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1. Introduction

Martin’s Axiom arose from the Solovay-Tennenbaum proof (from 1965, published in [61]) of the consis-
tency of Suslin’s Hypothesis (SH). The Suslin’s Hypothesis is the positive answer to a problem of Suslin 
(Problem number 3 from [60]), which asks if a linear ordering that is complete, dense, and ccc (i.e., every 
family of pairwise-disjoint open intervals is countable) is a linear continuum. Martin’s Axiom was first for-
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mulated in print and thoroughly studied in [52],1 and the proof of its consistency with ZFC was given in 
[61].

For κ an infinite cardinal, Martin’s Axiom for κ (written MAκ) is the following assertion:

If P is a ccc partial ordering and D is a collection of cardinality κ of dense open subsets of P , then there 
is a D-generic filter on P .

Recall here that P is ccc if every antichain of P is countable; and being D-generic for a filter G on P
means that G intersects all elements of D.2 It is easily seen that MAℵ0 is true, i.e., provable in ZFC
(Proposition 2.3). Also, for κ ≥ 2ℵ0 , MAκ is provably false (see [41]), and thus MAℵ1 implies the negation 
of the Continuum Hypothesis (CH). For these reasons, Martin’s Axiom (MA) is the assertion that MAκ

holds for all κ < 2ℵ0 .
As the CH implies MA, the study of MA is only relevant if the CH fails. Indeed, much of the interest of 

MA lies in the fact that it decides many questions, especially about the continuum, that are undecidable in 
the theory ZFC + ¬CH. This is indeed amply demonstrated in the original article of Martin and Solovay 
[52], where they show that, besides Suslin’s Hypothesis, MA + ¬CH also implies many of the (trivial) 
consequences of the CH, such as the additivity of the Lebesgue measure, the additivity of category, the 
regularity of c (the cardinality of the continuum), or that 2κ = c for all infinite κ < c, as well as many other 
fundamental properties of the continuum that are undecided by the CH, such as that every Σ1

2 set of reals 
is Lebesgue measurable and has the Baire property. Another major use of MA+¬CH in the literature is to 
equate cardinal invariants of the continuum, e.g., d = c or b = d, as needed in some proofs.

In sections 11-14 of his groundbreaking 1968 PhD Thesis, Kunen proves a few more consequences of MA. 
First, he shows that MAκ implies that for every cardinal λ < κ, every subset of λ × λ is in the σ-algebra 
generated by the rectangles X × Y , with X, Y ⊆ λ. He then obtains, as a consequence, that MA implies 
there is no real-valued measurable cardinal less than c. Second, he shows that MA implies that the Boolean 
algebra of subsets of the reals, modulo sets of cardinality less than c, is (ω, ω)-weakly distributive. Third, 
he shows that MA implies the existence of a generalized Luzin set, i.e., a set of reals of cardinality c whose 
intersection with any set of first category has cardinality less than c. Finally, he shows that MA implies that 
every set of cardinality less than c has strong measure zero.

In the following decades many new consequences, equivalent formulations, and numerous applications 
of MA were found. Besides its success in deciding key questions for the structure of the continuum in 
the context of ¬CH, it was in General Topology where MA was most fruitful and found its most striking 
applications. This is best exemplified in the work carried out by Kunen and his co-authors, which was 
essential in the development of the new area of Set-Theoretic Topology, an area that reached its maturity 
with the publication of the The Handbook of Set-Theoretic Topology, edited by Kunen and Vaughan [44]. 
A key work of the period is the article [40] of Kunen and Tall, which initiates the systematic study of 
fragments of MA + ¬CH. With hindsight, some statements that are now known to be core fragments of 
MA were singled out and studied much before MA itself was formulated. Perhaps the earliest was the one 
considered by Knaster and Szpilrajn in Problem 192 of the Scottish Book, from May 1941 (see [50]), namely 
“Every ccc poset has property K”, which implies the Suslin’s Hypothesis (see section 4.6). Other examples 
of combinatorial, or Ramsey-type, statements that follow from MA were also already considered in the 
1940’s (see [70] for references, and section 4.7 below).

1 As explained in [52], D. A. Martin observed that the construction of the Solovay-Tennebaum model where the Suslin’s Hy-
pothesis holds, obtained by iteratively forcing to destroy all Suslin trees, “depended only on very general properties of the Cohen 
extensions” produced at every stage of the iteration, namely the ccc property. ‘He [Martin] and, independently, Rowbottom, 
suggested an “axiom” which asserts that all Cohen extensions having these very general properties can be carried out inside 
the universe of sets: that the universe of sets is – so to speak – closed under a large class of Cohen extensions”.
2 For all undefined set-theoretic notions, see section 2 below, or [41], [34].



J. Bagaria / Annals of Pure and Applied Logic 175 (2024) 103330 3
We will survey the work done in subsequent decades, up to the present, on the comparative strengths 
of different fragments of MA. The article of Weiss in the Handbook of Set-Theoretic Topology [76] presents 
already a comprehensive survey of results obtained up to 1984 in this area, and so does Fremlin’s book [25]
which, with the title Consequences of Martin’s Axiom, offers an elegant, systematic and complete account of 
all consequences and applications of MA known at the time. Thus, besides [40], we shall take Weiss’ article 
and Fremlin’s book as our basic references and we shall proceed from there.

I want to thank Stevo Todorčević and Teruyuki Yorioka for reading an early draft of the paper and 
making very valuable comments and suggestions. Also thanks to Jeffrey Bergfalk and Philipp Lücke for 
their comments on the revised version. Most of all, I am very thankful to the anonymous referee for the 
thorough reviewing and for the long list of suggestions and recommendations, which have been of great help 
in the preparation of the paper’s final version.

2. Preliminaries

Recall that a partial ordering (or a partially ordered set, or poset) is a pair (P , ≤) such that P is a 
non-empty set and ≤ is a reflexive, antisymmetric, and transitive relation on P . We usually write P instead 
of (P , ≤) to refer to a partial ordering.

Definition 2.1. Let P be a partial ordering.

(1) D ⊆ P is dense if for every p ∈ P , there exists q ∈ D such that q ≤ p.
(2) D ⊆ P is open if p ∈ D and q ≤ p imply q ∈ D. i.e., D is closed downward.
(3) If p ∈ P , we say that D ⊆ P is dense below p if for every q ≤ p there exists r ∈ D such that r ≤ q.
(4) C ⊆ P is a chain if for every p, q ∈ C, either p ≤ q or q ≤ p.
(5) p, q ∈ P are compatible if there exists r ∈ P such that r ≤ p and r ≤ q. We write p ⊥ q if p and q are 

incompatible.
(6) A ⊆ P is an antichain of P if for every p, q ∈ A, if p �= q, then p ⊥ q.
(7) A is a maximal antichain if A is an antichain and for every p ∈ P there exists q ∈ A such that p and q

are compatible.

The following are easily established (for (2) one needs the Axiom of Choice):

(1) If A is a maximal antichain of P , then the set D = {p : p ≤ q, some q ∈ A} is dense open.
(2) If D is dense open, then D contains a maximal antichain.

Definition 2.2. If P is a partial ordering, then we say that G ⊆ P is a filter if:

(1) G �= ∅.
(2) Every two elements of G have a lower bound in G.
(3) G is closed upwards, i.e., if p ∈ G and p ≤ q, then q ∈ G.

A filter G is called generic for a family D of dense subsets of P if G ∩D �= ∅ for every set D in D.

Proposition 2.3. Let D = {Dn : n < ω} be a family of dense subsets of some partial ordering P . For every 
condition p ∈ P , there exists a filter G ⊆ P such that p ∈ G and G is generic for D.

Proof. Let p0 ≤ p with p0 ∈ D0. Given pn, let pn+1 in Dn+1 be such that pn+1 ≤ pn. Let G be the upward 
closure of {pn : n < ω}. Then G is as required. �
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We say that P has the countable chain condition (is ccc) if every antichain of P is countable (i.e., it is 
either finite or infinite of cardinality ℵ0).

Definition 2.4. A tree T = 〈T, ≤〉 is a partial ordering such that for every t ∈ T , the set {s ∈ T : s < t} is 
well-ordered by ≤.

The elements of T are sometimes called nodes.
The height of an element t of T is the order-type of the set {s ∈ T : s < t} of its predecessors.
The level α of T consists of all elements of T of height α.
The height of T is the least ordinal α such that the α-th level of T is empty.
A branch in T is a maximal linearly-ordered subset of T .

In a tree T , two elements s, t are said to be comparable if either s ≤ t or t ≤ s. A chain of T is a subset of 
T consisting of pairwise-comparable elements. And an antichain of T is a subset of T consisting of pairwise 
incomparable elements. Notice that every level of T is an antichain.

Remark 2.5. Let us note that our use of the term antichain for trees differs from the standard meaning 
of antichain (as pairwise incompatible) in the general setting of partial orders (Definition 2.1 (6)). In 
the context of Martin’s Axiom and definitions such as 2.1 and 2.2, trees are often given the reverse tree 
order and so in particular an antichain in a tree is a subset in which any two elements fail to have a 
common upper bound. Thus, in this setting, antichains are precisely those sets whose elements are pairwise 
incomparable.

An uncountable tree T is a Suslin tree if and only if every chain and every antichain of T is countable.
The existence of a Suslin tree is equivalent to the negation of Suslin’s Hypothesis:

SH: Every linearly ordered set that is dense, without endpoints, complete, and ccc is separable, and hence 
order-isomorphic to R.

A counterexample to SH is known as a Suslin line. Kurepa proved in 1935 that a Suslin line exists iff 
there exists a Suslin tree (see [41, 5.13], also [65]).

The SH is independent of ZFC. On the one hand, Jech (1967) and Tennenbaum constructed models of 
ZFC in which there is a counterexample to SH; and Jensen proved in 1968 that a counterexample to SH
exists in Gödel’s constructible model L. On the other hand, Solovay-Tennenbaum [61] constructed a model 
where the SH holds.

Proposition 2.6. MAℵ1 implies that there are no Suslin trees, hence it implies the SH.

Proof. Suppose T = (T, ≤T ) is a tree of height ω1 and with no uncountable antichains. By pruning T if 
necessary, we may assume that every node has uncountably many successors, and therefore that every node 
has some successor at any higher level of T . Let P = (T, ≥T ), i.e., the tree T with the reversed ordering. 
Note that P is ccc. For every α < ω1, the set Dα of nodes of T of height greater than α is dense (and open) 
in P . But if G is a filter on P generic for {Dα : α < ω1}, then G is an uncountable chain of T . So T is not 
a Suslin tree. �

Many equivalent formulations of MA are known (see [25], and also the following sections). The best 
known, and one of the most useful, is the following characterization of MAκ as a natural generalization of 
the Baire Category Theorem (see [41, 3.4]):
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Proposition 2.7. The following are equivalent:

(1) MAκ.
(2) In every compact Hausdorff ccc topological space, the intersection of ≤ κ dense open sets is non-empty.

Another characterization of MA which further attests to its being a natural axiom of set theory is given in 
[4] (also, independently, in Stavi-Väänänen [62]), namely MAκ is equivalent to a form of generic absoluteness 
under ccc forcing. Recall that for any two structures M ⊆ N of the same language L, the notation M �Σ1 N

means that M is a Σ1-elementary substructure of N , that is, for every Σ1 formula ϕ(x1, . . . , xn) of L and 
every a1 . . . , an ∈ M ,

M |= ϕ(a1, . . . , an) iff N |= ϕ(a1, . . . , an).

We write MAκ(P ) for the assertion that MAκ holds for the poset P , i.e., If D is a collection of cardinality 
κ of dense open subsets of P , then there is a D-generic filter on P .

Theorem 2.8. For each ccc poset P , MAκ(P ) is equivalent to

H(κ+) �Σ1 H(κ+)V
P

.

Hence, MAκ is equivalent to the assertion that H(κ+) is a Σ1-elementary substructure of the H(κ+) of any 
ccc forcing extension of V .

Finally, let us state the following purely combinatorial characterization of MA in terms of chain conditions, 
given by Todorčević-Veličković. Namely,

Theorem 2.9. [75, 3.3] MAκ holds iff every ccc poset of cardinality κ is σ-centered. Hence, MA is equivalent 
to the assertion that every ccc poset of size less than c is σ-centered.3

Moreover, in the particular case of MAℵ1 , they also give the following characterization:

Theorem 2.10. [75, 3.4] MAℵ1 holds iff every ccc poset has precalibre-ℵ1.4

Thus, all results and questions regarding fragments of MA may be reformulated either in terms of 
properties generalizing the Baire Category Theorem for different classes of topological spaces, or in terms 
of Σ1-generic absoluteness for H(κ+), κ < c, under various classes of ccc forcing notions, or in purely 
combinatorial terms, namely for some kinds of ccc posets having stronger chain conditions, or as Ramsey-
type statements involving ccc partitions (see section 4 below).

3. Between Suslin’s hypothesis and Martin’s axiom

In [40] the authors make a distinction between several consequences of MA + ¬CH, namely those of 
“Suslin type” and the “combinatorial ones”. Among the first are those that imply the SH, among the second 
those that do not. The main question addressed in [40] is whether those combinatorial consequences of 
MA + ¬CH imply MA + ¬CH. They show they do not by showing they do not imply the SH. In the 

3 See Definition 3.2.
4 See Definition 3.1.
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process, they establish the relative strengths of different weakenings, or fragments, of MA+¬CH, obtained 
by strengthening the ccc property. We shall look next at several of these fragments.

Let us begin with the definition of some chain conditions of partial orderings that imply the ccc, in 
increasing order of strength. These are all properties that have arisen naturally in different contexts, such 
as measure theory or general topology, and have been extensively studied in the literature. The earliest 
example is the property K, which was motivated by Suslin’s Problem and was first introduced by Knaster 
and Szpilrajn in Problem 192 of the Scottish Book, in 1941 (see [50]). Property K was later thoroughly 
studied by Knaster in [38]. Further chain conditions implying the ccc, such as σ-finite cc, σ-bounded cc, 
or σ-centered (see Definition 3.2 below) were introduced by Horn-Tarski [33] in the context of measures in 
Boolean algebras.

Definition 3.1. Let P be a partial order.

(1) P is powerfully-ccc if all finite powers of P are ccc.
(2) P is productively-ccc if its product with every ccc poset is ccc.
(3) P has property Kn (or is n-Knaster) if every uncountable subset X of P has an uncountable Y ⊆ X

that is n-linked (i.e., every collection of n elements of Y has a lower bound in P ). P has property K (or 
is Knaster) if it is 2-Knaster.

(4) P has precalibre-ℵ1 if every uncountable subset X of P has an uncountable Y ⊆ X that is centered (i.e., 
every finite collection of elements of Y has a lower bound in P ).

(5) P has calibre-ℵ1 if every uncountable subset X of P has an uncountable Y ⊆ X with a lower bound in 
P , i.e., there is some p ∈ P which is below all elements of Y .

If Γ is a property of ccc partial orders, then we write MAκ(Γ) for the assertion:

If P is a partial ordering with the property Γ and D is a collection of cardinality at most κ of dense open 
subsets of P , then there is a D-generic filter on P .

We also write MA(Γ) for the statement that MAκ(Γ) holds for all κ < 2ℵ0 . Thus, MAκ implies MAκ(Γ), 
for every property Γ implying the ccc, and therefore MA implies MA(Γ). Since MAℵ0(Γ) is true (Proposi-
tion 2.3), and MAc(P ) is false even for the Cohen poset P , whenever we write MAκ(Γ) we implicitly assume 
that κ is an uncountable cardinal less than c.

A simple Löwenheim-Skolem argument shows that MAκ is equivalent to MAκ restricted to the class of 
ccc posets of cardinality at most κ ([61]).

Let us denote by K the class of posets with property K. In [40, Theorem 8], the authors prove that 
MAℵ1(K) does not imply the SH. The proof goes by showing that, starting from a countable transitive 
model of ZFC + 2ℵ1 = ℵ2 in which there exists a Suslin tree T , one can perform a forcing iteration with 
finite support, similarly as in the original Solovay-Tennenbaum proof of the consistency of MA +¬CH but 
using only posets with property K, so that in the generic extension MAℵ1(K) holds and T is still a Suslin 
tree. The point is that the whole iteration also has property K and no poset P having property K can 
destroy T , the reason being that every P -name for an uncountable chain or antichain of T easily yields an 
uncountable chain or antichain of T , respectively, in the ground model.

Let us consider next two more chain conditions for posets that imply the ccc and which have been 
extensively studied in the literature. Namely, σ-centeredness and σ-linkedness (and more generally, σ-n-
linkedness):
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Definition 3.2. A poset P is σ-centered if it can be partitioned into countably-many centered subsets. That 
is, if there exists some π : P → ω such that for every 2 ≤ n < ω and every p0, . . . , pn−1 ∈ P , if π(pi) = π(pj)
for all i, j < n, then there exists q ∈ P such that q ≤ p0, . . . , pn−1.

P is σ-n-linked (for n ≥ 2) if it can be partitioned into countably-many n-linked subsets, i.e., there exists 
some π : P → ω such that for every p0, . . . , pn−1 ∈ P , if π(pi) = π(pj) for all i, j < n, then there exists 
q ∈ P such that q ≤ p0, . . . , pn−1. We say that P is σ-linked if it is σ-2-linked.

The following implications between the different chain conditions that we have considered so far can be 
now easily established:

Countable

σ-centered Calibre-ℵ1

∀n(σ-n-linked) Precalibre-ℵ1

σ-(n + 1)-linked ∀n(Kn)

σ-n-linked Kn+1

Kn

Productively-ccc

Powerfully-ccc

ccc

(3.1)

No other implication arrows in the diagram above are provable in ZFC (see below).
It is consistent with ZFC that the diagram above partially collapses. Indeed, if MAℵ1 holds, then every 

ccc poset has precalibre-ℵ1, a result due to Kunen (see [74, 2.4.4]).

Theorem 3.3. MAℵ1 implies that every ccc poset has precalibre-ℵ1.

Proof. Suppose P is a ccc poset and A = {pα : α < ω1} is a subset of P . We claim first that for some p ∈ A, 
every q ≤ p is compatible with uncountably-many elements of A. Otherwise, for each α we can find qα ≤ pα
such that all but countably-many elements of A are incompatible with qα. Inductively, we can then easily 
build an antichain {qαi

: i < ω1}, contradicting the fact that P is ccc.
For each α, the set Dα = {q ≤ p : q ≤ pβ , some β ≥ α} is dense below p, i.e., Dα is dense in the poset 

P ↓ p := {q ∈ P : q ≤ p}.
Since P ↓ p is ccc, by MAℵ1 there is a filter G that meets all Dα, α < ω1. But then G ∩A is an uncountable 

centered subset of A. �
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It is worth mentioning at this point the following well-known consequence of MAκ.

Proposition 3.4. MAκ implies that every ccc poset P of size at most κ is σ-centered. In particular, MAℵ1

implies that every ccc poset of size at most ℵ1 is σ-centered.

Proof. Let P be a ccc poset. Since MAκ implies that every ccc poset has precalibre-ℵ1 (Theorem 3.3), and 
precalibre-ℵ1 posets are easily seen to be productively ccc, the product Pω with finite support of ω-many 
copies of P is ccc. Now for any p ∈ P , the set Dp of all q̄ ∈ Pω such that q̄(n) = p, for some n in the support 
of q̄, is dense open. As P has size at most κ, an application of MAκ yields a generic filter for the family 
{Dp : p ∈ P}, so any uncountable subset of P has an uncountable subset contained in one of fibers of Pω, 
and therefore is centered. �

Thus, under MAℵ1 , diagram (3.1) above becomes:

Countable

σ-centered Calibre-ℵ1

∀n(σ-n-linked)

σ-n + 1-linked

σ-n-linked

ccc

(3.2)

There are ZFC examples of posets showing that no other implication arrows are possible in diagram (3.2)
above. The Random poset, i.e., the set of closed subsets of the unit interval of positive Lebesgue measure, 
ordered by ⊆, is a Borel5 poset which is σ-n-linked for all n and yet is not σ-centered.

Recall that the pseudo-intersection number, p, is the least cardinal κ such that there exists a family of 
κ-many infinite subsets of ω which is centered (i.e., the intersection of any finite number of elements of the 
family is infinite) and for which there is no infinite subset of ω almost-contained in every element of the 
family. A poset of size p that is σ-linked but not σ-centered is given in [75].

For each n ≥ 2, Bell [12] gives an example of a poset that is σ-n-linked but not σ-n+1-linked. Further, 
Todorčević’s posets P0 and P1 from [71] are ccc and not σ-linked. The poset P0 is the set of all finite 
antichains of πQ, ordered by ⊇, where πQ is the set of all subsets of the rationals, ordered by x � y iff 
there is q ∈ y such that x = {p ∈ y : p < q}. If S is the set of all converging sequences of real numbers that 
do not contain their own limits, then P1 is the set of all finite subsets p of S such that lim(s) /∈ t, for all s
and t in p, ordered by ⊇. As both P0 and P1 are uncountable and consist of finite conditions, ordered by 
⊇, neither of them has calibre-ℵ1.

It is worth pointing out that the posets P0 and P1 are Borel. Also, the subset σQ of πQ consisting of 
those elements which are well ordered in the usual order is a tree which has no uncountable branches and 
which is nonspecial (i.e., is not the union of countably-many antichains).

5 See section 5.
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A ZFC example of a poset that has precalibre-ℵ1 but not calibre-ℵ1, and which is also Borel, is the set 
of finite partial functions from R to 2, ordered by ⊇. Finally, Galvin and Hajnal (see [65, 9.10] or [19, 6.32]) 
gave an example of a poset that has precalibre-ℵ1 but is not σ-linked.

Consistently, no other implication arrows are possible in diagram (3.1) above either. Assuming the CH, 
there is an example, due to Laver (see [19, 7.13]), of a ccc poset that is not powerfully-ccc. Moreover, 
as shown by Kurepa [43], if T is a Suslin tree, then the product with itself is not ccc. Kunen gave an 
example, also assuming the CH, of a productively-ccc poset that does not have property K (see [19, 7.9]), 
and Todorčević [71] proved that if b = ω1, then his poset P1 is a Borel example with this property. Recall 
that b is the minimal cardinal of a family of functions f : ω → ω that is unbounded under the ordering <∗

of eventual dominance.
Recall that if T is a tree, then the poset PT that specializes it (i.e., that it turns T into a countable union 

of antichains when forcing with it) consists of finite functions p from T into ω such that if s �= t are in the 
domain of p and are comparable in the tree ordering, then p(s) �= p(t). The ordering on PT is the reversed 
inclusion. As shown by Baumgartner-Malitz-Reinhardt [7], PT is ccc if and only if T has no uncountable 
chains. Let us note in passing that the poset σQ described above is a tree of size c without uncountable 
antichains, and therefore PσQ is ccc. Thus, under MA, σQ is an example of a nonspecial tree of size c all 
whose subtrees of size less than c are special.

If T has no uncountable chains, then in fact PT is powerfully-ccc, but it is consistent, modulo ZFC, that 
is not productively-ccc, an example being the case when T is a Suslin tree, for then by forcing with T ×PT

the cardinal ω1 is collapsed. The same occurs with the poset of all finite antichains of T , ordered by reversed 
inclusion. An example of a powerfully-ccc poset that is not productively-ccc also exists assuming the CH
(see [19, 7.14b]).

The following argument due to Todorčević shows that if T has no uncountable antichains, then the poset 
PT is productively-ccc if and only if T has no Suslin subtree. If T has a Suslin subtree, then T × PT is not 
ccc, as observed above. The other direction follows from the fact that if Q is ccc and Q × PT is not ccc, 
then Q forces that T has an uncountable chain (this follows from the Baumgartner-Malitz-Reinhardt result 
mentioned above, applied in the forcing extension). Then notice that if ḃ is a Q-name for a chain in T , then 
the set S of s ∈ T which can be forced into ḃ by some condition is ccc (since Q is).

If the CH holds, then the Random poset, which is σ-n-linked for every n, does not have precalibre-ℵ1

(see, [40, Theorem 6] or [76, 3.12]). Further, Todorčević [68] shows that if the Lebesgue measure is not 
ℵ1-additive, then the Amoeba poset (i.e., the set of open subsets of the unit interval of measure less than 
1/2, ordered by ⊇) which is also σ-n-linked for every n, does not have precalibre-ℵ1.

In [68], Todorčević gives an example of a productively-ccc poset of size b without linked (i.e., pairwise-
compatible) subsets of size b. Further, for each n, he gives an example of a σ-n-linked poset of size b without 
(n + 1)-linked subsets of size b. Thus, in any model of ZFC in which b = ℵ1, there is a productively-ccc 
poset that does not have property K, and for each n ≥ 2 there exists a σ-n-linked poset that is neither 
σ-(n + 1)-linked nor has property Kn+1. (Earlier examples due to Argyros (see [19, 6.26]), assuming the 
CH, showed that having property Kn does not imply having property Kn+1, for every n ≥ 2.) Further, 
assuming b = ℵ1, Todorčević’s Borel ccc poset P1 from [71] does not have property K. Moreover, [68] gives, 
again under the assumption that b = ℵ1, an example of a poset that is σ-n-linked for every n but does not 
have precalibre-ℵ1. Finally, the ordinal ω1 with the reversed ordering is a trivial example of an uncountable 
σ-centered poset that does not have calibre-ℵ1.

From diagram (3.1), for each κ < c we have the following implications for the corresponding fragments 
of MAκ. We shall denote by K and Kn the classes of posets having property K and Kn, respectively. Thus, 
K = K2.
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MAκ

MAκ(Powerfully-ccc)

MAκ(Productively-ccc)

MAκ(Kn)

MAκ(σ-n-linked) MAκ(Kn+1)

MAκ(σ-(n + 1)-linked) MAκ(∀n(Kn))

MAκ(∀n(σ-n-linked)) MAκ(Precalibre-ℵ1)

MAκ(σ-centered) MAκ(Calibre-ℵ1)

MAκ(Countable)

(3.3)

It is known that many of the arrows in the diagram above cannot be reversed, but the following two 
questions remain open.

Todorčević [70] poses the question if MA(Powerfully-ccc) implies full MA. The question remains open, 
also for MAκ(Powerfully-ccc) and MAκ, κ uncountable. The main case is, as usual, for κ = ℵ1.

Question 1. [70] Does MAℵ1(Powerfully-ccc) imply MAℵ1?

Note that an affirmative answer yields that MAℵ1(Powerfully-ccc) implies the ccc is a productive property, 
which then yields that even MAκ(Productively-ccc) implies MAκ, for any κ.

Question 2. Does MAκ(Calibre-ℵ1) imply MAκ(Precalibre-ℵ1)?

None of the other implications in the diagram above can be reversed. Let us summarize the main results 
showing this. The proofs rely on the fact that finite support forcing iterations of partial orderings having 
the property Φ, where Φ is either the property of being productively-ccc, or one of properties Kn, for a fixed 
n, or the property of having precalibre-ℵ1, also have the property Φ. Moreover, finite support iterations of 
length ≤ c of posets having property Ψ, where Ψ is one of σ-n-linked, for a fixed n, or σ-centered, also have 
the property Ψ (see, e.g., [6] for details).

First, starting with a model in which there is a Suslin tree, T , one can iterate only productively-ccc 
posets with finite support in order to get a model M in which MA(Productively-ccc) holds and the con-
tinuum is as large as wanted. Then, since the iteration is also productively-ccc, in M the tree T remains a 
Suslin tree, hence MAℵ1(Powerfully-ccc) fails, as the poset of finite antichains of T is powerfully-ccc. Thus, 
MA(Productively-ccc) + ¬CH does not imply MAℵ1(Powerfully-ccc).
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Second, an unpublished observation of Kunen (see [8]) is that MAℵ1(Productively-ccc) implies that every 
uncountable subset of P(ω) contains an uncountable chain or antichain (with respect to ⊆).6 It was also 
observed independently by Baumgartner and Kunen that the CH implies the last assertion is false (see the 
discussion in [8]). Moreover, it is easily seen that the assertion remains false after forcing with any poset 
with property K, and in particular after forcing with the standard finite-support iteration of property K
posets that yields MA(K) + ¬CH. Thus, MA(K) + ¬CH does not imply MAℵ1(Productively-ccc).

As mentioned above, in [40, Theorem 8] it is shown that MAℵ1(K) does not imply the SH, hence it does 
not imply MAℵ1 . Moreover, since for an Aronszajn tree T , the poset of all its finite antichains, and also the 
poset PT that specializes it are powerfully-ccc, in the model given in [40] in which MA(K) +¬CH holds and 
there exists a Suslin tree, MAℵ1(Powerfully-ccc) must fail.

Third, starting with a model of the CH, fix n ≥ 2 and let P be a poset with property Kn which doesn’t 
have property Kn+1 (such a poset exists by a result of Argyros appearing in [19, 6.26], or by Todorčević [68], 
where for each n, he gives an example of a σ-n-linked poset of size b without (n + 1)-linked subsets of size 
b). Then force MA(Kn+1) +¬CH by iterating with finite support only posets having property Kn+1. Since 
the iteration has also property Kn+1, it is not difficult to see that in the forcing extension the poset P still 
has property Kn but not property Kn+1. Hence MAℵ1(Kn) must fail. This shows that MA(Kn+1) + ¬CH
does not imply MAℵ1(Kn), for any n ≥ 2.

Fourth, starting with a model in which the CH fails and b = ℵ1, fix n ≥ 2 and let P be a σ-n-linked poset 
of size ℵ1 which is not σ-(n + 1)-linked (such a poset exists as shown in [68]). Then force MA(σ-(n + 1)-
linked) +¬CH by iterating with finite support and in length c only σ-(n +1)-linked posets. Since the iteration 
is also σ-(n + 1)-linked, it is not hard to see that in the forcing extension the poset P is still σ-n-linked and 
not σ-(n +1)-linked. Hence MAℵ1(σ-n-linked) must fail. This shows that MA(σ-(n +1)-linked) +¬CH does 
not imply MAℵ1(σ-n-linked), for any n ≥ 2.

Similar arguments would also show that MA(∀n(Kn)) + ¬CH does not imply MAℵ1(Kn), for any n ≥ 2, 
and that MA(∀n(σ-n-linked)) + ¬CH does not imply MAℵ1(σ-n-linked), for any n ≥ 2.

Fifth, in his doctoral thesis, written under the supervision of Kunen, Herink [29] shows that 
MA(Precalibre-ℵ1) +¬CH does not imply MAℵ1(K). The argument actually yields that MA(Precalibre-ℵ1) +
¬CH plus the SH do not imply MAℵ1(∀n(σ-n-linked)). This also follows from a result of Pawlikowski [54]
where he gives a model of MA(Precalibre-ℵ1) + ¬CH in which the real line is covered by ℵ1-many measure 
zero sets. In this model, MAℵ1 for the Amoeba poset, which is σ-n-linked for every n, fails, for as shown in 
[2] (see also [14]), MAℵ1(Amoeba) is in fact equivalent to the ℵ1-additivity of the Lebesgue measure, i.e., 
the union of ℵ1-many measure zero sets has measure zero.

Sixth, Herink [29] also shows that MA(σ-linked) +¬CH, plus the SH, does not imply MAℵ1(Precalibre-ℵ1). 
Moreover, Barnett [6] shows that adding a Cohen real also adds a ladder system on ω1 that cannot be 
uniformized, and moreover it cannot be uniformized in any further forcing extension by any σ-linked partial 
ordering. Thus, if after adding a Cohen real one forces MA(σ-linked) +¬CH in the standard way by iterating 
only σ-linked posets, then in the resulting model there is a coloring of a ladder system on ω1 that cannot be 
uniformized, hence by a result of Devlin and Shelah [23], MAℵ1(Precalibre-ℵ1) must fail. Further, Barnett 
[6, 3.7] shows that MA(Kn+1) +¬CH does not imply MAℵ1(σ-n-linked) (see the end of subsection 4.1 below 
for a stronger result). Barnett’s proof relies on two results due to Todorčević. The first one is that by adding 
a Cohen real one adds a subset of ωω of size c which contains no uncountable ≤ n-ary subset, for any 
n (see [6] for the definition of n-ary set). The second result is that MAℵ1(σ-n-linked) implies that every 
uncountable subset of ωω contains an uncountable ≤ n-ary subset. Then she shows that the property of not 
having uncountable ≤ n-ary subsets is preserved by forcing notions having property Kn+1, and in particular 
by the standard forcing iteration that forces MA(Kn+1) + ¬CH.

6 Here “antichain” means, of course, a set of ⊆-incomparable elements.



12 J. Bagaria / Annals of Pure and Applied Logic 175 (2024) 103330
In [3] it is shown that if one forces MA(σ-centered) + ¬CH over L by iterating σ-centered posets only, 
then in the generic extension there is no random real over L, hence MAℵ1 fails for the Random poset. Thus, 
MA(σ-centered) does not imply MAℵ1(∀n(σ-n-linked)). One could also argue as follows: Roitman [55] shows 
that MA(σ-centered) is preserved by adding a Cohen real. Also, as shown in [20], after adding a Cohen real, 
the real line can be covered by ℵ1-many measure zero sets. Hence, if one adds a Cohen real to a model of 
MA(σ-centered) + ¬CH, in the resulting model the ℵ1-additivity of the Lebesgue measure, and therefore 
MAℵ1(Amoeba), must fail. Yet another different argument is given by Barnett in [6, Section 4] also showing 
that MA(σ-centered) + ¬CH does not imply MAℵ1(∀n(σ-n-linked)).

Finally, MAκ(Countable) is equivalent to the assertion that the real line cannot be covered by κ-many 
nowhere dense sets ([27]), a fact that is compatible with 2ℵ0 < 2κ, while the latter is false under MAκ(σ-
centered) (see e.g., [41]). Moreover, as shown by Bell [13] (see [76, 5.16]), MAκ(σ-centered) is equivalent to 
the assertion κ < p, namely that for every family of κ-many infinite subsets of ω with the finite intersection 
property there exists some infinite subset of ω that is almost contained in every member of the family.

The converse to Proposition 3.4 is also true, as shown by Todorčević and Veličković, thus yielding the 
following remarkable characterization of MAκ in purely combinatorial terms.

Theorem 3.5. [75, 3.3] MAκ holds iff every ccc poset of cardinality κ is σ-centered. Hence, MA is equivalent 
to the assertion that every ccc poset of size less than c is σ-centered.

It thus follows that MAκ is equivalent to the statement that diagram (3.1) above collapses almost com-
pletely for partial orderings of size less than or equal to κ.

In the case of κ = ℵ1, Todorčević-Veličković [75] give a further characterization of MAκ, also purely in 
terms of chain conditions. Namely,

Theorem 3.6. [75, 3.4] MAℵ1 holds iff every uncountable ccc poset has an uncountable centered subset.

As a corollary, using Theorem 3.3, one then has the following characterization of MAℵ1 :

Corollary 3.7. [75] MAℵ1 holds iff every ccc poset has precalibre-ℵ1.

The following question is, however, still open:

Question 3 (Todorčević). Is MAℵ1 equivalent to the assertion that every ccc poset has property K?

Some positive results have been obtained in [48] and [49]; this will be revisited in Sections 4.6, 4.7 and 
4.8 below.

It is not known either if in the characterization of MAκ given by Theorem 3.5 σ-centered can be weakened 
to σ-linked. Namely,

Question 4. [75, 3.5] Does the assertion that every ccc poset of cardinality κ is σ-linked imply MAκ?

4. The dividing line

Returning to [40], the authors draw a dividing line between the many consequences of MA + ¬CH by 
classifying them into “two categories: those that straightforwardly imply Suslin’s Hypothesis, and those that 
do not. [...] Among the latter are various combinatorial propositions concerning sets of natural numbers. 
[...] A typical one is [p > ℵ1].” Then they explain the motivation of their paper by pointing out that “A 
number of mathematicians have wondered whether these combinatorial consequences of Martin’s Axiom are 
equivalent to it. We shall show that they are not, by establishing that they do not imply Suslin’s Hypothesis.” 
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Since their main result is that MA(K) + ¬CH is consistent with the existence of a Suslin tree, they seem 
to be implicitly asserting that the consequences of MA + ¬CH that do not imply the SH are those that 
follow from MA(K) + ¬CH. Also, Fremlin [25, p. 125] says: “there is to my mind a real difference in the 
character of the results which involve mK [i.e., MA(K)] which separates them from those which need the 
full strength of m [i.e., MA].” In this vein, we shall explore in this section the “dividing line” between the 
largest fragment(s) of MAℵ1 that does not imply the SH and full MAℵ1 .

The fragment MA(K) does yield many of the best known consequences of full MA, e.g., the additivity 
of measure and category, 2κ = 2ℵ0 for all uncountable κ < c, p = c, b = c, the existence of a non-free 
Whitehead group [58] (see also [25, 34]), etc. But some important consequences of MAℵ1 do not follow from 
MAℵ1(K), most notably the SH. We shall next look at some of them in order to give a finer appraisal of 
fragments of MAℵ1 lying strictly in-between MAℵ1(K) and MAℵ1 .

4.1. Specializing Aronszajn trees

The assertion that Every Aronszajn Tree is Special (EATS) is by itself an interesting fragment of MAℵ1

which implies the SH. Since the standard poset PT that specializes an Aronszajn tree T is powerfully-
ccc, MAℵ1(Powerfully-ccc) implies EATS. A natural question is how strong is the fragment MAℵ1(σ-
centered)+EATS in comparison to other fragments of MAℵ1 . The naturalness of the question came as 
a result of the Harrington-Shelah [32] proof that if ℵ1 is accessible to reals (i.e., there exists a real number 
x such that the cardinal ℵ1 in the model L[x] is equal to the real ℵ1), then MAℵ1 implies that there exists 
a Δ1

3(x) set of real numbers that does not have the Baire property. The hypothesis that ℵ1 is accessible to 
reals is necessary, for if ℵ1 is inaccessible to reals and MAℵ1 holds, then ℵ1 is actually weakly-compact in L
([32]), and Kunen showed that starting from a weakly compact cardinal one can force to get a model where 
MAℵ1 holds and all projective sets of reals have the Baire property. In [3], using Todorčević’s ρ-functions 
([66,73]), it was shown that MAℵ1(σ-centered) + EATS is sufficient to produce a Δ1

3(x) of real numbers 
without the Baire property, assuming ℵ1 = ℵL[x]

1 , which prompted the interest in the question of how strong 
is the fragment MAℵ1(σ-centered) + EATS, and in particular if it implies MAℵ1(σ-linked). The answer is 
negative, as observed by Chodounsky-Zapletal (see [21]), since a finite-support iteration of σ-centered posets 
combined with the forcing that specializes Aronszajn trees has the Y -cc property (see section 4.10 below), 
and therefore does not add random reals. A stronger negative answer to the question is given in [16] by 
showing that a fragment of MAℵ1 that includes MAℵ1(σ-centered), and even MAℵ1(K3), and implies EATS, 
does not imply MAℵ1(σ-linked). The fragment is the restriction of MAℵ1 to posets that have the following 
property:

Definition 4.1 ([16]). For n ≥ 2, let Prn(P ) mean that P is a partial ordering that has property Prn. 
Namely, if pε ∈ P , for all ε < ℵ1, then there is a sequence ū = 〈uξ : ξ < ℵ1〉 of pairwise-disjoint finite 
subsets of ℵ1 such that if ξ0 < . . . < ξn−1, then there exist εl ∈ uξl , for l < n, such that {pεl : l < n} have 
a common lower bound.

Clearly, Prn(P ) implies that P is ccc, and Prn+1(P ) implies Prn(P ). Also, note that if P has property 
Kn, then Prn(P ): for given a subset {pε : ε < ℵ1} of P , there exists an uncountable X ⊆ ℵ1 such that 
{pεl : l < n} has a common lower bound, for every ε0 < . . . < εn−1 in X, so we can take uξ to be the 
singleton that contains the ξ-th element of X. Hence, if P has precalibre-ℵ1, then Prn(P ) holds for every 
n ≥ 2. The following questions about the Prn property are still open:

Question 5. Suppose P has property Prn. Does P × P have property Prn?

Question 6. Does MAℵ1(Powerfully-ccc) imply MAℵ1(Prn)?
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In [16] it is shown that if T is an Aronszajn tree and PT is the poset that specializes T with finite 
conditions, then Prn(PT ) holds for every n ≥ 2. Hence, MAℵ1(∀n(Prn)) implies EATS, and therefore the 
SH. Let us mention that in [70] Todorčević proves that the principle K2, namely the assertion that every 
ccc poset has property K (see section 4.6) implies EATS, and it is quite possible that the poset used in the 
proof has property Prn, all n ≥ 2.

As shown in [16], forcing iterations with finite support and of any length of forcing notions with property 
Prn have property Prn. Thus, MA(Prn) +¬CH can be forced in the usual way by a poset that has property 
Prn.

Even though every poset that is σ-n-linked for every n has property Prn for every n, and therefore 
MAκ(∀n(Prn)) implies MAκ(∀n(σ-n-linked), we have the following non implication:

Theorem 4.2. [16] For each n ≥ 2, ZFC plus MAℵ1(Prn+1) does not imply MAℵ1(σ-n-linked).

In particular, MAℵ1(Pr3) does not imply MAℵ1(σ-linked). Since MAℵ1(Pr3) implies both MAℵ1(K3)
and EATS, Theorem 4.2 shows that it does not even imply MAℵ1(σ-n-linked), for any n. However, the 
following questions are open:

Question 7. Does MAℵ1(K) + EATS imply MAℵ1(Productively-ccc)?

Question 8. Does MAℵ1(Pr2) imply MAℵ1(Productively-ccc)?

The fragment MAℵ1(Pr2) implies not only EATS, but also other consequences of MAℵ1 that do not 
follow from MAℵ1(K), such as the non existence of destructible (ω1, ω∗

1)-gaps.

4.2. Making gaps indestructible

For f, g ∈ ωω, we let f <∗ g if f(n) < g(n) for all but finitely many n.

Definition 4.3. For ordinals δ and γ, a (δ, γ∗)-pregap in 〈ωω, <∗〉 is a family 〈(gα, fβ) : α < γ, β < δ〉 such 
that for α < α′ < δ, β < β′ < γ we have that gα <∗ gα′ <∗ fβ′ <∗ fβ .

An h ∈ ωω is said to split the pregap 〈(gα, fβ) : α < γ, β < δ〉 if for all α < γ, β < δ, gα <∗ h <∗ fβ . A 
(δ, γ∗)-pregap which is not split by any h ∈ ωω is a (δ, γ∗)-gap.

In 1909 Hausdorff famously constructed a (ω1, ω∗
1)-gap, in ZFC.

There is a natural forcing notion, PG, that splits an (ω1, ω∗
1)-pregap G = 〈(gα, fα) : α < ω1〉: conditions 

are finite sequences (α0, ..., αn, s) where αi ∈ ω1, all i ≤ n, s ∈ ω<ω, and such that for every k ≥ dom(s), 
max{gαi

(k) : i ≤ n} ≤ min{fαi
(k) : i ≤ n}.

If p = (α0, ..., αn, s), q = (β0, ..., βm, t) are conditions, then p ≤ q iff {α0, ..., αn} ⊇ {β0, ..., βm}, s ⊇ t, 
and for every k ∈ dom(s) \ dom(t), max{gβi

(k) : i ≤ n} ≤ t(k) ≤ min{fβi
(k) : i ≤ n}.

If H is P -generic over V , then in V [H], h =
⋃
{s : (α0, ..., αn, s) ∈ H, some (α0, ..., αn)} splits G. 

Moreover, H can be recovered from h.
An (ω1, ω∗

1)-gap G is said to be indestructible if it cannot be split in any ω1-preserving forcing extension. 
The next two lemmas and the ensuing definition are due to Kunen (see, e.g., [17] for proofs). The first 
lemma gives a sufficient condition for an (ω1, ω∗

1)-gap to be indestructible:

Lemma 4.4. Let G = 〈(gα, fα) : α < ω1〉 be an (ω1, ω∗
1)-pregap such that for every α < ω1, gα ≤ fα. i.e., for 

every n, gα(n) ≤ fα(n). Suppose that if α �= β, then gα � fβ or gβ � fα. Then, G is indestructible.

Lemma 4.5. If G = 〈(gα, fα) : α < ω1〉 is an (ω1, ω∗
1)-pregap, then PG is ccc iff G is destructible.
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It follows that an (ω1, ω∗
1)-gap G is indestructible iff it cannot be split in any ccc forcing extension.

An (ω1, ω∗
1)-gap can always be made indestructible by forcing with a ccc poset. Namely,

Definition 4.6. Given an (ω1, ω∗
1)-pregap G = 〈(gα, fα) : α < ω1〉, let QG be the poset of finite sequences 

〈(α0, g∗α0
, f∗

α0
), .., (αn, g∗αn

, f∗
αn

)〉 such that:

(1) The αi are ordinals < ω1.
(2) Each g∗αi

, and each f∗
αi

, is a finite sequence with the property that if one modifies gαi
, fαi

by g∗αi
, f∗

αi

to get g′αi
, f ′

αi
, then for i �= j, g′αi

� f ′
αj

or g′αj
� f ′

αi
, and for all i, g′αi

≤ f ′
αi

.

The ordering is the reversed inclusion.

It follows from Kunen’s Lemma 4.4 that forcing with QG makes G indestructible, provided that ω1 is 
not collapsed.

If G is an (ω1, ω∗
1)-gap, then QG is ccc, in fact powerfully-ccc. Therefore, MAℵ1(Powerfully-ccc) implies 

that every (ω1, ω∗
1)-gap is indestructible. Note however that QG is not productively-ccc because QG × PG

is not ccc.
A destructible gap can be forced to exist (Laver [45]), and it can be constructed using a diamond sequence 

(Todorčević; see [22]). The existence of a destructible gap has many similarities with the existence of a Suslin 
tree. For instance, Todorčević has shown that a destructible gap is created by adding a Cohen real (see [64]): 
if c ⊆ ω is Cohen-generic over V , h is its increasing enumeration, and 〈(gα, fα) : α < ω1〉 is an (ω1, ω∗

1)-gap 
in V , then it is not very hard to see that 〈(gα ◦ h, fα ◦ h) : α < ω1〉 defines a destructible gap. Also, starting 
with a model in which there is a destructible gap G, if one forces MAℵ1(K) by iterating only posets with 
property K, then, by Lemma 4.5 and arguing as in [40] in the case of Suslin trees, in the forcing extension 
the gap G remains destructible. Thus, MAℵ1(K) does not imply that every (ω1, ω∗

1)-gap is indestructible.

4.3. More gaps under fragments of MA + ¬CH

Besides (ω1, ω∗
1)-gaps, which exist in ZFC, other types of gaps are (consistently) possible. We shall briefly 

describe some of the main known results establishing the effect of (fragments of) MA+¬CH on the existence, 
or non-existence, of such gaps. For a more detailed exposition of the results, with proofs, we refer the reader 
to Chapter 3 of Scheepers’ comprehensive survey article on gaps [57].

First, if κ is a regular cardinal greater than ℵ1, then by adding κ-many Cohen reals to a model of GCH 
one obtains a model in which c = κ, MA(Countable) + ¬CH holds, and the only gaps are (ω1, ω∗

1)-gaps 
and (ω1, ω∗)-gaps. The reason is that, as shown by Kunen in his Ph.D. thesis, in the model the ordinal ω2

cannot be linearly embedded into 〈ωω, <∗〉. However, as shown by Fremlin-Kunen [24] it is consistent for c
to be arbitrarily large and for all regular δ ≤ γ ≤ c with at least one of δ and γ uncountable, there exists a 
(δ, γ∗)-gap. So, starting with such a model, since the forcing for adding any number of Cohen reals preserves 
the gaps, one may add c-many Cohen reals and produce a model in which MA(Countable) holds, and for 
all regular δ ≤ γ ≤ c with at least one of δ and γ uncountable, there exists a (δ, γ∗)-gap.

While MA(Countable) has no significant effect on the existence or non-existence of gaps, the stronger 
MA(σ-centered) implies the existence of an (ω, c∗)-gap. Does MA(σ-centered), or even MA(σ-linked), have 
any other consequences for the existence of gaps?

The following result, communicated to us by the referee and included here with his permission, shows 
that finite-support iterations of σ-linked posets cannot destroy any (κ, λ∗)-gaps with κ and λ of uncountable 
cofinality. This answers Problem 5 of [57] in the positive. The argument uses an adaptation of Todorčević’s 
Ramsey-theoretic analysis of gaps, as in [69, Section 3].
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Theorem 4.7. Suppose G is a (κ, λ∗)-gap, where κ and λ have uncountable cofinality. Then G remains a gap 
after forcing with any finite-support iteration of σ-linked posets.

Proof. Let G = 〈(gα, fβ) : α < κ, β < λ〉. We may assume G is closed under finite modifications, i.e., if 
g ∈ ωω differs from some gα in only finitely-many places, then g = gα′ for some α′ < κ; similarly for the fβ , 
β < λ. Otherwise, we close G under such modifications.

Let X be the set of all pairs (g, f) ∈ G such that g ≤ f . Let K be the set of all pairs {(g, f), (g′, f ′)} ⊆ X

such that max(g, g′) � min(f, f ′).

Claim 4.8. In any forcing extension of V in which κ and λ have uncountable cofinality, the gap G is split if 
and only if there is a Y ⊆ X such that

(∗) [Y ]2 ∩K = ∅ and the projections of Y are cofinal and coinitial in G, respectively.

Proof of Claim. If h ∈ ωω splits G, then such a Y is easily found, since G is closed under finite modifications. 
Conversely, given a Y satisfying (∗), let Y0 and Y1 be the first and second projections of Y , respectively. 
For any f, g ∈ ωω, let

Γ(g, f) = min{n : g(m) < f(m) for all m ≥ n}.

Since κ and λ have uncountable cofinality, there are n, a cofinal A ⊂ Y0, and for every g ∈ A a coinitial 
Bg ⊆ Y1, such that Γ(g, f) = n for all g ∈ A and f ∈ Bg. Let ḡ be the minimum of A and define h ∈ ωω by 
letting h � n to be arbitrary, and for m ≥ n,

h(m) = min{f(m) : f ∈ Bḡ}.

Since [Y ]2 ∩K = ∅, it can now be easily checked that h splits G. �
Continuing with the proof of the theorem, suppose P is a finite-support iteration of σ-linked posets. Let 

us see, by induction on the length α of the iteration, that P does not force that G is split. Since P preserves 
cofinalities, it will suffice to show that P does not add any Y satisfying (∗) as in the Claim. If α is a successor 
ordinal, then we use the fact, which can be easily checked, that a σ-linked poset cannot add a Y satisfying
(∗) unless such a Y already exists. At a stage α limit of countable cofinality, let 〈αn : n < ω〉 be a sequence 
of ordinals cofinal to α, and suppose Y is added at stage α and satisfies (∗). Let Yn be the set of elements of 
Y whose membership is decided by a condition in Pαn

. Then Y =
⋃

n Yn. Since κ and λ have uncountable 
cofinality, there must be some n such that the projections of Yn are cofinal and coinitial in G. But since 
Yn satisfies (∗) and has been added at stage αn of the iteration, the gap G would be split at that stage, 
in contradiction to the inductive assumption. At a stage α limit of uncountable cofinality, if h ∈ ωω splits 
G, then since h is decided by countably-many conditions it must have been added at some stage before α, 
again contradicting the inductive assumption. �

The following two theorems answer in the positive Problems 9 and 10 of [57].

Theorem 4.9. It is consistent with ZFC plus MA(σ-linked) for c to be large and for all regular uncountable 
cardinals δ, γ ≤ c there exists a (δ, γ∗)-gap.

Proof. As in [57, Theorem 85], starting from a model of ZFC + GCH, one may force to make the continuum 
as large as desired and add a (δ, γ∗)-gap for all regular uncountable cardinals δ, γ ≤ c. Then one may force 
MA(σ-linked) by a finite-support iteration of length c of σ-linked posets. By Theorem 4.7, the iteration does 
not split any of the gaps added at the beginning. �
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Theorem 4.10. It is consistent with ZFC plus MA(σ-linked) for c to be large and for all regular cardinals 
δ ≤ γ ≤ c, if there exists a (δ, γ∗)-gap, then either δ = γ = ω1, or else δ = ω and γ = c.

Proof. Starting from a model of ZFC + GCH one may force via a finite-support iteration of σ-linked posets 
to make c as large as wanted and MA(σ-linked) hold. If ω < δ < γ, then arguing as in [57, Theorem 86], and 
using Theorem 4.7, in the forcing extension there are no (δ, γ∗)-gaps or (γ, δ∗)-gaps. Also, if ω1 < δ = γ, then 
there is no (δ, γ∗)-gap. Finally, by [57, proposition 79], if there is a (δ, γ∗)-gap, then either δ is uncountable, 
or γ = c. �

As for MA(K), Kunen showed it implies that for any (δ, γ∗)-gap, either δ = γ = ω1, or else c ∈ {δ, γ}. 
Moreover, MA(K) implies that (δ, c∗)-gaps exist for all cardinals ω1 < δ < c (see [57, Section 3.4.5]). This 
still leaves open the possibility of the existence of (ω1, c∗)-gaps and (c, c∗)-gaps. However, as shown by Kunen 
(see [57, Section 3.4.6]), even the full MA does not decide about the existence of such gaps. That is, the 
theories:

(1) ZFC + MA + There are neither (ω1, c∗)-gaps nor (c, c∗)-gaps,
(2) ZFC + MA + ¬CH + There are (ω1, c∗)-gaps and (c, c∗)-gaps

are both consistent, and in both cases the continuum can be arbitrarily large. However, the following appear 
to be still open:

Question 9. Is it consistent with ZFC + MA that there is a (ω1, c∗)-gap but no (c, c∗)-gaps?

Question 10. Is it consistent with ZFC + MA that there is a (c, c∗)-gap but no (ω1, c∗)-gaps?

4.4. Where MA first fails

A different kind of gaps are used by Kunen [42] to show that the least cardinal κ for which MAκ fails can 
be singular of cofinality ω1. By a result of Fremlin-Miller (see [25]) it cannot have cofinality ω. As in [25], 
let us denote this cardinal by m. While it is relatively easy to make m equal (by σ-centered forcing) to an 
arbitrary regular uncountable cardinal less than c, making it singular is harder since it cannot be achieved 
by forcing with a σ-centered poset (see [42]).

Kunen’s strategy is to fix any singular cardinal θ of cofinality ω1 and first add a non-linear (θ, θ)-gap 
G on 〈P(ω), ⊂∗〉 with specific properties (strong and locally split, defined in [42]). More precisely, for sets 
A, B ⊆ P(ω), we say that the pair (A, B) is a pregap if a ∩ b is finite for every a ∈ A and every b ∈ B. A 
subset c ⊆ ω splits (A, B) if a ⊆∗ c for all a ∈ A, and b ∩ c is finite for all b ∈ B. The pair is a gap if it 
cannot be split by any c. A (θ, θ)-gap is a gap (A, B) with A and B both of cardinality θ. The use of such a 
gap, instead of a linear (θ, θ∗)-gap as considered in the previous sections, appears to be necessary in order 
to guarantee that the poset that splits the gap is ccc. Then, given any regular λ > θ with 2<λ = λ, by a 
standard ccc iteration of length λ he forces c = λ and MA holds for posets of size less than θ as well as for 
posets P of size less than λ that have the θ-Knaster property (i.e., whenever {pα : α < θ} ⊆ P , there is 
X ⊆ θ such that {pα : α ∈ X} is linked). The property of being strong ensures that the gap G added at the 
beginning remains a gap after the iteration, and the property of being locally split ensures that the natural 
poset that splits G is ccc. Then in the resulting model, m = θ, because MA fails for that poset. However 
the following is still an open question:

Question 11. Is it consistent with ZFC that m is singular of cofinality greater than ω1?
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4.5. Ccc-productivity

Let C denote the principle asserting that the product of any two ccc posets is ccc. Since MAℵ1 implies 
that every ccc poset has precalibre-ℵ1 (Theorem 3.3), and one easily sees that every poset with property K
is productive-ccc, we have that C follows from MAℵ1 . Consistent counterexamples to C are the ccc posets 
due to Laver and Galvin (see [19, 7.13] or [76, 3.15]) assuming the CH, also the non powerfully-ccc posets 
obtained by adding either a Cohen or a random real ([55]), a Suslin tree T and its specializing poset PT , or 
the posets PG and QG associated to a destructible gap G. C is an important consequence of MAℵ1 which 
implies the SH and the non-existence of destructible gaps, and which seems to require the full strength of 
MAℵ1 , for it also implies, e.g., b > ω1 ([69]), cf(c) > ω1 ([67]), and that the Lebesgue measure cannot be 
extended to a countably-additive measure defined on all sets of reals ([67], see also [26, 7F and 4Oa]).

A further counterexample to C is provided by the existence of an entangled set of reals.

Definition 4.11. [1] A set of reals E is entangled if it is uncountable and for every n < ω and every s ∈ 2n, in 
every uncountable family F ⊆ En of increasing (under the usual ordering of the reals) and pairwise disjoint 
n-tuples we can find two x and y in F such that ∀i < n(xi < yi ↔ si = 0).

It is a folklore result that every uncountable set of Cohen or random reals is entangled, and Todorčević 
[67] showed that the CH implies the existence of an entangled set of reals. He also showed that if κ is 
a real-valued measurable cardinal, then for every λ < κ there is an entangled set of reals of cardinality 
λ ([67]; see also [26, 7F]). Moreover, Yuasa [83] showed that adding a Cohen real produces an entangled 
set of size c. Todorčević also gave, in 1989, a model of MAℵ1(Productively-ccc) plus EATS in which there 
exists an entangled set of reals. Now Todorčević [67] shows that the existence of an entangled set of reals 
of size κ implies that there are two ccc posets P0 and P1 of size κ whose product is not κ-cc, hence MAℵ1

implies that there are no entangled sets of reals of cardinality ℵ1 (see [3] for a proof of this fact and of 
Todorčević’s result). It follows that MAℵ1(Productively-ccc) plus EATS does not imply C. However, the 
following question remains conspicuously open and has generated much further work (see section 4.9):

Question 12. [48] Does C imply EATS?

4.6. The axioms Kn

Let us look next at the following weakenings of MAℵ1 , first considered as a question by Knaster and 
Szpilrajn (Problem 192 of the Scottish Book, from May 1941 (see [50])), which asks if there exists a topo-
logical space that is ccc but not Knaster. They observed that a negative answer implies the SH. For each 
n ≥ 2, let

Kn: Every ccc poset has property Kn.

Thus, K2 asserts that every ccc poset has property K. Clearly Kn+1 implies Kn, and one easily sees that 
K2 implies C.

Question 13. [48] Does C imply K2? Does it imply MAℵ1?

K2 implies EATS [70] and Kn+1 implies that every ccc poset of size ℵ1 is σ-n-linked [75]. Further, K3
implies the ω1-additivity of the Lebesgue measure and the Baire property [51], and also that 2ℵ0 = 2ℵ1

[75] (see also [69, 7.7]). Furthermore, it is claimed in [75], without proof, that K4 implies that every ladder 
system can be uniformized, and that every uncountable set of reals is a Q-set. Recall that a set of reals is a 
Q-set if it is uncountable and every subset of it is a relative Gδ set in the subspace topology. A longer list of 
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consequences can be found in [48]. See also [81,53] for some implications of K2 and K3 on ladder systems 
uniformization.

Todorčević and Veličković conjectured in [75, 2.9] that the answer to the following questions, which are 
still open, is negative.

Question 14. Does K2 imply K3? Does it imply MAℵ1?

Partial answers were given in [48]. Under the assumption that the Axiom of Determinacy holds in L(R), 
the authors show that one can force over L(R) to obtain a model of ZFC + SH, in which MAℵ1 holds for 
posets that are stable and unsplit (see [48] for the definitions), but in which K3 fails. However, it is not 
known if K2 holds in the model. An answer to Question 14 seems still far away, and in fact the following 
questions are also open.

Question 15. Does Kn for every n imply MAℵ1? Does Kn for some n imply MAℵ1?

The following weakening of Kn was considered in [28]:

Kn: Every powerfully-ccc poset has property Kn.

Gruenhage-Nyikos [28] show that K2 (which they call Axiom K) plus 2ℵ0 < 2ℵ1 give a positive answer to 
Katětov’s Problem [36], namely they imply that every compact space whose square is hereditarily normal 
(i.e., T5) is metrizable. However, it is not known if the assumption is consistent, that is,

Question 16. Is 2ℵ0 < 2ℵ1 plus K2 consistent?

But note that, as indicated above, Todorčević-Veličković [75] showed that 2ℵ0 < 2ℵ1 plus K3 is inconsis-
tent. See also section 5.7 below on the Larson-Todorčević [49] consistency proof of the positive solution to 
Katětov’s Problem.

4.7. MA as a Ramsey-type property

In [75], a partition of [S]n (i.e., the set of all n-elements subsets of S) or [S]<ω (i.e., the set of all finite 
subsets of S) into two pieces K0 and K1 is said to be ccc destructible if there is a ccc poset, P , that forces an 
uncountable 0-homogeneous set (i.e., there is a P -name Ẋ such that �P “Ẋ is uncountable and [Ẋ]n ⊆ K0
(or [Ẋ]<ω ⊆ K0, respectively)”.

It is easily seen that Kn is equivalent to the assertion that every ccc-destructible partition [ω1]n = K0∪K1
has an uncountable 0-homogeneous set.

The following theorem of Todorčević-Veličković yields a characterization of MAℵ1 as a Ramsey-type
property.

Theorem 4.12. [75] MAℵ1 holds iff for every uncountable set S and every ccc destructible partition [S]<ω =
K0 ∪K1 there exists an uncountable 0-homogeneous set.

A further and finer analysis of MA and some of its consequences in terms of Ramsey-type properties is 
carried out in [70] by considering ccc partitions, namely partitions of a set X of the form

[X]<ω = K0 ∪K1

where K0 contains all singletons of X and all subsets of its elements, and every uncountable subset of K0
contains two elements whose union is also in K0 (i.e., the poset whose conditions are finite 0-homogeneous 
sets, ordered by ⊇, is ccc). Let



20 J. Bagaria / Annals of Pure and Applied Logic 175 (2024) 103330
ω1
ccc−−→ (ω1)<ω

denote the assertion that every ccc partition [ω1]<ω = K0 ∪K1 has a 0-homogeneous set of size ω1, i.e., a 
subset A of ω1 of size ω1 such that [A]<ω ⊆ K0. It is not hard to see that ω1

ccc−−→ (ω1)<ω is equivalent to the 
statement that every ccc poset has precalibre-ℵ1 (see [70]), and therefore equivalent to MAℵ1 (Corollary 3.7).

Further, Todorčević [69, 7.0] points out that, as a consequence of [75], MA is equivalent to the statement 
that for every set X of size less than c and every ccc partition [X]<ω = K0 ∪ K1, S can be covered by 
countably-many 0-homogeneous sets.

In [69], Todorčević also considers the following Ramsey-type statements:

H: For every uncountable set X and every ccc partition [X]<ω = K0 ∪ K1 there exists an uncountable 
0-homogeneous subset, i.e., an uncountable subset A of X such that [A]<ω ⊆ K0.

K ′
n : For every uncountable set X and every ccc partition [X]n = K0 ∪ K1 there exists an uncountable 

0-homogeneous subset, i.e., an uncountable subset A of X such that [A]n ⊆ K0.

To avoid confusion, we use the notation K ′
n (as in [79]), instead of Kn as in [69].

The known consequences of Kn pointed out in subsection 4.6 are also consequences of K ′
n .

In order to clarify the difference between the axioms Kn and K ′
n , let us say that an n-dimensional 

partition is strongly ccc destructible if the poset of finite 0-homogeneous sets if ccc. On the one hand, 
strongly ccc destructible partitions are ccc destructible (assuming K0 is uncountable). On the other hand, if 
Q is powerfully-ccc, X ⊆ Q is uncountable, and K0 consists of all n-element subsets of X with lower bound, 
then the poset of finite 0-homogeneous sets is ccc and some condition forces that X contains an uncountable 
0-homogeneous set. That is, if every n-dimensional strongly ccc destructible partition has an uncountable 
0-homogeneous set, then every powerfully-ccc poset has property Kn. The axiom “Every powerfully-ccc 
poset has property K” (i.e., K2 above) was first considered in [28], where it is called “Axiom K”. Note that 
Axiom K and C are complementary, in the sense that C plus Axiom K are equivalent to K2.

Let us observe that one may redefine the notion of a ccc partition [X]<ω = K0 ∪K1 as follows: for all 
sequences aξ ∈ [X]<ω (ξ < ω1), either some [aξ]<ω � K0, or for some ξ �= ξ′, [aξ∪aξ′ ]<ω ⊆ K0. And similarly 
for partitions [X]n = K0 ∪ K1, for a fixed n < ω. Under this redefinition one gets the same equivalences 
as before. Namely: MAℵ1 is equivalent to the assertion that every ccc partition [ω1]<ω = K0 ∪K1 has an 
uncountable homogeneous set (i.e., an uncountable set that is either 0-homogeneous or 1-homogeneous.) 
Also, H (resp. K ′

n) is equivalent to the assertion that for every uncountable set X and every ccc partition 
[X]<ω = K0 ∪K1 (resp. [X]n = K0 ∪K1) there exists an uncountable homogeneous subset.

We then have the following implications:

MAℵ1 ≡ H

K ′
n+1 Kn+1

K ′
n Kn

K ′
2 K2

C

(4.1)

Question 17. Can any of the implications above be reversed (in ZFC)?
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Question 18. Does K ′
2 imply C, or conversely?

Question 19. Does K ′
2 imply MAℵ1?

4.8. Rectangle refining properties

We turn next our attention to the following property of partitions, reminiscent of property K, which was 
introduced by Larson-Todorčević and was motivated by their positive solution to Katětov’s Problem.

Definition 4.13. [49, 4.1] A partition [ω1]2 = K0 ∪K1 satisfies the rectangle refining property (rec) if for all 
uncountable I, J ⊆ ω1 there are uncountable I ′ ⊆ I and J ′ ⊆ J such that {{α, β} : α ∈ I ′, β ∈ J ′, α <

β} ⊆ K0. Equivalently, for all uncountable A, B ⊆ [ω1]<ω of pairwise disjoint sets there are uncountable 
A′ ⊆ A, B′ ⊆ B such that {{α, β} : α ∈ a, β ∈ b} ⊆ K0, for all a ∈ A′, b ∈ B′.

Larson-Todorčević [49] show that the fragment K ′
2 (rec) of K ′

2 obtained by restricting K ′
2 to partitions 

with the rectangle refining property, together with the assumption that there are no Q-sets, imply a positive 
solution to Katětov’s Problem [36], namely: every compact space whose square is T5 is metrizable. Moreover, 
they show that K ′

2 (rec) can hold after forcing with a Suslin tree ([49, Theorem 4.2]), and that after forcing 
with a Suslin tree there are no Q-sets (see [48, Theorem 6.1]). The assumption of the non-existence of 
Q-sets is needed for a positive solution to Katětov’s Problem, as [28] shows that the existence of a Q-set (a 
consequence of K4 [75]) gives a counterexample.

A coherent tree ([49]) is a subtree S of ω<ω1 such that the set {ξ ∈ dom(s) ∩ dom(t) : s(ξ) �= t(ξ)} is 
finite for all s, t ∈ S. The Suslin’s Axiom, SAω1 , defined in [49], asserts that there is a coherent Suslin tree S
and MAℵ1(Γ) holds for Γ being the class of ccc posets P such that P ×S is ccc. Larson-Todorčević [49, 4.2]
then show that if SAω1 holds, witnessed by S, then K ′

2 (rec) holds after forcing with S over V , so Katětov’s 
Problem has a positive answer in the forcing extension. The following question is left open:

Question 20. Can K2 hold after forcing with a Suslin tree?

This question, together with the question of whether K2 implies MAℵ1 (Question 15) motivated much 
of the subsequent work by Yorioka ([78,79]), which we shall describe next.

4.9. Between C and MAℵ1

Yorioka considers fragments of MAℵ1 for posets that satisfy certain properties related to the rec property 
for partitions (4.13). In particular he defines in [78] the following property of posets:

Definition 4.14. [78, 2.1] A poset P has the anti-rectangle refining property (a-rec) if it is uncountable and 
for all uncountable I, J ⊆ P there are uncountable I ′ ⊆ I, J ′ ⊆ J such that p and q are incompatible for 
all p ∈ I ′ and q ∈ J ′.

Examples of posets with the a-rec property are Aronszajn trees, with the reversed ordering, and the 
forcing that splits a gap ([78]).

Yorioka [78, 2.2] shows that if P is ccc and a-rec, then the poset a(P ) of all finite antichains of P , ordered 
by ⊇, is also ccc. Moreover, if it has no atoms (i.e., every condition can be extended), then forcing with 
a(P ) destroys the ccc property of P .

The following fragments of MAℵ1 are studied in [78]:

MAℵ1(a(a-rec)) is the restriction of MAℵ1 to a(a-rec) posets, namely to posets a(P ) such that P has the 
a-rec property.
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K2(a(a-rec)) denotes the statement that for every poset P with the a-rec property, a(P ) has property K.

¬ C(a-rec) denotes the statement that no poset with the a-rec property is ccc.

As shown in [78], ¬ C(a-rec) implies the SH and that all gaps are indestructible. Also, both C and 
K2(a(a-rec)) imply ¬ C(a-rec). Moreover, K ′

2 (rec) is equivalent to K2(a(a-rec)). Further, it is consistent 
that MAℵ1(a(a-rec)) holds and there exists an entangled set of reals, hence MAℵ1(a(a-rec)) does not imply 
C ([78, 4.6]). The following diagram summarizes the known implications:

MAℵ1

MAℵ1(a(a-rec))

K2(a(a-rec)) K 2

C

¬C(a-rec)

(4.2)

However, no answers to the following questions are known:

Question 21. Does K2(a(a-rec)) imply K2, or C?

Question 22. Can any of the arrows in the diagram above be reversed?

In [79], Yorioka defines some further properties of ccc posets also related to the rec property of partitions:

Definition 4.15. [79] A poset P has the anti-R1,ℵ1 property if it is uncountable, and for every sufficiently 
large regular cardinal κ and every countable N ≺ H(κ) with P ∈ N , for every I ∈ [P ]ℵ1 ∩ N and every 
p ∈ P \N there exists I ′ ∈ [I]ℵ1 ∩N such that every element of I ′ is incompatible with p.

Definition 4.16. [79] Let FSCO be the collection of all uncountable posets whose domain is a subset of 
[ω1]<ω closed under subsets, and whose ordering relation is ⊇.

A poset P in FSCO has the rectangle refining property if for any pair of uncountable subsets I and J of 
P , if I ∪ J forms a Δ-system, then there are uncountable I ′ ⊆ I, J ′ ⊆ J such that every member of I ′ is 
compatible with every member of J ′.

Definition 4.17. [79,80] A poset P in FSCO has property R1,ℵ1 if for every large-enough regular cardinal κ
and every countable N ≺ H(κ) with P ∈ N , for every I ∈ [P ]ℵ1 ∩ N that forms a Δ-system with root r, 
and every p ∈ P \N with p ∩N = r, there exists I ′ ∈ [I]ℵ1 ∩N such that every element of I ′ is compatible 
with p.

Posets in FSCO with the refining rectangle property, or with property R1,ℵ1 are powerfully-ccc [79, 2.8]
and they do not add random reals [79, 5.4]. An ω1-tree has the anti-R1,ℵ1 property iff it is an Aronszajn 
tree [79, 2.5]. Note that if T is an Aronszajn tree, then the forcing PT that specializes T is in FSCO and is 
ccc. If P has the anti-R1,ℵ1 property, then a(P ) (the poset of all finite antichains of P ) has property R1,ℵ1

[79, 2.7]. The forcing notion Coll(ω, ω1) that collapses ω1 to ω with finite conditions is anti-R1,ℵ1 , and the 
forcing that adds ω1-many Cohen reals has both the rectangle refining property and property R1,ℵ1 [79, 
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2.9]. A pregap is a gap iff the poset that splits it is anti-R1,ℵ1 [79, 3.2]. Also, the poset that adds a bounding 
function f ∈ ωω to any <∗-increasing ω1-sequence of functions in ωω is ccc and anti-R1,ℵ1 [79, 3.4].

Let MAℵ1(rec) be MAℵ1 restricted to posets in FSCO with the rectangle refining property, and let 
MAℵ1(R1,ℵ1) be the restriction to posets in FSCO that have property R1,ℵ1 . Both axioms MAℵ1(rec) and 
MAℵ1(R1,ℵ1) imply EATS [79, 4.2].

Yorioka [79] also considers the restrictions Kn(rec) and Kn(R1,ℵ1) of Kn to posets that have the rectangle 
refining property, or have property R1,ℵ1 , respectively. Also, he considers the statement ¬ C(a-rec) asserting 
that there are no ccc posets with the anti-rectangle refining property, and the statement ¬ C(a-R1,ℵ1)
asserting that no ccc poset is anti-R1,ℵ1 . The latter implies the SH, every gap is indestructible, and b > ω1
[79, 4.5]. The following diagram summarizes the known implications:

MAℵ1(Powerfully-ccc)

MAℵ1(R1,ℵ1) MAℵ1(rec)

K2(R1,ℵ1) K2 K2(rec)

C

¬C(a-R1,ℵ1) ¬C(a-rec)

(4.3)

The axiom MAℵ1(R1,ℵ1) is consistent with the existence of an entangled set, and therefore it does not 
imply C [79, 4.9]. Also, it is consistent that Kn(R1,ℵ1) holds for all n and MAℵ1(R1,ℵ1) fails [79, 6.2]. 
K2(R1,ℵ1) does not imply EATS, and therefore it does not imply K2 [79, 6]. However, it is not known 
if any of all other implications in diagrams (4.2) and (4.3) are reversible. The following is also open (cf. 
Question 12):

Question 23. [79, 7.4] Does ¬ C(a-rec) imply EATS?

Yorioka [82] (this volume) shows that the fragment K<ω(R1,ℵ1) (i.e., every poset with the property R1,ℵ1

has precalibre-ℵ1) does not imply EATS, while the fragment K3(recW ∩ Y−cc) does imply EATS (see [82, 
Definition 2.8], and the next subsection for the definition of Y -cc).

4.10. More fragments of MA

Inspired by Yorioka’s Definition 4.15, Chodounský-Zapletal [21] define and study the following property 
of ccc posets and its corresponding fragments of MA.

Definition 4.18. A poset P satisfies Y -cc if for every regular uncountable cardinal θ, every countable elemen-
tary submodel M � Hθ containing P , and every condition q ∈ P , there is a filter F ∈ M on the completion 
RO(P ) such that {p ∈ RO(P ) ∩M : p ≥ q} ⊆ F .

As shown in [21, 2.1], every σ-centered poset is Y -cc, and every Y -cc poset is ccc. Besides σ-centered 
posets, many other interesting ccc posets are Y -cc. One example is the poset for specializing an Aronszajn 
tree. Thus, MAℵ1(Y -cc) implies EATS, and therefore the SH. Other examples of Y -cc posets are the poset 
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for making an (ω1, ω∗
1)-gap indestructible (see subsection 4.2), or Todorčević’s posets used for the resolution 

of the Horn-Tarski problem (see [21] for more examples). Y -cc posets do not add random reals or ω1-chains 
into ω1-trees ([21, 2.7, 2.9]). Hence, the Random poset is an example of a σ-n-linked poset, all n, that is not 
Y -cc; and if there exists a Suslin tree T , then the forcing PT that specializes it is an example of a Y -cc poset 
that is not productively-ccc. The Y -cc property is preserved under finite support iterations, of any length. 
So, MA(Y -cc) + ¬CH can be forced in the usual way via a Y -cc poset hence without adding any random 
reals, and therefore in the forcing extension MAℵ1(σ-linked), and in fact even MAℵ1(Random), fails.

The following two questions about Y -cc posets remain open:

Question 24. Is every Y -cc poset powerfully-ccc?

Question 25 ([21]). Suppose P and Q are Y -cc and P ×Q is ccc. Is P ×Q Y -cc?

Since, as remarked above, MA(Y -cc) +¬CH does not even imply MAℵ1(Random), and the Random poset 
has property Prn for every n, we have that MA(Y -cc) +¬CH does not imply MAℵ1(∀n(Prn)). However, it 
is not known if the reverse implication holds. Even more:

Question 26. Does MAℵ1(Pr2) imply MAℵ1(Y -cc)?

The following diagram shows the position of the properties Y -cc and Prn, n ≥ 2, as well as the property 
∀n(Prn), namely the property of being Prn for all n ≥ 2, in the expanded version of diagram (3.1).

Countable

σ-centered Calibre-ℵ1

∀n(σ-n-linked) Y -cc Precalibre-ℵ1

σ-n + 1-linked ∀n(Kn)

σ-n-linked Kn+1 ∀n(Prn)

Kn Prn+1

Productively-ccc Prn

Powerfully-ccc

ccc

(4.4)

(We have omitted the arrow Y -cc ⇒ ccc to avoid cluttering.) None of the arrows in the diagram above 
can be reversed and no other arrows are possible, except maybe for the implication Y -cc ⇒ Powerfully-ccc 
(Question 24 above), and the following:

Question 27. Does Prn for some n, or even ∀n(Prn), imply Powerfully-ccc?
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The corresponding expanded version of diagram (3.2) for fragments of MA now becomes:

MAκ

MAκ(Powerfully-ccc)

MAκ(Productively-ccc) MAκ(Prn)

MAκ(Kn) MAκ(Prn+1)

MAκ(σ-n-linked) MAκ(Kn+1) MAκ(∀n(Prn))

MAκ(σ-n + 1-linked) MAκ(∀n(Kn))

MAκ(∀n(σ-n-linked)) MAκ(Y -cc) MAκ(Precalibre-ℵ1)

MAκ(σ-centered) MAκ(Calibre-ℵ1)

MAκ(Countable)

(4.5)

(Again, we omitted the implication MAκ ⇒ MAκ(Y -cc) to avoid cluttering.) None of the arrows can be 
reversed, and no other arrows are possible, except maybe for the ones asked in questions 1, 2, 8, and 9.

5. MA for definable posets

Some of the most important consequences of MA for the continuum, such as the additivity of Lebesgue 
measure or the additivity of category, follow from the restriction of MA to posets that are Borel, i.e., the 
set of conditions is a Borel subset of the reals, and the ordering and the incompatibility relation are Borel 
subsets of the plane. In this section we shall consider fragments MA(Γ) of MA for classes Γ of definable 
ccc posets. In particular, for Γ being the class of ccc posets that are Borel (i.e., Δ1

1), analytic (i.e., Σ1
1), 

or belong to some projective class (i.e., the classes Σn, Πn, or Δ1
n, n < ω), as well as the corresponding 

lightface classes Σ1
n, Π1

n, Δ1
n. We shall also consider the class Proj-ccc of all projective ccc posets, the class 

L(R)-ccc of all ccc posets that belong to L(R), and the class L(R) ∩P(R)-ccc of all ccc posets on the reals 
which belong to L(R). One may also consider MA for any of these classes restricted to posets satisfying one 
of the strong ccc properties considered in previous sections.

If Γ is one of the classes of definable ccc posets mentioned above, by a Γ-poset we mean a triple P =
〈P,≤P ,⊥P 〉, where ≤P is a Γ-subset of ωω × ωω, P = field(≤P ), 〈P,≤P 〉 is a partial order, and ⊥P is a 
Γ-subset of ωω × ωω contained in P × P such that for every x, y ∈ P , x ⊥P y iff x, y are incompatible.

An a priori difficulty in obtaining a model of MAℵ1(Γ), for a given definable class Γ of ccc posets, in 
a way similar to the usual proof of the consistency of MAℵ1 in which one iterates only ccc posets of size 
ℵ1, is that MAℵ1(Γ) may not be provably equivalent to MAℵ1(Γ) restricted to posets of cardinality ℵ1. For 
instance, in a model of set theory in which every projective set of reals has the perfect set property, every 
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projective uncountable set has size c. A second and more important difficulty with iterating only posets that 
are forced to be in the class Γ is that, e.g., projective formulas fail to be absolute, in general, for transitive 
models of ZF. So, if we only force with posets that are defined by some projective formulas at some stage 
of the iteration, given a projective poset in the final generic extension, there is no guarantee that we have 
forced with this same poset at some stage of the iteration. However, one can arrange the iteration in such 
a way so that the projective formulas are absolute for sufficiently many models along of iteration. Thus, we 
have the following:

Theorem 5.1. [9] (GCH) Let κ be a regular uncountable cardinal that is not the successor of a cardinal of 
countable cofinality. Then, there is a ccc iteration of projective posets such that whenever G is a generic 
filter for the iteration, V [G] |= ”MA(Proj-ccc) + 2ℵ0 = κ.

The following level-by-level version also holds:

Theorem 5.2. [9] (GCH) Let κ be a regular uncountable cardinal that is not the successor of a cardinal 
of countable cofinality. Then, for every n ≥ 1, there is a ccc iteration of Σ1

n (Π1
n, Δ1

n) posets such that 
whenever G is a generic filter for the iteration, V [G] satisfies MA(Σ1

n) (MA(Π1
n), MA(Δ1

n)), and 2ℵ0 = κ.

The axiom MA(Σ1
1), also known as MA(Suslin), was first studied in [35], where they notice it implies the 

additivity of the Lebesgue measure. Since all the consequences of MA(Suslin) that appear in [35] turned out 
to be more or less direct consequences of the additivity of measure, the authors asked if the additivity of 
measure actually implies MA(Suslin). The question was answered in [2], where a model of ZFC is given in 
which the additivity of measure holds, yet MAℵ1 fails for a poset of very low degree in the Borel hierarchy. 
However, the following question remains open:

Question 28. [2] Does the additivity of the Lebesgue measure imply MA for the class of Suslin posets that 
are σ-linked?

Since, as shown in [2], MAκ(Amoeba) is equivalent to the κ-additivity of the Lebesgue measure, we can 
ask the following:

Question 29. Does MAκ(Amoeba) imply MAκ for the class of Suslin posets that are σ-linked? Does it imply 
MAκ for the class of Suslin posets that are σ-n-linked for all n?

As shown by Shelah (see [35], or [2] for details), every Suslin ccc poset is productively-ccc. Therefore, 
MAκ(Productively-ccc) implies MAκ(Suslin). However, using an example of a Borel ccc poset that is not σ-
linked below any condition, it is shown in [3] (see also [14]) that MA(σ-linked) does not imply MAℵ1(Borel).

As expected, MA(Proj-ccc) is much weaker than full MA:

Theorem 5.3. [9] Suppose that V satisfies the CH and 2ℵ1 = ℵ3. Then there is a finite-support iteration of 
projective ccc posets that forces MA(Proj-ccc) + 2ℵ0 = ℵ2 + ℵ3 ≤ 2ℵ1 . Thus, MA(σ-centered) fails in the 
resulting model.

Under the assumption of the existence of a weakly compact cardinal, one has the following general result 
showing that MA(Proj) is compatible with the existence of many uncountable objects whose existence is 
forbidden under MA.

Theorem 5.4. [9] Let κ be a weakly compact cardinal and let V0 = L[C], where C is a Coll(ℵ0, < κ)-generic 
filter over L. Suppose that ϕ(x) is a formula of the language of set theory such that:
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(1) For every X ⊆ ωω, there are posets PX
0 , . . . , PX

n such that

ZFC � “ϕ(X) ↔ PX
0 , . . . PX

n are ccc posets”.

(2) For every X ⊆ ωω, ϕ(X) is preserved under direct limits of finite support iterations of ccc forcing 
notions.

Moreover, suppose that there exists a ccc generic extension V1 of V0 and A ∈ V1 such that V1 |= ϕ(A). Then 
there is a ccc poset P ∈ V1 such that whenever G is a P -generic filter over V1,

V1[G] |= MA(Proj-ccc) + ϕ(A).

A number of consequences follow (see [9]), some of which are summarized in the following corollary.

Corollary 5.5. Con(ZF + ∃κ(κ is a weakly compact cardinal)) implies Con(ZFC + MAℵ1(Proj) + There 
exists a Suslin tree + There is a destructible gap + There is an entangled set of reals).

Woodin observed that no large cardinal assumption is necessary to obtain a model of ZFC +
MAℵ1(Proj-ccc) + There exists a Suslin tree. The model can be produced as follows: Force over L with 
Jech’s σ-closed poset P for adding a Suslin tree T , so that in the generic extension L[G] there are no new 
reals. Then the iteration P of projective ccc posets from Theorem 5.1 that forces MAℵ1(Proj-ccc), as de-
fined in L, is the same as the one defined in L[G]. Thus, if H is generic over L[G] for this iteration, then 
L[G][H] |= MAℵ1(Proj-ccc). Now note that since P ∗ Ṫ is also σ-closed, and no σ-closed poset can destroy 
the ccc-ness of a poset, if g is T -generic over L[G], then the iteration P is still ccc in L[G][g]. It now easily 
follows that T is ccc in L[G][H], and so L[G][H] |= “T is a Suslin tree”.

The axiom MAℵ1(Σ1
1) does not imply MAℵ1(Σ1

2), as shown by the following argument, due to Todorčević: 
Let L[H] be the generic extension of L for the iteration of Σ1

1 ccc posets that forces MAℵ1(Σ1
1). Let G be 

a destructible gap in L which is Δ1 definable over HC. Since Σ1
1 posets are indestructible-ccc ([35]), G

remains a destructible gap in L[H]. Hence, G is a Σ1
2 destructible gap in L[H]. But the poset that makes 

the gap indestructible has the same complexity as G. So, L[H] �|= MAℵ1(Σ1
2). However, the following is an 

open question:

Question 30. Does MAℵ1(Δ1
1) (namely MAℵ1 for Borel posets) imply MAℵ1(Σ1

1)?

Some results, distinguishing between fragments of MA for the different levels of the projective hierarchy, 
are proved in [10] under the assumption of the existence of an appropriate “definable” version of a weakly 
compact cardinal.

Recall that a Π1
1 sentence of the language of set theory is a sentence of the form ∀Xϕ(X), where ϕ(X)

is a first-order formula of the language of set theory expanded with the predicate symbol X.

Definition 5.6. [10,47] Let κ be a cardinal and n ∈ ω. κ is Σn-weakly compact (Σn-w.c., for short), iff κ is 
inaccessible and for every R ⊆ Vκ which is definable by a Σn formula (with parameters) over Vκ and every 
Π1

1 sentence Φ, if

〈Vκ,∈, R〉 |= Φ

then there is some α < κ (equivalently, unboundedly-many α < κ) such that

〈Vα,∈, R ∩ Vα〉 |= Φ.
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We say that κ is Σω-w.c. if it is Σn-w.c. for every n < ω.

Leshem [47] proved that if κ is Mahlo, then the set of Σω-w.c. cardinals below κ is stationary. So, all 
these cardinals are, consistency-wise, below a Mahlo cardinal.

Theorem 5.7. [10] Let n ≥ 1, and suppose that there exists a Σn-w.c. cardinal in L. Then, there exists a 
poset P such that for every P -generic filter G over L,

L[G] |= MA(Σ1
n+1) ∧ ¬MA(Σ1

n+2).

The following questions are open:

Question 31. Is the assumption of the existence of a Σn-w.c. cardinal necessary in the theorem above?

Question 32. Does the conjunction MA(Σ1
2) ∧ ¬MA(Σ1

3) have any large-cardinal strength?

6. On productively-ccc posets in L(R)

It is a folklore result that if κ is a weakly compact cardinal, and C is a Coll(ℵ0, < κ)-generic filter over 
V , then in V [C] there is no Aronszajn tree on ω1 that belongs to L(R). For if T is such a tree, then it is 
definable using only reals and ordinals as parameters, and therefore, for some α < κ, T ∈ V [Cα]. But since 
in V [Cα], κ is a weakly compact cardinal, T has a branch in V [Cα], and therefore also in V [C]. We shall see 
next that in V [C] every ccc poset in L(R) is productively-ccc. The result hinges on the following stronger 
form of a result due to Kunen (see [9]).

Theorem 6.1. Let κ be a weakly compact cardinal and let C be a Coll(ℵ0, < κ)-generic filter over V . Suppose 
G is P -generic over V [C] for some ccc poset P . Then there is an elementary embedding

j : L(R)V [C] → L(R)V [C][G]

that is the identity on the ordinals, hence also on the reals.

The following theorem is a strengthening of a similar result in [9, Theorem 40] for projective ccc posets, 
which can be proved using similar arguments and Theorem 6.1.

Theorem 6.2. Let κ be a weakly compact cardinal and let C be a Coll(ℵ0, < κ)-generic filter over V . Then, 
in V [C], every ccc poset that belongs to L(R) is productively-ccc.

Corollary 6.3. In V [C] there are no destructible gaps and no entangled sets of reals that belong to L(R).

Similar results hold for projective ccc posets, under weaker large-cardinal assumptions. Namely,

Theorem 6.4. [10] Let κ be a Σn-weakly compact cardinal (respectively, a Σω-weakly compact cardinal) and 
let C be a Coll(ℵ0, < κ)-generic filter over V . Then, in V [C], every Σn+1 ccc poset (respectively, every 
projective ccc poset) is productively-ccc.

Corollary 6.5. In V [C] there are no Suslin trees, no indestructible gaps, and no entangled sets of reals that 
are Σn+1 (respectively, that are projective).
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By results from Shelah-Woodin [63] (see also [5]), the conclusion of Theorem 6.2 also holds under the 
existence of a weakly compact Woodin cardinal. Namely,

Theorem 6.6. If there exists a weakly compact Woodin cardinal, then every ccc poset that belongs to L(R) is 
productively-ccc.

The above result shows that in the presence of a weakly compact Woodin cardinal, no examples of 
ccc non-productively-ccc posets can be found in L(R), and therefore MAκ(L(R)-Productively-ccc) implies 
MAκ(L(R)-ccc).

Similar results hold for L(A, R), for A a universally Baire set of reals, assuming the existence of a proper 
class of Woodin cardinals, or even for L(Γ∞, R), where Γ∞ is the class of all universally Baire sets of reals, 
assuming the existence of a proper class of Woodin cardinals and a supercompact cardinal (by [77, 32]).

We have the following implications for fragments of MA restricted to ccc posets in L(R):

MAκ(L(R)-ccc) ⇒ MAκ(L(R) ∩ P(R)-ccc) ⇒ MAκ(Proj).

Question 33. Can any of the implications above be reversed?

6.1. Productively-ccc posets under AD

The axiom AD+ is a strengthening of the Axiom of Determinacy (AD) defined by Woodin [77]. Woodin 
has shown that if there is a proper class of Woodin cardinals and A is a universally Baire set of reals, then 
AD+ holds in L(A, R).

Theorem 6.7. [18] Assume AD+ holds and either V = L(T, R) for some T ⊆ OR, or else V = L(P(R)). 
Let X be a set. Then either:

(1) R embeds into X, or else
(2) X is well-orderable.

Since in L(R) AD implies AD+ (see [18]), we have the following:

Corollary 6.8. If V = L(R) and AD holds, then for every set X, either

(1) R embeds into X, or else
(2) X is well-orderable.

Corollary 6.9 (P. Lücke). Assume either V = L(T, R) for some T ⊆ OR, or V = L(P(R)), and AD+ holds, 
or assume V = L(R) and AD holds. Then every ccc poset is productively-ccc.

Proof. Let P0 and P1 be ccc posets, and let A be an antichain of P0 × P1. By the Theorem and Corollary 
above we have two cases:

Case 1: There is an injection i : R → A. Then let c : [R]2 → 2 be the induced coloring, i.e., c(x, y) is the 
minimal n < 2 such that the n-th coordinate of i(x) and i(y) are incompatible in Pn. Since all sets of reals 
have the Baire property, a well-known result of Galvin (see [37, 19.6]) yields a perfect homogeneous set of 
reals. But this set yields an uncountable antichain in one of the posets.

Case 2: A is well-orderable. In this case, if A is uncountable, then we can find, similarly as in Case 1, 
a coloring d : [ω1]2 → 2 without uncountable homogeneous sets, contradicting the fact that ω1 is measur-
able. �
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Under any of the assumptions of the Corollary above, the Axiom of Choice fails, and so the very definition 
of MAκ or even of the ccc property is problematic (see [39]) and there are different options which are 
equivalent in ZFC, but not in ZF. But whatever way they are defined, we have that MAκ(Productively-ccc)
implies MAκ.

7. Fragments of MA under forcing

In order to separate distinct fragments of MA one may investigate what fragments of MA remain after 
forcing. The first observation is that MAℵ1 is very fragile under forcing. Indeed, Roitman [55] shows that 
after adding a Cohen real there is a ccc poset whose product with itself is not ccc. Then Shelah [59] showed 
that, in fact, adding a Cohen real adds a Suslin tree (see [3] or [11] for Todorčević’s short and elegant proof 
of Shelah’s result). Further, Todorčević showed that adding a Cohen real also adds a destructible gap ([64]; 
see also section 4.2 above) and, furthermore, he showed (unpublished, but see [3] for a proof) that adding 
either a Cohen or a random real produces an entangled set of reals, and therefore two ccc posets whose 
product is not ccc (see section 4.5 above). However, as shown in [55], adding a Cohen real to a model of MA
preserves MA(σ-centered). Roitman [55] also shows that adding a random real produces a ccc poset whose 
product with itself is not ccc, and she claims that MA(σ-linked) is preserved, a result later disclaimed in 
[56], but which is nevertheless true (see [15] for a proof).

Unlike the case of Cohen reals, adding a random real, or even any number of random reals, to a model 
of MAκ forces that every tree of size ≤ κ with no ω1-branches is special (Laver [46]). In particular, adding 
any number of random reals to a model of MAℵ1 preserves EATS. A stronger result is proven in [72] by 
Todorčević, where he shows that SMκ, the Set-Mapping principle for κ, is a consequence of MAκ that implies 
EATS and it holds after adding any number of random reals over a model of MAκ.

Also, Hirschorn [30] has shown that adding a random real to a model of MAℵ1 preserves the fact that 
all gaps are indestructible. However, he has also shown ([31]) that adding uncountably-many random reals 
adds a destructible (ω1, ω∗

1)-gap, thus answering an old question of Woodin in the negative.
These results yield that MAℵ1(σ-linked) plus EATS, plus “Every gap is indestructible” hold after adding 

a random real to a model of MAℵ1 , yet C fails in the resulting model.
The effect of adding a random real to a model of MAℵ1 is not yet fully understood, as the following old 

question from [55] is still outstanding:

Question 34. Does adding a random real to a model of MAℵ1 preserve MAℵ1(Precalibre-ℵ1)?
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