
Opening the Pandora box: Neural processing of self-relevant negative 
social information

Stella Nicolaou a,b,c, Daniel Vega c,*, Josep Marco-Pallarés a,b,**

a Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
b Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
c Department of Psychiatry and Mental Health, Consorci Sanitari de l′Anoia & Fundació Sanitària d′Igualada, Hospital Universitari d′Igualada, Barcelona, Spain
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A B S T R A C T

Curiosity is a powerful motivator of information-seeking behavior. People seek not only positive, but also 
aversive social information about others. However, whether people also seek unfavorable social information 
about themselves, as well as the neural mechanisms that may drive such seemingly counterintuitive behavior 
remain unclear. To address this gap, we developed a novel electroencephalography-compatible Social Incentive 
Delay (SID) task, which was implemented in 30 healthy young adults as they responded as fast as possible to a 
target to receive positive or avoid negative comments about their own or about others’ Instagram photos. Re
action times were slower for negative vs positive comments’ conditions, but only for participants’ own photos, 
revealing less motivation to avoid negative rather than seek positive self-relevant social feedback. Coherently, 
receiving negative feedback, as opposed to avoiding it, evoked larger amplitudes in the Reward Positivity (RewP) 
and FB-P3 time-range, especially for participants’ own photos, indicating that receiving a negative comment was 
more rewarding and more salient than not receiving any comment at all. Our findings challenge prior evidence 
suggesting that humans instinctively avoid aversive stimuli, and they shed light on the neurophysiological 
mechanisms that may underlie this counterintuitive behavior.

Humans are curious beings that engage in persistent information- 
seeking to close an information gap or resolve uncertainty 
(Baumeister, 2010). Information-seeking helps humans make informed 
decisions and navigate the physical and social world more effectively 
(Kidd & Hayden, 2015). While it may seem reasonable for people to seek 
out positive or useful information, it is more difficult to understand why 
people are attracted to useless or negative information. In line with the 
incentive salience hypothesis (FitzGibbon et al., 2020), people are 
willing to incur monetary costs (Eliaz & Schotter, 2010; FitzGibbon 
et al., 2021) or receive physical pain to obtain information that is not 
even instrumental or useful (Hsee & Ruan, 2016; Lau et al., 2020; Bode 
et al., 2023). In addition, people consistently seek out and report interest 
for information that is experienced as unpleasant (Niehoff & Oosterwijk, 
2020), suggesting that in certain contexts, negative information can be 
engaging.

For example, people deliberately choose to access intensely negative 

social stimuli such as images of dead bodies (Oosterwijk, 2017) and 
violent social conflicts (Oosterwijk et al., 2020), and they also choose to 
uncover a screened image containing sensitive or distressing social 
content (Bridgland et al., 2023). People also engage more with negative 
rather than positive news, such that negative words in online news 
headlines increase consumption rates (Robertson et al., 2023). These 
findings suggest that curiosity is not repressed in front of potentially 
aversive stimuli (FitzGibbon et al., 2020; Niehoff & Oosterwijk, 2020). 
On the contrary, people are more likely to engage with a stimulus if the 
consequences of such engagement are uncertain and negative in nature 
in the so-called “Pandora Effect” (Hsee & Ruan, 2016). This tendency 
may be because negative information is more salient, novel, and more 
deviant from the norm than positive information (Silvia & Kashdan, 
2009; Alves et al., 2017; Niehoff & Oosterwijk, 2020).

Interestingly, evidence suggests that choosing to engage with nega
tive social stimuli activates the reward circuitry (e.g., Nucleus 
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accumbens and caudate) more strongly than choosing to engage with 
positive social stimuli (Oosterwijk et al., 2020). Similarly, negative 
gossip about celebrities evokes stronger activity in the striatum (Peng 
et al., 2015), captures people’s attention more easily, and affects 
conscious visual experience more than positive gossip (Anderson et al., 
2011). This negativity bias is also reflected on social media platforms, 
where negative comments on brand posts can attract new customers 
(Labrecque et al., 2022) and where users are more likely to share 
negative rather than positive content (Brady et al., 2017; Rathje et al., 
2021; Schöne et al., 2021), especially when it comes from public figures 
(Schöne et al., 2023). In addition, negative emotional comments on 
social media draw more attention than positive comments (Kohout et al., 
2023), and negative tweets draw more gaze dwell time and are recog
nized better than positive tweets (Kätsyri et al., 2016). While this bias 
towards negative information about others (e.g., celebrities, public fig
ures, etc.) can be partly attributed to the fact that this information is 
often more novel, deviant from the norm, and therefore more salient (i. 
e., Niehoff & Oosterwijk, 2020), it can also be attributed to the fact that 
negative information about others serves a purpose: it facilitates vicar
ious learning and allows individuals to learn from others’ misfortunes (i. 
e., Jolly & Chang, 2021), offering high adaptive value for low emotional 
costs.

While these previous studies have shown that people tend to engage 
in negative social information about others (e.g., other-relevant infor
mation regarding celebrities, public figures, news), there has been a 
notable scarcity of research exploring whether people also engage in 
negative social information about themselves (e.g., self-relevant infor
mation). This research question is especially intriguing, because, while 
positive social information about oneself typically boosts self-esteem 
and well-being, negative social information can damage self-esteem 
and emotional well-being and can have high emotional costs (Leary & 
Baumeister, 2000; Crocker & Canevello, 2008). Since it is generally 
agreed that people have strong motivations to maintain favorable con
cepts of themselves and would therefore try to avoid a bad opinion about 
themselves as a form of self-protection (Banaji & Prentice, 1994; Bau
meister et al., 2001; Alicke & Sedikides, 2009), seeking negative infor
mation about oneself in this context could be considered 
counterintuitive.

However, it could also be argued that people might be more drawn to 
self-relevant negative information because it might protect them from 
future negative outcomes. For example, prior research suggests that 
negative information is usually more threatening than positive infor
mation is beneficial, and requires an enhanced and more rapid pro
cessing compared to positive information (Baumeister et al., 2001; Rozin 
& Royzman, 2001). Therefore, a negative bias towards negative infor
mation about oneself in this context could be considered adaptive.

The goal of the present study was to explore whether people seek out 
not only positive, but also negative information about themselves and 
whether the neural processing of that information differs from the 
processing of negative information about others. Given the well- 
documented attention-grabbing power of negative content, especially 
in social contexts, as well as the adaptive advantage that this negativity 
bias may confer, we hypothesized that individuals may also seek out 
negative social information about themselves. Coherently, we hypoth
esized that the receipt, compared to the avoidance of self-relevant 
negative feedback will be more salient and will be perceived as a 
more positive outcome, and this will be reflected in larger ERP ampli
tudes in the time-range of Reward Positivity (RewP) and Feedback- P3 
(FB-P3), two ERP components that have been associated with the pro
cessing of positive (Proudfit, 2015) and salient (San Martín, 2012; 
Novak & Foti, 2015) feedback, respectively. To reach our goal and test 
these hypotheses, we developed a novel paradigm, adapted from the 
Social Incentive Delay task (SID), which was originally designed to 
measure brain activity related to positive and negative social feedback, 
and has been shown to reliably elicit ERPs locked to the receipt and 
avoidance of positive and negative social feedback (Ait Oumeziane 

et al., 2017, 2019; Flores et al., 2015; Greimel et al., 2018).
Similar to the original SID task, participants in our novel paradigm 

had to respond as fast as possible to a target to receive positive or avoid 
negative comments about their own or about others’ Instagram photos. 
On a behavioral level, we predicted that participants would not want to 
avoid the negative comments as much as they would want to receive the 
positive comments and would therefore have slower reaction times in 
the negative relative to the positive comments’ conditions, especially for 
their own photos. On a neural level, we predicted that the receipt vs the 
avoidance of social feedback would elicit larger amplitudes in the time 
range of RewP and FB-P3, not only for the positive, but also for the 
negative feedback, and this effect would be especially pronounced for 
participants’ own photos. In addition, consistent with prior literature 
suggesting that the RewP and the FB-P3 reflect activity in frontocentral 
and centroparietal areas, respectively (e.g, Glazer et al., 2018), we 
predicted that differences in the RewP would be maximal at fronto
central sites and differences in the FB-P3 would be maximal at cen
troparietal sites.

1. Method

1.1. Participants

We recruited thirty volunteers (Mage= 23.03, SD = 3.03, 70 % fe
males) from the University of Barcelona (Spain), who reported having 
no diagnosis of a psychiatric or neurological disorder. Considering that 
prior ERP studies using social reward tasks such as the SID found 
consistently large effects of feedback on both the RewP and the FB-P3 (e. 
g., η2

p =.20 − .79; Ait Oumeziane et al., 2017, 2019; Distefano et al., 
2018; Funkhouser et al., 2020; Nelson & Jarcho, 2021), we performed 
an a priori power analysis using MorePower 6.0 (Campbell & Thompson, 
2012) to identify the minimum sample size required to detect such large 
effects in our study. Using a 2 × 2×2 within-subjects design, with η2

p 
= .3, Cohen’s f = .66, power= 0.80, and alpha= 0.05, this analysis 
indicated that a minimum of 22 participants would be required to detect 
such large effects. However, in case we had to remove some participants 
due to excessive artifacts in the EEG data, we collected data from 30 
participants, which gives 80 % power for any effect with η2

p ≥ .23 or 
larger.

As the task contained written stimuli (the comments), only native 
Spanish speakers were included in the study. All procedures were 
approved by the Bioethics committee of the University of Barcelona 
(IRB00003099) and all participants signed an informed consent form 
before starting the experiment.

1.2. Materials and procedure

At the time of recruitment, participants were led to believe that they 
were participating in an electroencephalography (EEG) study on reward 
on social media, and they were asked to authorize the researchers to 
check their Instagram profile (by allowing the principal researcher to 
follow them on Instagram from an account created only for the purpose 
of the study), use their photos in the experiment, and have those photos 
viewed and evaluated by a group of young volunteers external to the 
experiment. They were told that if these external volunteers liked the 
photo, they wrote a positive comment about it just like they would if 
they saw this photo on Instagram, and if they didńt like it, they wrote a 
negative comment about the photo. They were also told that, given the 
subjective nature of liking a photo on Instagram, each photo would 
receive comments from four different individuals to provide a broader 
range of opinions, and during the task, participants would have the 
opportunity to view all four comments associated with each photo (each 
photo was presented 2 times per information cue). In addition, they 
were told that during the task, they would see the photos selected from 
their own Instagram account as well as the photos selected from other 
participants’ Instagram account, and based on their performance on 
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each trial, they could see the positive comments and avoid seeing the 
negative comments that the volunteers wrote about their own photos 
and about the photos of other participants.

It is noteworthy that the comments were not really written by 
external volunteers but were created by the researchers and were mostly 
generic (e.g., ‘Love this photo’or ‘Nothing special’) and could include 
‘emojis’ to make them feel more genuine. They were written in Spanish 
before data collection and rated by an independent group of participants 
(N = 57) on a Likert scale from 1 (very negative) to 5 (very positive) in a 
survey on Qualtrics. This step served to validate the comments and to 
ensure that the positive comments were indeed perceived as ‘positive’, 
and the negative ones were indeed perceived as ‘negative’. A midpoint 
split was performed on the ratings, such that comments with a rating 
above 3 were used as ‘positive’ feedback (M = 4.41; SD =.21) in the 
positive information conditions, and comments with a rating below 3 
were used as ‘negative’ feedback (M = 1.89; SD =.32) in the negative 
information conditions. Any comments rated as ‘neutral’ were excluded 
and were not incorporated in the experiment. A final list of 186 generic 
comments was generated, 113 of which were classified as ‘positive’ and 
73 of which were classified as ‘negative’. In addition to the generic 
comments, for each participant we created 12 comments that were 
specific to the content of 12 of his/her own photos (e.g., "¡This sunset is 
beautiful!" or "Nothing new, everyone posts sunsets") and 12 comments 
that were specific to the content of 12 of other participants’ photos, so 
that participants would really believe that the photos had been genu
inely evaluated by outsiders. The photos of "other participants" were in 
fact photos taken by the first author, and they were the same for all 
participants. The specific comments for other participants’ photos were 
also the same for all participants.

Once participants provided authorization, their Instagram profile 
was checked to ensure they had at least 40 photos that did not include 
selfies, photos of other people or pets (inclusion criteria). If inclusion 
criteria were met, the participant was given a scheduled time for the 
experiment approximately 1–2 weeks later to ensure enough time for 
participants to really believe that other people evaluated their photos. 
Meanwhile, the selected 40 photos were screenshotted from each par
ticipants’ account and resized to 1080 × 1080 pixels.

1.2.1. Experimental task
The experimental task was a modified version of the Social Incentive 

delay task (Spreckelmeyer et al., 2009; Kohls et al., 2013; Flores et al., 
2015; Ait Oumeziane et al., 2017; Nawijn et al., 2017; Wei et al., 2020; 
Martins et al., 2021; Xu et al., 2022). The task consisted of 320 trials 
(approximate duration: 1 hour and 15 minutes). These 320 trials were 

divided into 5 blocks of 64 trials each (duration of each block: around 
15 minutes). The experiment was programmed using PsychoPy 3 version 
2021.2.3 (Peirce et al., 2019). As shown in Fig. 1, each trial started with 
the presentation of a photo of the participant́s own Instagram account or 
a photo of other participants’ Instagram account for 2000 ms. Then, a 
visual cue appeared for 400 ms, indicating the contingency for that trial. 
Specifically, if the cue was a circle (positive information cue), the 
participant had the potential to receive a ‘Like’ and to see a positive 
comment written about the photo he saw at the beginning of the trial 
(possibility to obtain positive information). However, if the cue was a 
square (negative information cue), the participant had the potential to 
avoid receiving a ‘Dislike’ and seeing a negative comment (avoid 
negative information) about the photo he saw at the beginning of the 
trial. There were 40 photos of each type (own vs others’), and each one 
of them was presented twice with each information cue throughout the 
task, leading to 80 trials with positive information cues and 80 trials 
with negative information cues for participants’ own photos (N = 160), 
and 80 trials with positive information cues and 80 trials with negative 
information cues for other participants’ photos (N = 160). These trials 
were presented in a random order throughout the task.

After the information cue, a variable time interval between 600 and 
1600 ms was introduced, and then, a white square appeared on the 
screen and participants were instructed to respond to it by pressing the 
SPACE key as quickly as possible. The target remained on the screen 
until participants made a response. Two seconds after the response, the 
feedback was presented. The first feedback (Feedback Phase 1) informed 
the participant whether they hit or missed, and, at the same time, served 
as an anticipatory cue for a potential posterior comment. Hits were 
defined as reaction times below a threshold (i.e., fast enough responses), 
while misses were defined as reaction times above a threshold (i.e., too 
slow responses). In the positive information condition, hits earned the 
feedback of a Like with a 1, indicating that the response was fast enough 
and that the participant would be rewarded with the receipt of a positive 
comment (receipt of positive information). Misses earned the feedback 
of a Like with a 0, indicating that the response was too slow and that the 
participant would be punished by missing out on a positive comment 
(omission of positive information). Conversely, in the negative infor
mation condition, hits earned the feedback of a thumbs down with a 0, 
indicating that the response was fast enough and that the participant 
would be rewarded with the avoidance of a negative comment (omission 
of negative information). However, misses earned the feedback of a 
thumbs down with a 1, indicating that the response was too slow and 
that the participant would be punished with the receipt of a negative 
comment (receipt of negative information). Prior to the task, 

Fig. 1. Schematic illustration of the SID task, depicting all the different combinations of information cue and feedback that can arise in each trial. For positive 
information cues, a hit (i.e., fast enough response) earned a Like with 1 and the receipt of a positive comment as feedback, and a miss (i.e., too slow response) earned 
a Like with 0 and the omission of a positive comment. However, for negative information cues, a hit earned a Dislike with 0 and the omission of a negative comment 
as feedback, and a miss earned a Dislike with 1 and the receipt of a negative comment.
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participants were explicitly informed about the relationship between the 
response time and the type of feedback that would appear. That is, they 
were explicitly told that if they responded fast enough, they would see a 
positive comment in the positive information condition and avoid a 
negative comment in the negative information condition, and that if 
they did not respond fast enough, they would see an empty comment in 
the positive information condition and a negative comment in the 
negative information condition. The task was designed for participants 
to attain a 65–70 % hit rate, dynamically adjusting the minimum reac
tion time for a hit based on each participant’s performance on previous 
trials. Specifically, we used an adaptive algorithm, such that the mini
mum reaction time for a hit on a given trial was the seventh fastest re
action time of the last ten trials. One second after the first feedback, 
participants saw a speech bubble (Feedback Phase 2) with a positive 
comment if they were fast enough in the positive information condition, 
or a negative comment if they were not fast enough in the negative in
formation condition. Otherwise, they saw an empty speech bubble.

Finally, to ensure that participants were attentive to the cues, 16 
catch trials were introduced semi-randomly (approximately every 
15–20 trials) throughout the experiment, where instead of the target, 
both the negative information and positive information cues appeared 
on the screen and the participant had to select the cue he/she had seen at 
the beginning of the trial. To ensure participants did not associate a 
specific side with a specific cue, on half of the catch trials the negative 
and positive information cues appeared on the left and right side of the 
screen, respectively, whereas the sides were reversed in the other half of 
the catch trials. Then, participants were fully debriefed, thanked for 
their participation, and received monetary compensation of 30 euros. 
During debriefing, participants were also asked to verify whether they 
believed they were receiving real feedback or whether they suspected 
that they had been deceived. All the participants reported that they 
believed the cover story.

1.3. Electroencephalographical recording and data analysis

EEG was continuously recorded using the Brain Vision Recorder 
(Brain Products Company, Munich, Germany) with 32 electrodes 
following the standard 10/20 system. The reference electrode was 
placed at Cz during online recordings. A vertical electrooculogram 
(EOG) was recorded with an electrode placed approximately 2 cm below 
the right eye and centered under the pupil. The continuous EEG signal 
was amplified and digitized at a sampling rate of 500 Hz in DC acqui
sition mode. Electrode impedances were kept below 10 kΩ. Data were 
re-referenced to the mastoid average and low-passed filtered offline at 
45 Hz. Data processing was performed with the EEGLAB toolbox 
(Delorme & Makeig, 2004), implemented in Matlab.

The signals were epoched from − 2000–2000 ms relative to the 
feedback 1 onset, and the activity from − 200–0 served as the baseline. 
We only analyzed Feedback Phase 1 (i.e., delivery of Likes and Dislikes), 
because the comments delivered in Feedback Phase 2 differed in several 
ways including length, use of emojis, and use of capital and lower-case 
letters.

320 trials were analyzed, leading to 80 trials for each type of cue 
(own-positive information, own-negative information, others-positive 
information, others-negative information). Out of these 320 trials, 
those containing movement-related artifacts were eliminated manually. 
Then, Infomax-based independent component analysis (Bell & Sejnow
ski, 1995) was performed to correct for ocular artifacts. Both vertical (e. 
g., eye blinks) and horizontal eye movement related components were 
removed by human inspection (e.g., components with an EOG electrode 
contribution and a scalp distribution in the frontal region). 
Event-Related-Potentials (ERPs) were extracted from − 200 ms (base
line) to 1000 ms post feedback 1 onset for each artifact-free epoch, and 
epochs in the same condition were then averaged and corrected relative 
to their respective baseline windows to generate the grand-average ERP 
waveforms corresponding to the feedback 1 delivery.

ERPs were analyzed using time-window averages, which were 
determined by exploring the grand-average waveforms across all con
ditions and by reviewing prior studies using the SID task (e.g., Ait 
Oumeziane et al., 2017). As shown in the grand-average waveforms for 
all conditions in Fig. 3, our RewP peaks ~300 ms and the FB-P3 ~400 
ms post-feedback onset, which is consistent with a prior study using the 
SID task that also found the RewP to peak approximately at 298 ms (SD 
= 41.47) and the FB-P3 at 395 ms (SD = 39.51) post-feedback onset (Ait 
Oumeziane et al., 2017). Therefore, we measured the RewP as the mean 
amplitude from 260 to 340 ms post feedback 1 onset (i.e., 300 ± 40 ms), 
and given that the P3 is considered the largest positive peak of the ERP 
waveform within the time window of 300–500 ms (Li et al., 2015; 
Polich, 2007), we measured the FB-P3 as the mean amplitude from 340 
to 500 ms post-feedback onset to ensure that we include the peak and to 
avoid overlap with the previous component. Mean ERP amplitudes 
averaged for each participant across the corresponding time-window at 
the frontal, central, and parietal midline electrodes (Fz, Cz, Pz) were 
then subjected to repeated measures ANOVA (rm-ANOVA) for statistical 
analysis. Since we were mainly interested in event-related potentials 
such as the FB-P3 and the RewP, which are maximal at midline parietal 
and frontocentral electrodes, respectively, and are thought to reflect 
activation at more central sites (Holroyd et al., 2008; Holroyd et al., 
2011; Glazer et al., 2018), we only focused on these three midline 
electrodes for the statistical analyses. Importantly, these three midline 
electrodes have also been previously reported to display the largest 
feedback-related responses (Miltner et al., 1997; Hajcak et al., 2005). In 
addition, to ensure that our novel task elicits reliable ERPs, we assessed 
the internal consistency of the ERPs by quantifying the Cronbach’s 
alpha. Following recommendations by Thigpen et al. (2017), we used 
the condition-averaged ERPs as “items” and the 30 participants as ob
servations for the Cronbach’s Alpha. We calculated the alpha separately 
for each of the three electrodes (Fz, Cz, and Pz). Excellent internal 
consistency was defined as alpha > .9., and acceptable internal consis
tency was defined as alpha > .70 (Cronbach, 1951).

For the behavioral data, we employed 2 × 2 repeated-measures 
ANOVAs (rm-ANOVA) with mean reaction times and hit rates as 
dependent variables, and Information Cue (Positive vs Negative Infor
mation) and Photo Type (Own vs Others) as within-subjects factors. For 
each participant’s reaction time data, we removed any trials with 
exceedingly short or long reaction times ( ± 3 SD from the individual 
mean RT), consistent with prior studies using the SID task (Xu et al., 
2022). For the RewP and FB-P3 ERPs, we employed two separate 
repeated-measures ANOVAs with the mean amplitudes as dependent 
variables, and Information Cue (Positive vs Negative), Photo Type (Own 
vs Others), Electrode (Fz, Cz, Pz), and Feedback (Hit vs Miss) as 
within-subjects factors. Further simple effect analyses were conducted if 
ANOVAs displayed a significant interaction. We applied the 
Greenhouse-Geisser correction to all rm-ANOVAs involving factors with 
more than two levels (Luck, 2014).

2. Results

2.1. Behavioral

2.1.1. Reaction times
The Rm-ANOVA revealed a significant Information-Cue x Photo- 

Type interaction, F(1, 29) = 6.00, p = .02, η2
p= .171. As shown in 

Fig. 2A, simple effect tests showed that participants were significantly 
faster on positive information trials they saw their own (M = 0.32, SD =
0.08) relative to other participants’ photos (M = 0.36, SD = 0.10), F(1, 
29) = 20.90, p < .001, η2

p = .419, but were equally slow on negative 
information trials, regardless of whether they saw their own (M = 0.38, 
SD = 0.17) or other participants’ photos (M = 0.39, SD = 0.14), F(1, 29) 
= .74, p = .40, η2

p = .025. Alternatively, simple effect tests also showed 
that participants were significantly slower towards negative information 
(M = 0.38, SD = 0.17) relative to positive information cues (M = 0.32, 
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SD = 0.08) on trials they saw their own photos, F(1, 29) = 5.07, p = .03, 
η2

p = .148, while there was no significant difference in reaction times as a 
function of information cue (Negative information: M = 0.39, SD = 0.14; 
Positive information: M = 0.36, SD = 0.10) on trials they saw other 
participants’ photos, F(1, 29) = 3.16, p = .09, η2

p = .098. In addition, the 
Rm-ANOVA revealed a main effect of photo-type, F(1, 29) = 9.65, 
p = .004, η2

p = .249, such that participants had significantly faster re
action times on trials they saw their own photos (M = 0.35, SD = 0.11) 
than on trials they saw other participants’ photos (M = 0.38, SD = 0.12). 
Finally, the Rm-ANOVA also revealed a main effect of information cue, F 
(1, 29) = 4.43, p = .04, η2

p = .132, such that participants overall had 
slower reaction times in negative information (M = 0.39, SD = 0.15) 
relative to positive information trials (M = 0.34, SD = 0.09).

2.1.2. Hit rates
According to the Rm-ANOVA, the Information-Cue x Photo-Type 

interaction did not significantly predict hit rates, F(1, 29) = 1.83, 
p = .19, η2

p = .059. However, as shown in Fig. 2B, the main effect of 
photo-type was significant, F(1, 29) = 32.38, p < .001, η2

p = .527, such 
that participants had a significantly lower hit rate in conditions where 
they saw other participants’ photos (M = 0.62, SD = 0.10) relative to 
conditions where they saw their own photos (M = 0.71, SD = 0.09). The 
main effect of information cue was also significant, F(1, 29) = 4.10, 
p = .05, η2

p = .123, such that participants had a marginally lower hit rate 
in negative information conditions (M = 0.64, SD = 0.15), relative to 
positive information conditions (M = 0.69, SD = 0.07).

2.1.3. Catch trials
To ensure that participants paid proper attention to the cues, we 

analyzed their accuracy in correctly identifying the cues on catch trials. 
Participants displayed high accuracy overall (M = 0.95, SD= 0.07), 
suggesting that they genuinely paid attention to the cues. In addition, all 
participants correctly identified the cue on at least 13 out of the 16 catch 
trials, hence none of the participants were excluded from the analyses 
based on this criterion. We also examined differences in accuracy across 
conditions, and a rm-ANOVA showed that there was no main effect of 
information cue on accuracy on catch trials, F(1, 29) = 3.14, p = .09, η2

p 
= .101, nor was there a main effect of photo-type, F(1, 29) = .69, 
p = .41, η2

p = .024. However, there was a marginally significant Photo- 
Type x Information-Cue interaction, F(1, 29) = 4.19, p = .05, η2

p 
= .130, where participants identified more accurately the negative in
formation cues (M = 0.98, SD = 0.06) than the positive information (M 
= 0.90, SD = 0.17) cues on others’ photos, t(29) = 2.59, p = .02, but 
were equally accurate in identifying both information cues on their own 

photos (Negative information cues: M = 0.96, SD = 0.12; Positive in
formation cues: M = 0.96, SD = 0.10), t(29) = -.01, p = .99. These re
sults suggest that slower reaction times in the negative information 
condition are not because participants paid less attention in this 
condition.

2.2. ERP components

2.2.1. Reward positivity
Fig. 3 illustrates the grand average ERP waveforms elicited during 

the initial feedback evaluation stage (Feedback Phase 1), as well as scalp 
voltage maps for the RewP and the FB-P3. The ERPs in the RewP time- 
range were measured as the mean amplitude from 260 to 340ms post 
feedback onset. The Rm-ANOVA on the amplitude in the RewP time- 
range showed that there was no significant 4-way interaction between 
Photo-Type, Information Cue, Feedback, and Electrode, F(1.40, 40.70) 
= 0.39, p = .61, η2

p= .013, nor were there any significant 3-way in
teractions [Information Cue x Feedback x Electrode, F (1.29, 37.31) 
= 2.05, p = .16, η2

p= .066, Photo-Type x Feedback x Electrode, F(1.52, 
43.98) = .08, p = .88, η2

p= .003, Photo-Type x Information Cue x Elec
trode, F(1.52, 44.06) = 2.03, p = .15, η2

p= .065, or Photo-Type x Infor
mation Cue x Feedback, F(1, 29) = .16, p = .70, η2

p= .005].
However, there was a significant 2-way interaction between Infor

mation Cue and Feedback, F(1, 29) = 12.58, p = .001, η2
p = .302, and 

between Feedback and Electrode, F(1.20, 34.92) = 4.00, p = .04, η2
p 

= .121. As shown in Fig. 3, simple effect tests showed that for the 
negative information condition, participants had significantly more 
positive RewP amplitudes when they received feedback for misses (i.e., 
Dislike with 1 and receipt of negative comment; M = 3.03, SD = 4.26) 
compared to feedback for hits (i.e., Dislike with 0 and omission of 
negative comment; M = 1.65, SD = 3.60), F(1, 29) = 21.70, p < .001, η2

p 
= .428, whereas for the positive information condition, the RewP am
plitudes did not significantly differ as a function of the Feedback [Hits: 
M = 2.79, SD = 4.05; Misses: M = 2.50, SD = 4. 03], F(1, 29) = .84, 
p = .37, η2

p = .028. As evidenced by the significant Feedback by Elec
trode interaction and as shown in the topographic maps in Fig. 3, the 
difference in amplitudes between feedback for hits and misses in the 
RewP time-range was significant in frontocentral areas, specifically Fz, F 
(1, 29) = 8.95, p = .006, η2

p = .236, and Cz, F(1, 29) = 8.20, p = .008, η2
p 

= .220, but not Pz, F(1, 29) = 1.22, p = .28, η2
p = .040. Aside from these 

interactions, no other 2-way interactions significantly predicted the 
amplitude in the RewP time-range [Photo-Type x Information Cue, F(1, 
29) = 1. 61, p = .21, η2

p= .053, Photo Type x Feedback, F(1, 29) = .02, 
p = .89, η2

p= .001, Information Cue x Electrode, F(1.23, 35.63) = .85, 

Fig. 2. A) Reaction times and B) hit rates as a function of Information Cue and Photo Type. Error bars represent standard errors of the mean.
Note. p ≤ .05 * , p < .001 *** .
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p = .39, η2
p= .029].

Finally, the Rm-ANOVA also revealed a main effect of photo-type, F 
(1, 29) = 16.70, p < .001, η2

p= .365, such that participants had signifi
cantly more positive amplitudes on trials they received feedback on their 
own photos (M = 3.02, SD = 3.92) compared to trials they received 
feedback on others’ photos (M = 1.96, SD = 3.95). There was no sig
nificant main effect of information cue, F(1, 29) = 2.65, p = .11, η2

p 
= .084, such that the RewP amplitudes did not differ for negative (M =
2.34, SD = 3.86) and positive information cues (M = 2.64, SD = 3.95). 
However, the main effect of feedback was significant, F(1, 29) = 7.90, 
p = .009, η2

p = .214, such that the RewP amplitudes were significantly 
larger for misses (M = 2.76, SD = 4.04) than for hits (M = 2.22, SD =
3.77). The main effect of electrode was also significant, F(1.58,45.88) 
= 56.99, p < .001, η2

p = .663, such that regardless of the feedback, the 
largest amplitudes in the RewP time-range were found at Pz (M = 4.72, 
SD = 3.78), followed by Cz (M = 2.36, SD = 4.68) and Fz (M =.39, SD =
3.70).

Finally, the RewP component showed excellent internal consistency, 
yielding Cronbach’s alphas of .97, .98, and .97, for the electrodes Fz, Cz, 
and Pz, respectively.

2.2.2. Feedback-P3 (FB-P3)
The ERPs in the FB-P3 time-range were measured as the mean 

amplitude from 340 to 500ms post feedback 1 onset. The Rm-ANOVA on 
the FB-P3 amplitude showed that there was no significant 4-way 

interaction between Photo Type, Information Cue, Feedback, and Elec
trode, F(1.35, 39.28) = 1.82, p = .18, η2

p= .059, nor were there any 
significant 3-way interactions [Information Cue x Feedback x Electrode, 
F(1.41, 41.02) = 1.06, p = .33, η2

p= .035, Photo-Type x Feedback x 
Electrode, F(1.50, 43.49) = .98, p = .36, η2

p= .033, Photo-Type x Infor
mation Cue x Electrode, F(1.41, 40.86) = 1.07, p = .33, η2

p= .036, or 
Photo-Type x Information Cue x Feedback, F(1, 29) = 1.76, p = .20, 
η2

p= .057].
However, there was a significant 2-way Information-Cue x Feedback 

interaction, F(1, 29) = 6.84, p = .01, η2
p = .191. Specifically, as shown in 

Fig. 3, simple effect tests showed that for the negative information 
condition, feedback for misses (i.e., Dislike with 1 and receipt of nega
tive comment; M = 7.30, SD = 4.36) evoked significantly larger FB-P3 
amplitudes than feedback for hits (i.e., Dislike with 0 and omission of 
negative comment; M = 5.56, SD = 3.90), F(1, 29) = 10.9, p.003, η2

p 
= .272, whereas for positive information, there was no significant dif
ference in the FB-P3 amplitudes as a function of the feedback received 
[Hits: M = 5.55, SD = 3.61; Misses: M = 5.26, SD = 4.44], F(1, 29) 
= .33, p = 0.57, η2

p = .011. As expected, the differences between feed
back for hits and misses in FB-P3 amplitudes were maximal in cen
troparietal areas, as shown in the topographic maps in Fig. 3. No other 2- 
way interactions significantly predicted the amplitude in the FB-P3 
time-range [i.e., Photo-Type x Information-Cue, F(1, 29) = 1. 29, 
p = .27, η2

p= .043, Photo-Type x Feedback, F(1, 29) = 1.38, p = .25, 
η2

p= .046, Information-Cue x Electrode, F(1.47, 42.65) = .27, p = .70, 

Fig. 3. Feedback-locked ERPs and bar plots showing the mean amplitudes in the RewP and FB-P3 time-range for each condition at each level of Information Cue at Fz 
and Pz. ERPs were low pass filtered at 20 Hz for visualization purposes. The dark and light gray areas represent the time-windows used to quantify the RewP and the 
P3, respectively. Scalp voltage maps show the topographical distribution of the difference between feedback for hits and misses at each level of information cue 
across the RewP (260–340ms) and P3 (340–500ms) time-window. Notice that in the negative information condition, feedback for hits (i.e., Dislike with 0 and 
omission of negative comment) yielded smaller amplitudes in the RewP and FB-P3 time-range than feedback for misses (i.e., Dislike with 1 and receipt of negative 
comment).
Note. p ≤ .05 * , p < .001 ***.
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η2
p= .009, Feedback x Electrode, F(1.38, 39.95) = 1.86, p = .18, 

η2
p= .060].

Additionally, the Rm-ANOVA also revealed a main effect of photo- 
type, F(1, 29) = 50.99, p < .001, η2

p = .637, such that participants had 
significantly larger FB-P3 amplitudes on trials they received feedback on 
their own photos (M = 7.29, SD = 4.42) compared to trials they received 
feedback on others’ photos (M = 4.54, SD = 3.33). Results also revealed 
a significant main effect of information cue, F(1, 29) = 14.21, p < .001, 
η2

p = .329, such that the FB-P3 amplitudes were significantly larger for 
negative (M = 6.43, SD = 3.87) relative to positive information cues (M 
= 5.40, SD = 3.82), irrespective of the feedback type. The main effect of 
feedback was also significant, F(1, 29) = 4.80, p = .04, η2

p = .142, such 
that the FB-P3 amplitudes were significantly larger for feedback on 
misses (M = 6.28, SD = 4.16) rather than feedback on hits (M = 5.55, SD 
= 3.58). In addition, the main effect of electrode was also significant, F 
(1.68, 48.82) = 125.89, p < .001, η2

p = .813, such that the largest FB-P3 
amplitudes were found at Pz (M = 8.80, SD = 3.95), followed by Cz (M =
5.84, SD = 4.37) and Fz (M = 3.12, SD = 3.43).

Finally, the FB-P3 component showed excellent internal consistency, 
yielding Cronbach’s alphas of .93, .96, and .96, for the electrodes Fz, Cz, 
and Pz, respectively.

To ensure the differences we observed are due to the feedback per se 
and not due to differences in the baseline, we re-analyzed the ERP data 
without removing the baseline. As shown in Figure S1 (see supple
mentary material), the Information Cue x Feedback interaction we 
observed for the amplitudes in the RewP and the FB-P3 time-range at the 
feedback phase remained significant even in the un-baselined data.

3. Discussion

In the current study, we aimed to investigate whether people seek 
out negative social information about themselves, as well as the 
neurophysiological mechanisms that may underlie this counterintuitive 
behavior. As predicted, participants exhibited significantly slower re
action times in the negative information relative to the positive infor
mation conditions specifically for their own photos, showing less 
motivation to avoid negative rather than seek positive information 
about oneself. Coherently, receiving (vs. avoiding) negative information 
evoked larger amplitudes in the RewP and FB-P3 time-range, especially 
for participants’ own photos, indicating that receiving negative infor
mation was more rewarding and more salient than not receiving any 
information. These results add to the growing literature on the attention- 
grabbing nature of negative information on social media (Winter et al., 
2015; Kätsyri et al., 2016; Boot et al., 2021; Kohout et al., 2023), and for 
the first time, they also reveal the neurophysiological mechanisms that 
may underlie this effect.

Importantly, present study helps clarify in which contexts the self- 
relevance of negative content may inhibit or facilitate information 
seeking. Current findings contradict prior work showing that people 
choose to ignore negative outcomes in a personal lottery task 
(Charpentier et al., 2018) and reject medical screenings to avoid 
potentially negative outcomes (Golman & Loewenstein, 2012; Niehoff & 
Oosterwijk, 2020; but see the work of Lieberman et al., 1997 for 
opposing results). While in financial and health domains people seem to 
value ignorance more than knowledge, our findings unveil the possi
bility of self-relevant negative feedback acting as reinforcement in 
certain social domains. In contrast with financial domains where nega
tive feedback is always interpreted as a loss and positive feedback as a 
gain, feedback in the social domain is not necessarily interpreted as 
such. Depending on social framing, social feedback can have different 
meanings, for example, positive feedback could mean a friendly apology 
(Weiß et al., 2020), and negative feedback could mean an opportunity to 
induce a positive change in behavior. In addition, negative social feed
back, especially in the absence of positive feedback (i.e., in the negative 
information conditions where there is no possibility for a positive 
comment), may be preferred to indifference (Gallimore et al., 1969).

Our ERP results shed light into the underlying neurophysiological 
mechanisms that may drive self-relevant negative information seeking. 
Given that the FB-P3 is thought to reflect motivational salience and is 
generally larger for feedback stimuli with high salience and emotional 
value (San Martín, 2012; Novak & Foti, 2015; Glazer et al., 2018), a 
larger FB-P3 for negative feedback in the negative information condition 
(especially for participants’ own photos) suggests that the prospect of 
accessing negative information was processed as the most salient feed
back. In addition, given that the RewP is thought to reflect meso
corticolimbic reward circuit activation (e.g., ventral striatum and 
vmPFC) (Carlson et al., 2011; Proudfit, 2015) and is generally larger for 
wins vs losses in both monetary (Marco-Pallares et al., 2008; Nelson 
et al., 2016; Burkhouse et al., 2017) and social reward tasks (Ethridge 
et al., 2017; Distefano et al., 2018), a larger amplitude in the RewP 
time-range for negative feedback in the negative information condition 
(especially for participants’ own photos) suggests that the prospect of 
receiving a negative comment was processed as rewarding feedback. 
Therefore, the increased salience and reward processing for negative 
feedback in the negative information condition as indexed by the P3 and 
RewP ERPs, respectively, may explain the engaging nature of 
self-relevant negative social information. The heightened salience of 
negative comments in our study may also be because social media users 
predominantly receive positive feedback on their posts (Valkenburg 
et al., 2006), with negative comments being rare, which may therefore 
make them more salient or more intriguing. This could also explain the 
non-significant difference in RewP and FB-P3 amplitudes between pos
itive and negative feedback in the positive information condition.

However, given that the RewP was initially conceptualized as a loss 
signal known as the feedback-related negativity (FRN) and was thought 
to reflect negativity that is increased to loss rather than reward-related 
positivity (Gehring & Willoughby, 2002; Glazer et al., 2018), the 
larger RewP we found for the negative feedback could also be inter
preted as a smaller FRN. A smaller FRN would suggest that receiving vs 
avoiding the negative feedback is processed as a less negative rather 
than a more positive outcome. Further, given that some researchers 
argued that the RewP reflects salience rather than reward prediction 
errors (Talmi et al., 2013), a larger RewP for negative feedback in our 
data may indicate that negative information is more salient, not neces
sarily more rewarding. However, while these alternative explanations 
are plausible, growing evidence suggests that the RewP reflects 
reward-specific activation (Carlson et al., 2011; Glazer et al., 2018; 
Holroyd et al., 2008, 2011; Carlson et al., 2015; Foti et al., 2011).

One of the strengths of our current study is our unique experimental 
approach. The modifications we made to the original SID task were 
instrumental in addressing our research question. Using participants’ 
own Instagram photos as stimuli and introducing personalized and 
informative social feedback via comments were crucial modifications. 
While earlier versions of the SID used social incentives such as smiling 
faces and body gestures (Kohls et al., 2013), these may not have been 
genuinely social since they lacked direct human interaction. Even in 
more recent studies where participants believed the feedback came from 
the experimenter (Ait Oumeziane et al., 2017; Wei et al., 2020), simple 
gestures like thumbs up and down may have been perceived as auto
matic or mindless (Carr et al., 2016; Zell & Moeller, 2018), or too 
impersonal to convince participants of genuine social evaluation. 
Additionally, even when these gestures were more ecological since they 
were adapted from popular social medial platforms, they were not 
associated with participants’ own photos or posts as would normally 
occur in the social media environment, which may have dampened their 
motivational salience and personal relevance in the task. In our study, 
using participants’ own Instagram photos made the feedback more 
self-relevant and more motivationally salient, and the use of comments 
made the feedback feel more genuine, because comments are more 
concrete (Winter et al., 2015; Boot et al., 2021), more informative, and 
more effortful than Likes (Zell & Moeller, 2018). In addition, by being 
more informative and more specific to the content of the photos, 
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comments were more curiosity-evoking and more likely to incentivize 
participants to seek negative feedback.

While our experimental approach is promising, our study is not 
without limitations. First, while our sample size is similar to that of prior 
EEG studies that found large effects using the SID (e.g., Ait Oumeziane 
et al., 2017) and other tasks assessing the neural correlates of social 
acceptance and social rejection (Zhang et al., 2022), larger samples are 
needed to detect smaller effects, especially for interactions. Second, 
although we included comments as a step forward from previous ver
sions of the SID, we did not analyze the ERPs time-locked to the com
ments’ delivery (Feedback Phase 2). Therefore, one might argue that the 
feedback phase that we analyzed does not represent the actual rewards 
or punishments. However, seeing the comments was associated with 
first seeing the Likes/Dislikes, which likely increased the rewarding 
value of the Likes/Dislikes. In addition, while the use of participants’ 
own photos as stimuli increased the ecological validity of the task, some 
photos may have been more important to participants than others, 
which may have further influenced the results. Further, while the dislike 
symbol used to signal negative feedback in the negative information 
condition is known from Facebook and X (formerly known as Twitter), it 
is not generally known to be embedded in a pink speech bubble. The 
reason we employed it this way was to make it perceptually similar to 
the Like symbol adapted from Instagram. Although participants received 
explicit instructions and underwent sufficient practice trials to famil
iarize themselves to the stimuli, we cannot eliminate the possibility that 
reduced prior familiarity with the dislike stimulus may have influenced 
results. In addition, while slower reaction times in the negative infor
mation vs positive information condition may reflect participants’ 
motivation to avoid the negative comments, they may also reflect par
ticipants’ difficulty in keeping track of when they needed to be slower 
vs. faster to achieve their goals, or they may suggest that participants 
were conflicted about whether they wanted to see the negative com
ments. Given that reaction times may be confounded by other factors 
and do not represent an explicit or a direct measure of participants’ 
preference to seek rather than avoid self-relevant negative information, 
our behavioral data must be interpreted with caution. In this regard, 
future studies might use a more straightforward decision-making task 
directly asking whether participants want to see the negative comments 
on a given photo or not. This approach may help clarify participants’ 
intentions and might provide more compelling evidence for partici
pants’ tendency to seek vs avoid negative information. Finally, since 
prior studies suggest that negativity biases are more common in younger 
people (Reed et al., 2014), future research should replicate this study in 
older populations to explore whether the negativity bias we found still 
holds for older adults.

4. Conclusion

Findings show that people engage in self-relevant negative social 
information and unveil the potential neurophysiological mechanisms 
that may underlie this counterintuitive behavior.
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