
Preprint submitted to Deep-Breath MICCAI Workshop (2024)

Fat-suppressed breast MRI synthesis for domain adaptation in tumour segmentation

Lidia Garrucho†a,b,∗, Eve Delegue†a,c, Richard Osualaa,d,e, Dimitri Kesslera, Kaisar Kushibara, Oliver Diaza, Karim Lekadira, Laura
Iguala,f

aArtificial Intelligence in Medicine Lab (BCN-AIM), Facultat de Matemàtques i Informàtica, Universitat de Barcelona, Barcelona, Spain
bDepartment of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden

cEcole Normale Supérieure de Paris Saclay, Gif-Sur-Yvette, France
dHelmholtz Center Munich, Munich, Germany

eTechnical University of Munich, Munich, Germany
fInstitució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

A R T I C L E I N F O

Keywords: Synthetic data, breast cancer, deep

learning, generative models, image-to-image

translation, fat suppression

A B S T R A C T

Heterogeneity in dynamic contrast-enhanced breast MRI acquisition protocols hin-
ders the generalization of automatic tumour segmentation tools. While fat-suppressed
MRI acquisition is common, some vendors do not provide these sequences, mak-
ing a segmentation model trained with fat-suppressed images unusable for non-fat-
suppressed cases. In this study, we propose two strategies to alleviate this issue. The
first approach involves translating non-fat-suppressed to fat-suppressed breast MRI. The
second approach integrates synthetic non-fat-suppressed MRI into the training pipeline
of tumour segmentation models. Our experimental results demonstrate that both ap-
proaches significantly improve segmentation performance on non-fat-suppressed MRI,
suggesting that domain adaptation techniques based on image synthesis can enhance
the accuracy and reliability of tumour segmentation in breast MRI.

1. Introduction

A frequent issue in breast MRI encompasses the high sig-
nal from fat, which can obscure cancerous lesions thereby im-
pacting accurate diagnosis and timely treatment. To address
this, fat suppression techniques such as fat-saturation and sub-
traction, are commonly used to reduce artifacts and enhance
gadolinium contrast visualization, crucial for determining ma-
lignancy Delfaut et al. (1999). The application of fat suppres-
sion techniques varies widely among hospitals, patients, and
scans due to factors such as clinical context, diagnostic goals,
breast fat content, magnetic field, technology, and institutional
protocols Kuhl (2007); Mori et al. (2020). This variability can
degrade the performance of automated medical image analysis
methods, particularly deep learning models, which are sensitive
to domain shifts. Therefore, research into consistent automated
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fat-suppression methodologies for clinical application is essen-
tial as a complement or even an alternative to existing methods.

Volumetric tumour segmentation is crucial for assessing can-
cer volume and extension. Currently, deep learning-based seg-
mentation methods, such as nnU-Net Isensee et al. (2021), have
shown excellent results in various biomedical image segmenta-
tion tasks. However, these methods are data-intensive and rely
on the availability of ground-truth segmentations for training.
In T1-weighted breast MRI, publicly available ground-truth
segmentations of breast cancer are predominantly restricted to
images with fat suppression. However, as mentioned above,
imaging protocols differ across hospitals, complicating the gen-
eralization of these models to non-fat-suppressed T1-weighted
images, as well as across different fat-suppressed breast MRI
domains.

As depicted in Fig. 1, given automatic tumour segmentation
models trained on fat-suppressed MRI, we propose two domain
adaptation (DA) techniques to improve the performance of tu-
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Fig. 1: Overview of our proposed domain adaptation pipeline illustrating two alternative methods validated in this study for volumetric tumour segmentation in
non-fat-suppressed T1-weighted breast MRI.

mour segmentation on non-fat-suppressed MRI. The first ap-
proach involves applying fat suppression to non-fat-suppressed
MRI using Generative Adversarial Networks (GANs) Goodfel-
low et al. (2014); Li et al. (2022); Zhang et al. (2024); Han
et al. (2024) and subsequently performing tumour segmenta-
tion on the synthetic fat-suppressed images. This largely unex-
plored approach is motivated by some promising initial results
Mori et al. (2020) reported for synthetic fat-suppressed images,
which, however, have not been assessed in terms of their util-
ity for clinical applications. To this end, our goal is to evaluate
the effectiveness of synthetic fat-suppressed MRI for tumour
segmentation, potentially as useful replacement for real non-
fat-suppressed MRI. Our second approach constitutes the first
study to include and evaluate synthetic non-fat-suppressed MRI
in automatic tumour segmentation model training pipelines. In
this case, instead of performing fat suppression, the GAN learns
to inpaint fat into the real fat-suppressed MRI. Incorporating
synthetic non-fat-suppressed images into the training pipeline
can eliminate the need for MRI post-processing steps (syn-
thesizing fat-suppressed MRI from non-fat-suppressed ones),
thereby reducing computational resources and time. In sum,
the key contributions of our work are as follows:

• Design, implementation and multi-metric validation of a
conditional Generative Adversarial Network for synthesiz-
ing fat-suppressed and non-fat-suppressed breast MRI.

• Evaluation of the effect of domain shift in fat-suppressed
T1-weighted breast MRI on tumour segmentation.

• Contribute with the first in-depth comparative analysis and
validation of synthetic non-fat-suppressed MRI (i) as tar-
get inference domain and (ii) as training data augmenta-
tion method, demonstrating its potential to improve tu-
mour segmentation performance.

2. Materials and Methods

2.1. Datasets

The MAMA-MIA dataset Garrucho et al. (2024), a collec-
tion of 1506 ground-truth breast MRI tumour segmentations
from four public datasets Saha et al. (2021) Newitt and Hylton
(2016a) Li (2022) Newitt and Hylton (2016b), was used in this
study to train the automatic tumour segmentation models. The
dataset encompasses 1271 axial and 235 sagittal T1-weighted
dynamic contrast-enhanced scans (DCE-MRI) with fat suppres-
sion from three different vendors. The Advanced MRI Breast
Lesions (AMBL) dataset Daniels et al. (2024) was used to train
the GANs. AMBL contains 632 cases acquired on a 1.5T MR
system between 2018 and 2021. The patients were screened
with various MRI modalities and ground-truth tumour segmen-
tations are available for 99 cases. In this study, we use the
non-fat-suppressed T1-weighted MRI and the first phase (pre-
contrast) of the axial T1-weighted DCE-MRI as image pairs for
image synthesis. Additionally, 47 test cases with ground-truth
tumour segmentations were randomly excluded from image-to-
image translation training to evaluate the tumour segmentation
performance in an external test set.

2.2. Fat-Suppressed and Non-Fat-Suppressed MRI Synthesis

We adopt pix2pix Isola et al. (2017), a conditional Genera-
tive Adversarial Network (cGAN) framework for paired image-
to-image translation, was trained to synthesized fat-suppressed
and non-fat-suppressed 2D axial MRI slices. As depicted in
Fig. 2, we design a pre-processing pipeline involving several
steps to assemble MRI image pairs for our training setup. First,
the pre-contrast fat-suppressed T1-weighted DCE-MRI phase
and the pre-contrast non-fat-suppressed T1-weighted MRI were
registered using rigid-affine registration Ourselin et al. (2001).
Next, the MRI were resampled to isotropic pixel spacing to en-
sure consistent resolution across all three axes (axial, sagittal,
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Fig. 2: Steps to extract the paired fat-suppressed (FS) and non-fat-suppressed (NFS) MRI slices to train our conditional GAN models.

Fig. 3: Bi-directional image-to-image translation using pix2pix for synthesizing either FS or NFS T1-weighted MRI slices, illustrated alongside their real counter-
parts.

and coronal), utilizing B-Spline interpolation implemented us-
ing the SimpleITK library Lowekamp et al. (2013). Lastly, the
MRI were cropped to the breast region using Otsu’s threshold-
ing to discard the background before extracting slices and pair-
ing corresponding axial MRI slices.

After image pre-processing, the AMBL dataset was split in
471 MRI cases for training and 160 for testing. Two pix2pix

models were trained using paired fat-suppressed and non-fat-
suppressed MRI 2D slices with input size 256x256, as exempli-
fied by Fig. 3. We follow the pix2pix hyperparameter setup Isola
et al. (2017), training during 200 epochs, using serial batches,
and the Adam optimizer with β1 = 0.5. The training schedule
consisted of 100 epochs with an initial learning rate of 0.0002,
followed by 100 epochs with a linearly decreasing learning rate.

2.3. Automatic Tumour Segmentation

We integrate nnU-Net Isensee et al. (2021) as an automatic
tumour segmentation model into our pipeline. Tumour volumes

(VOI) of 1506 real fat-suppressed pre-contrast T1-weighted
MRI with an additional 20% margin were used to train a 3D
nnU-Net in a 5-fold cross-validation setting. The training pa-
rameters include using z-score normalization, isotropic pixel
spacing, an initial learning rate of 1e-2, and a weight decay of
3e-5 during 1000 epochs.

As shown in Fig. 4, we design two different DA ap-
proaches to improve the automatic tumour segmentation in out-
of-domain non-fat-suppressed MRI.

2.3.1. Approach 1: Tumour Segmentation on Synthetic Fat-

Suppressed MRI

The first approach involves performing image-to-image
translation prior to automatic tumour segmentation. The
pix2pix, trained to translate non-fat-suppressed to fat-
suppressed MRI (NFS to FS pix2pix), is applied to synthesize
2D axial slices that are stacked to respective 3D MRI volumes
back to their original space. Further, these synthetic MRI vol-
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Fig. 4: Our domain adaptation approaches for tumour segmentation of non-fat-suppressed (NFS) T1-weighted breast MRI.

umes are then cropped to extract the volume of interest to seg-
ment using the rFS nnU-Net.

2.3.2. Approach 2: Synthetic Non-Fat-Suppressed MRI Data

Augmentation

The second approach involves the addition of synthetic non-
fat-suppressed MRIs in the nnU-Net training pipeline. Syn-
thetic non-fat-suppressed MRI are generated using the FS

to NFS pix2pix for each of the 1271 axial MRI cases in
the MAMA-MIA dataset. The final segmentation model
(rFS+sNFS nnU-Net) is, thus, trained using real fat-suppressed
(rFS) and synthetic non-fat-suppressed (sNFS) MRI.

2.4. Evaluation Metrics and Statistical Analysis

The performance of the pix2pix models is evaluated using
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity In-
dex (SSIM) Wang et al. (2004), Fréchet Inception Distance
(FID) Heusel et al. (2017), and Fréchet Radiomics Distance
(FRD) Osuala et al. (2024). High PSNR values indicate close
resemblance to ground-truth images, while SSIM aligns with
human perception, crucial for clinical evaluation. FID assesses

image realism, and FRD evaluates dataset similarity based on
radiomics features, providing a more accurate complementary
assessment for breast MRI. These metrics offer insights into
pixel-level similarity, structural fidelity, realism, and radiomics
feature alignment.

Automatic tumour segmentation performance is evaluated
using the Dice Coefficient and the 95th percentile of the Haus-
dorff Distance (HD95). The Dice Coefficient measures the
overlap between predicted and ground-truth segmentations, in-
dicating accuracy, while HD95 assesses boundary accuracy by
measuring the largest distance between predicted and ground-
truth boundaries, excluding outliers Huttenlocher et al. (1993).

Statistical differences in segmentation performances are as-
sessed using the Wilcoxon signed-rank test with Bonferroni
Correction, a non-parametric test suitable for non-normally dis-
tributed data common in biomedical research Wilcoxon (1992).
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Fig. 5: Comparison of automatic tumour segmentation evaluation metrics for both DA approaches on the test set. ’FS’ stands for Fat-Suppressed, ’NFS’ for Non-
Fat-Suppressed, and ’Synth’ for Synthetic. ns indicates no statistical difference between metrics.

Table 1: Performance metrics for pix2pix models synthesizing fat-suppressed
(FS) and non-fat-suppressed (NFS) MRI.

pix2pix PSNR ↑ SSIM ↑ FID ↓ FRD ↓

NFS to FS 25.58 ± 3.50 0.75 ± 0.11 5.54 13.24

FS to NFS 26.39 ± 0.46 0.69 ± 0.26 34.10 52.14

3. Experiments and Results

3.1. Fat-Suppressed and Non-Fat-Suppressed MRI Synthesis

The quantitative evaluation of both pix2pix models is de-
picted in Table 1. The NFS to FS model achieved a promis-
ing PSNR of 25.58 ± 3.50, an SSIM of 0.75 ± 0.11, an FID
of 5.54, and an FRD of 13.24, indicating high pixel-level simi-
larity, structural fidelity, and radiomic imaging biomarker accu-
racy. The FS to NFS model had a higher PSNR of 26.39 ± 0.46
but lower structural fidelity with an SSIM of 0.69 ± 0.26. As
indicated by an FID of 34.10 and an FRD of 52.14, the model
generated synthetic images of high quality, however, they re-

sulted overall less realistic than their synthetic NFS to FS coun-
terparts.

3.2. Automatic Tumour Segmentation

The mean 5-fold cross-validation Dice coefficients for the au-
tomatic tumour segmentation models trained on MAMA-MIA
were 0.76 ± 0.01 for rFS nnU-Net in Approach 1 (A1) and
0.76 ± 0.01 for rFS + sNFS nnU-Net in Approach 2 (A2), in-
dicating that incorporating synthetic non-fat-suppressed (Synth
NFS) MRI did not negatively affect overall performance. The
segmentation performance on real FS tumours in the external
test set (47 cases from AMBL dataset containing 79 tumours)
decreased due to domain shift (Dice of 0.59 for rFS nnU-Net in
A1 and 0.61 for rFS + sNFS nnU-Net in A2).

Both DA approaches, with results summarized in Fig. 5,
improved segmentation metrics compared to real non-fat-
suppressed (Real NFS) images segmented with rFS nnU-Net

in A1. Metrics show similar performance between Synth FS in
A1 and Real NFS in A2 (Dice: 0.55±0.15 vs. 0.55±0.17, HD:
4.92 ± 5.55 vs. 4.36 ± 4.32). The Dice coefficient in Real FS is
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Fig. 6: Four examples (a), b), c) and d)) of tumour segmentation contours highlighting the differences between the ground-truth in real FS and the results of the
DA approaches. ’A1’ stands for Approach 1, ’A2’ for Approach 2, ’FS’ for Fat-Suppressed, ’NFS’ for Non-Fat-Suppressed, ’Synth’ for Synthetic, ’DSC’ for Dice
Coefficient, and ’HD’ for Hausdorff Distance.

slightly better in A2 (0.61±0.15 vs. A1: 0.59±0.15), indicating
that Synth NFS data augmentation improved the segmentation
model. Despite statistical differences in Dice coefficient be-
tween Real FS and Synth FS, this difference is not observed in
the Hausdorff Distance metric, which evaluates boundary accu-
racy. Fig. 6 presents qualitative results for four test cases, sup-
porting our findings. Although the tumour segmentations are
volumetric, only the middle slice of each tumour is displayed
for clarity.

4. Discussion and Conclusion

Our study investigates DA techniques leveraging image syn-
thesis to enhance tumour segmentation in non-fat-suppressed
(NFS) breast MRI. We employed two distinct DA approaches:
Approach 1 (A1), which runs tumour segmentation in synthetic
fat-suppressed (Synth FS) MRI obtained using the NFS to FS

pix2pix model, and Approach 2 (A2), which incorporates syn-
thetic non-fat-suppressed (Synth NFS) MRI generated with the
FS to NFS pix2pix model into the automatic tumour segmen-
tation pipeline (rFS + sNFS nnU-Net model) to improve the
tumour segmentation in real NFS MRI.

Our FS MRI synthesis with NFS to FS pix2pix model showed
superior performance across multiple evaluation metrics. The
FS to NFS pix2pix model, while delivering higher PSNR, faced
challenges related to structural and radiomic fidelity, evident
from higher FID and FRD values. Nevertheless, integrating
Synth NFS MRI into the training pipeline in A2 did not com-
promise overall tumour segmentation performance. On the con-
trary, it bolstered the Dice coefficient for Real NFS, underscor-
ing the efficacy of data augmentation with synthetic images.

Both DA approaches exhibited notable improvements in tu-
mour segmentation metrics compared to real NFS MRI seg-
mented with rFS nnU-Net in A1. Although statistical differ-
ences in Dice coefficients were observed between Real FS and
Synth FS, there was no statistical difference for the Hausdorff
distance, demonstrating remarkable synthetic data utility.

Our findings highlight the potential of both DA approaches
for enhancing tumour segmentation on NFS MRI. Moreover,
the synthetic NFS images generated by the NFS to FS pix2pix

model offer a promising alternative to conventional fat suppres-
sion techniques. Future research aims to address current study
limitations by exploring their utility in diverse clinical tasks re-
lated to breast cancer using MRI, such as comprehensive can-
cer detection in high-risk screening populations and prediction
of treatment response. Additionally, future efforts will focus on
synthesizing 3D MRI to maintain spatial continuity across 2D
slices, integrating perceptual loss in the training pipeline to en-
hance synthetic MRI fidelity, and validating models externally
with additional datasets.
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