3.1 (3.1) we get 
e1(I, M) ≤ 0, whence e1(I, M) = 0. Then Proposition 3.1(3.1) becomes an equality. Re-
placing A by A/Ann(M), one can now conclude that e0(I, M) = b if and only if M ∼= A, 
A is a regular ring and I = (xb), where m = (x). �
Lemma 3.4. Let M be a Cohen-Macaulay module of positive dimension d and I an m-
primary ideal. Let b be the largest positive integer such that IM ⊆ mbM . Assume that 
e0(I, M) > b and

e1(I,M) =
(
e0(I,M) − b + 1

2

)
+ b− �(M/IM).

Then b = 1.

Proof. Assume that b ≥ 2. First assume that d = 1. We have

e1(I,M) =
(
e0(I,M)−b+1

2
)

+ b− �(M/IM)

=
(
e0(I,M)−b

2
)

+ e0(I,M) − �(M/IM).

Since e0(I, M) ≥ �(M/IM), the above equality together with the inequality in Proposi-
tion 3.2 implies that

e1(I,M) =
(
e0(I,M) − b

2

)
, (3.7)

and e0(I, M) = �(M/IM). Since M is an one-dimensional Cohen-Macaulay module, 
e0(I, M) = �(M/xM) for some x ∈ I. This implies IM = xM , i.e. we can assume that 
I is a parameter ideal. Then e1(I, M) = 0, and by (3.7), e0(I, M) ≤ b + 1. By the 
assumption, we get e0(I, M) = b + 1.

Since b + 1 = e0(I, M) ≥ e0(mb, M) = be0(m, M) and b ≥ 2, we can conclude that 
e0(m, M) = 1. Let y ∈ m such that e0(m, M) = �(M/yM). Note that �(M/yM) ≥
�(M/mM) = μ(M) - the minimal number of generators of M . Hence, we must have 
yM = mM and M is generated by one element, say M = Au. Replacing A by A/Ann(M), 
we may assume that M = A. Then A is a regular ring, m = (y), see Lemma 3.3. Since 
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x ∈ mb and b is the largest number satisfying this property, it implies that x = ryb for 
some unit r. But then e0(I, M) = e0(x, A) = b, a contradiction. Hence, the assumption 
b ≥ 2 is wrong and then b = 1.

Now assume that d ≥ 2. Let x1, ..., xd−1 be an M -superficial sequence for I. Let 
N = M/(x1, ..., xd−1)M . Then dim(N) = 1 and

e1(I,N) =
(
e0(I,N) − b + 1

2

)
+ b− �(N/IN).

Since IN ⊆ mbN , we must have b = 1. �
Below are some characterizations for the equality in (3.1).

Proposition 3.5. Let M be an one-dimensional Cohen-Macaulay A-module and I an m-
primary ideal. Let b be the largest positive integer such that IM ⊆ mbM . Assume that 
e0(I, M) ≥ b + 2. Then the following conditions are equivalent:

(i) e1(I, M) =
(
e0(I,M)−b+1

2
)

+ b − �(M/IM),

(ii) PI,M (z) = �(M/IM)+(b+1−�(M/IM))z+
∑e0(I,M)−b

i=2 zi

1−z ,
(iii) a0(GI(M)) ≤ 0 and reg(GI(M)) = e0(I, M) − b,
(iv) reg(GI(M)) =

(
e0(I,M)−b+2

2
)

+ b − e1(I, M) − �(M/IM) − 1.

If one of the above conditions is satisfied, then b = 1 and e0(I, M) = e0(m, M).

Proof. For simplicity, in this proof we set e0 := e0(I, M), e1 := e1(I, M) and p :=
pn(I, M).
(ii) =⇒ (i) is immediate from (2.2).
(i) =⇒ (ii) Assume that e1 =

(
e0−b+1

2
)

+ 1 − �(M/IM). Since e0 ≥ b + 2, by Propo-
sition 3.1(ii) and (iii), p = e0 − b, HI,M (n) = i + b for all 1 ≤ i ≤ e0 − b − 1 and 
HI,M (n) = e0 for all n ≥ e0 − b. Substituting these values into the definition (2.1) of the 
Hilbert series we then get (ii).
(i) =⇒ (iii) By Proposition 3.1(i), a0(GI(M)) ≤ 0. Since e0 ≥ b +2, by Proposition 3.1(ii), 
reg(GI(M)) = e0 − b.
(iii) =⇒ (ii) By Lemma 2.4(i), we have p = reg(GI(M)) = e0 − b. Since a0(GI(M)) ≤ 0,

�(ItM/It+1M) = HGI(M)(t) = HGI(M)(t) for all t ≥ 1.

On the other hand, by Lemma 2.4(iii),

HGI(M)(t) =
{
t + b if 0 ≤ t ≤ e0 − b− 1,
e0 if t ≥ e0 − b.

Hence
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PI,M (z) = �(M/IM) +
∑e0−b−1

t=1 (t + b)zt +
∑

t≥e0−b e0z
t

= �(M/IM)+(b+1−�(M/IM))z+
∑e0−b

i=2 zi

1−z .

(i) =⇒ (iv) Using (i) ⇔ (iii), we have

reg(GI(M)) = e0 − b

=
(
e0−b+2

2
)
−

(
e0−b+1

2
)

+ e1 + �(M/IM) − b− e1 − �(M/IM) + b− 1

=
(
e0−b+2

2
)

+ b− e1 − �(M/IM) − 1.

(iv) =⇒ (i) By [1, Proposition 2.1], reg(GI(M)) ≤ e0 − b. Therefore

reg(GI(M)) ≤ e0 − b

=
(
e0−b+2

2
)
−

(
e0−b+1

2
)

+ e1 + �(M/IM) − b− e1 − �(M/IM) + b− 1

≤
(
e0−b+2

2
)

+ b− e1 − �(M/IM) − 1 (by Proposition 3.1).

By virtue of (iv), this implies e1 =
(
e0
2
)

+ 1 − �(M/IM).
Finally assume (i). By Lemma 3.4, b = 1. Further, since e0−1 ≥ 2, we have 

(
e0−1

2
)
+1 ≤(

e0
2
)
. Hence, if e0 �= e0(m, M), by virtue of Proposition 3.1(3.2), we cannot have (i), a 

contradiction. �
Example 3.6. Let A = k[[t2, t3]] and M = m. Then e0(m, M) = e0(m) = 2, while e1(m) =
1 and e1(m, M) = 0. Hence, the condition (i) of Proposition 3.5 is satisfied for both 
pairs (m, A) and (m, M). Note that �(mn/mn+1) = 2 for all n ≥ 1. So, pn(m) = 1
and pn(m, M) = 0. The ring G(m) and the module GI(M) are Cohen-Macaulay, but 
reg(G(m)) = 1 = e0(m) − 1, while reg(Gm(M)) = 0 < e0(m, M) − 1 = 1. This shows 
that none of the conditions (ii), (iii) and (iv) in Proposition 3.5 holds. So the condition 
e0(I, M) ≥ b + 2 in Proposition 3.5 cannot be omitted.

Using (iv) and (v) of Lemma 2.4 and (i’), (ii’) and (iii’) of Proposition 3.1, similar 
arguments of the proof of Proposition 3.5 give:

Proposition 3.7. Let M be an one-dimensional Cohen-Macaulay A-module and I an m-
primary ideal such that I ⊆ mb, e0(I, M) > e0(mb, M) and e0(I, M) ≥ b + 3, where b is 
a positive integer. Then the following conditions are equivalent:

(i) e1 =
(
e0(I,M)−b

2
)

+ b + 1 − �(M/IM),

(ii) PI,M (z) = �(M/IM)+(b+2−�(M/IM))z+
∑e0(I,M)−b−1

i=2 zi

1−z ,
(iii) a0(GI(M)) ≤ 0 and reg(GI(M)) = e0(I, M) − b − 1,
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(iv) reg(GI(M)) =
(
e0(I,M)−b+1

2
)

+ b − e1(I, M) − �(M/IM).

Remark 3.8. Using the standard technique one can immediately deduce that the con-
clusions of Proposition 3.5 hold for any d-dimensional Cohen-Macaulay module M with 
depth(GI(M)) ≥ d − 1. We don’t know if the assumption depth(GI(M)) ≥ d − 1 can be 
removed.

We cannot do the same with Proposition 3.7, since the condition e0(I, M) > e0(mb, M)
could be not reserved when going to lower dimension (see the reason before Lemma 4.5).

4. The first Hilbert function of an m-primary ideal

In this section we consider the case M = A, that is we study the first Hilbert coefficient 
of an m-primary ideal I of a Cohen-Macaulay local ring (A, m). If b ≥ 2, see Theorem 4.6
below. If b = 1, then the Rossi-Valla bound in the statement (i) of the following lemma 
is clearly much better than the one in Proposition 3.1.

Lemma 4.1. Let (A, m) be a d-dimensional Cohen-Macaulay ring and I an m-primary 
ideal. Then

(i) ([16, Theorem 3.2])

e1(I) ≤
(
e0(I)

2

)
−
(
μ(I) − d

2

)
− �(A/I) + 1, (4.1)

where μ(I) denotes the number of generators of I.
(ii) (A partial case of [16, Theorem 3.2]) If d = 1, then we also have

e1(I) ≤
(
e0(I)

2

)
−
(
μ(Ĩ) − 1

2

)
− �(A/Ĩ) + 1.

Proof. There is an unclear step in the proof of [16, Theorem 3.2] in the case d = 1: 
from the context, λ in [16, (8)] should be �(A/Ĩ), see at the beginning of [16, Section 3]. 
Therefore we give here a correction of this part. So, we may assume that d = 1 and we 
need to show

e1(I) ≤
(
e0(I)

2

)
−
(
μ(I) − 1

2

)
− �(A/I) + 1. (4.2)

If μ(I) = 1, then I is a parameter ideal, which implies e1(I) = 0 and the inequality holds 
true. Now let μ(I) ≥ 2. By [16, Theorem 3.1],

e1(I) ≤
(
e0(I)

)
−

(
g − 1

)
− �(A/Ĩ) + 1, (4.3)
2 2
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where

g = �(Ĩ/Ĩ2) +
∑
i≥2

�

(
Ĩi+1

IĨi + Ĩi+2

)
.

At the end of the proof of [16, Theorem 3.1], it is shown that

g ≥ �(Ĩ/Ĩ2 + Im) + �(Ĩ2 + Im/Im)

= �(Ĩ/Im) = �(Ĩ/I) + μ(I).

Set l̃ := �(Ĩ/I). Then we get(
g − 1

2

)
+ �(A/Ĩ) ≥

(
μ(I) − 1 + l̃

2

)
+ �(A/Ĩ)

=
(
μ(I) − 1

2

)
+ (2μ(I) − 3)l̃ + l̃2

2 + �(A/Ĩ)

≥
(
μ(I) − 1

2

)
+ l̃(l̃ + 1)

2 + �(A/Ĩ) (since μ(I) ≥ 2). (4.4)

If l̃ = 0, then �(A/Ĩ) = �(A/I). If l̃ ≥ 1, then

l̃(l̃ + 1)
2 + �(A/Ĩ) ≥ l̃ + �(A/Ĩ) = �(A/I). (4.5)

In both cases, from (4.4) we get(
g − 1

2

)
+ �(A/Ĩ) ≥

(
μ(I) − 1

2

)
+ �(A/I). (4.6)

Combining this with (4.3) we immediately get (4.2). �
Using the Rossi-Valla bound (4.1) we can immediately see that if I satisfies the con-

dition (i) of Proposition 3.5 (with M = A), then μ(I) ≤ 2. However, if I is a parameter 
ideal, then e1(I) = 0, while 

(
e0(I)

2
)

+ 1 − �(A/I) =
(
e0(I)

2
)

+ 1 − e0(I) ≥ 1, provided 
e0(I) ≥ 3. This contradicts the condition (i). So, μ(I) = 2. Below are more information 
on the structure of I and A itself, when I satisfies the condition (i) of Proposition 3.5, 
or equivalently, when the Rossi-Valla bound (4.1) is attained, provided μ(I) = 2.

Proposition 4.2. Let (A, m) be an one-dimensional Cohen-Macaulay ring and I an m-
primary ideal such that e0(I) ≥ 3 and e1(I) =

(
e0(I)

2
)

+ 1 − �(A/I). Then we have

(i) Ĩ = m, I2 = mI and μ(I) = 2.
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(ii) μ(m) ∈ {2, 3}, and
(iii) If μ(m) = 2, then I = m and G(m) is a Cohen-Macaulay ring.
(iv) If μ(m) = 3, then In = mn for all n ≥ 2 and �(A/I) = 2. In this case depth(G(I)) =

0.

Proof. We set e0 := e0(I). (i) μ(I) = 2 was shown above. By Proposition 3.1(ii), b = 1
and pn(I) = e0(I) − 1. Hence, by Lemma 2.4(iii), �(G(I)0) = 1. By (2.4), we then get 
�(A/Ĩ) = �(G(I)0) = 1. Since Ĩ ⊆ m, we must have Ĩ = m. By Proposition 3.1(iii), 
�(I/I2) = 2. Since 2 = μ(I) = �(I/mI) ≤ �(I/I2) = 2, we get I2 = mI.
(ii) Since μ(I) = 2, the equality in (4.1) also holds for I. From (4.4), (4.5) and (4.6) we 
must have �(Ĩ/I) ≤ 1. Since Ĩ = m, we get �(A/I) ≤ 2, and by Lemma 4.1(ii), we now 
have (

e0

2

)
+ 1 − �(A/I) = e1 ≤

(
e0

2

)
−

(
μ(m) − 1

2

)
.

This implies 
(
μ(m)−1

2
)
≤ 1, whence μ(m) ≤ 3. By Proposition 3.5, e0(m) = e0(I) ≥ 3. 

Hence A is not a regular ring, which implies μ(m) ≥ 2.
Assume that a is an element in a minimal basis of I. We first show that a /∈ m2. 

Assume by contrary, that a ∈ m2. Since Ĩ = m, we get

a ∈ m2 ∩ I = (Ĩ)2 ∩ I ⊆ Ĩ2 ∩ I.

By Proposition 3.5(iii) and (2.4), we get

0 = H0
G+

(G(I))1 ∼= Ĩ2 ∩ I

I2 ,

which implies

Ĩ2 ∩ I = I2. (4.7)

Hence a ∈ I2, a contradiction.
The condition that any element in a minimal basis of I does not belong to m2 implies 

that the images of a1, a2 of a minimal basis of I in m/m2 are linearly independent. This 
means that {a1, a2} is a part of minimal basis of m.
(iii) If μ(m) = 2 then I = m and H0

G+
(G(I))0 = 0. Since a0(G(I)) ≤ 0 (by Proposi-

tion 3.5(iii)), H0
G+

(G(I)) = 0, and G(m) = G(I) is a Cohen-Macaulay ring.
(iv) Assume now that μ(m) = 3. As shown above �(A/I) ≤ 2. So we must have �(A/I) =
2. Assume that m = (a1, a2, a3), where {a1, a2} is a minimal basis of I. Moreover, we 
may assume that both elements a1, a2 are non-zero divisors of A. Since Ĩ = m, by (4.7), 
we have

a1a3 ∈ I ∩ (Ĩ)2 ⊆ I ∩ Ĩ2 = I2 = (a1, a2)2.
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Hence

a1a3 = y1a
2
1 + y2a1a2 + y3a

2
2, (4.8)

for some y1, y2, y3 ∈ A. Replacing a3 by a3 − y1a1 − y2a2 in the above relation, we may 
assume that

a1a3 = y3a
2
2.

Analogously, we can find z1, z2, z3 ∈ A such that

a2a3 = z1a
2
1 + z2a1a2 + z3a

2
2. (4.9)

Then

a2a
2
3 = z1a

2
1a3 + z2a1a2a3 + z3a

2
2a3

= z1a1y3a
2
2 + z2y3a

3
2 + z3a

2
2a3.

Since a2 is a non-zero divisor, this implies

a2
3 = z1y3a1a2 + z2y3a

2
2 + z3a2a3 ∈ I2.

Together with (4.8) and (4.9), this shows that I2 = m2. For n ≥ 3, by induction we have

In = IIn−1 = Imn−1 ⊇ I2mn−2 = m2mn−2 = mn,

which yields In = mn. In this case, by (2.4), H0
G+

(G(I))0 ∼= Ĩ
I = m

I �= 0, depth(G(I)) =
0. �
Remark 4.3. The Cohen-Macaulayness of G(m) in (iii) of the above proposition is known 
long time ago, see, e.g. [18, p. 19].

If μ(I) > 2, then the Rossi-Valla bound (4.1) is much better than the one in 
Proposition 3.1, provided b = 1. An ideal, for which the Rossi-Valla bound (4.1) is 
attained, may have an arbitrary number of generators. For an example, take I = m in 
A = k[[ta, ta+1, ..., t2a−1]], a ≥ 3. Then e0(m) = a and

e1(m) = a− 1 =
(
e0(m)

2

)
−
(
μ(m) − 1

2

)
.

If I = m the Rossi-Valla bound (4.1) is Elias’ bound given in [2, Theorem 1.6]. In [5, 
Theorem 3.1], there is a characterization in terms of Hilbert series for an one-dimensional 
Cohen-Macaulay ring such that the Elias’ bound is attained. See also [16, Proposition 3.3]
for a shorter proof.
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Example 4.4. Let a ≥ 3 and A = k[[ta, ta+1, ta
2−a−1]] and I = (ta, ta+1). Then

�(A/I) = 2, e0(I) = e0(m) = a, e1(I) = e1(m) =
(
a

2

)
− 1 =

(
e0(I)

2

)
+ 1 − �(A/I).

This is the situation in (iv) of the above proposition. Note that G(m) is a Cohen-Macaulay 
ring only in the case a = 3. This was indicated in [18, p. 19] in the case a = 3 and in [2, 
Proposition 4.6(2)] for a ≥ 4.

We now give a new bound on e1(I) for an m-primary ideal I ⊆ mb and b ≥ 2. It is 
in fact a correction of the bound given in [4, Proposition 1.1]. The following result was 
stated there for any dimension d ≥ 1, but its proof is valid only for d = 1, because in 
general one cannot find an element x ∈ m such that it is simultaneously superficial for 
both m and I.

Lemma 4.5. [4, Proposition 1.1] Let I ⊆ mb be an m-primary ideal of an one-dimensional 
Cohen-Macaulay ring A. Then

e1(I) ≤ (e0(m) − 1)(e0(I) − be0(m)) + e1(m).

Modifying the bound in the above lemma, we can give a new bound on e1(I) for any 
dimension.

Theorem 4.6. Let A be a Cohen-Macaulay ring of dimension d ≥ 1. Let I ⊆ mb be an 
m-primary ideal, where b ≥ 1. Then

e1(I) ≤
1

2b− 1

(
e0(I) − b + 1

2

)
−
(
μ(m) − d

2

)
.

Proof. First consider the case d = 1. By Lemma 4.5,

e1(I) ≤ (e0 − 1)(e0(I) − be0) + e1(m),

where we set ei := ei(m). By [2, Theorem 1.6],

e1 ≤
(
e0

2

)
−

(
μ(m) − 1

2

)
.

Hence

e1(I) ≤ (e0 − 1)(e0(I) − be0) + e0(e0−1)
2 −

(
μ(m)−1

2
)

= e2
0(−b + 1

2 ) + e0(e0(I) + b− 1
2 ) − e0(I) −

(
μ(m)−1

2
)
.

The function
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f(t) = (−b + 1
2)t2 + (e0(I) + b− 1

2)t− e0(I)

reaches its maximum at t0 = e0(I)+b− 1
2

2(b− 1
2 ) and

f(t0) = (2e0(I) − 2b + 1)2

8(2b− 1) = 1
2b− 1

{(
e0(I) − b + 1

2

)
+ 1

8

}
.

For a real number α, let �α� denote the largest integer a such that a ≤ α. Note that 
�m+α

n � = �m
n � for any integers n ≥ 1, m and a real number 0 ≤ α < 1. Hence

e1(I) ≤ �f(t0)� −
(
μ(m)−1

2
)

= � 1
2b−1

(
e0(I)−b+1

2
)
� −

(
μ(m)−1

2
)

≤ 1
2b−1

(
e0(I)−b+1

2
)
−
(
μ(m)−1

2
)
.

Now let d ≥ 2. Let x ∈ I be a superficial element. Then e0(I/x) = e0(I), e1(I/x) = e1(I), 
I/x ⊆ (m/x)b and μ(m/x) ≥ μ(m) − 1. Hence, the conclusion follows by induction on 
the dimension. �
Remark 4.7. Let b ≥ 2. Then Theorem 4.6 gives

e1(I) ≤ �1
3

(
e0(I) − b + 1

2

)
� −

(
μ(m) − d

2

)
. (4.10)

It is easy to check that

�1
3

(
e0(I) − b + 1

2

)
� ≤

(
e0(I) − b

2

)
.

This gives another proof of Corollary 3.2 in the case M = A. The bound of Theorem 4.6
in this case is clearly better than the bound of Corollary 3.2 if m is generated by at least 
d + 2 elements. If e0(I) ≥ b + 5, then from (4.10) we get a much better bound:

e1(I) ≤
1
2

(
e0(I) − b

2

)
−

(
μ(m) − d

2

)
.

Remark 4.8. We now give a brief account of upper bounds on e1(I) of an m-primary 
ideal I of an one-dimensional Cohen-Macaulay ring A such that I � m2.

(i) The first Rossi-Valla bound (4.1):

e1(I) ≤ b1(I) :=
(
e0(I)

)
−
(
μ(I) − 1

)
− �(A/I) + 1.
2 2
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(ii) The second Rossi-Valla bound (see Lemma 4.1(ii)):

e1(I) ≤ b2(I) :=
(
e0(I)

2

)
−
(
μ(Ĩ) − 1

2

)
− �(A/Ĩ) + 1.

(iii) The case b = 1 of Elias’ bound (see Lemma 4.5):

e1(I) ≤ b3(I) := (e0(m) − 1)(e0(I) − e0(m)) + e1(m).

(iv) The Hanumanthu-Huneke bound [6, Corollary 2.9]: Under the additional condition 
that A is an analytically unramified local domain with algebraically closed residue 
field, we have

e1(I) ≤ b4(I) :=
(
e0(I) − �(A/Ī) + 1

2

)
,

where Ī denotes the integral closure of I.
(v) The case b = 1 of Theorem 4.6

e1(I) ≤ b5(I) :=
(
e0(I)

2

)
−

(
μ(m) − 1

2

)
.

Note that the bounds in (i) and (v) can be lifted to higher dimensions, while we could 
not do the same for the other bounds. We now give examples to show that these bounds 
are independent.

(a) If I = m and μ(m) > 3, then b3(m) = e1(m) is not a bound, while

b1(m) = b2(m) = b5(m) =
(
e0(m)

2

)
−

(
μ(m) − 1

2

)
< b4(m) =

(
e0(m)

2

)
.

(b) Consider the following example in [6, Discussion 3.8]:

I = (t9, t10, t14, t15) ⊂ A = k[[t7, t8, t9, t10]].

The computation there shows that I = Ĩ = Ī, e0(I) = e1(I) = 9 and b4(I) = 21 <
b1(I) = b2(I) = 31. Since e1(m) = 9, we have b3(I) = 21, while b5(I) = 33.

(c) Consider the ring A = k[[ta, ta+1, ..., t2a−1]], a ≥ 7, in Remark 4.3. We have e0(m) = a

and e1(m) = a − 1.
(c1) Let I = (ta). Then Ĩ = I, while Ī = m. We have e0(I) = a, e1(I) = 0, and

b3(I) = b5(I) = a− 1 < b1(I) = b2(I) =
(
a
)
− a + 1 < b4(I) =

(
a
)
.
2 2
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(c2) Let I = (t2a−1). Then Ĩ = I, while I = (t2a−1, t2a, ...), since for any m ≥ 2a we 
have (tm)2a−1 = (t2a−1)m ∈ I2a. We have e0(I) = 2a −1, e1(I) = 0 and �(A/I) = a. 
Therefore,

b4(I) = 1
2a(a− 1) < b3(I) = a(a− 1) < b5(I) = 3

2a(a− 1)
< b1(I) = b2(I) = (a− 1)(2a− 3).

(c3) Now let J = (ta, ta+1). For any 2 ≤ m ≤ a − 1, we have ta+m(ta)m−1 =
(ta+1)m ∈ Jm and ta+m(ta+1)a−m = (ta)a−m+2 ∈ Ja−m+1. Hence J̃ = m = J̄ . Then 
e0(J) = a, e1(J) = a − 1 and

b2(J) = b3(J) = b5(J) = a− 1 < b1(J) =
(
a

2

)
− a + 2 < b4(J) =

(
a

2

)
.

(d) Note that b2(I) = b1(Ĩ) and b3(I) = b3(Ĩ). Hence, by [4, Proposition 1.2], in most 
of cases, b3(I) ≤ min{b1(I), b2(I)}. However, we may have the reverse inequality. 
Let A = k[[t2, t3]] ⊃ I = (t3) = (t3, t5, t6, ...). Then Ĩ = I, while Ī = (t3, t4). Hence 
e1(I) = 0 and

b1(I) = b2(I) = b4(I) = 1 < b3(I) = 2 < b5(I) = 3.

(e) Let A = k[[t5, t6, t7]] ⊃ I = (t5, t6, t14). We have e0(I) = 5. Since t7(t5)2 = (t6)2t5 ∈
I3, t7(t6)3 = (t5)5 ∈ I4 and t7t14 = (t5)3t6 ∈ I2, Ĩ = m, which also implies Ī = m. 
Hence e1(I) = e1(m) = 6 and

b3(I) = 6 < b1(I) = 8 < b2(I) = b5(I) = 9 < b4(I) = 10.

5. The second Hilbert coefficient

Rhodes [15, Proposition 6.1(iv)] proved that e2(I, M) ≤
(
e1(I,M)

2
)
. Combining with 

the bound in Proposition 3.1, we get e2(I, M) < 1
8e0(I, M)4. In the case I = m and 

M = A, there is a much better bound given in [5, Theorem 2.3]. The bound also involves 
e1(m) and some rather technical invariants. As a consequence, it was shown there that 
e2(m) ≤

(
e1(m)

2
)
−

(
μ(m)−d

2
)
, which is of course better than Rhodes’ bound in the case 

I = m. Applying known bounds on e1(m) to the bound in [5, Theorem 2.3], one can 
show that e2(m) < 2

3e0(m)3.
The aim of this section is to give a new bound on e2(I, M) in terms of e0(I, M), 

which is less than 1
6e0(I, M)3, and to characterize when this bound is attained. In the 

case M = A, after finding some relationships between the reduction number and the 
Hilbert coefficients, using Theorem 4.6 we can give a better bound for a large class of I, 
see Theorem 5.9.

Theorem 5.1. Let M be a Cohen-Macaulay module of dim(M) = d ≥ 2 over (A, m). Let 
I be an m-primary ideal such that IM ⊆ mbM , where b is a positive integer. Then
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e2(I,M) ≤
(
e0(I,M) − b + 1

3

)
.

Proof. By standard technique we may assume that d = 2.
Let x ∈ I\I2 be an M -superficial element for I. Let N := M/xM . By Lemma 2.1(ii) 

and (iii), ei(I, M) = ei(I, N) for i = 0, 1. For short, we write p := pn(I, N) and e0 :=
e0(I, M) = e0(I, N). Then

PI,N (z) =
HI,N (0) +

∑p−1
i=0 (HI,N (i) −HI,N (i− 1))zi + (e0 −HI,N (p− 1))zp

1 − z
. (5.1)

By (2.2), we have

e2(I,N) =
∑p−1

i=0 (i− 1)i(HI,N (i) −HI,N (i− 1)) + p(p− 1)(e0 −HI,N (p− 1))
2!

= −
p−1∑
i=1

iHI,N (i) + p(p− 1)
2 e0

=
p−1∑
i=1

i(e0 −HI,N (i))

≤
e0−b−1∑

i=1
i(e0 −HI,N (i)) (by Lemma 2.4(iii)) (5.2)

≤
e0−b−1∑

i=1
i(e0 − i− b− �(H0

G+
(GI(N))i) (by Lemma 2.4(ii))

≤
e0−b−1∑

i=1
i(e0 − i− b) =

(
e0 − b + 1

3

)
. (5.3)

Since M is a Cohen-Macaulay module, by Lemma 2.1(iv),

e2(I,N) = e2(I,M) +
n∑

i=0
�

(
Ii+1M : x

IiM

)
≥ e2(I,M). (5.4)

Hence the inequality (5.3) gives e2(I, M) ≤
(
e0−b+1

3
)
. �

Remark 5.2. Assume that IM ⊆ mbM . If e0(I, M) ≤ b + 1, then by the above theorem, 
we get e2(I, M) ≤ 0. From the famous result of Narita [11, Theorem 1] on the non 
negativity of the second Hilbert coefficient (see [17, Proposition 3.1] for a short proof in 
the module case), this implies e2(I, M) = 0. Hence we can omit this case when dealing 
with the border case of the above theorem. The following result says that if the above 
bound is attained, then b = 1 and I satisfies the conditions of Proposition 3.5.
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Theorem 5.3. Let M be a Cohen-Macaulay module of dim(M) = d ≥ 2 over (A, m) and 
I an m-primary ideal. Let b be the largest integer such that IM ⊆ mbM . Assume that 
e0(I, M) ≥ b + 2. The following conditions are equivalent:

(i) e2(I, M) =
(
e0(I,M)−b+1

3
)
,

(ii) PI,M (z) = �(M/IM)+(1+b−�(M/IM))z+
∑e0(I,M)−b

i=2 zi

(1−z)d ,
(iii) depth(GI(M)) ≥ d − 1 and e1(I, M) =

(
e0(I,M)−b+1

2
)

+ b − �(M/IM),
(iv) depth(GI(M)) ≥ d − 1, reg(GI(M)) = e0(I) − b and ad−1(GI(M)) ≤ 1 − d,
(v) depth(GI(M)) ≥ d −1 and reg(GI(M)) =

(
e0(I,M)−b+2

2
)
+b −e1(I, M) −�(M/IM) −1.

If one of the above conditions holds, then b = 1.

Proof. For simplicity, we set ei := ei(I, M), i ∈ {0, 1, 2} and G := G(I). First, let d = 2.
By (2.2) it is clear that (ii) implies (i). Assume (i), i.e. e2 =

(
e0−b+1

3
)
. Let x ∈ I \I2 be 

an M -superficial element for I. Let N := M/xM . By Lemma 2.1, ei(I, N) = ei(I, M) =
ei for i = 0, 1, and by (5.4), e2(I, M) ≤ e2(I, N). Since e2(I, N) ≤

(
e0−b+1

3
)

(see (5.3)), we 
must have e2(I, N) = e2(I, M) =

(
e0−b+1

3
)
. By Lemma 2.1(v), the initial form x∗ ∈ I/I2

is a regular element on GI(M). This means depth(GI(M)) > 0. Note that GI(N) ∼=
GI(M)/x∗GI(M).

Moreover, since e0 ≥ b + 2, using (5.2) and (5.3) we also have p = e0 − b, where 
p := pn(I, N), and HI,N (n) = n + b for all 1 ≤ n ≤ p. By (5.1) we then get

PI,N (z) =
�(N/IN) + (1 + b− �(N/IN))z +

∑e0−b
i=2 zi

1 − z
. (5.5)

Therefore, using Lemma 2.1(v) again, we get (ii). Thus (i) ⇐⇒ (ii) and they imply 
depth(GI(M)) > 0.
(ii) =⇒ (iii) The first part depth(GI(M)) > 0 was just shown, while the second part 
immediately follows from (2.2).
(ii) =⇒ (iv) and (v) The first part depth(GI(M)) > 0 was shown above. Since x∗ is a 
regular element on GI(M), by Lemma 2.1(v), it implies that (5.5) holds. This means 
(I, N) satisfies the condition (ii) of Proposition 3.5. By the conditions (iii) and (iv) of 
Proposition 3.5, we get

reg(GI(N)) =
(
e0−b+2

2
)

+ b− e1 − �(N/IN) − 1,
reg(GI(N)) = e0 − b and a0(GI(N)) ≤ 0.

Note that reg(GI(M)) = reg(GI(M)/x∗GI(M)) = reg(GI(N)) and �(M/IM) =
�(N/IN). Hence

reg(GI(M)) =
(
e0−b+2

2
)

+ b− e1 − �(M/IM) − 1,
reg(G (M)) = e − b.
I 0
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Thus (v) is proved. Further, since a0(GI(N)) ≤ 0, from the exact sequence

0 = H0
G+

(GI(N))n ∼= H0
G+

(GI(M)/x∗GI(M))n → H1
G+

(GI(M))n−1 → H1
G+

(GI(M))n,

we get inclusions

H1
G+

(GI(M))n−1 ↪→ H1
G+

(GI(M))n,

for all n ≥ 1. This implies that H1
G+

(GI(M))n = 0 for all n ≥ 0, or equivalently, 
a1(GI(M)) ≤ −1. Summing up, (ii) also implies (iv).

If one of the conditions (iii), (iv) and (v) is fulfilled, then one of the conditions (i), 
(iii) or (iv) in Proposition 3.5 holds for the pair (I, N). Hence by Proposition 3.5(ii)

PI,N (z) = �(N/IN)+(b+1−�(N/IN))z+
∑e0−b

i=2 zi

(1−z)

= �(M/IM)+(b+1−�(M/IM))z+
∑e0−b

i=2 zi

(1−z) .

Using Lemma 2.1(v), we then get (ii). The proof of the case d = 2 is completed.
Assume now d > 2. Then (ii) =⇒ (i) follows from (2.2).
Assume (i). Let x ∈ I \ I2 be an M -superficial element for I and N := M/xM . Then 

dim(N) = d − 1 and the pair (I, N) satisfies the condition (i). By induction hypothesis, 
depth(GI(N)) ≥ d − 2. Using Sally’s descent (see [7, Lemma 2.2] or [17, Lemma 1.4]), 
we can deduce that depth(GI(M)) ≥ d − 1. This implies that x∗ is regular on GI(M). 
By Lemma 2.1(v), (ii) follows. Further, we have reg(GI(M)) = reg(GI(N)). Using the 
exact sequence

Hd−2
G+

(GI(N))n ∼= Hd−2
G+

(GI(M)/x∗GI(M))n → Hd−1
G+

(GI(M))n−1 → Hd−1
G+

(GI(M))n,

one can see that ad−2(GI(N)) ≤ 2 −d implies ad−1(GI(M)) ≤ 1 −d. Since (I, N) satisfies 
the condition (iii), (iv), (v), we then get that also (I, M) satisfies these conditions.

Conversely, assume that depth(GI(M)) ≥ d − 1. Then, by Sally’s descent, we get 
depth(GI(N)) ≥ d − 2 and x∗ is regular on GI(M). Hence, we have the following exact 
sequence

0 → Hd−2
G+

(GI(N))n ∼= Hd−2
G+

(GI(M)/x∗GI(M))n → Hd−1
G+

(GI(M))n−1.

From this one can see that ad−1(GI(M)) ≤ 1 − d implies ad−2(GI(N)) ≤ 2 − d. Since 
ei(I, M) = ei(I, N) for all i ≤ 2, if (I, M) satisfies one of the conditions (iii), (iv) and 
(v), then the same condition holds for (I, N). Therefore, (i) holds for (I, N), whence also 
holds for (I, M).

Finally, if one of conditions (i),...,(v) is satisfied, then from the condition (iv) we see 
that (I, M) satisfies the condition in Lemma 3.4. Hence b = 1. �



L.X. Dung et al. / Journal of Algebra 633 (2023) 563–590 587
Example 5.4. Using Example 4.4, we can see that the pair (I, M) satisfies the conditions 
of Theorem 5.3, where

I = (ta, ta+1, u1, ..., ud−1) ⊂ A = k[[ta, ta+1, ta
2−a−1, u1, ..., ud−1]],

(a ≥ 3, d ≥ 2) and M = A.

The above theorem says that if e0(I, M) ≥ b + 2 and b ≥ 2, then the inequality in 
Theorem 5.1 is strict. For the case M = A, using the bound of Theorem 4.6, we can give 
a better bound in the case b ≥ 2. We need some more preparation.

Recall that the ideal J ⊆ I is called an M -reduction of I if In+1M = JInM for all 
n � 0. The number:

rJ(I,M) = min{n ≥ 0| In+1M = JInM}

is called the M -reduction number of I with respect to J . This notion is a slight modifi-
cation of the classical notion of reductions of an ideal introduced by Northcott and Rees 
in [13]. An M -reduction of I is called minimal if it does not strictly contain another 
M -reduction of I. The number

r(I,M) := min{rJ(I,M)| J is a minimal M -reduction of I}

is called the M -reduction number of I. The above definitions of reductions and reduction 
numbers remain valid for any ideal I of a Noetherian ring R and any finitely generated 
R-module M .

Remark 5.5. We recall here some facts on reductions, see for instance [17, Section 1.2]. 
Let I be an m-primary ideal and dim(M) = d.

(i) A minimal M -reduction of I is generated by exactly d elements, also see [13, Theorem 
1 of Section 6].

(ii) A minimal M -reduction of I can be generated by a maximal M -superficial sequence 
for I, also see [19, Lemma 3.1].

Below are some relationships between the reduction number and Hilbert coefficients.

Lemma 5.6. Let M be an one-dimensional Cohen-Macaulay module and I an m-primary 
ideal such that IM ⊆ mbM for some positive integer b. Then

r(I,M) ≤ e0(I,M) − b.

Proof. Assume that x ∈ I is an M -superficial element for I such that r(I, M) =
r(x)(I, M). Then r(I, M) = r(x∗)(G+, GI(M)), where x∗ ∈ G(I) is the initial form of x. 
By [19, Proposition 3.2],
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r(x∗)(G+, GI(M)) ≤ reg(GI(M)).

By Lemma 2.4(i) and (iii), reg(GI(M)) = pn(I, M) ≤ e0(I, M) − b. Hence r(I, M) ≤
e0(I, M) − b. �
Lemma 5.7. Let M be an one-dimensional Cohen-Macaulay module and I an m-primary 
ideal. Then

e2(I,M) ≤ (r′(I,M) − 1)e1(I,M),

where we set r′(I, M) := max{1, r(I, M)}.

Proof. Assume that x ∈ I is an M -superficial element for I such that r := r(I, M) =
r(x)(I, M). Set r′ := max{1, r}. By [17, Lemmas 2.1 and 2.2],

e1(I,M) =
r−1∑
j=0

�(Ij+1M/xIjM).

Hence

e2(I,M) =
∑r−1

j=1 j�(Ij+1M/xIjM)

≤ (r′ − 1)
∑r−1

j=0 �(Ij+1M/xIjM) = (r′ − 1)e1(I,M). �
Using the above two lemmas, we can give a new bound on e2(I, M).

Proposition 5.8. Let M be a Cohen-Macaulay module of dimension d ≥ 2 and I an m-
primary ideal such that IM ⊆ mbM for some positive integer b. Assume that e0(I, M) ≥
b + 1. Then

e2(I,M) ≤ (e0(I,M) − b− 1)e1(I,M).

Proof. By standard technique, we only need to consider the case d = 2. Let x ∈ I

be an M -superficial element for I. Set N = M/xM . Then N is an one-dimensional 
Cohen-Macaulay module. By the assumption, e0(I, M) − b ≥ 1. Hence, by Lemma 5.6, 
r′(I, M) ≤ e0(I, M) − b. Applying Lemma 5.7 to N , by Lemma 2.1(ii) and (iii), we get

e2(I,N) ≤ (r′(I,M) − 1)e1(I,M)

≤ (e0(I,N) − b− 1)e1(I,N) = (e0(I,M) − b− 1)e1(I,M).

By (5.4), e2(I, M) ≤ e2(I, N). Hence e2(I, M) ≤ (e0(I, M) − b − 1)e1(I, M). �



L.X. Dung et al. / Journal of Algebra 633 (2023) 563–590 589
Combining the above result with Theorem 4.6 we get the following bound, which is 
clearly better than the bound of Theorem 5.1 in the case M = A and b ≥ 2.

Theorem 5.9. Let I be an m-primary ideal of a Cohen-Macaulay ring (A, m) of dimension 
d ≥ 2 and such that I ⊆ mb for some positive integer b. Assume that e0(I, M) ≥ b + 1. 
Then

e2(I) ≤
3

2b− 1

(
e0(I) − b + 1

3

)
− (e0(I) − b− 1)

(
μ(m) − d

2

)
.

Proof. We may assume that d = 2. For simplicity we set ei := ei(I), i = 0, 1, 2. By 
Theorem 4.6,

e1 ≤ 1
2b− 1

(
e0 − b + 1

2

)
−

(
μ(m) − 2

2

)
.

Hence, by Proposition 5.8,

e2 ≤ (e0 − b− 1)e1

≤ (e0 − b− 1)
{

1
2b−1

(
e0−b+1

2
)
−
(
μ(m)−2

2
)}

= 3
2b−1

(
e0−b+1

3
)
− (e0 − b− 1)

(
μ(m)−2

2
)
. �
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