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Abstract
The purpose of the present article is to present a simplified proof of Serre’s modularity
conjecture using the strong modularity lifting results currently available.
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Introduction

In [29] (Section 3, Problem 1) Serre posted the following question:

Question: is it true that any odd, continuous, irreducible two dimensional Galois representa-
tion of the absolute Galois group ofQ (denoted byGalQ) defined over a finite field is obtained
as the reduction of the p-adic Galois representation attached to a modular form?

Recall that a 2-dimensional representation of GalQ is called odd if the image of complex
conjugation has determinant −1. This question is known as “Serre’s weak modularity con-
jecture”. In his famous 1987 paper ([30]) he went further, giving a precise recipe for a level
and weight (minimal in a certain sense) where the modular form should appear. This second
conjecture is known as “Serre’s strong modularity conjecture”. A very nice reference for the
precise statement of the strong modularity conjecture are the lecture notes [26]. The equiva-
lence between Serre’s strong and weak version is due to many authors, the main contributions
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on the weight reduction being due to Edixhoven (see [8] and the references therein). The
level reduction is mainly due to Ribet (see [1, 23] see also [24]). For this reason, we will
focus on proving Serre’s weak modularity conjecture, namely.

Theorem (Serre’s modularity conjecture) Let ρ : GalQ → GL2(Fp) be an odd continuous
irreducible Galois representation. Then ρ is modular, i.e. there exists a modular form f ∈
Sk(�0(N ), ε) such that ρ � ρ f ,p.

Remark 1 In the present article (and following Serre’s original conjecture given in [30]) we
will only consider the so called “cohomological” modular forms, i.e. those whose weight
k is at least 2 (so that they appear in the cohomology of a Shimura curve). However, the
notion of “modularity” in the last statement could also include modular forms of weight
one, since the congruence proved in [7] §6.9 shows that if the representation ρ is congruent
to a representation coming from a weight 1 modular form, then it is also congruent to the
representation attached to a cohomological modular form, so we can (and will) restrict to
weights k ≥ 2.

The first cases of the conjecture (small level and weight) were proved by Khare and
Wintenberger ([16]), and also independently by the first named author ([5]). A complete
proof of the conjecture was then given by Khare and Wintenberger in [17, 18] (a proof for
the case of odd level was also given by the first named author in [6]). The proof is based on
a smart inductive argument involving both a level and a weight reduction. The main issue
when the proof appeared was that different modularity lifting results required many technical
conditions (specially while manipulating representations whose residual image is reducible).
Such conditions have been removed during the last years, which allows us to present a more
elegant inductive argument. In particular, our argument becomes much simpler because the
sophisticated process of weight reduction disappears. The procedure (that will be explained
in detail in Sect. 2) to prove the conjecture when p is odd is the following:

• Make the representation ρ part of a compatible system {ρ(0)
� } (whose definition is recalled

in Sect. 1.3).
• Add a large prime N to the level of the family. This prime is needed to ensure that the

p-th member of the family (and the families appearing in the “chain” of congruences)
has large residual image for each prime p dividing the “level” of the family (except at N
itself). The prime number N is called a good-dihedral prime in [17].

• If a prime p �= N is in the level of the system, remove it by looking at the reduction
modulo p of the p-th member of the family and taking a minimal lift (the prime p = 2
is handled in a similar way, with extra technicalities).

• Remove the remaining prime N from the level via the same procedure (strongmodularity
lifting results assure this can be done even if the residual image is reducible). Now we
are left with a family of level 1 (but without any control on the weight).

• The reduction of the 5-th member of the last family is either reducible (so it is modular),
or it is irreducible with Serre weight (up to twist) 2, 4 or 6. In the first two cases, taking a
lift with the right weight, and moving (through a compatible family) to the prime p = 3
(as explained in Paso 6) allows us to reach the base case of level 1 proved by Serre. If
Serre’s weight at the prime 5 is 6, our representation is the reduction of a representation
attached a semistable abelian variety unramified outside 5, corresponding to a base case
proved by Schoof.

It is important to emphasize that the last step, which substitutes the “weight reduction”, is
only possible due to two very strong and general modularity lifting theorems: a result of
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Kisin in the residually irreducible case and a recent result of Pan in the residually reducible
case. The proof for p = 2 is based on a reduction to the odd case.

The article is organized as follows: the first section is themost technical one. It contains the
main results (mostly differentmodularity lifting theorems) needed to proveSerre’smodularity
conjectures. One of the goals of the present article is to allow a non-expert reader to learn
the ideas behind the proof of Serre’s conjectures taking for granted the results of this section.
However, we included in the first section two lemmas (1.13 and 1.14) on properties of residual
Galois representations that are well known to experts, but whose detailed proof is hard to
find in the literature. The second section contains the proof of Serre’s conjectures in the case
of odd characteristic, filling in the details of the previous sketch. The last section contains
the proof in characteristic two.

1 Main results involved in the proof

1.1 Base cases

The base cases we rely on to propagate modularity are the following.

Theorem 1.1 There are no continuous, odd, absolutely irreducible two dimensional Galois
representations of the absolute Galois group of Q unramified outside p and with values on
a finite field of characteristic p, for p = 2 or 3.

Proof The result was proved by Tate ([36]) for p = 2, and later Serre observed that the exact
same argument worked for p = 3 ([32, page 710]). ��
Theorem 1.2 There do not exist non-zero semistable rational abelian varieties that have
good reduction outside � for � = 2, 3, 5, 7, 13.

Proof See [28, Theorem 1.1]. ��
Theorem 1.3 (Langlands–Tunnell) Let p be an odd prime and ρ : GalQ → GL2(Fp) be an
odd, continuous, irreducible representation with solvable image. Then ρ is modular.

Proof By Dickson’s classification, any solvable subgroup of PGL2(Fp) is isomorphic to
a cyclic group, a dihedral group, A4 or S4. In all cases, the representation lifts to an odd
representation of GL2(C). The cyclic case gives a reducible representation (and can be
omitted). The dihedral case was considered by Hecke, the tetrahedral case was proved by
Langlands in [19] and the octahedral by Tunnell in [37]. Note that all the aforementioned
results provide a weight one modular form (which is enough for our purposes by Remark 1).

��

1.2 Modularity lifting Theorems

Let ρ : GalQ → GL2(Qp) be a continuous Galois representation.

Problem: how can we decide whether ρ matches the representation attached to a modular
form?

The term “Modularity lifting Theorem” refers to results (like the ones given in the pioneer-
ing articles [40, 41]) that provide an answer to the problem.Most modularity lifting theorems
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have as a key hypothesis that the residual representation ρ (obtained as the reduction of ρ

modulo p) matches the reduction of a representation coming from a modular form. If the
residual representation ρ happens to be reducible (a very hard case of study), it matches the
representation attached to an Eisenstein series, so it is already “residually modular”.

If p is an odd prime, let p� =
(−1

p

)
p, so that the extension Q(

√
p�) is the unique

quadratic extension of Q unramified outside p.

1.2.1 Modularity lifting Theorems for residually irreducible representations

Theorem 1.4 Let p be an odd prime and ρ : GalQ → GL2(Qp) be a continuous, odd Galois
representation ramified at finitely many primes and satisfying all the following hypotheses:

• The residual restriction ρ|Gal
Q(

√
p�)

is absolutely irreducible,

• The representation ρ|GalQp
is de Rham with Hodge-Tate weights {0, k − 1}, with k > 1,

• The residual representation is modular, i.e. ρ � ρ f .

Then ρ matches the representation of a weight k modular form.

Proof The case k = 2 is proven in [15] (Theorem in the second page), while the general
case follows from [13] (also stated as Theorem in the second page). There are two extra
hypotheses in the last result: the second one (related to a compatibility between classical
and p-adic local Langlands correspondence, as explained in Hypothesis (1.2.6) of [13]) is
removed in [9, Theorem 1.2.1] and in [21, Theorem 1.1]. Our precise statement incorporates
the results in [11, Theorem 1.4], where the other hypothesis in Kisin’s article is removed for
p ≥ 5 together with [38] (main theorem) where it is removed for p = 3. ��

We also need a similar result for p = 2.

Theorem 1.5 Let ρ : GalQ → GL2(Q2) be a continuous, odd Galois representation ramified
at finitely many primes and satisfying the following hypotheses:

• The representation ρ|GalQ2
is de Rham with Hodge-Tate weights {0, k − 1}, with k > 1,

• The residual representation ρ is modular and has non-solvable image.

Then ρ matches the representation of a weight k modular form.

Proof See [14, Theorem 0.1] for k = 2 and ρ potentially Barsotti-Tate, [22, Theorem 1.1]
and [39, Theorem A] for the general case. ��

1.2.2 Modularity of residually reducible representations

Theorem 1.6 Let p ≥ 5 be a prime number and ρ : GalQ → GL2(Qp) be a continuous,
irreducible odd Galois representation ramified at finitely many primes and satisfying the
following two hypotheses:

• The representation ρ|GalQp
is de Rham with Hodge-Tate weights {0, k − 1} and k > 1,

• The semisimplification of ρ is a sum of two characters χ1 ⊕ χ2.

Then ρ matches the representation of a weight k modular form.

Proof See [34](Theorem in the third page) and [20, Theorem 1.0.2]. ��
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Theorem 1.7 Let ρ : GalQ → GL2(Q3) be a continuous, irreducible odd Galois represen-
tation ramified at finitely many primes and satisfying all the following hypotheses:

• ρss � 1 ⊕ χ3,
• ρ|D3 �= (

1 0
0 1

)
,

• ρ|I3 � ( ∗ ∗
0 1

)
,

• det(ρ) = ψχk−1
3 for some k ≥ 2.

Then ρ matches the representation of a weight k modular form.

Proof See [34] Theorem in the third page. ��

1.3 Existence of lifts

Let ρ : GalQ → GL2(Fq) be a Galois representation.

Problem: does there exist a continuous representation ρ : GalQ → GL2(Qp)whose residual
representation is isomorphic to ρ?

Note that the representationρ (if it exists) is far frombeing unique.Any such representation
is called a lift of ρ. While working with deformation rings, one studies lifts into more general
coefficient rings, but for our purposes it is enough to restrict to finite extensions of Qp .

Let ρ : GalQ → GL2(Fp) be an odd, continuous, irreducible Galois representation, and
let k(ρ) be the weight of the residual representation as defined by Serre in [30] (formulas
(2.2.4), (2.3.2), (2.4.5), (2.4.8) and (2.4.9)).

Remark 2 Given ψ : GalQ → Fp
×

a continuous character, it always has a lift to Qp
×

(for example by taking its Teichmüller lift). Then the veracity of Serre’s conjecture for a
representation ρ is equivalent to the veracity of the twist of ρ by ψ . Following Serre’s
notation, there is always a twist of our representation ρ such that in formulas (2, 2, 4),
(2, 3, 2), (2, 4, 5), (2, 4, 8) and (2, 4, 9) of [30] we can take a = 0, so we can (and will
during the present article) abusing notation assume that the weight k(ρ) is at most p + 1 if
p is odd and at most 4 if p = 2.

The inductive argument in the proof of Serre’s conjecture depends on reducing (through
a combination of taking lifts, building families and creating congruences) the number of
ramified primes of the representation ρ (“killing the level”), so we need to be able to impose
extra conditions on the lift. Let E/Qp be a finite extension and let OE denote its ring of
integers.

Definition 1.8 Let � be a prime number, and let I� be the inertia subgroup of Gal(Q�/Q�).
An inertial type at � is a continuous representation τ� : I� → GL2(E).

For a prime � �= p, we will be mostly concerned with the following two inertial types:

• the unramified type is the one corresponding to the trivial representation.
• the Steinberg type, corresponding to the restriction to the inertial subgroup of the rep-

resentation of GalQ�
sending a generator of the tame inertia to

(
1 1
0 1

)
, and a Frobenius

element to
(

� 0
0 1

)
.

In order to define the inertial type at p (i.e. � = p) it is better to consider representations
of the Weil-Deligne group of GalQp (see [35]). A representation of the Weil-Deligne group
consists of pairs (τ, N ) where:
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(1) τ : W (Qp) → GL2(C) is a 2-dimensional complex representation of the Weil group,
(2) N is a nilpotent endomorphism of C2 such that

wNw−1 = ω1(w)N , for all w ∈ W (Qp),

where ω1 is the unramified quasi-character giving the action ofW (Qp) on roots of unity.

The unramified type at p is defined to be the p-adic Galois representation whose Weil-
Deligne representation equals (ωk−1

1 ⊕ 1,
(
0 0
0 0

)
), while the Steinberg type at p is defined

to be a twist of (ω1 ⊕ 1,
(
0 1
0 0

)
). The unramified type at p corresponds to the notion of a

crystalline representation in p-adic Hodge theory.
Let� be a finite set of primes containing p and the primes where ρ is ramified.Wewant to

impose an inertial type condition on deformations of ρ at each prime of �. For that purpose,
for each � ∈ �, � �= p, let τ� be an inertial type compatible with ρ, i.e. such that there exists
an OE -lattice �� in E2 which is stable by τ� (so the choice of a basis for �� provides a
representation τ� : I� → GL2(OE )) such that τ� = ρ|I� .

For the purposes of the present article, a “minimal lift” is a lift that is unramified at all
primes � �= p where the representation ρ is unramified.

Theorem 1.9 Let ρ : GalQ → GL2(Fp) be an odd, continuous, representationwhose restric-
tion to GalQ(ζp) is absolutely irreducible. Assume furthermore that when p = 2 ρ̄ has
non-solvable image. Then there exists a lift ρ : GalQ → GL2(E) (for some finite extension
E/Qp) with any of the following prescribed properties:

(1) If p = 2 and k(ρ) = 2, then ρ is a minimal crystalline lift with Hodge-Tate weights
{0, 1}.

(2) If p = 2 and k(ρ) = 4, then ρ is a lift with Hodge-Tate weights {0, 1}, minimally ramified
outside 2 and the inertial Weil-Deligne parameter at 2 is given by (ω1 ⊕ 1,

(
0 1
0 0

)
).

(3) If p > 2, then ρ is a minimal crystalline lift with Hodge-Tate weights {0, k(ρ) − 1}.
(4) If p > 2, then ρ is a lift with Hodge-Tate weights {0, 1}, any inertial type τ� compatible

with ρ at primes � �= p in � and unramified outside �. Furthermore, if k(ρ) = 2 the
lift can be taken to be crystalline at p and if k(ρ) = p + 1 the lift can be taken to be
Steinberg at p, i.e., its inertial Weil-Deligne parameter at p is given by (ω1 ⊕ 1,

(
0 1
0 0

)
)

Proof The first three cases are due to Khare-Wintenberger ([17, Theorem 5.1], its proof given
in [18]). Partial results of the last case are also proven in Khare-Wintenberger’s article (same
Theorem), the more general case is due to Gee and Snowden ([10]; [33, Theorem 7.2.1]). ��

1.4 Existence of almost strictly compatible systems

One important property of Galois representations coming from modular forms is that they
come in “families”. More concretely, if f ∈ Sk(�0(N ), ε), k ≥ 2, is a newform, then
(by [3]) for every prime number p, there exists a continuous odd Galois representation
ρ f ,p : GalQ → GL2(Qp) unramified outside Np, such that for any prime number � � Np,
the characteristic polynomial of ρ f ,p(Frob�) equals x2 − a�( f )x + ε(�)�k−1, where a�

denotes the eigenvalue of f for the action of the Hecke operator T�. Furthermore, one can
obtain information at primes � dividing Np as well.

There is a notion of compatible families for abstract representations (as given by Serre
in [31], I-11). Recall the definition of a strictly compatible system and an almost strictly
compatible system of Galois representations given in [17].

123



A simplified proof of Serre’s conjecture Page 7 of 17 153

Definition 1.10 A rank 2 strictly compatible system of Galois representations R of GalQ
defined over K is a 5-tuple

R = (K , S, {Q�(x)}, {ρp}, k),
where

(1) K is a number field.
(2) S is a finite set of primes.
(3) for each prime � /∈ S, Q�(x) is a degree 2 polynomial in K [x].
(4) For each prime ideal p of K , the representation

ρp : GalQ → GL2(Kp),

is a continuous semisimple representation such that:

• If � /∈ S and � � N(p) (the norm of p), then ρp is unramified at � and ρp(Frob�) has
characteristic polynomial Q�(x).

• If � | N(p), then ρ|GalQ�
is de Rham and furthermore crystalline if � /∈ S.

(5) The Hodge-Tate weights HT(ρp) = {0, k − 1}.
(6) For each prime � there exists a Weil-Deligne representation WD�(R) of WQ�

over K
such that for each place p of K and every K -linear embedding ι : K ↪→ K p, the push
forward ιWD�(R) � WD(ρp|GalQ�

)K -ss.

Remark 3 Comparing to the case of representations coming from a newform f ∈
Sk(�0(N ), ε), the set S consists of the primes dividing N . Deligne’s result implies that
ρ f ,p satisfies the third hypothesis and the first item of the fourth one, while the last one is
the compatibility at the primes dividing Np.

An almost strictly compatible system is a 5-tuple satisfying the first five properties, and
also condition (6) but with some exceptions: for a prime λ whose residual characteristic is
equal to the prime p, if the residual representation ρ̄λ is reducible, then we only impose the
compatibility as in condition (6) if this prime p is odd and the representation WDp(R) is
unramified.

Theorem 1.11 Let ρ : GalQ → GL2(Kλ) be an odd, irreducible, continuous Galois rep-
resentation ramified at finitely many places and de Rham at p with Hodge-Tate weights
{0, k − 1}, with k > 1 such that the restriction of ρ̄ to GalQ(ζp) is absolutely irreducible.
Assume furthermore that when p = 2 ρ̄ has non-solvable image. Then ρ is part of a rank 2
almost strictly compatible system of Galois representations.

Proof See [4, Theorem 1.1]. ��

Remark 4 If ρ is part of a compatible system ofGalois representations {ρp}, then ρ ismodular
if and only if any given member of the family is. The reason is the following: if ρ � ρ f ,
where f is a newform, then by Deligne’s theorem, there exists a strong compatible system
{ρ f ,p} containing ρ f . Then for any prime p, the representations ρp and ρ f ,p have the same
trace and determinant at the Frobenius element Frob�, for all prime numbers � belonging to
a density one set of primes (actually all primes but finitely many), so by the Brauer-Nesbitt
theorem, they are indeed isomorphic.
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1.5 Some lemmas on the image of Galois representations

Definition 1.12 A residual representation ρ̄ : GalQ → GL2(Fp) which is irreducible but
becomes reducible while restricted to GalQ(

√
p�) is called bad dihedral.

Some of the previous theorems are stated under the hypothesis that the restriction of the
residual representation to GalQ(ζp) is absolutely irreducible. Let us show that this is in fact
equivalent to the condition (introduced by Wiles) of not being bad dihedral.

Lemma 1.13 Let p be an odd prime and ρ̄ : GalQ → GL2(Fp) be an odd continuous
representation. Then the following are equivalent:

(1) ρ̄|Gal
Q(

√
p�)

is irreducible,

(2) ρ̄|GalQ(ζp )
is irreducible.

Proof We can assume that p �= 3 as otherwise the statement is trivial. Clearly the second
condition implies the first one. For the converse, suppose that the restriction of ρ̄ to GalQ(ζp)

is reducible. In particular, the image of ρ̄ is a solvable group. Then either our representation
is contained in a Borel group (hence it is reducible), it lies in the normalizer of a split Cartan
group (as our coefficient field is algebraically closed) or its projective image is one of the
exceptional groups A4 or S4 (it cannot be A5 because it is solvable).

Let G denote the image of ρ̄ and suppose it lies in N , the normalizer of a Cartan group.
Recall that N fits into the short exact sequence

1 T N
φ

Z/2 1

where T is a torus (corresponding to matrices of the form
(
a 0
0 b

)
), and

(
0 1
1 0

)
can be taken as a

lift of the generator ofZ/2. If we intersect each term of the exact sequence with the subgroup
G, we get a similar sequence. Note that the image of G by φ is non-trivial as otherwise the
group G would be abelian, and ρ̄ would not be irreducible. Also note that since G is not
abelian, it must contain at least one matrix of the form

(
a 0
0 b

)
with a �= b.

Let H be the image of the restriction of ρ̄ to GalQ(ζp), a normal subgroup of G. Since the
restriction of ρ̄ to GalQ(ζp) is reducible, its image must be an abelian group. The reason is
that in some chosen basis, its image lies in a Borel subgroup, but the normalizer of a Cartan
group does not have elements of order p (as its order is not divisible by p). The only abelian
subgroups of N are the ones contained in T , or subgroups of the form

〈(
a 0
0 a

)
,
(
0 1
1 0

)〉
(where a

lies in Fp
×
). The latter are not normal subgroups of G (since any such group is not preserved

under conjugation by any matrix of the form
(
a 0
0 b

)
when a �= b), so H must be a subgroup

of T .
Let σ ∈ GalQ be such that it generates the Galois group Gal(Q(ζp)/Q). Then G =

〈H , ρ̄(σ )〉. The image of the restriction of ρ̄ to GalQ(
√
p�) equals 〈H , ρ̄(σ 2)〉 which also lies

in T so the restriction of ρ̄ to GalQ(
√
p�) is also a reducible representation.

The other two cases actually cannot occur when p > 3. The reason is the following:
suppose that the restriction ρ̄|GalQ(ζp )

is reducible. This implies that the imageof this restriction
lies in a Borel subgroup. Since p > 3 and A4 nor S4 have elements of order p, this image
must actually be an abelian group. Moreover, the image of its projectivization is a cyclic
group.

This implies that the projective image of the residual representation ρ must contain a
cyclic normal subgroup with cyclic quotient. There is no such a subgroup for the groups S4
nor A4. ��
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Let us state (and give a detailed proof of) a result that is well-known to experts and will
be needed later. As explained in Remark 1 we assume that (possible after twisting) all Serre
weights lie in the range [2, p + 1].
Lemma 1.14 Let p be an odd prime and ρ̄ : GalQ → GL2(Fp) be a continuous odd bad
dihedral representation. Then either p = 2k(ρ̄) − 3 (niveau 2 case) or p = 2k(ρ̄) − 1
(niveau 1 case).

Proof This is Lemma 6.2 (ii) of [17]. The proof lacks some details, hence the difference
between the niveau 1 and the niveau 2 case is hard to see (which justifies the present proof);
our argument follows the lines of [25] (see Proposition 2.2). The fact that the representation
has irreducible image together with the projective representation being dihedral (which cor-
responds to the image of the representation lying in the normalizer of a Cartan group) and
p ≥ 3 imply that there are no elements of order p in the image of ρ̄. In particular, all matrices
are semisimple and the image of the p-th inertia subgroup Ip factors through the tame part,
so it is a cyclic group.

We claim that the projective image of ρ̄(Ip) has order at most 2. Suppose on the contrary
that it has order n greater than two and that our representation ρ̄ is bad dihedral. Let L denote
the field extension fixed by the projective residual image, so Gal(L/Q) is a dihedral group
D2m of order 2m where n | m. Since our representation is bad dihedral, the restriction of the
projectivization of ρ̄ to the subgroup Gal(L/Q(

√
p�)) is reducible and decomposable (as

all elements are semisimple). In particular, the group Gal(L/Q(
√
p�)) is a normal abelian

subgroup of order m, i.e. it is the cyclic subgroup Cm of rotations, of index 2 in D2m . Note
that there is a unique such subgroup because we are assuming n > 2, thus m > 2.

Since the projective image of inertia is a cyclic group of order greater than 2, it must lie
in the subgroup Cm of D2m of rotations, so the field fixed by the rotations subgroup is on the
one hand Q(

√
p�) and on the other one a quadratic unramified at p extension of Q, which

is a contradiction.We have thus established that the projective image of ρ̄(Ip) has order at
most 2.

Start considering the case of a “niveau 1” character, i.e, the image of the inertia group Ip

is of the form
(

χ
k(ρ̄)−1
p 0
0 1

)
with k(ρ̄) ≤ p (recall that we have already shown that this image

is abelian). Observe that in this case the order of this group agrees with its projective order.
Then we know that χk(ρ̄)−1 has order at most 2 and k(ρ̄) ≤ p, so either 2k(ρ̄) − 2 = p − 1
or k(ρ̄) − 1 = p − 1. In the second case, we have k(ρ̄) = p, but then the image of inertia is
trivial, hence the Galois extension corresponding to ρ̄ is disjoint from Q(

√
p�). In particular,

the representation is not bad dihedral.
In the case of a character of niveau 2, the image of the inertia groups Ip is of the form

ψk(ρ̄)−1 ⊕ ψ ′k(ρ̄)−1, hence the projective order equals the order of ψ(k(ρ̄)−1)(p−1), which is
the k(ρ̄)−1-st power of a character of order p+1. It has order at most 2 when p+1

2 | k(ρ̄)−1
and the condition k(ρ̄) ≤ p gives that p = 2k(ρ̄) − 3. ��
Remark 5 Over Q, a Galois representation with Serre’s level 1 cannot be bad dihedral in the
niveau 2 case due to a Lemma of Wintenberger (see [12, Lemma 6.2] part (i)), hence the bad
dihedral case can only occur for p = 2k(ρ̄) − 1 in level 1. But in this case k(ρ̄) is even,
hence a bad dihedral representation of Serre’s level 1 can only occur when p ≡ 3 (mod 4).

The following lemma will also be needed in the proof.

Lemma 1.15 Let p be a prime that is congruent to 1modulo 4 and let ρ : GalQ → GL2(Fp)

be an odd representation with non-solvable image. Denote by ρproj the projectivization of ρ
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and by c ∈ GalQ a complex conjugation. Then there exists a set of primes {q} of positive
density that are unramified for ρ and such that

(1) ρproj(Frobq) and ρproj(c) define the same conjugacy class in ρproj(GalQ),
(2) q is congruent to 1 modulo all primes ≤ p − 1 and q is congruent to 1 modulo 8,
(3) q is congruent to −1 modulo p.

Proof See [17, Lemma 8.2]. ��

2 The proof of Serre’s modularity conjecture for p �= 2.

We can assume without loss of generality that ρ has non-solvable image, as otherwise mod-
ularity follows from Theorem 1.3. Let ρ(0) be a minimal crystalline lift of ρ, which exists by
Theorem 1.9 (3) and let {ρ(0)

� } be an almost strictly compatible system passing through ρ(0)

(Theorem 1.11). Let k = k(ρ) be the weight of the system (recall that taking a suitable twist
we always assume that k ≤ p+ 1 as explained in Remark 2), i.e., the Hodge-Tate weights of
the representation ρ

(0)
� are {0, k − 1}. Note that by Remark 4 it is enough to prove that any

member of the family is modular.

Paso 1: change to a weight two system. Letw be a sufficiently large prime, so that it does not
belong to the ramification set of the compatible system and such that w > 2k. Then ρ

(0)
w is in

what is called the Fontaine-Laffaille case (i.e. the representation is crystalline and the weight

is smaller than the residual characteristic). Consider the reduction ρ
(0)
w of ρ

(0)
w . Then Serre’s

weight of ρ
(0)
w coincides with the weight k of the compatible system. Lemma 1.14 implies

that ρ(0)
w is not residually bad dihedral. If its image happens to be solvable, we claim that ρ(0)

w

is modular, and then so is ρ
(0)
� (by Remark 4). The reason is that either the residual image

of ρ
(0)
w is reducible (in which case modularity follows from Theorem 1.6) or otherwise, it is

irreducible but solvable, in which case the residual representation is modular by Theorem 1.3
and ρ

(0)
w is modular by Theorem 1.4. In this case the proof ends here (this argument is crucial

and will be used later on).
Suppose on the contrary, that the residual representation has non-solvable image. Take

a weight 2 lift ρ
(1)
w of ρ

(0)
w , with ramification set equal to the one of ρ

(0)
w (whose existence

is guaranteed by Theorem 1.9 (4)). This representation in general will not be crystalline at
w. Now we can focus on proving modularity of the representation ρ

(1)
w , since Theorem 1.4

implies that ρ(0)
w is modular if and only if ρ

(1)
w is. This is the idea of propagatingmodularity,

one can move via a suitable congruence from one representation to another one until we hit
a modular representation.

Using Theorem 1.11, make ρ
(1)
w part of an almost strictly compatible system of Galois

representations {ρ(1)
� } and let p1, . . . , pr be the primes in the ramification set of the system

(set that we denote by S1).

Paso 2: add what is called a “good-dihedral prime”. This implies adding an extra prime N
to the ramification set, such that the local type of the resulting system at N is dihedral, i.e.
the induction of a character from a quadratic extension.

Let K be the coefficient field of the compatible system, and let q ≡ 1 (mod 4) be a
prime number greater than the primes in S1 and also greater than 5 which splits in K . By

Lemma 1.14, the residual representation ρ
(1)
q is not bad dihedral (we are using again the fact

that we are in the Fontaine-Laffaille situation, now with a system of weight k = 2). If the
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residual image of ρ
(1)
q happens to be solvable, then once again ρ

(1)
q is modular (because of

Theorem 1.3 and 1.4 in the irreducible case and Theorem 1.6 in the reducible case). Then we

can assume that the image of the residual representation ρ
(1)
q is non-solvable.

Since a continuous representation always fixes a lattice, after a possible conjugation, we
can assume that the representation ρ

(1)
q takes values in GL2(OK ) (the ring of integers of K ),

so its residual representation has image lying in GL2(Fq) (recall that q splits in K ). Let N be
a prime number which does not belong to the ramification set S1 as in Lemma 1.15. The first

hypothesis implies that Tr(ρ(1)
q (FrobN )) = 0, and the last one implies that χq(FrobN ) + 1 is

also congruent to zero, so the restriction of the residual representation ρ
(1)
q to the decompo-

sition group at N (up to a twist) is of the form

ρ
(1)
q |DN �

(
χq 0
0 1

)
.

LetQN2 denote the quadratic unramified extension ofQN , so that the unit group of its residue
field has order (N − 1)(N + 1). Since q | (N + 1), there exists (by class field theory) a
character κ : GalQN2 → Zq

×
of order q (whose restriction to the inertia group at q is

precisely a character of niveau 2). Note that the composition of κ with the residue map is

trivial (as Fq
×
does not have elements of order q), so the induction Ind

GalQN
GalQ

N2
κ is a dihedral

2-dimensional representation of GalQN , whose residual representation is unramified, and has

zero trace at a Frobenius element. In particular, we can take Ind
GalQN
GalQ

N2
κ as our local type

condition at the prime N .
Take a crystalline lift ρ

(2)
q of weight 2 with such a dihedral image of order 2q at the

prime N (whose existence is guaranteed by Theorem 1.9 (4)). Theorem 1.4 implies that the
representation ρ

(1)
q is modular if and only if the representation ρ

(2)
q is modular.Make ρ

(2)
q part

of an almost strictly compatible system {ρ(2)
� }, whose ramification set equals S = S1 ∪ {N }.

Lemma 2.1 Let {ρ�} be an almost strictly compatible system ofGalois representations, whose
ramification set is contained in S ∪ {2, 3}, and such that the local inertial type at the prime

N matches the type of Ind
GalQN
GalQ

N2
κ defined before. Then for any prime p ∈ S1 ∪ {2, 3} the

residual representation ρp has non-solvable image.

Proof This result is taken from [17, Lemma 6.3]. Let p ∈ S1 ∪ {2, 3} be a prime, and
let ρp be the p-th representation of the family. The strong compatibility condition implies
that its restriction to the decomposition group DN is given as the induction of a ramified
character of order q from the quadratic extension QN2 . Since the prime q is larger than p
(by construction), the kernel of the reduction map Zp → Fp does not have elements of order
q , hence the restriction of the residual representation ρp to the decomposition group DN is
irreducible (in particular, the residual representation is irreducible).

If the representation has solvable image, by Dickson’s classification (and the fact that its
projective image has order divisible by q > 5), its projective image must be a dihedral group.
Suppose this is the case, so the projectivization of our residual representation is induced from
a quadratic extension K of Q. Note that K can only ramify at primes where our family does,
namely some primes of S ∪ {2, 3} (recall that p ∈ S ∪ {2, 3} so the ramification at p is
also considered). Since N ≡ 1 (mod p) for all odd primes p ∈ S1 ∪ {3} (by Lemma 1.15
and the fact that p < q), and N ≡ 1 (mod 8), either N splits in K or it is ramified. If N
splits in K/Q, then the restriction of ρp to the decomposition group DN would be reducible
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(since ρp restricted to GalK is reducible), contradicting what we proved in the first paragraph.
Otherwise, if N ramifies in K/Q, the inertia group at the prime N has even order contradicting
the fact that our local type at N is the induction from a quadratic unramified extension of an
odd order character. ��
Definition 2.2 A continuous representation ρ : GalQ → GL2(Qp) has large image if its
residual representation has non-solvable image.

All the congruences in Paso 3 and Paso 4 are modulo primes in S1 ∪ {2, 3}, and the
ramification sets of the involved representations are contained in S∪{2, 3} so the hypotheses
of Lemma 2.1 will always be satisfied. In particular, the good-dihedral prime N provides the
large image hypothesis needed to apply the results of the first section.

Paso 3: killing the odd part of the level. Let {p1, . . . , pr , N } denote the set of primes where
the system is ramified, p1 being the smallest one (probably equal to 2). For each i = 2, . . . , r ,
apply the following procedure:

• consider the reduction ρ
(i)
pi of the pi -th entry of the compatible system {ρ(i)

� },
• Take ρ

(i+1)
pi to be a minimal lift of ρ(i)

pi unramified at pi (which exists by Theorem 1.9 (3),
noting that the hypothesis on the restriction of the residual representation to GalQ(ζpi )

being absolutely irreducible is fulfilled by Lemma 2.1),
• Make ρ

(i+1)
pi part of an almost strictly compatible system {ρ(i+1)

� } using Theorem 1.11.
Now the ramification set of the new family does not contain the prime pi (but is still
contained in S1 ∪ {2, 3} so Lemma 2.1 applies to the new family).

By Theorem 1.4 the representation ρ
(i)
pi is modular if and only if the representation ρ

(i+1)
pi is

modular. In particular, modularity of the compatible system {ρ(i)
� } is equivalent to modularity

of the compatible system {ρ(i+1)
� }.

If p1 is odd, we apply the same procedure at p1, and end with a system unramified outside
{N }. In such a case, go to Paso 5.

Paso 4: removing 2 from the level. This step follows the method of [17]. The following
lemma will prove crucial. Recall that a local type at p is Steinberg if its inertial Weil-Deligne
parameter is given by (ω1 ⊕ 1,

(
0 1
0 0

)
).

Lemma 2.3 Let {ρ�} be an almost strictly compatible system with Hodge-Tate weights {0, 1}
which is unramified at 3. If the Weil-Deligne representation at the prime 2 is (a twist of)
Steinberg and ρ3 has non-solvable residual image then either:

• there exists another almost strictly compatible system {ρ′
�} with Hodge-Tate weights

{0, 1}, having the same ramification set as {ρ�} such that the 3-adic members of the two
systems are congruent, and whose Weil-Deligne type at the prime 2 is given by an order
3 character (in particular has trivial monodromy), or

• there exists another almost strictly compatible system {ρ′
�} with Hodge-Tate weights

{0, 1}, having the same set of odd ramified primes as {ρ�}, unramified at the prime 2,
such that the 3-adic members of the two systems are congruent.

Furthermore, the modularity of one of the systems is equivalent to modularity of the other
one.

Proof Under our hypotheses,ρ3|D2 � ( χ3 ∗
0 1

)
(up to twist). The casewhen the image of inertia

I2 of the residual representation is trivial corresponds to the second claim of the statement. In
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this case, take a lift of our representation which has the same inertial type at all odd primes,
but which is unramified at 2 (whose existence is guaranteed by Theorem 1.9 (4)).

Suppose then that the residual image of the inertia group I2 is non-trivial (so its image
is generated by the matrix

(
1 1
0 1

)
modulo 3). We follow the same strategy as we did to

incorporate the good-dihedral prime to our family. We take a niveau 2 character χ ′ of order
3 (it corresponds to the cubic extension obtained by adding 3

√
2 to the quadratic unramified

extension Q4 of Q2) and consider its induction to GalQ2 . This corresponds to a local Galois
representation ρ̃ of GalQ2 . Since the Galois group Q4(

3
√
2)/Q2 is isomorphic to S3, the

representation ρ̃ is just the standard 2-dimensional representation of S3 (a representation
having integral coefficients). The inertia group I2 corresponds precisely to the subgroup
generated by a 3-cycle, so the image by ρ̃ of I2 is generated by the matrix M = ( 0 −1

1 −1

)
. The

reduction modulo 3 of M has a unique eigenvector (namely the vector (1,−1)) and its cube
is the identity, so the reduction of M is conjugate to

(
1 1
0 1

)
. Then both representations (ρ3|D2

and ρ̃) have the same reduction when restricted to the inertia subgroup I2 and the traces of
both reductions at a Frobenius element are zero.

Let ρ′
3 be a crystalline weight 2 minimal lift of ρ3 whose local type at 2 matches that of

ρ̃ (such a lift exists by Theorem 1.9 (4)). Let {ρ′
�} be an almost strictly compatible system

containing ρ′
3 (whose existence is warranted by Theorem 1.11). Themodularity of the system

{ρ′
�} is equivalent to that of {ρ�} by Theorem 1.4. ��

Remark 6 The previous lemma is needed because the existence of a crystalline lift of a Galois
representation into GL2(F2) is only proved when Serre’s weight is 2 (see the hypotheses of
Theorem 1.9 (1) and (2)). As explained in the proof of Theorem 9.1 of [17], if we start
with an almost strictly compatible system of Galois representations, such that the residual
representation at the prime 2 has non-solvable image and has Serre’s weight k(ρ2) = 4, the
workaround to get a crystalline lift is to first consider a weight 2 lift (and its compatible
family) which is Steinberg at 2. Then apply Lemma 2.3 to this family to obtain a new family
{ρ′

�}. If the family is unramified at 2, we are done (we have weight 2 and ramification only at

odd primes). Oterwise, the new family must have k(ρ′
2) = 2. The reason is that if the weight

is 4 (the only other possibility), it corresponds to what is called a très ramifiée situation; in
particular the residual representation is flat over a field extension ofQ2 with even ramification
index. On the other hand, the ramification type at 2 of the representation produced by the
lemma was chosen so that it becomes flat over the extensionQ4(

3
√
2), which has ramification

degree 3, leading to a contradiction.

Recall from Lemma 2.1 that our good-dihedral prime at N ensures non-solvable residual
image at the prime 2. The procedure to remove the prime 2 from the compatible system’s
level consists of applying the following steps:

(1) If k

(
ρ

(r+1)
2

)
= 4, take a minimal weight 2 lift ρ

(r+2)
2 with Steinberg type at 2 (which

exists by Theorem 1.9 (2)) and make it part of an almost strictly compatible system
{ρ(r+2)

� }. Modularity of one compatible system is equivalent to modularity of the other

by Theorem 1.5. Otherwise, k

(
ρ

(r+1)
2

)
= 2 in which case go to step (3) (to unify

notation, denote r + 3 the index).
(2) Now the compatible system {ρ(r+2)

� } has Steinberg Weil-Deligne type at two. Change
its local type at 2 via a congruence at the prime 3 as explained in Lemma 2.3. This
lemma gives an almost strictly compatible system {ρ(r+3)

� }whose local type at 2 is either
unramified or it comes from an order 3 character. If the local type at 2 is unramified,
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move to Paso 5.
Lemma 2.3 proves that modularity of the compatible system {ρ(r+2)

� } is equivalent to
modularity of the compatible system {ρ(r+3)

� } in both cases.

(3) At this step, k

(
ρ

(r+3)
2

)
= 2 (either because we came from (1) or by Remark 6 if

we come from (2)). Let {ρ(r+4)
� } be an almost strictly compatible system containing a

minimal crystalline weight 2 lift of ρ(r+3)
2 (whose existence is warranted by Theorem 1.9

(1)). Modularity of one family is equivalent to modularity of the other by Theorem 1.5.

Then we end with a system {ρ′
�} unramified outside {N }.

Paso 5: killing the good-dihedral prime. The reduction modulo N of the system {ρ′
�} lies in

one of the following cases:

(1) The representation ρ′
N is reducible, in which case ρ′

N is modular by Theorem 1.6. End
of the proof. Incidentally, as the reader may easily check, this is the only step in the
whole proof where the fact that the compatible systems that we are considering are only
known to be almost strictly compatible is relevant. Since the local parameter at N of this
compatible system is ramified and we are assuming that ρ′

N is reducible, the conditions
in the definition of “almost compatible systems” imply that we do not know the local
behavior at N of ρ′

N , we only know that it is a de Rham representation. Luckily, this is
enough for Theorem 1.6 to hold.

(2) The representation is irreducible and not bad-dihedral. Take an almost strictly compatible
system {ρ′′

� } containing a minimal crystalline lift of it (such a lift exists by Theorem 1.9
(3)). Observe that the ramification set S of this system is the empty set. Modularity of
the system {ρ′′

� } is equivalent to that of {ρ′
�} by Theorem 1.4.

(3) The representation is bad-dihedral. Serre’s level of the representation ρ′
N equals 1 (as

the system was unramified outside N ), then this case cannot occur by Lemma 1.14 and
Remark 5, because N ≡ 1 (mod 4).

Paso 6: reduction of the weight. Move to the prime p = 5, where the same three possibilities
can occur:

(1) The representation ρ′′
5 is reducible, in which case ρ′′

5 is modular by Theorem 1.6. End of
the proof.

(2) The representation ρ′′
5 has absolutely irreducible image, but it is bad-dihedral. Since our

family has level 1, we know by Remark 5 that this is not possible, since 5 �≡ 3 (mod 4).
(3) The representation ρ′′

5 is irreducible and not bad-dihedral. If Serre’s weight k(ρ′′
5 ) = 2

or 4, take an almost strictly compatible system {ρ̃�}, whose ramification set is empty,
containing a minimal crystalline lift of ρ′′

5 , which exists by Theorem 1.9 (3) and has

Hodge-Tate weights (0, k(ρ′′
5 ) − 1). If Serre’s weight is 6, take a weight 2 lift, with

SteinbergWeil-Deligne type at p = 5, unramified outside 5, which exists by Theorem1.9
(4) andmake it part of an almost strictly compatible system {ρ̃�}. In both casesmodularity
of the system {ρ′′

� } follows from that of the system {ρ̃�} by Theorem 1.4.

In the cases of weight 2 and 4, we look at the 3-adic representation ρ̃3 and we reduce
modulo 3. Theorem 1.1 implies that there are no irreducible residual Galois representations
unramified outside 3, so the representation ρ̃3 is reducible. Furthermore, ρ̃3 is ordinary by
[2, Corollary 4,3], because the weight is either 2 or 4 = 3 + 1, so the third hypothesis of
Theorem 1.7 is satisfied. Since Serre’s weight is not 3, the image of ρ̃3|D3 is non-trivial,
hence Theorem 1.7 implies that ρ̃3 is modular.
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The last case to consider is when ρ̃5 has weight 2, is Steinberg at 5 and unramified at
any other prime. In this case, by [33, Proposition 9.4.1] the representation ρ̃5 matches the
5-adic representation of an abelian variety A/Q of GL2-type. Since ρ̃5 is Steinberg at 5 and
unramified at any other prime, the variety A is semistable and has good reduction outside 5
contradicting Theorem 1.2.

We have seen that by a combination of suitable modularity lifting theorems the modularity
of the given representation was deduced by propagation from the base cases proved by Serre
and Schoof and cases where the residual image is solvable. This concludes the proof of
Serre’s conjecture in the case of odd characteristic.

3 The case p = 2

The projective image is either solvable or non-solvable. Recall that all solvable subgroups
of PGL2(F2) in the irreducible case have dihedral projective image (the S4 case does not
occur, while the A4 case corresponds to a Borel subgroup over F4 see [17, Lemma 6.1]).
The dihedral case was proven in [27]. If the image is non-solvable, take an odd weight two
lift (guaranteed by Theorem 1.9(1) and (2)), make it part of an almost strictly compatible
system and reduce modulo a prime greater than 3 and which is not in the ramification set of
the compatible system (since the residual Serre weight is 2 under these conditions, applying
Lemma 1.14we see that p > 2·2−1 = 3 is enough to avoid the bad-dihedral situation) to end
in a situation covered before, namely: the representation is either reducible (so modularity
follows from Theorem 1.6) or irreducible in odd characteristic hence it is covered by the
cases of Serre’s conjecture we have already solved, in which case modularity of the system
follows from Theorem 1.4 since we know that the residual representation is not bad-dihedral.
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