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Summary

Quantitative precipitation estimation is not only essential for understanding atmospheric pro-
cesses, but also a key factor in water resource management, weather forecasting, and climate
modeling. Advances in remote sensing have enabled significant progress in this area, with satellite
systems providing near-continuous global precipitation coverage, including remote and oceanic
regions where other methods prove insufficient. The Global Precipitation Measurement (GPM)
mission, using an international constellation of satellites, aims to enhance our understanding of
the Earth’s water cycle and energy balance. This mission represents one of the most comprehen-
sive and accurate efforts to quantify precipitation on a global scale. Since its launch in 2014,
the mission’s derived products have undergone continuous updates to improve their retrieval
algorithms. This, combined with the complexity of Mediterranean regions—characterized by
high climate variability and significant uncertainties in precipitation projections—makes rigorous
validation of these products crucial.

Accordingly, this study aims at performing a comprehensive validation of GPM products in
a Western Mediterranean region. The research is structured around six specific objectives:

SO1. To evaluate the precipitation estimates from the three Integrated Multi-satellitE
Retrievals for GPM (IMERG) runs (Early, Late, and Final) at various temporal
scales (half-hourly, hourly, daily, monthly, seasonal, and annual).

SO2. To analyze the IMERG estimates at the highest temporal resolution (30 mi-
nutes), considering different orographic features, climatic conditions, and
precipitation intensity thresholds.

SO3. To quantify the errors associated with IMERG in estimating heavy rainfall
events at daily and sub-daily scales, to identify and address sources of error.

SO4. To investigate the impact of the contribution of different sensors to IMERG
retrievals and their linkage to microphysical properties of precipitating cloud
tops, with a focus on estimating heavy rainfall events.

SO5. To compare the performance of three Operational Hydrology and Water
Management (H SAF) products and the Early and Late versions of IMERG in
estimating extreme precipitation events at hourly and daily scales.

SO6. To evaluate the precipitation intensity, radar reflectivity factors, and drop size
distribution (DSD) parameters of GPM’s Dual-frequency Precipitation Radar
(DPR) Level 2 version 07B considering a network of disdrometers.

This doctoral thesis, structured into three fundamental parts, addresses the main objectives
of the research based on three scientific publications and a preprint. The narrative of the thesis
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Summary

begins with a direct validation of the IMERG runs, one of the key products of the GPM mission,
at multiple temporal scales. It continues with the quantification of the errors in detecting intense
rainfall events in the Mediterranean region, also considering the impact of the precipitating cloud
top phase on satellite retrievals. A comparison with H SAF mission products is included, and
the errors in the retrievals of extreme events are quantified using 18 case studies. Finally, the
rain estimates and drop size distributions derived from the GPM Dual-frequency Precipitation
Radar (DPR) are validated.

Although in recent years the number of validation studies for GPM and its derived products
has increased, many of them had recurrent shortcomings, such as the lack of evaluations at
sub-daily scales or in mountainous regions under different climatic regimes and/or considering
precipitation intensity. Accordingly, the first part of the thesis focuses on evaluating the
precipitation estimates of the three IMERG runs (Early, Late, and Final) at various temporal
scales, including half-hourly, in the Catalonia region. A dense network of automatic stations from
the Meteorological Service of Catalonia, covering the 2015-2020 period, was used as reference
data. While Early and Late runs of IMERG overestimate precipitation, IMERG Final reduces
the error at all temporal scales. However, the calibration to which a Final run is subjected causes
underestimation in some areas, such as the Pyrenees mountains. The proportion of false alarms
is a problem for IMERG, especially during the summer, mainly associated with the detection of
false precipitation in the form of light rainfall. At sub-daily scales, IMERG showed high bias
and very low correlation values, indicating the remaining challenge for satellite retrievals to
estimate precipitation at high temporal resolution. This behaviour is more evident in flat areas
and cold semi-arid climates, wherein overestimates of more than 30% were found. In contrast,
rainfall classified as very heavy and torrential showed significant underestimates, higher than
80%, reflecting the inability of IMERG to detect extreme sub-daily precipitation events.

Building on this investigation, the study continued, this time focusing on IMERG products
with lower latency in their outputs (Early and Late), to evaluate retrievals associated with
extreme precipitation events. The validation strategy also sought to identify the contribution of
different sensors (IR and PMW) involved in IMERG retrievals. Subsequently, the results were
stratified according to their relationship with the microphysical properties of precipitating clouds,
using data from the Nowcasting and Very Short-Range Forecasting (NWC) Satellite Application
Facility (SAF) of the European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT). The results showed a marked tendency to underestimate precipitation compared
to rain gauges which increases with rainfall intensity and temporal resolution. A weaker negative
bias was also found for retrievals with PMW, an increased bias when filling PMW gaps by
including IR information, and an improved performance in the presence of precipitating ice clouds
compared to warm and mixed-phase clouds. In line with these studies, the second part of this
research analyzed 18 extreme precipitation cases in Catalonia and compared IMERG retrievals
with various products from the Support to Operational Hydrology and Water Management (H
SAF) program managed by EUMETSAT, including, among others, products H64 and H68. These
studies employed a pixel-to-point comparison method to reduce uncertainties associated with
comparing satellite data obtained on a regular grid with point-scale observations from rain gauges.
The results showed that while all satellite products tend to overestimate observed precipitation,
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H64 performs best at the daily scale, and H68 stands out in hourly detection. However, the
accuracy of all products significantly decreases with increasing precipitation intensity, with H68
exhibiting the largest errors in high-intensity events. Despite significant biases, the IMERG
Late product proved to be the most effective in detecting intense precipitation events. This
study offers critical insights into their comparative performance, enhancing their application in
hydrometeorological management and disaster response.

Finally, the GPM Core satellite Dual-frequency Precipitation Radar, one of the few in-
struments currently providing spaceborne three-dimensional precipitation field observations,
was evaluated. Unlike the rest of the studies where precipitation level 3 products are taken,
in this analysis the limited GPM CO overpasses over a given region play a fundamental role,
which implies a low probability of coincidence with the observation of precipitation over the
disdrometer sites. This analysis included retrievals of precipitation intensity, radar reflectivity
factor (Ka and Ku bands), and drop size distribution parameters such as intercept parameter
(Nw), shape parameter (µ), and mass-weighted mean diameter (Dm), all obtained from version
07, the latest available. Seven OTT Parsivel disdrometers, located in various topographic areas
of the Western Mediterranean between 2014 and 2023, were used as ground references. Four
spatial comparison techniques were applied between satellite estimates and surface observations,
using both continuous and categorical statistics to quantify associated errors. Overall, GPM
DPR products captured the variability of the observed DSD well at different rainfall intensities.
However, overestimation of the mean Dm and underestimation of the mean Nw were observed,
being much more sensitive to errors in drop diameters larger than 1.5 mm. Moreover, the lowest
errors were found for radar reflectivity factor and Dm, and the highest for Nw and rainfall rate.
In addition, the GPM DPR convective and stratiform classification was tested, and a substantial
overestimation of stratiform cases compared to disdrometer observations were found.

This research represents one of the first studies in the Iberian Peninsula to validate IMERG
products with a detailed focus on orographic, climatic, and precipitation intensity factors at
high temporal resolution. The comparison with H SAF products and the evaluation of the latest
updates to version 7 of the DPR expands the scope of validation and lays the groundwork for
future research on the use of satellite data in precipitation estimation.

ix





Resumen

La estimación cuantitativa de la precipitación no solo es esencial para comprender los procesos
atmosféricos, sino que también es un factor clave en la gestión de recursos hídricos, la previsión
meteorológica y la modelización climática. Los avances en la teledetección han permitido un
progreso significativo en esta área, con sistemas satelitales que proporcionan una cobertura
casi continua y global de las precipitaciones, incluyendo zonas remotas y oceánicas donde otros
métodos resultan insuficientes. La misión Global Precipitation Measurement (GPM), usando
una constelación internacional de satélites, tiene como objetivo mejorar nuestra comprensión del
ciclo del agua y el balance energético de la Tierra. Esta misión representa uno de los esfuerzos
más completos y precisos para cuantificar la precipitación a escala global. Desde su lanzamiento
en 2014, los productos derivados de la misión han experimentado actualizaciones constantes
para mejorar sus algoritmos de estimación. Esto, sumado a la complejidad en las regiones
mediterráneas, caracterizadas por una alta variabilidad climática y grandes incertidumbres en
las proyecciones de precipitación, hace que la validación rigurosa de estos productos sea crucial.

De acuerdo con lo planteado, este estudio está orientado a realizar una validación exhaustiva
de los productos del GPM en una región del Mediterráneo occidental. La investigación se
estructura en torno a seis objetivos específicos:

SO1. Evaluar las estimaciones de precipitación de las tres ejecuciones del Integrated
Multi-satellitE Retrievals for GPM (IMERG: Early, Late y Final) en diversas
escalas temporales (semi-horaria, horaria, diaria, mensual, estacional y anual)

SO2. Analizar las estimaciones de IMERG a la mayor resolución temporal (30
minutos), teniendo en cuenta distintas características orográficas, condiciones
climáticas y umbrales de intensidad de precipitación.

SO3. Cuantificar los errores asociados con IMERG en la estimación de eventos de
lluvia intensa en escalas diarias y subdiarias, identificando las fuentes de error.

SO4. Investigar la contribución de los distintos sensores en las estimaciones de
IMERG y su relación con las propiedades microfísicas de las nubes precipitantes,
centrándose en la estimación de eventos de lluvia intensa.

SO5. Comparar el rendimiento de tres productos del programa H SAF y las versiones
Early y Late de IMERG en la estimación de eventos de precipitación extrema
a escalas horarias y diarias.

SO6. Evaluar la intensidad de la precipitación, el factor de reflectividad radar y los
parámetros de la distribución del tamaño de gotas (DSD) del Dual-Frequency
Precipitation Radar (DPR) de GPM, utilizando una red de disdrómetros.
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Resumen

Esta tesis doctoral, estructurada en tres partes fundamentales, aborda los principales objetivos
de la investigación basados en tres publicaciones científicas y un preprint. La narrativa de la
tesis comienza con una validación directa de las ejecuciones de IMERG, uno de los productos
clave de la misión GPM, a múltiples escalas temporales. Continúa con la cuantificación de los
errores de estos productos en la detección de eventos de lluvia intensa en la región mediterránea,
considerando además el impacto de la fase del tope de las nubes que precipitan en las estimaciones
satelitales. Se incluye una comparación con productos de la misión H SAF y se cuantifican los
errores en las recuperaciones de eventos extremos tomando 18 casos de estudio. Finalmente,
se validan las estimaciones de lluvia y las distribuciones del tamaño de gotas derivadas del
Dual-Frequency Precipitation Radar (DPR) a bordo del GPM.

Aunque en los últimos años ha aumentado el número de estudios de validación del GPM y
sus productos derivados, muchos de ellos presentaban deficiencias recurrentes, como la falta de
evaluaciones a escalas subdiarias o en regiones montañosas bajo distintos regímenes climáticos
y/o teniendo en cuenta la intensidad de las precipitaciones. A partir de ello, la primera parte de
la tesis se centra en la evaluación de las estimaciones de precipitación de las tres ejecuciones de
IMERG (Early, Late y Final) a diversas escalas temporales, incluida la semi-horaria, en la región
de Cataluña. Como datos de referencia, se utilizó una red densa de estaciones automáticas
del Servicio Meteorológico de Cataluña, abarcando el período 2015-2020. Mientras que las
ejecuciones Early y Late de IMERG sobreestiman la precipitación, IMERG Final reduce el error
en todas las escalas temporales. Sin embargo, la calibración a la que se somete la ejecución Final
provoca una subestimación en zonas de montaña como los Pirineos. La proporción de falsas
alarmas es un problema para IMERG, especialmente durante el verano, asociado principalmente
a la detección de falsas precipitaciones en forma de lluvia débil. A escalas subdiarias, IMERG
mostró un sesgo elevado y valores de correlación muy bajos, lo que indica el reto que aún
tienen los sensores de satélite para estimar la precipitación a alta resolución temporal. Este
comportamiento es más evidente en zonas llanas y climas semiáridos fríos, donde se encontraron
sobreestimaciones de más del 30%. Por el contrario, las precipitaciones clasificadas como muy
fuertes y torrenciales mostraron subestimaciones significativas, superiores al 80%, lo que refleja
la incapacidad de IMERG para detectar eventos extremos de precipitación subdiaria.

A partir de esta investigación, se continuó el estudio, esta vez centrado en los productos
IMERG con menor latencia en sus salidas (Early y Late), para evaluar las recuperaciones asociadas
a eventos extremos de precipitación. La estrategia de validación también buscó identificar la
contribución de los diferentes sensores (IR y PMW) que participan en las recuperaciones de
IMERG. Posteriormente, los resultados se estratificaron según su relación con las propiedades
microfísicas de las nubes precipitantes, utilizando datos del Support to Nowcasting and Very
Short Range Forecasting (NWC) Satellite Application Facility (SAF) de la Organización Europea
para la Explotación de Satélites Meteorológicos (EUMETSAT por sus siglas en inglés). Los
resultados mostraron una marcada tendencia a subestimar la precipitación en comparación con
los pluviómetros que aumenta con la intensidad de la precipitación y la resolución temporal, un
sesgo negativo más débil para las estimaciones con datos de PMW, un sesgo mayor cuando se
rellenan los huecos de PMW incluyendo información IR, y un mejor rendimiento en presencia de
nubes de hielo precipitantes en comparación con las nubes cálidas y de fase mixta. En línea con
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Resumen

estos estudios, la segunda parte de esta investigación analizó 18 casos de precipitación extrema
en Cataluña y comparó las estimaciones IMERG con varios productos del programa de Apoyo a
la Hidrología Operativa y la Gestión del Agua (H SAF, por sus siglas en inglés) gestionado por
EUMETSAT, incluyendo, entre otros, los productos H64 y H68. Estos estudios emplearon un
método de comparación píxel a punto para reducir las incertidumbres asociadas a la comparación
de datos de satélite obtenidos en una cuadrícula regular con observaciones a escala de punto
procedentes de pluviómetros. Los resultados mostraron que, si bien todos los productos satelitales
tienden a sobreestimar la precipitación observada, el H64 obtiene los mejores resultados a escala
diaria, y el H68 destaca en la detección horaria. Sin embargo, la precisión de todos los productos
disminuye significativamente con el aumento de la intensidad de la precipitación, siendo el H68
el que presenta mayores errores en eventos de alta intensidad. A pesar de los importantes sesgos,
el producto IMERG Late demostró ser el más eficaz en la detección de eventos de precipitación
intensa. Este estudio ofrece una visión crítica de su rendimiento comparativo, mejorando su
aplicación en la gestión hidrometeorológica y la respuesta a catástrofes.

Finalmente, se evaluó el Dual-Frequency Precipitation Radar a bordo del satélite GPM Core
(CO), uno de los pocos instrumentos satelitales que actualmente proporciona observaciones
tridimensionales de los campos de precipitación. A diferencia del resto de estudios en los que se
toman productos de precipitación de nivel 3, en este análisis juegan un papel fundamental el
limitado nombre de sobrevuelos del GPM CO sobre una región determinada, lo que implica una
baja probabilidad de coincidencia con la observación de precipitación sobre los emplazamientos
de los disdrómetros. Este análisis incluyó las estimaciones de la intensidad de la precipitación,
el factor de reflectividad del radar (en banda Ka y Ku) y parámetros de la distribución del
tamaño de gotas como el parámetro de intercepción (Nw), el parámetro de forma (µ), y el
diámetro medio ponderado (Dm), todos obtenidos de la versión 07, la más reciente disponible.
Para ello, se utilizaron observaciones de siete disdrómetros OTT Parsivel ubicados en diversas
zonas topográficas del Mediterráneo occidental entre 2014 y 2023. Mediante cuatro técnicas
de comparación espacial entre las estimaciones por satélite y las observaciones en superficie, se
aplicaron tanto estadísticos continuos como categóricos para cuantificar los errores asociados.
En general, los productos GPM DPR capturaron bien la variabilidad de la DSD observada
en diferentes intensidades de precipitación. Sin embargo, se observó una sobreestimación de
la Dm media y una subestimación de la Nw media siendo mucho más sensibles a los errores
en los diámetros de gota superiores a 1.5 mm. Los errores más bajos se encontraron para el
factor de reflectividad del radar y Dm, y los más altos para Nw e intensidad de precipitación.
Además, se evaluó la clasificación convectiva y estratiforme del GPM DPR, y se encontró una
sobreestimación sustancial de los casos estratiformes en comparación con las observaciones del
disdrómetro.

Esta investigación representa uno de los primeros estudios en la península Ibérica que valida
los productos de IMERG con un enfoque detallado en factores orográficos, climáticos y de
intensidad de precipitación, a alta resolución temporal. La comparación con productos del
programa H SAF y la evaluación de las actualizaciones más recientes de la versión 7 del DPR
amplía el ámbito de la validación y sienta las bases para futuras investigaciones sobre el uso de
datos satelitales en la estimación de la precipitación.

xiii





Resum

L’estimació quantitativa de la precipitació no només és essencial per comprendre els processos
atmosfèrics, sinó que també és un factor clau en la gestió de recursos hídrics, la previsió me-
teorològica i la modelització climàtica. Els avenços en la teledetecció han permès un progrés
significatiu en aquesta àrea, amb sistemes satel·litaris que proporcionen una cobertura gairebé
contínua i global de les precipitacions, incloent zones remotes i oceàniques on altres mètodes re-
sulten insuficients. La missió Global Precipitation Measurement (GPM), usant una constel·lació
internacional de satèl·lits, té com a objectiu millorar la nostra comprensió del cicle de l’aigua i el
balanç energètic de la Terra. Aquesta missió representa un dels esforços més complets i precisos
per quantificar la precipitació a escala global. Des del seu llançament el 2014, els productes
derivats de la missió han experimentat actualitzacions constants per millorar els seus algorismes
de recuperació. Això, sumat a la complexitat de les regions mediterrànies, caracteritzades per
una alta variabilitat climàtica i grans incerteses en les projeccions de precipitació, fa que la
validació rigorosa d’aquests productes sigui crucial.

D’acord amb això, aquest estudi està orientat a realitzar una validació exhaustiva dels
productes del GPM en una regió del Mediterrani occidental. La investigació s’estructura al
voltant de sis objectius específics:

SO1. Avaluar les estimacions de precipitació de les tres execucions de l’Integrated
Multi-satellitE Retrievals for GPM (IMERG: Early, Late i Final) a diverses
escales temporals (semi-horària, horària, diària, mensual, estacional i anual).

SO2. Analitzar les estimacions d’IMERG a la màxima resolució temporal (30 minuts),
tenint en compte diferents característiques orogràfiques, condicions climàtiques
i llindars d’intensitat de precipitació.

SO3. Quantificar els errors associats amb IMERG en l’estimació d’esdeveniments de
pluja intensa a escales diàries i subdiàries, identificant les fonts d’error.

SO4. Investigar la contribució dels diferents sensors en les estimacions d’IMERG
i la seva relació amb les propietats microfísiques dels núvols precipitants,
centrant-se en l’estimació d’esdeveniments de pluja intensa.

SO5. Comparar el rendiment de tres productes del programa H SAF i les versions
Early i Late d’IMERG en l’estimació d’esdeveniments de precipitació extrema
a escales horàries i diàries.

SO6. Avaluar la intensitat de la precipitació, el factor de reflectivitat radar i els
paràmetres de la distribució de la mida de les gotes (DSD) del Dual-Frequency
Precipitation Radar (DPR) de GPM, utilitzant una xarxa de disdròmetres.
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Resum

Aquesta tesi doctoral, estructurada en tres parts fonamentals, aborda els principals objectius
de la investigació basats en tres publicacions científiques i un preprint. La narrativa de la tesi
comença amb una validació directa de les execucions d’IMERG, un dels productes clau de la
missió GPM, a múltiples escales temporals. Continua amb la quantificació dels errors d’aquests
productes en la detecció d’esdeveniments de pluja intensa a la regió mediterrània, considerant a
més l’impacte de la fase del cim dels núvols que precipiten en les recuperacions satel·litàries.
S’inclou una comparació amb productes de la missió H SAF i es quantifiquen els errors en
les estimacions d’esdeveniments extrems prenent 18 casos d’estudi. Finalment, es validen les
estimacions de pluja i les distribucions de la mida de les gotes derivades del Dual-frequency
Precipitation Radar (DPR) de GPM.

Tot i que en els darrers anys ha augmentat el nombre d’estudis de validació del GPM i els seus
productes derivats, molts d’ells presentaven mancances recurrents, com la manca d’avaluacions a
escales subdiàries o en regions muntanyoses sota diferents règims climàtics i/o tenint en compte la
intensitat de les precipitacions. A partir d’això, la primera part de la tesi se centra en l’avaluació
de les estimacions de precipitació de les tres execucions d’IMERG (Early, Late i Final) a diverses
escales temporals, inclosa la semi-horària, a la regió de Catalunya. Com a dades de referència, es
va utilitzar la xarxa densa d’estacions automàtiques del Servei Meteorològic de Catalunya, que
abasten el període 2015-2020. Mentre que les execucions Early i Late d’IMERG sobreestimen la
precipitació, IMERG Final redueix l’error en totes les escales temporals. No obstant això, el
calibratge al qual es sotmet l’execució Final provoca una subestimació en zones de muntanya com
els Pirineus. La proporció de falses alarmes és un problema per a IMERG, especialment durant
l’estiu, associat principalment a la detecció de falses precipitacions en forma de pluja feble. A
escales subdiàries, IMERG va mostrar un biaix elevat i valors de correlació molt baixos, cosa que
indica el repte que encara tenen els sensors de satèl·lit per estimar la precipitació a alta resolució
temporal. Aquest comportament és més evident en zones planes i climes semiàrids freds, on es
van trobar sobreestimacions de més del 30%. Per contra, les precipitacions classificades com
molt fortes i torrencials van mostrar subestimacions significatives, superiors al 80%, cosa que
reflecteix la incapacitat d’IMERG per detectar esdeveniments extrems de precipitació subdiària.

A partir d’aquesta investigació, es va continuar l’estudi, aquesta vegada centrat en els
productes IMERG amb menor latència en les seves sortides (Early i Late), per avaluar les
estimacions associades a esdeveniments extrems de precipitació. L’estratègia de validació també
va buscar identificar la contribució dels diferents sensors (IR i PMW) que participen en les
estimacions d’IMERG. Posteriorment, els resultats es van estratificar segons la seva relació amb
les propietats microfísiques dels núvols precipitants, utilitzant dades del Support to Nowcasting
and Very Short Range Forecasting (NWC) Satellite Application Facility (SAF) de l’Organització
Europea per a l’Explotació de Satèl·lits Meteorològics (EUMETSAT per les seves sigles en
anglès). Els resultats van mostrar una marcada tendència a subestimar la precipitació en
comparació amb els pluviòmetres que augmenta amb la intensitat de la precipitació i la resolució
temporal, un biaix negatiu més feble per a les recuperacions amb dades de PMW, un biaix
major quan es reomplen els buits de PMW incloent-hi informació IR, i un millor rendiment en
presència de núvols de gel precipitants en comparació amb els núvols càlids i de fase mixta. En
línia amb aquests estudis, la segona part d’aquest estudi va analitzar 18 casos de precipitació
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extrema a Catalunya i va comparar les recuperacions d’IMERG amb diversos productes del
programa de Suport a la Hidrologia Operativa i la Gestió de l’Aigua (H SAF, per les seves sigles
en anglès) gestionat per EUMETSAT, incloent, entre d’altres, els productes H64 i H68. Aquests
estudis van utilitzar un mètode de comparació píxel a punt per reduir les incerteses associades
a la comparació de dades de satèl·lit obtingudes en una quadrícula regular amb observacions
a escala de punt procedents de pluviòmetres. Els resultats van mostrar que, tot i que tots els
productes satel·litaris tendeixen a sobreestimar la precipitació observada, l’H64 obté els millors
resultats a escala diària, i l’H68 destaca en la detecció horària. No obstant això, la precisió de
tots els productes disminueix significativament amb l’augment de la intensitat de la precipitació,
sent l’H68 el que presenta més errors en esdeveniments d’alta intensitat. Tot i els importants
biaixos, el producte IMERG Late va demostrar ser el més eficaç en la detecció d’esdeveniments
de precipitació intensa. Aquest estudi ofereix una visió crítica del seu rendiment comparatiu,
millorant la seva aplicació en la gestió hidrometeorològica i la resposta a catàstrofes.

Finalment, es va avaluar el Dual-Frequency Precipitation Radar a bord del satèl·lit GPM
Core (CO), un dels pocs instruments satel·litaris que actualment proporciona observacions
tridimensionals dels camps de precipitació. A diferència de la resta d’estudis en què es prenen
productes de precipitació de nivell 3, en aquesta recerca juguen un paper fonamental el limitat
nombre de sobrevols del GPM CO sobre una regió determinada, cosa que implica una baixa
probabilitat de coincidència amb l’observació de precipitació sobre els emplaçaments dels dis-
dròmetres. Aquesta anàlisi va incloure les recuperacions de la intensitat de la precipitació, el
factor de reflectivitat del radar (en banda Ka i Ku) i paràmetres de la distribució de la mida de
les gotes com el paràmetre d’intercepció (Nw), el paràmetre de forma (µ) i el diàmetre mitjà
ponderat (Dm), tots obtinguts de la versió 07, la més recent disponible. Per a això, es van
utilitzar observacions de set disdròmetres OTT Parsivel ubicats en diverses zones topogràfiques
del Mediterrani occidental entre 2014 i 2023. Mitjançant quatre tècniques de comparació espacial
entre les estimacions per satèl·lit i les observacions en superfície, es van aplicar tant estadístics
continus com categòrics per quantificar els errors associats. En general, els productes GPM DPR
van capturar bé la variabilitat de la DSD observada en diferents intensitats de precipitació. No
obstant això, es va observar una sobreestimació de la Dm mitjana i una subestimació de la Nw

mitjana, sent molt més sensibles als errors en els diàmetres de gota superiors a 1.5 mm. Els errors
més baixos es van trobar per al factor de reflectivitat del radar i Dm, i els més alts per a Nw i
la intensitat de precipitació. A més, es va avaluar la classificació convectiva i estratiforme del
GPM DPR, i es va trobar una sobreestimació substancial dels casos estratiformes en comparació
amb les observacions del disdròmetre.

Aquesta investigació representa un dels primers estudis a la península Ibèrica que valida els
productes d’IMERG amb un enfocament detallat en factors orogràfics, climàtics i d’intensitat de
precipitació, a alta resolució temporal. La comparació amb productes del programa H SAF i
l’avaluació de les actualitzacions més recents de la versió 7 del DPR amplia l’àmbit de la validació
i posa les bases per a futures investigacions sobre l’ús de dades satel·litàries en l’estimació de la
precipitació.
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1
CHAPTER

Introduction

1.1 Precipitation Characteristics

Precipitation, as defined by the World Meteorological Organization (WMO), refers to the fall
of hydrometeor particles, including various forms such as rain, drizzle, snow, hail, and ice
pellets. This process not only provides essential freshwater resources but also has the potential
to contribute to severe weather events that can significantly impact human activities and
ecosystems (Kidd et al., 2021). In the water cycle (Figure 1.1), precipitation is vital, involving
phase transitions of water throughout the troposphere, from vapor to liquid to solid, down to the
Earth’s surface. These phase transitions are accompanied by the release of latent heat, which
significantly influences the atmospheric energy budget and, consequently, the global climate
system (Watters, 2021). Understanding these processes is essential for accurately modeling and
predicting weather patterns and climate changes.

Figure 1.1: Representation of the global water cycle: (A) stores (in thousands of km3) and (B)
flows (thousands of km3 per year) (Allan et al., 2020).

Observing precipitation presents unique challenges due to the specific temporal and spatial
scales and characteristics it exhibits. At the microphysical scale, water is unique in that it coexists
in all three phases–vapor, liquid, and solid—within many precipitation systems. The formation
of liquid-phase water begins with the condensation of cloud water droplets, approximately 10
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µm in size, on cloud condensation nuclei ∼ 0.1 µm, through the growth of cloud droplets, to
precipitation-sized particles ∼ 100 µm, up to 4–5 mm (Kidd et al., 2021). Smaller droplets
tend to be spherical, but as they grow larger, they become flatter or even umbrella-shaped
due to air resistance before breaking apart. In the ice phase, water particles undergo similar
growth processes, but with additional physical aggregation and interaction with liquid water
(riming), leading to a diverse range of shapes and sizes (Kidd et al., 2021). The characteristics
of precipitation can vary depending on cloud type and atmospheric conditions. For example,
raindrops smaller than 0.5 mm in diameter are classified as drizzle and may evaporate before
reaching the ground, forming virga (Ahrens, 2015). On the other hand, intense rainfall from
cumuliform clouds can result in heavy, short-lived showers or cloudbursts, potentially leading to
flash floods. Understanding the intensity and timing of precipitation is crucial for managing its
impact on soil, urban infrastructure, and water resources (Ahrens, 2015).

At the precipitation system scale, the mechanisms driving the microphysical processes that
form clouds and precipitation result in variations in precipitation that range from a few meters
to 1000 km or more and from a few seconds to days, weeks, and longer (Trenberth et al., 2009).
These variations greatly influence the accuracy of precipitation observations, which depend on the
resolution and sampling of the observing system (Luini & Capsoni, 2012). In fact, the statistical
properties of precipitation are unusual in that the normal/modal value in both space and time is
typically zero, as precipitation does not occur most of the time across much of the globe (Kidd
et al., 2021). When precipitation does occur, it is often skewed toward light intensities. The
accumulation of precipitation, which depends on both the frequency and intensity of events,
tends to follow a log-normal distribution (Ng et al., 2018). As instantaneous measurements are
accumulated over time and across areas, this distribution gradually shifts toward a more normal
distribution. This characteristic complicates statistical evaluations, requiring extreme care when
analyzing and interpreting precipitation datasets. Specifically, the distribution of precipitation
intensities is highly dependent on the spatial and temporal scales considered, meaning that
observing the same precipitation system with sensors of different resolutions can yield different
results (Kidd et al., 2021; Luini & Capsoni, 2012).

1.2 Observing Global Precipitation. Quantitative Precipitation
Estimation

Observing and accurately measuring global precipitation is a complex task, essential for un-
derstanding weather patterns, managing water resources, and predicting climate changes. The
following is a coherent description of some of the main sources of global precipitation measure-
ments:

• Rain Gauges: The most direct method for measuring precipitation is through rain gauges,
which are devices that collect and measure precipitation, at best (although not the most
frequent) with 1 and 30 minutes of temporal resolution. Despite their widespread use,
rain gauges have significant limitations. Their measurements are prone to errors due to
turbulence around the gauge orifice, especially during light rain or strong winds, leading
to potential underestimation of precipitation (Ciach, 2003; Duchon & Essenberg, 2001;
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Kochendorfer et al., 2017). Moreover, the global coverage of rain gauges is highly variable
(Figure 1.2), with vast areas, particularly over oceans and remote regions, lacking sufficient
coverage. Being a point measurement, even in well-monitored regions, a single gauge
only represents a very small area, making it difficult to capture the spatial variability of
precipitation (Kyriakidis et al., 2001; Lundquist et al., 2019).

No. of gauges per 2.5 x 2.5 degree grid box

Figure 1.2: Global maps of GPCC gauge density (version 2022) for July 2024. Source: Oficial
GPCC web page, https://kunden.dwd.de/GPCC/Visualizer

• Disdrometer: Another crucial instrument for precipitation measurement is the disdrome-
ter, which, on a point scale, can measure the size and fall velocity of each hydrometeor
(solid or liquid) within its measuring area. Compared to rain gauges, disdrometers provide
more comprehensive information about precipitation, offering not only the amount of
rainfall but also microphysical measurements such as the drop size distribution (DSD) in
the case of rain, radar reflectivity factor (Z), liquid water content (LWC), and the kinetic
energy of falling particles. In addition, microphysical data obtained from disdrometers
can improve the classification of precipitation types (stratiform and convective regimes)
and associated physical mechanisms (Dolan et al., 2018)(Figure 1.3). However, disdro-
metric measurements are subject to various errors caused by (i) statistical sampling, (ii)
instrumental limitations (i.e., resolution and sensitivity), and (iii) environmental factors
such as wind effects, splashing, or external interferences like insects (Adirosi et al., 2023).
Moreover, despite their potential role, disdrometers are not yet widely used by operational
meteorological and hydrological services, leading to a lack of a robust network of these
devices and limiting their use to research purposes in specific regions worldwide.
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(a) (b)

Figure 1.3: (a) Disdrometer (OTT Parsivel 2) located in Cendrosa, Catalonia during the LIASE
Campaign (2021) (b) Conceptual model illustrating the dominant mechanisms for the six groups
objectively determined from the surface disdrometers using Principal component analysis (PCA)
in logNw − D0 space (Note that Nw is the normalized intercept parameter and D0 is median
drop diameters ) (Dolan et al., 2018)

Figure 1.4: Weather radar global coverage (assumed 200 km range for each radar (Saltikoff et al.,
2019)
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• Weather radar: To complement above ground instruments, weather radar systems have
been developed to provide more comprehensive precipitation data. Radars can observe
precipitation over larger areas and at multiple altitudes, offering three-dimensional views
of weather systems. However, the data they provide are indirect, relying on complex
algorithms to convert the backscattered signal from raindrops or snowflakes into an
estimated precipitation intensity (Fabry, 2018). Additionally, radar beams are typically
tilted upwards due to the Earth curvature and usual propagation conditions (Bech et al.,
2003), which means they measure precipitation at higher altitudes rather than at the
surface, complicating the detection of near-surface precipitation and the differentiation
between rain and snow (Casellas et al., 2021; Clark & Slater, 2006). Radar networks are
expensive to install and maintain, and their coverage is generally limited to some land
regions (Figure 1.4), further limiting their global applicability (Ciach & Krajewski, 1999;
Harrison et al., 2000; Saltikoff et al., 2019).

• Reanalysis models and numerical simulations: Beyond ground-based observational
methods, reanalysis models and numerical simulations have emerged as important tools
for quantifying precipitation. These models combine historical weather data, observations,
and complex physical equations to generate continuous precipitation estimates over time
(Xie et al., 2022). While these models offer valuable insights and can cover areas lacking
direct measurements, they also depend on the quality and density of the input data, which
means that in regions with sparse observational data, their accuracy may be reduced.
Moreover, the outputs of these models often need to be validated against ground-based
measurements, which, as mentioned, are not uniformly available worldwide.

The limitations of ground-based methods and reanalysis models have led to the increasing
reliance on satellite-based observations for global precipitation estimation. Satellites can provide
near-continuous coverage of the Earth’s surface, including remote and oceanic regions where
other methods fall short. They use various sensors and techniques to estimate precipitation,
such as passive microwave and infrared observations, which detect energy emitted or reflected by
precipitation particles. These satellite-based estimates have revolutionized global precipitation
monitoring, enabling the generation of comprehensive datasets that support a wide range of
scientific and societal applications, from flood monitoring to agricultural planning. Despite their
advantages, satellite estimates still face challenges related to accuracy and resolution, particularly
in distinguishing between different types of precipitation and in regions with complex topography
(Kidd & Levizzani, 2019).

1.2.1 Satellite precipitation measurements (LEO observing systems, GEO
observing systems)

Satellite observations of clouds and precipitation have been exploited to provide a range of
products that may be used to monitor precipitation occurrence and amounts at a range of
spatial and temporal scales (Kidd & Levizzani, 2019). The relevance of satellite systems for
observing precipitation and applications for hazard monitoring must consider the resolution
(temporal and spatial) of the satellite observations; latency, or availability of observational data
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and/or products within a certain amount of time; accuracy of the results as determined through
validation of data products; and usefulness of the resulting products to user community. The
precipitation-capable missions typically comprise of two orbital types: the Low Earth Orbiting
(LEO) satellites that circle the Earth at about 850 km altitude or lower, and the Geostationary
(GEO) satellites that view the Earth from an altitude of about 36000 km.

LEO satellites are often placed in sun-synchronous orbits, allowing them to pass over the
same regions at consistent local times, which is crucial for capturing diurnal variations in
precipitation. They are equipped with advanced sensors, including passive microwave (PMW)
radiometers and active microwave (AMW) radar, which provide more direct and detailed
measurements of precipitation. Figure 1.5 shows the chronology of the Tropical Rainfall
Measuring Mission(TRMM), GPM, CloudSat, RainCube and EarthCARE missions, intended
primarily for cloud and precipitation detection. Missions like TRMM and the Global Precipitation
Measurement (GPM) mission are prime examples of LEO systems designed to enhance our
understanding of global precipitation patterns. However, the spatial and temporal coverage
of any single LEO satellite is limited, with observations available only up to twice per day
at the Equator. To mitigate this limitation, multiple LEO satellites are often deployed in a
constellation, enabling more frequent observations and improving the temporal resolution of
global precipitation data (Kidd & Levizzani, 2019; Watters, 2021).

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2020 2022 2024

TRMM: 1997-2015

CloudSat: 2006-2023

GPM: 2014-present

RainCube: 2018-Present

EarthCARE: 2024-Future

Figure 1.5: A timeline of several missions together with the relevance of their radar operating
bands to the detection of clouds and precipitation, modified from Battaglia et al. (2020)

In contrast, Geostationary Earth Orbit (GEO) satellites, also referred to as a geosynchronous
equatorial orbit satellites, operate at much higher altitudes, where they remain fixed relative to
the Earth’s surface. This geostationary position allows GEO satellites to continuously monitor
the same region, providing frequent and consistent data over large areas. GEO satellites are
particularly valuable for tracking weather systems and providing near-real-time data, which is
crucial for operational meteorology and disaster management. These satellites typically carry
visible (VIS) and infrared (IR) sensors, which, while less direct in measuring precipitation than
microwave sensors, offer high temporal resolution and are essential for continuous monitoring.
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However, achieving quasi-global coverage requires a constellation of GEO satellites positioned
around the Equator, each covering a specific portion of the Earth’s surface (Kidd & Huffman,
2011; Kidd & Levizzani, 2019).

The combination of LEO and GEO satellite systems is crucial to overcoming the limitations
of each approach. By integrating data from both systems, scientists can create more accurate and
comprehensive global precipitation datasets, essential for weather forecasting, climate studies,
and resource management. Therefore, a stable and robust satellite constellation is crucial
for providing adequate temporal sampling to capture precipitation variations, especially in
data-sparse regions such as the poles or oceans.

1.2.2 Precipitation retrievals

A good number of algorithms, techniques, and schemes exist to estimate precipitation from
satellite observations (Kidd & Levizzani, 2019). These methods range from simple, direct
relationships to more complex approaches integrating multiple data types and models. Tech-
niques have also been developed or adapted to consider the product latency time to meet user
requirements: the typical data delivery time for global IR and MW data is around 2-3 hours,
though some regional applications exploit direct broadcast capabilities and significantly reduce
the latency to the order of 10-15 minutes (Kidd & Levizzani, 2019). Some of the main algorithms
are shown below, grouped according to the method they use to process the data.

• VIS/IR Methods: Visible (VIS) and infrared (IR) methods estimate precipitation
based on cloud properties observed by geostationary satellites. IR-based techniques often
use cloud top temperatures to infer precipitation rates. The GOES Precipitation Index
(GPI) (Arkin et al., 1994) is a classic IR-based method that assigns a fixed precipitation
rate (3 mm/h) to clouds with temperatures below 235K. While simple and quick, this
method’s primary disadvantage is its indirect nature, which can lead to inaccuracies. It
often misinterprets thin, high-altitude clouds as precipitating clouds or fails to detect
precipitation in shallow clouds. Hydro-estimator (Scofield & Kuligowski, 2003) is another
IR-based technique that improves upon the GPI by distinguishing between convective
and stratiform precipitation areas. This method accounts for variations in cloud top
temperatures and surface precipitation rates, offering more accurate estimates for intense
convective systems. Similarly, the PERSIANN-CCS technique (Hong et al., 2004) utilizes
cloud texture information such as cloud variability and minimum temperatures to refine
precipitation estimates. Despite their advancements, IR-based methods generally struggle
with detecting precipitation in regions with high thin clouds or shallow, non-precipitating
clouds. These methods are particularly effective in tropical regions where cold cloud-top
temperatures have a clearer relationship with surface precipitation.

• Passive Microwave Methods: In contrast to IR techniques, passive microwave (PMW)
methods are more sensitive to the water and ice content within clouds. These methods use
microwave radiometers to measure radiation emitted by precipitation-sized hydrometeors.
Lower-frequency channels are more effective over oceans, where surface emissivity affects
measurements, while higher-frequency channels can be used over both land and sea due
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to their sensitivity to solid ice particles. The Goddard Profiling (GPROF) scheme (C. D.
Kummerow et al., 2015) is a notable PMW-based retrieval method. It estimates both
surface precipitation and vertical profiles by integrating model information, such as 2-
meter temperature and total precipitable water, with ancillary datasets. This approach
helps to constrain possible precipitation retrievals and ensures consistency across various
PMW observations. The Passive Microwave Neural Network Precipitation Retrieval v2
(PNPR) (Sanò et al., 2016) utilizes a neural network to retrieve precipitation rates from
advanced PMW sensors. Trained with cloud-resolving model simulations, it offers precise
estimates across different surface backgrounds. Cloud Dynamics and Radiation Database
(CDRD) EUMETSAT product improves on conventional cloud radiation databases by
using a regional/mesoscale model to simulate precipitating storms. It generates numerical
simulations to enhance precipitation retrieval accuracy, especially over land surfaces
(Mugnai et al., 2013). Simpler threshold-based methods (Laviola & Levizzani, 2011;
Laviola et al., 2013), such as those using brightness temperature (BT) depression from
PMW channels, provide operationally feasible solutions but may require validation with
ground-based data.

• Active Microwave Systems: Active microwave systems, such as precipitation radars,
provide direct measurements of precipitation. The TRMM Precipitation Radar, launched
in 1997, and the GPM Dual-frequency Precipitation Radar (DPR), operational since 2014,
represent significant advancements in radar technology. These systems convert return power
into radar reflectivity to estimate precipitation rates and allow to identify features like
bright bands, snowfall, and hail, providing three-dimensional information on precipitation
systems, enhancing the establishment of climatological distributions. The radar’s ability
to measure precipitation directly is a major advantage, but limitations include long revisit
times and restricted latitudinal coverage—37°N to 37°S for TRMM and 68°N to 68°S for
GPM (Iguchi et al., 2021).

• Multi-sensor Techniques: To address the limitations of individual methods, multi-sensor
techniques combine data from various sources. The GPM Combined Radar-Radiometer
Algorithm (CORRA) (Grecu et al., 2016) integrates PMW and AMW observations to reduce
ambiguities in precipitation modeling. This approach builds on the TRMM algorithm
(Haddad et al., 1997) and aims to provide consistent precipitation estimates by combining
different data types. CMORPH (Joyce et al., 2004), GSMaP (Aonashi et al., 2009; Kubota
et al., 2007; Ushio et al., 2009), and IMERG (Huffman et al., 2020) are prominent products
that merge PMW and IR data. They follow a three-step process: (1) the individual PMW
measurements are generated (or obtained) to detect and estimate any surface precipitation,
(2) wind vectors or changes in cloud top temperatures derived from IR data (or more
recently models) move the precipitation between the individual PMW overpasses, and (3)
(if required) IR-derived estimates are combined with the morphed PMW estimates. These
products use surface precipitation gauge data to refine estimates, to minimize bias at a
monthly scale. The Multisource Weighted-Ensemble Precipitation (MSWEP) (Beck et al.,
2017) is another advanced product that combines multiple datasets into a comprehensive
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3-hourly precipitation estimate at high spatial resolution. By integrating various methods
and improving temporal and spatial sampling, these multi-sensor techniques enhance
the accuracy and coverage of global precipitation datasets, essential for meteorological
forecasting and climate studies.

1.2.3 Satellite Precipitation Products

Satellite precipitation products are indispensable tools for a wide array of applications, ranging
from climate studies to operational weather forecasting (Kidd & Levizzani, 2019). These
products, many of which are freely available online, leverage data from various sensors and
platforms to provide global and regional precipitation estimates. They incorporate different
algorithms and data sources, such as satellite observations and surface gauges, to deliver accurate
and reliable precipitation measurements. Table 1.1 summarizes some of these products and
their characteristics according to the nature of the data used. More information can be found
on the International Precipitation Working Group (IPWG) web page on Data and Products
(https://www.eorc.jaxa.jp/IPWG/data).

Table 1.1: Summary of several satellite precipitation products produced by combining input data
from several sensor types, including satellite sensors and precipitation gauges. The information
was extracted from the website https://www.eorc.jaxa.jp/IPWG/data/datasets2.html [Last
updated July 31, 2021].

Product Space/time
resolution

Areal
coverage Time record Update

frequency Latency

GPCP 2.5°/monthly Global 1979- Monthly 2 months

TMPA 2.5°/3-hourly Global
50°N-S 1998-2019 Monthly Replaced

IMERG Early 0.1°/half-hourly,
monthly Global 2000- 30 min 4 hours

IMERG Late 0.1°/half-hourly,
monthly Global 2000- 30 min 14 hours

IMERG Final 0.1°/half-hourly,
monthly Global 2000- 30 min/Monthly 3.5 months

H SAF (H61) ~0.03°/1h, 24h 60°S-75°N,
80°W-80°E 2020- Hourly/ Daily 30 min

CHIRPS Final ~0.05°/daily,
pentad, monthly 50°N-S 1981- Monthly 2 weeks

PERSIANN 0.25°/30 min 60°N-S 2000- Hourly 1 day
CMORPH
V1.0 BLD 0.25°/daily 60°N-S

regional 1998- Daily 18 hours

GSMaP
Standard 0.1°/hourly 60°N-S 2014- 1 hour 3 days

Among the most widely used long-term datasets is the Global Precipitation Climatology
Project (GPCP) (Adler et al., 2018). GPCP combines multisensor information from satellites with
surface gauge data to create a comprehensive precipitation climate data record. This dataset is
particularly valuable for long-term climate studies and monitoring global precipitation patterns.
The ongoing development of climate-scale precipitation data products has highlighted the
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importance of Fundamental Climate Data Records (FCDRs), which are essential for generating
consistent and stable long-term time series. FCDRs consist of intercalibrated passive microwave
(PMW) brightness temperatures (BT), which ensure the consistency necessary for reliable climate
analysis. Several sources of FCDRs are available, including those from NOAA and Colorado
State University, which provide FCDRs for the Special Sensor Microwave/Imager (SSM/I) and
Special Sensor Microwave-Imager/Sounder (SSMIS sensors), calibrated to the F13 sensor (Berg
et al., 2013; Sapiano et al., 2012) covering the period from July 1987 to the present. Another
significant source is the NASA/GSFC Precipitation Processing System, which includes data
from the TRMM and GPM constellation sensors, intercalibrated to the GPM Microwave Imager
(GMI), with the dataset extending back to July 1987. Additionally, the EUMETSAT Satellite
Application Facility on Climate Monitoring (CM-SAF) offers FCDRs for SSM/I, SSMIS, and
Microwave Imager Radiances (Fennig et al., 2020), with data extending back to the SMMR
radiometer aboard the Nimbus-7 satellite.

EUMETSAT’s Satellite Application Facility on Support to Operational Hydrology and
Water Management (H SAF) (Mugnai et al., 2013) is another critical product in the field of
precipitation estimation. H SAF provides MW-derived rainfall products, which are particularly
useful for operational hydrology and water management. This product utilizes a Cloud Dynamics
and Radiation Database (CDRD) approach, coupled with a regional/mesoscale model in cloud-
resolving mode, to improve the accuracy of precipitation retrievals, especially over land surfaces.
H SAF is designed to support real-time applications, offering data with a latency suitable for
operational use, making it an essential tool for monitoring and managing water resources in
Europe and beyond.

In addition to these global datasets, there are specialized products like the Climate Hazards
InfraRed Precipitation with Stations (CHIRPS) (Funk et al., 2015), which integrates satellite IR
data with in-situ station data to provide high-resolution precipitation estimates. CHIRPS is
widely used for climatic studies, particularly in monitoring droughts and famine-related events
in Africa. Recent advances have also led to the development of the Multisource Weighted-
Ensemble Precipitation (MSWEP) product, which combines gauge data, satellite observations,
and model reanalyses to provide high-resolution, 3-hourly global precipitation estimates. While
MSWEP’s integration of multiple data sources enhances global performance, it also presents
challenges in validation, as the specific contribution of satellite data can be difficult to isolate.
Other notable products include the Precipitation Estimation from Remote Sensing Information
using Artificial Neural Network (PERSIANN) (Sorooshian et al., 2000), which utilizes artificial
neural networks to estimate precipitation from remote sensing data, and the Climate Prediction
Center Morphing Technique (CMORPH) (Joyce et al., 2004), which generates high-resolution
precipitation estimates by morphing microwave-derived rainfall rates with motion vectors derived
from geostationary satellite IR data.

Furthermore, the Global Satellite Mapping of Precipitation (GSMaP) (Kubota et al., 2007)
provides high-resolution global precipitation mapping by combining multiple satellite observations,
while the TRMM Multisatellite Precipitation Analysis (TMPA) (Huffman et al., 2007) offers
a long-term record of global precipitation, particularly focused on the tropics. The Integrated
Multi-satellitE Retrievals for GPM (IMERG) (Hou et al., 2014) is another critical product,
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integrating data from multiple satellites to provide near-real-time and retrospective global
precipitation estimates. IMERG is widely used in both research and operational weather
forecasting, demonstrating the breadth of applications supported by these advanced satellite
precipitation products.

1.2.4 Limitations and Errors

Satellite-derived precipitation products, while valuable, are subject to several limitations and
sources of error that can impact on their accuracy and reliability. These limitations are especially
critical given that these datasets aim to provide (quasi-) global coverage from a variety of
observational samples. All of them were summarized by Kidd and Levizzani (2019).

• Skewed Distribution of Instantaneous Precipitation: Instantaneous precipitation measure-
ments are highly skewed towards zero, with the modal value often being zero. This skewness
affects the accuracy of satellite observations. While accumulating these instantaneous
samples over time and space can provide a more normal distribution, other errors and
uncertainties persist. For instance, representativeness errors arise when satellite measure-
ments do not fully capture the spatial and temporal variability of precipitation (Kidd &
Levizzani, 2019).

• Error Quantification and Uncertainty: Accurate quantification of errors and uncertainties
is essential for effective use of satellite precipitation products in hydrological applications,
climate studies, and water resource management (Maggioni & Massari, 2018; Maggioni
et al., 2016). These uncertainties stem from several factors, including the frequency and
channels used in satellite sensors, the type of precipitation observed, and the heterogeneity
within the sensor’s footprint.

• Frequency and Channel Limitations: Satellite sensors use different frequencies and channels
to observe precipitation. IR channels provide data on cloud-top characteristics, while
high-frequency PMW channels offer information on precipitation-related ice content, and
low-frequency PMW channels reveal water content. The complexity of combining these
channels, each with different weightings, can introduce retrieval errors (Kidd & Levizzani,
2019).

• Sampling Errors: The skewed distribution of precipitation at the instantaneous scale and
the rarity of precipitation events complicates the sampling process. Sampling errors are
most significant at scales of 1 hour to monthly, though at these scales, spatial and temporal
autocorrelation can mitigate errors. Larger spatial and temporal domains generally lead to
lower errors due to more samples, but instantaneous precipitation remains highly variable
depending on precipitation type and system.

• Influence of Surface Characteristics: The performance of satellite algorithms can be
adversely affected by surface characteristics. For example, decreased algorithm performance
has been observed over dry and sparsely vegetated regions, where surface radiation signals
may mimic the scattering signatures of frozen hydrometeors (Carr et al., 2015). Additionally,
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complex terrain can limit the quantitative use of satellite estimates, requiring high-resolution
radar data for more accurate error analysis in mountainous regions (Bartsotas et al., 2018;
Maggioni et al., 2017).

• Algorithm Performance and Precipitation Types: Satellite algorithms generally perform
better in pure stratiform, and convective precipitation regimes compared to mixed pre-
cipitation events. The variability in performance across different precipitation types and
systems adds another layer of complexity to error quantification (Carr et al., 2015).

• Lack of Standardization and Understanding: There is a notable lack of standardization and
clear understanding of the errors and uncertainties associated with precipitation products.
The transfer of error metrics across different scales, both temporally and spatially, is not
well established, making it challenging for users to effectively incorporate these uncertainties
into their applications (Tan et al., 2016).

In summary, while satellite precipitation products are invaluable for global monitoring and
various applications, their limitations and errors—stemming from skewed data distributions,
sampling challenges, frequency and channel issues, and surface characteristic influences—must
be carefully considered. Continued research and development are needed to better quantify,
understand, and mitigate these limitations to enhance the accuracy and applicability of satellite-
derived precipitation data.

1.3 Global Precipitation Measurement Mission

This section provides a comprehensive overview of the NASA-JAXA Global Precipitation
Measurement (GPM) mission, covering both the GPM Core Observatory (GPM CO) and
the GPM Constellation. The first part outlines the technical details of the two spaceborne
instruments aboard the satellite: the Dual-frequency Precipitation Radar (DPR) and the GPM
Microwave Imager (GMI). The second part explores the GPM constellation of international
satellites, each equipped with microwave radiometers, operating in different orbits and calibrated
by the GPM CO. Additionally, key aspects of NASA’s algorithm for the global precipitation
product, the Integrated Multi-satellitE Retrievals for GPM (IMERG), derived from mission
data, are discussed. Finally, the section highlights the applications and validations of GPM
products in enhancing our understanding and quantification of global precipitation.

GPM mission is an international satellite mission that aims to advance our understanding of
global precipitation patterns. Jointly operated by NASA and the Japan Aerospace Exploration
Agency (JAXA), the GPM mission was launched on February 28, 2014, with the deployment of
its Core Observatory (CO) (Hou et al., 2014; Kidd & Huffman, 2011)(Figure 1.6a). This mission
serves as the successor to the highly successful TRMM, which was operational from 1997 to
2015 (C. Kummerow et al., 1998; Simpson et al., 1988). Unlike TRMM, which focused primarily
on tropical regions, GPM extends its coverage to include mid-latitudes, providing near-global
precipitation observations from 68°N to 68°S (GPM: 65° inclination; TRMM: 35° inclination).

The primary objective of the GPM mission is to enhance the measurement of precipitation,
including rainfall and snowfall, and to improve our understanding of the spatial and temporal
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variability of precipitation across the globe. This is critical for addressing key challenges identified
by the World Climate Research Programme (WCRP), such as predicting changes in freshwater
availability, understanding the frequency and intensity of extreme weather events, and studying
convection-cloud feedback mechanisms. By improving precipitation measurements, the GPM
mission contributes to a better understanding of the Earth’s water and energy cycles, which are
vital for managing water resources and assessing environmental impacts.

Figure 1.6: (a) Global Precipitation Measurement Core Satellite in orbit (b) Structure of
Typhoon Hagupit as it headed towards the Philippines captured by GPM’s DPR and GMI
sensors (c) Snowstorm over the US east coast captured by GPM CO on March 17, 2014. Source:
https://svs.gsfc.nasa.gov/gallery/gpm.

The GPM CO carries two advanced instruments —the DPR and the GMI— designed to
provide detailed observations of precipitation (Figure 1.6b). The DPR offers three-dimensional
measurements of precipitation structure, while the GMI provides multi-frequency radiometric
observations. Together, these instruments enable the GPM-CO to serve as a calibration standard
for a constellation of international satellites that contribute to the GPM mission’s global
precipitation measurements. This constellation, along with additional data from geostationary
satellites, allows the generation of high-resolution precipitation products such as the IMERG
and GSMaP, which are widely used for various applications (Skofronick-Jackson et al., 2017).
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Building on the legacy of TRMM, which provided invaluable data on tropical precipitation, the
GPM mission has expanded the observational capability to include light and solid precipitation,
particularly at higher latitudes where such measurements are crucial (Figure 1.6c). This expansion
has been facilitated by the inclusion of the Ka-band radar in the DPR, which complements
the Ku-band radar used in TRMM. The overlapping period of TRMM and GPM observations
also allowed for inter-calibration, ensuring continuity and consistency between the datasets
(C. Kummerow et al., 1998; C. D. Kummerow et al., 2015). With its advanced instrumentation
and international collaboration, the GPM mission plays a pivotal role in improving our ability
to monitor and understand precipitation on a global scale.

1.3.1 Satellite Sensors and Characteristics

GPM CO is equipped with two state-of-the-art instruments designed to measure precipitation
with unprecedented accuracy and detail: DPR and the GMI (Figure 1.7a). Flying in a low-Earth
non-Sun-synchronous orbit, the GPM-CO can capture detailed observations of precipitation
systems, particularly over the mid-latitudes, where it provides vertical profiling of precipitation
across a 245 km swath and two-dimensional characterizations across a broader 885 km swath
using its passive microwave radiometer (Figure 1.7b).

Figure 1.7: (a) GPM Core Observatory showing the GMI and DPR instruments and other
important components (b) The GPM-CO measuring over a mid-latitude storm. GMI swath,
DPR Ku-band (or KuPR) swath and DPR Ka-band (or KaPR) swath are represented. Source:
https://svs.gsfc.nasa.gov/gallery/gpm.

The DPR is a novel instrument as it is the first and only multi-frequency precipitation
radar in space, following the TRMM Precipitation Radar (PR) as the second spaceborne
precipitation radar ever deployed (Iguchi, 2020; Iguchi et al., 2021). The DPR’s ability to sense
precipitation throughout the vertical column allows it to capture the three-dimensional structure
of precipitating systems, offering measurements of rain rates ranging from 0.2 to 110.0 mm/h.
These measurements are provided at a vertical resolution of 0.25 km and a horizontal resolution
of 5 km (Hou et al., 2014). The DPR operates at two frequencies: the Ku-band (13.6 GHz) and
the Ka-band (35.5 GHz). The Ku-band, with a detection threshold of 0.32 mm/h (15 dBZ),
covers a swath of 245 km, while the Ka-band, with a detection threshold ranging from 0.27 to
0.56 mm/h (14-19 dBZ), initially covered the central 120 km of the Ku-band swath but was
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extended to 245 km in May 2018 (Iguchi, 2020; Iguchi et al., 2021). The addition of the Ka-band
enhances the accuracy of precipitation rate estimates, improves the identification of the height
at which precipitation changes phase, and aids in characterizing the precipitation drop size
distribution. The introduction of GPM DPR measurements in mid-latitude regions has enabled
the capture of the three-dimensional structure of extratropical cyclones and snowfall events, and
its multi-frequency capability has improved our understanding of tropical cyclone structures.

GMI complements the DPR by providing radiometric information across 13 channels (ranging
from 10 to 183 GHz) over a broader swath of 885 km (Hou et al., 2014; Skofronick-Jackson et al.,
2017). Although the GMI’s retrievals are limited to precipitation estimates up to 60 mm/h
due to its lower spatial resolution (15 km) compared to the DPR (5 km), it plays a crucial
role in calibrating the GPM satellite constellation of PMW radiometers (Skofronick-Jackson
et al., 2018). The GMI stands out as the calibration standard for the constellation, offering the
highest spatial resolution among the radiometers within the GPM constellation, particularly
in the 166 and 183 GHz channels, which have a footprint resolution of 4.4 km by 7.3 km (Hou
et al., 2014). With an accuracy within 0.4 K across all channels, the GMI is recognized as the
most accurate spaceborne PMW radiometer currently available (Skofronick-Jackson et al., 2018;
Wentz & Draper, 2016).

1.3.2 GPM Constellation

GPM CO plays a central role in a constellation of passive microwave satellites operated by
various international space agencies, including NASA, JAXA, NOAA, EUMETSAT, ESA, ISRO,
and CNES. This constellation consists of 11 satellites that together achieve global precipitation
coverage, sampling over 90% of the Earth’s surface at least once every three hours (Hou et al.,
2014). The GPM constellation (Figure 1.8) exemplifies the mission’s philosophy by providing
consistent and calibrated global precipitation data, greatly enhancing our understanding of the
global hydrological cycle and energy budget.

The integrated observing system formed by these satellites not only improves the spatial and
temporal resolution of precipitation observations but also supports a wide range of applications
due to the low latency of the data. These applications include disaster response, agricultural
modeling, and monitoring disease risks (D. B. Kirschbaum et al., 2017). The primary goals
of the GPM mission—enhancing spaceborne precipitation observations and deepening our
understanding of precipitation systems—are addressed through this constellation, which samples
Earth’s precipitation with a frequency that ensures over 90% of global coverage within a
three-hour window (Kidd et al., 2020).

The satellites within the GPM constellation, each in different non-Sun-synchronous or polar
orbits, carry PMW radiometers that are intercalibrated by the GPM-CO’s GMI instrument.
This intercalibration ensures the consistency and accuracy of the data across the constellation,
which is crucial for producing NASA’s flagship global-gridded precipitation product, IMERG
(Huffman et al., 2015, 2020). The evolving nature of this constellation allows it to continuously
improve and adapt, maintaining its critical role in global precipitation monitoring.
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Figure 1.8: The GPM constellation in April 2019. Source: https://gpm.nasa.gov/missions/
GPM/constellation).

1.3.3 IMERG products

IMERG product is a comprehensive tool for global precipitation estimation developed as part of
the GPM mission. It integrates data from the GPM CO and its constellation of satellites, along
with other ancillary data sources, to produce accurate and high-resolution precipitation maps
(Figure 1.9a). IMERG operates by leveraging a series of sophisticated algorithms and calibration
techniques to ensure data consistency and precision. The process begins with the calibration of the
satellite measurements. The GPM Precipitation Processing System (PPS) standardizes incoming
data from the GPM-CO and constellation satellites, including both brightness temperatures and
orbital data structures. This step is crucial for maintaining consistency across different sensors.
The GPM Intersatellite Calibration Working Group (XCAL) plays a key role in this process,
employing various methods to align the calibration of different radiometers with the GMI to
ensure consistency across all observations.

The primary algorithms used in IMERG are essential for converting raw satellite data
into actionable precipitation estimates. The Goddard Profiling Algorithm (GPROF) (Olson
et al., 2007) is used to process passive microwave radiometer data, converting brightness
temperatures into precipitation estimates. This algorithm is integral to the processing of data
from a range of microwave sensors, including the GPM constellation and TRMM satellites.
For the Megha-Tropiques satellite, the Precipitation Retrieval and Profiling Scheme (PRPS)
provides detailed vertical profiles of humidity, contributing to the accuracy of precipitation
retrievals. The Combined Radar-Radiometer Algorithm (CORRA) merges radar and radiometer
data to enhance the precision of precipitation estimates. CORRA combines radar reflectivity
measurements with microwave brightness temperatures to create a more accurate precipitation
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profile. This algorithm is particularly useful for integrating data from different sensors and
improving overall estimation accuracy.

In addition to microwave data, IMERG incorporates infrared (IR) observations from geo-
stationary satellites to fill gaps in precipitation coverage. This is done using a Kalman Filter,
which blends IR estimates with microwave data to provide continuous coverage. The morphing
procedure, which involves linearly interpolating precipitation estimates based on the movement
of precipitation features, is used to further enhance data coverage. This technique relies on
motion vectors derived from reanalysis data to ensure that precipitation estimates are accu-
rately positioned in time and space. Calibration of microwave precipitation estimates to match
the CORRA product involves a two-step process. First, estimates from the TRMM/GPM
constellation are adjusted to align with TMI/GMI estimates using zonal oceanic histograms
and land-based histograms. Next, these adjusted estimates are calibrated to CORRA using a
grid-based interpolation method, ensuring that data from different sources are harmonized.

(a) (b)

Figure 1.9: (a) Near-real-time dataset of precipitation within several hours of data acquisition.
This visualization shows precipitation data obtained from IMERG on September 17, 2024 (b)
Newly improved Grand Average Precipitation Climatology dataset covering June 2000 to May
2023. The Grand Average Precipitation Climatology dataset takes the entire record of global
precipitation from 2000 to 2023 and calculates the average precipitation for the entire globe.
Source: https://gpm.nasa.gov/data/imerg/precipitation-climatology.

IMERG produces several types of products to meet different needs:

• Level 1 products consist of raw and calibrated measurements from the satellites;

• Level 2 products provide instantaneous precipitation retrievals from individual sensors;

• Level 3 products offer global gridded precipitation estimates with high spatial (0.1°) and
temporal (half-hour) resolution.

In turn, IMERG algorithm generates three main Level 3 products:

• Early Run, which is produced within 4 hours of observation and propagates forward only;

• Late Run, which includes data processed within 14 hours and includes forward and
backward propagation;
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• Final Run, which uses both forward and backward propagation and includes monthly
gauge analysis, providing the most accurate and research-grade precipitation estimates
after ~3.5 month. The Final run uses a month-to-month adjustment, which combines
the multisatellite data for the month with the Global Precipitation Climatology Centre
(GPCC) gauge (1° × 1° grid), derived from approximately 6700 stations worldwide.

IMERG Version 6 (V06), brought significant improvements over previous versions. It extends
the precipitation record to include data from the TRMM era, enhances coverage beyond 60°N/S,
and improves the morphing process by using reanalysis data for motion vectors. This version
provides a detailed 24-year record of global precipitation (Figure 1.9b), with comprehensive
coverage in the 60°N-S region and partial coverage elsewhere. IMERG’s detailed and accurate
precipitation estimates are vital for applications in weather forecasting, climate research, and
disaster management.

1.3.4 Applications

Satellite-derived precipitation products, like those from the GPM mission, play a crucial role in
monitoring and analyzing precipitation on a global scale in near real-time. These products are
instrumental across a wide range of applications, from enhancing numerical weather prediction
(NWP) models to aiding in disaster relief efforts. For instance, GPM data is used to track
tropical cyclones and generate rainfall accumulation maps to support emergency responses during
severe weather events, such as those detailed by (Skofronick-Jackson et al., 2018). In hydrology,
satellite precipitation products are invaluable for modeling and forecasting, especially in regions
with sparse ground-based measurements or in large river basins where they provide critical
data for predicting river flows and initiating timely responses to potential flooding (Maggioni
& Massari, 2018). The complexity of translating satellite rainfall measurements into river flow
predictions is a significant challenge, as outlined in the hydrological modeling literature.

Extreme precipitation events, such as those leading to floods or landslides, are monitored
using near real-time GPM data. The Landslide Hazard Assessment for Situational Awareness
(LHASA) model, for example, utilizes this data to assess landslide risks, as discussed by (D.
Kirschbaum & Stanley, 2018). Additionally, JAXA’s collaboration with the International Centre
for Water Hazard and Risk Management (ICHARM) since 2005 underscores the importance
of satellite data in managing water hazards. Conversely, satellite precipitation data are also
crucial in monitoring drought conditions, which can impact food security. The variability in
precipitation patterns influenced by phenomena like the El Niño Southern Oscillation (ENSO)
affects many food-producing regions in Africa, Central, and South America. TRMM satellite
data have been used extensively to study these changes (Maidment et al., 2015). Systems
like the Famine Early Warning System Network (FEWS Net) use precipitation information to
assess drought metrics and the start of growing seasons, helping to mitigate the impacts on
agriculture and food security (D. B. Kirschbaum et al., 2017). GPM data has also been used to
derive metrics of water stress by comparing global precipitation with population density. The
role of satellite data in drought risk management and its implications for agriculture and food
security are further explored in the relevant chapters of the referenced volume. Recently, satellite
precipitation data have also been applied to assess fire risk, particularly in regions prone to
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wildfires such as the western coast of the U.S. and Canada. The lack of winter snowfall can
significantly impact water availability during the summer, potentially increasing the risk of forest
fires (Gergel et al., 2017).

In the realm of operational numerical weather forecasting, GPM data have made significant
contributions. The Japan Meteorological Agency (JMA) began operational assimilation of GPM
DPR data into its mesoscale NWP system in March 2016, marking the first use of spaceborne
radar data in such a system. This assimilation has led to improvements in moisture analysis and
rainfall forecasts, as well as reduced errors in tropical cyclone positioning (Ikuta, 2016; Okamoto
et al., 2016). NASA’s Global Modeling and Assimilation Office (GMAO) incorporated GMI
radiances into its Forward Processing System in real-time starting in July 2018. This integration
has had a notable impact, improving short-term (0–72 hours) forecasts of specific humidity
and enhancing the accuracy of tropical middle and lower tropospheric temperature and wind
forecasts. The inclusion of GMI data has been shown to have a significant impact, comparable
to that of a single Microwave Humidity Sounder instrument and has helped refine analyses of
precipitating snow and other atmospheric parameters.

The GPM mission, building on the legacy of TRMM, has provided a consistent, high-
resolution, sub-hourly global precipitation record that now spans over 20 years. This record has
enabled the development of a global precipitation climatology based on the IMERG product,
which has been compared with other climatological datasets, such as the GPCC gauge product,
the GPCP satellite-gauge product, and the ECMWF ERA5 reanalysis. Furthermore, thanks
to the vertical profiling capabilities of the GPM-CO’s DPR, precipitation has not only been
measured but also characterized by its vertical structure, identifying types such as convective,
stratiform, and warm rain. With ten years of DPR data, the global distribution of these
precipitation types has been detailed (Iguchi et al., 2021; Watters, 2021). Classifying and
stratifying precipitation by type is crucial for understanding global energy dynamics, as each
type exhibits distinct vertical latent heat profiles (Houze, 1997). In the context of climate change,
where extreme events are projected to increase in frequency and intensity (IPCC, 2013), GPM’s
ability to enhance spaceborne precipitation measurements is essential for better understanding
and adapting to our changing climate.

1.3.5 Validation and Comparison

The validation of satellite-derived precipitation products is crucial for ensuring their accuracy
and reliability in various applications. The U.S. GPM program, led by NASA, incorporates a
ground validation (GV) component designed to verify and validate the precipitation products
generated by GPM observations while enhancing understanding of the precipitation processes
observed by the GPM sensors. This validation work can be categorized into three primary areas:

• Direct Validation: This involves comparing satellite precipitation estimates with ground-
based precipitation measurements collected by national and international networks. Large-
scale precipitation measurements from sources like Multi-Sensor/Multi-Source radar data
are used to assess the accuracy of satellite products. Notable examples include the validation
of Level-2 GPROF precipitation products over Europe and the U.S. using surface radar
and gauge data (Kidd, 2018), and the evaluation of Level-3 IMERG precipitation products
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across different spatial and temporal scales (Manz et al., 2017; Navarro et al., 2019;
Palomino-Ángel et al., 2019; Prakash et al., 2018; Shawky et al., 2019; Tan et al., 2016,
2017). Other significant works include, who compared DPR and GPROF products against
dense gauge networks (Bogerd et al., 2024; Tan et al., 2022), and the ongoing efforts by
the International Precipitation Working Group (IPWG) to validate satellite precipitation
products globally.

• Physical Validation: This area encompasses field campaigns where surface, airborne,
and spaceborne measurements are coordinated to provide comprehensive observations of
precipitation systems. GPM GV efforts have included several intensive campaigns such
as the Light Precipitation Validation Experiment (LPVEx) in Helsinki, Finland (Huang
et al., 2015; Iguchi et al., 2014), the GPM Cold Precipitation Experiment (GCPEx) at the
Environment Canada Center for Atmospheric Research Experiments (CARE) site (Colle
et al., 2017; Skofronick-Jackson et al., 2015), the Mid-latitude Continental Convective
Clouds Experiment (MC3E) in Oklahoma (Jensen et al., 2016), and the Olympic Mountain
Experiment (OLYMPEX) in the Northwest U.S (Houze et al., 2017; Petersen et al.,
2020). These campaigns aim to capture a wide range of meteorological and climatological
conditions to validate and refine satellite measurements.

• Integrated Approach: This method relates precipitation products to specific applications
to assess errors and uncertainties across different spatial and temporal scales. This includes
the study of drop-size distribution (DSD) by various sensors and reconciling differences in
observations and processes (Adirosi et al., 2021; Bringi et al., 2015; Liao et al., 2014; Seela
et al., 2023), as well as identifying and mitigating errors in hydrological modeling using
satellite-derived precipitation data products.

Overall, the validation of satellite precipitation products, including IMERG, reveals vari-
ations in performance based on climatic conditions, geographical locations, and precipitation
types. Continued global studies, particularly in under-represented regions, are essential for a
comprehensive evaluation of these products and their integration into climate and hydrological
models.
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CHAPTER

Objectives

This chapter presents the main scientific problems that motivated the thesis and, consequently,
the objectives of this work.

2.1 Motivation

GPM mission represents a significant advancement in satellite-based precipitation observation,
offering unprecedented global coverage and high-resolution data critical for weather forecasting,
climate modeling, and disaster management. However, ten years after its launch, GPM products
have undergone seven different versions, reflecting ongoing efforts to improve their accuracy and
reliability. This highlights the importance of validating GPM precipitation products to identify
and quantify potential errors and biases, guiding future algorithm improvements, and ensuring
their reliability for diverse applications.

A considerable number of studies have evaluated the performance of GPM IMERG precipi-
tation products at various temporal and spatial scales worldwide. A study by Pradhan et al.
(2022), which reviewed the state of the art in IMERG precipitation product validation, revealed
that Europe is one of the regions with the fewest studies (Figure 2.1). If we also consider the
evaluation of other GPM mission products, such as those derived from the DPR and/or GMI,
the results are even less significant in the region. Specifically, the Western Mediterranean region
is characterized by diverse climatic conditions, with Mediterranean, arid and alpine climates,
and a complex topography with coastal areas, mountain ranges and valleys. This diversity
poses significant challenges for satellite-based precipitation measurements, which are sensitive to
variations in terrain and climate. The need thus arises to assess whether GPM precipitation
products accurately represent precipitation dynamics in the Western Mediterranean region,
given that this is a region marked by significant uncertainties in precipitation projections in
the context of climate change. Research efforts in this region should be oriented to answer key
scientific questions such as:

1. What are the strengths and weaknesses of IMERG, and how do these vary amongst differing
meteorological regimes and microphysical characteristics?

2. What is the accuracy of near real-time IMERG measurements for quantifying extreme
events and how do they compare to other satellite products for this purpose?
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3. What is the accuracy of measurements from sensors on board the GPM CO, such as the
Dual Precipitation Radar, and what can they contribute to the study of precipitation in
mid-latitude regions?

Figure 2.1: Number of IMERG validation studies published between 2016 and 2019 (Pradhan
et al., 2022).

2.2 General Objective

Considering the points raised above, the general objective of this thesis is: To validate
precipitation estimates obtained from various GPM mission products over a Western
Mediterranean region.

This thesis, centered on a comprehensive validation exercise, is essential for understanding
the strengths and limitations of cutting-edge satellite products that estimate precipitation. In
a region characterized by complex topography and variable climate, having such tools allows
for improved scientific understanding of regional hydrological cycles, weather patterns, and
climate variability. Additionally, validating GPM products opens the possibility of incorporating
these data into meteorological and climate models, which, in turn, will enable more reliable
forecasts and more accurate climate simulations—vital aspects for addressing the challenges
of climate change. The research also has direct applications in disaster management, as the
region is susceptible to extreme weather events such as heavy rainfall and droughts, and accurate
precipitation data are essential for early warning systems and disaster response strategies.
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2.3 Specific Objectives

To address the general objective, a set of specific objectives were established, as listed below:

SO1. To evaluate the precipitation estimates from the three Integrated Multi-satellitE
Retrievals for GPM (IMERG) runs (Early, Late, and Final) at various temporal
scales (half-hourly, hourly, daily, monthly, seasonal, and annual).

Understanding the behavior of IMERG products at multiple scales simultaneously, rather
than limiting the analysis to a single spatial and temporal resolution, could help elucidate
how accuracy and errors vary with spatiotemporal aggregation. Additionally, it will help
identify the effective resolution for use in for various hydro-meteorological purposes.

SO2. To analyze the IMERG estimates at the highest temporal resolution (30
minutes), considering different orographic features, climatic conditions, and
precipitation intensity thresholds.

IMERG is particularly valuable in areas of the Earth’s surface that lack ground-based
precipitation-measuring instruments, including oceans and remote regions. Moreover, its
half-hourly temporal resolution makes it one of the most highly valued products for water
resource management and forecasting extreme weather events. Understanding its strengths
and limitations in the context of different orographic and climatic characteristics, including
mountainous and coastal regions, could enhance our understanding of the product’s
effectiveness under such conditions.

SO3. To quantify the errors associated with IMERG in estimating heavy rainfall
events at daily and sub-daily scales, to identify and address sources of error.

IMERG provides near real-time estimates of Earth’s precipitation updated every half-hour,
enabling a wide range of applications that help communities around the world make
informed decisions for disaster management, resource management, energy production,
food security, and more. This objective aims to examine the effects of rainfall intensity on
the estimates obtained, proposing a methodology to define extreme precipitation events at
different temporal aggregations and evaluate the usefulness of these products.

SO4. To investigate the impact of the contribution of different sensors to IMERG
retrievals and their linkage to microphysical properties of precipitating cloud
tops, with a focus on estimating heavy rainfall events.

The evaluation of the Early and Late versions can be approached for different types of
microphysical characteristics of precipitating clouds, as well as the effect of the various
sensors that contribute to the final IMERG products. In fact, previous studies have
recommended an individual evaluation of the underlying passive microwave (PMW) and
infrared (IR) sources to detect error cancellation effects. Some works have directly addressed
issues related to cloud microphysics in the retrieval process, as well as the behavior of
different sensors contributing to IMERG. From this perspective, it is recommended to
extend these studies to different regions based on their unique characteristics.
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SO5. To compare the performance of three H SAF products and the Early and Late
versions of IMERG in estimating extreme precipitation events at hourly and
daily scales.

Like IMERG, H SAF generates and archives high-quality datasets and products for
operational hydrological applications, starting from the acquisition and processing of data
from Earth observation satellites in geostationary and polar orbits operated by EUMETSAT
and other satellite organizations. The retrieval of products uses data from microwave
and infrared instruments and aims to achieve the best possible accuracy compatible with
available satellite systems. H SAF applications align with the objectives of other European
and international programs, including those focused on mitigating hazards and natural
disasters, such as flash floods, forest fires, landslides, and drought conditions, and improving
water management. Several investigations using this approach have been carried out in
Mediterranean countries. In Europe, there is access to numerous rain gauges and radars
from eight European partner countries of the H SAF project, but no data are available in
the Iberian Peninsula. According to the consulted literature, few studies evaluate the H
SAF precipitation products outside the countries selected in their validation program and
directly compare them with other products such as IMERG. This work aims to be one of
the first to address this gap.

SO6. To evaluate the precipitation intensity, radar reflectivity factors, and drop size
distribution (DSD) parameters of GPM’s Dual-frequency Precipitation Radar
(DPR) Level 2 version 07B considering a network of disdrometers.

GPM CO became the first spaceborne dual-frequency precipitation radar (DPR), operating
at Ka- (35.5 GHz) and Ku-band (13.6 GHz) to offer three-dimensional measurements
of the precipitation structure. Therefore, it is necessary to identify biases and improve
future versions, with ground validation being an important component for evaluating and
improving the performance of the DPR algorithm. Some of the DPR-derived variables are
estimated at ground level, so specific information about precipitation drop size distributions
(DSDs) at that level is needed for their verification. Achieving this objective will constitute
one of the first validation exercises in the Mediterranean region using ground-based
disdrometers to test the behavior of precipitation intensity, radar reflectivity factor (ZKu

and ZKa), and DSD parameters (Dm, Nw) of the latest available version of GPM DPR.

2.4 Structure of the thesis

The present thesis is built as a compendium of three publications and an additional manuscript
under review that will be considered for future publication.

Chapter 1 contains the current section, which includes an introduction divided into an
overview and review of the state of the art on the main topics addressed in the thesis.

Chapter 2 contains the general and specific objectives. The next three chapters form the
core of the thesis, each featuring one of the three published papers.

Chapter 3 presents a multiscale direct validation of IMERG products (linked with SO1
and SO2), which is included in:
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• Peinó, E., Bech, J., Udina, M., 2022. Performance Assessment of GPM IMERG Products
at Different Time Resolutions, Climatic Areas and Topographic Conditions in Catalonia.
Remote Sensing 14, 5085. https://doi.org/10.3390/rs14205085

Chapter 4 focuses on the detection of extreme precipitation events and the impact of the
precipitation phase on the estimation of various sensors (linked with SO3 and SO4). The
performance of various satellite products in detecting these events is also examined. The following
article includes the development of the first part:

• Peinó, E., Bech, J., Udina, M., and Polls, F. (2024). Peinó, E., Bech, J., Udina, M.,
Polls, F., 2024. Disentangling Satellite Precipitation Estimate Errors of Heavy Rainfall at
the Daily and Sub-Daily Scales in the Western Mediterranean. Remote Sensing 16, 457.
https://doi.org/10.3390/rs16030457

The second part of this chapter is under revision and will be proposed for publication shortly
(linked with SO5). This topic is addressed in:

• Peinó, E., Bech, J., Petraca M. and Udina, M.(2024). Intercomparison of HSAF and
IMERG satellite precipitation products over a Mediterranean coastal region. (Draft)

Chapter 5 is focused on Physical validation of the DPR (linked with SO6). The paper
comprising this study is:

• Peinó, E., Bech, J., Polls, F., Udina, M., Petracca, M., Adirosi, E., Gonzalez, S., Boudevil-
lain, B., 2024. Validation of GPM DPR rainfall and Drop Size Distributions using
disdrometer observations in the Western Mediterranean. Remote Sensing 16, 2594.

Finally, Chapter 6, includes the conclusions and gives the answers to the general and specific
objectives proposed in Chapter 1. In addition, the main limitation of the study and possible
future lines of research for the topics addressed in this thesis are sketched. Finally, Appendix
A lists the contributions made during pre-doctoral period.
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3
CHAPTER

Multiscale Direct Validation: Effective Temporal Reso-
lution of IMERG

3.1 Performance Assessment of GPM IMERG Products at Dif-
ferent Time Resolutions, Climatic Areas and Topographic
Conditions in Catalonia

3.1.1 Summary

This chapter addresses the critical need for accurate precipitation estimates in meteorology
and climate science, and is focused on a specific precipitation spaceborne product. The study
evaluates the performance of three IMERG runs (Early, Late, and Final) across various temporal
scales, from half-hourly to annual, using data from the automatic weather station network of the
Meteorological Service of Catalonia. This comprehensive evaluation is essential for understanding
the reliability of IMERG products in different temporal contexts.

The methodology involves a detailed analysis of IMERG estimates at the highest temporal
resolution (30 minutes), considering different orographic features (valley, plain, and ridgetop),
climatic conditions (BSk, Csa, Cf, and Df) according to the Köppen classification, and precipita-
tion intensity thresholds (light, moderate, intense, very intense, and torrential). By examining
these factors, the study aims to provide a nuanced understanding of how IMERG products
perform under varying conditions. This approach is crucial for improving precipitation estimates
in regions with complex topography and diverse climatic characteristics. The study found that
IMERG Early and IMERG Late tend to overestimate precipitation, while IMERG Final reduces
the error at all temporal scales. However, IMERG Final also showed underestimation in some
areas, such as the Pyrenees mountains. The proportion of false alarms, especially during summer,
and the high bias and low correlation values at sub-daily scales were significant challenges
identified in the study.

The novelty and importance of this study lie in its detailed and multi-faceted evaluation of
IMERG products, which contributes significantly to the field of remote sensing. The findings help
address the specific objectives of evaluating precipitation estimates at various temporal scales
and analyzing IMERG estimates under different conditions. This research not only enhances the
understanding of IMERG product performance but also provides valuable insights for future
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improvements in precipitation estimation and validation strategies. The study’s results highlight
the need for further refinement of IMERG products to improve their accuracy, especially in
regions with complex topography and diverse climatic conditions.

3.1.2 Article

Peinó, E., Bech, J., and Udina, M. (2022). Performance assessment of GPM IMERG products
at different time resolutions, climatic areas and topographic conditions in Catalonia. Remote
Sensing, 14(20), 5085.

Table 3.1: Summary of the impact and quality of the journal in which the first paper in
accordance with this thesis was published. The data correspond to the year 2022 (last year
available at the date of preparation of this document) according to Scientific Journal Rankings
(SJR). IF: Impact Factor.

Journal Name Description Journal Metrics
Remote Sensing Remote Sensing is an inter-

national, peer-reviewed, open
access journal about the sci-
ence and application of re-
mote sensing technology. It is
published semimonthly online
by Multidisciplinary Digital
Publishing Institute (MDPI).

Impact Factor: 5.0 (2022),
5-Year IF: 4.9,
CiteScore: 7.9,
Quartile: Q1 Earth and
Planetary Sciences (miscella-
neous)
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Abstract: Quantitative Precipitation Estimates (QPEs) from the Integrated Multisatellite Retrievals
for GPM (IMERG) provide crucial information about the spatio-temporal distribution of precipitation
in semiarid regions with complex orography, such as Catalonia (NE Spain). The network of automatic
weather stations of the Meteorological Service of Catalonia is used to assess the performance of three
IMERG products (Early, Late and Final) at different time scales, ranging from yearly to sub-daily
periods. The analysis at a half-hourly scale also considered three different orographic features (valley,
flat and ridgetop), diverse climatic conditions (BSk, Csa, Cf and Df) and five categories related
to rainfall intensity (light, moderate, intense, very intense and torrential). While IMERG_E and
IMERG_L overestimate precipitation, IMERG_F reduces the error at all temporal scales. However,
the calibration to which a Final run is subjected causes underestimation regardless in some areas,
such as the Pyrenees mountains. The proportion of false alarms is a problem for IMERG, especially
during the summer, mainly associated with the detection of false precipitation in the form of light
rainfall. At sub-daily scales, IMERG showed high bias and very low correlation values, indicating
the remaining challenge for satellite sensors to estimate precipitation at high temporal resolution.
This behaviour was more evident in flat areas and cold semi-arid climates, wherein overestimates
of more than 30% were found. In contrast, rainfall classified as very heavy and torrential showed
significant underestimates, higher than 80%, reflecting the inability of IMERG to detect extreme
sub-daily precipitation events.

Keywords: GPM-IMERG; satellite precipitation estimates; remote sensing; assessment; complex
orography; extreme precipitation

1. Introduction

The effects of climate change on future precipitation remain uncertain [1]. However,
climate model predictions simulate yearly decreases in semi-arid regions of the Mediter-
ranean [2]. Mountain areas are particularly vulnerable, where the cryosphere is directly
affected by global warming, which consequently leads to altered seasonal runoff pat-
terns [3]. Thus, hydrological cycles will gradually shift from being dominated by snow and
ice to being determined by rainfall [4]. Accurate precipitation measurements at different
spatial and temporal scales are of great significance for validating numerical weather and
climate models, managing water resources and predicting natural disasters.

However, quantitative estimates of precipitation often have significant uncertainty [5].
Rain gauges, which are the world’s most common method of obtaining accurate and
reliable measurements at high temporal resolutions, provide point-scale measurements.
This makes them unable to fully capture the spatial variability of the precipitation or to
capture extreme local events in many areas wherein the instrument density is low. Ground-
based radar-derived estimates are another feasible method, but due to their poor global
coverage, the effects of terrain blockage [6] and the difficulties associated with estimating
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mixed and solid phase precipitation [5,7], there are limitations to obtain reliable estimates.
Thus, satellite precipitation estimates (SPEs) offer an excellent way to compensate for some
of these limitations and, although they have their own shortcomings, can be considered a
complement to other methods [8].

Based on the success of the previous Tropical Rainfall Measurement Mission (TRMM),
the Global Precipitation Measurement Mission (GPM) core satellite plus a constellation of
satellites from partner countries provide one of the most accurate and fine-grained spatio-
temporal resources for global precipitation measurements [9]. GPM has advanced sensors
such as the GPM dual frequency precipitation radar (DPR) and microwave imager (GMI),
which quantify precipitation more accurately and detect light and solid precipitation [10].
The associated processing, Integrated Multisatellite Retrievals for GPM (IMERG), incorpo-
rates, fuses and intercalibrates several infrared, microwave (MW) and gauge observations
to provide precipitation estimates at relatively high spatial (0.1◦ × 0.1◦) and temporal
(30 min) resolutions [9].

Since the launch of the GPM (February 2014), the chronology of publications evaluating
the performance of the IMERG reflects a growing trend of research interest in the subject [11].
Most of the works that take a country or region of study stratify the results of the validation
process according to different time scales [12–18], topographic features [15,19–24], climatic
conditions [23,25–27] and in terms of precipitation intensity [19,20,28–33]. In this way,
a more specific description of IMERG behaviour under different conditions is obtained,
leading to the choice of a more suitable use for its application.

Several investigations with this approach have been developed in Mediterranean
countries. In Greece, Kazamias et al. [34] explored the performance of IMERG Final across
the country at daily, seasonal and annual scales, in different elevation zones and rainfall in-
tensities. Caracciolo et al. [35] studied the influence of morphology and land–sea transition
on the reliability of IMERG Final at hourly and daily scales, while Chiaravalloti et al. [36]
evaluated and compared the IMERG Early, Late and Final products over complex terrain in
southeastern Italy. Tapiador et al. [37] introduced for the first time the results of a validation
in Spain based on a comparison with a high-resolution grid of daily precipitation derived
from the records of approximately 2300 rain gauges covering the Iberian Peninsula and
the Balearic Islands. The study at annual, seasonal and daily resolutions also analysed the
spatial structure of precipitation and considered different precipitation thresholds for the
three IMERG products. Similarly, Navarro et al. [38] validated the IMERG at the south
of the Pyrenees and the Ebro valley according to four parameters: altitude, climate type,
seasonality and quality of surface observations. Finally, Tapiador et al. [39] selected the
IMERG Late product to evaluate the consistency of ground observations and satellite data
during the Storm ‘Filomena’ in January 2021. Pradhan et al. [11] recently reviewed valida-
tion studies of IMERG and identified the most common limitations in this type of work,
offering some suggestions to solve them. An important pending issue is the evaluation
of IMERG products at multiple time scales, including sub-daily periods, to understand
the errors associated with temporal aggregation. Further analysis in mountainous regions,
over different climatic regimes, geographical conditions and assessing the effect of rainfall
intensity on their accuracy still require the attention of the scientific community.

Based on these research gaps, the objectives of this work are twofold: (1) To eval-
uate the precipitation estimates obtained from the three IMERG runs (Early, Late and
Final) at different time scales (half-hourly, hourly, daily, monthly, seasonal and annual)
simultaneously taking as reference the automatic stations of the Meteorological Service
of Catalonia and (2) To validate the IMERG estimates at the highest temporal resolution
(30 min) according to different orographic features (valley, flat, ridgetop), different climatic
conditions (BSk, Csa, Cf, Df) (see Appendix B) and according to different precipitation
intensity thresholds (light, moderate, heavy, very heavy, torrential). The study considers
the period from 2015 to 2020, so that full calendar years of the GPM core satellite data
are employed. We focus on the region of Catalonia, northeast of the Iberian Peninsula,
being one of the first studies to evaluate the behaviour of IMERG at a sub-daily temporal
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resolution in this region. This complements the previous studies done in IP and other areas
with complex orography.

Sections 2.1 and 2.2 provide a description of the study area and details of the method-
ology, data and assessment metrics employed. Sections 3.1 and 3.2 compare the rain gauge
observations and estimates of the three IMERG products at different time scales simultane-
ously. Sections 3.4 and 3.5 focus on the semi-hourly scale, considering different orographic
and climatic conditions as well as different precipitation intensity thresholds, respectively.
The most significant results are discussed in Section 4, and finally a summary with the most
relevant aspects is given in Section 5.

2. Materials and Methods
2.1. Study Area

Catalonia is a region wherein topographic complexity and high climatic variability
are a challenge for the remote sensing estimation of precipitation from satellite- or ground-
based products, as well as for the estimation of the precipitation field using rain gauge
stations [38,40]. The area of study is in the north-east (NE) of the Iberian Peninsula with
approximately 32,107 km2 and over 580 km of coastline facing northeast to southwest
towards the Mediterranean Sea (Figure 1a). It is bordered to the north by the Pyrenees
(Figure 1a), a mountainous barrier that connects the Iberian Peninsula with the European
mainland and has elevations that can exceed 3000 masl. Another distinctive feature is the
Central Depression (Figure 1a), characterized by flat land with few orographic contrasts
resulting from the erosion of the Ebro and its tributaries.
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Figure 1. (a) Digital elevation model of Catalonia and XEMA stations network distribution. (b) Köp-
pen climate classification in the study area. (c) Number of XEMA stations per IMERG pixel in the
Catalonia domain.

The location of the orographic features and the pronounced topographic gradient
of the region influence atmospheric low-level circulations and, particularly, the rainfall
distribution over the entire territory [41,42]. On a large scale, it is an area of contact between
air masses of different characteristics: cold or polar, coming from mid and high latitudes,
and warm or tropical, typical of subtropical and tropical latitudes. The northwestern side
of the Pyrenees (Köppen types Dfb, Dfc), which is exposed to the influence of humid air
masses from the Atlantic, is where the highest annual accumulations are observed, with
average values exceeding 1200 mm. The coastal and pre-coastal mountain chains (Csa)
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enhance the pluviometric effects of the Mediterranean cyclogenesis along the coast and
form a pluviometric screen on the rest of the territory [43].

In inland areas, the climatic regime is highly conditioned by the precipitation deficit,
which barely exceeds 400 mm per year. In the Central Depression (BSk), the winter is
relatively cold, with frequent fog favoured by thermal inversions [44], and the summer is
hot and dry. This impact of the general circulation patterns of the atmosphere modulated
by the complex topography of the region promotes heavy rainfall, frequent flash floods
and complex mesoscale meteorological events [42,45,46].

2.2. Datasets
2.2.1. IMERG V06B Data

This study validates data obtained from 2015 to 2020 obtained by the Integrated
Multisatellite Retrievals for GPM (IMERG) version 06B at different time scales. GPM
(2014–present) under the IMERG algorithm calibrates, fuses and interpolates precipitation
estimates from various passive microwave sensors, infrared sensors and monthly rain
gauge records [47] every 30 min, at a spatial resolution of 0.1◦ × 0.1◦ and with a global
coverage from −90◦S to 90◦N latitude.

The IMERG system provides three products: Early (latency of ~4 h after observation
and forward propagation only), Late (latency of ~14 h after observation and includes
forward and backward propagation) and Final run (~3.5 months after observation, using
both forward and backward propagation and including monthly gauge analysis). The Final
run also uses a month-to-month adjustment, which combines the multisatellite data for
the month with the Global Precipitation Climatology Centre (GPCC) gauge (1◦ × 1◦ grid),
derived from approximately 6700 stations worldwide [38]. Its influence in each half-hour
slot is a ratio multiplier that is fixed for the month, but spatially varying [9].

IMERG data were obtained in UTC time and were downloaded through the NASA
Goddard Earth Sciences Data and Information Services Center (GES DISC) [48]. Precipitation
estimation data (combined microwave–infrared in the Early and Late products and precipita-
tion estimates with post-processing gauge calibration in the Final product (“PrecipitationCal”
variable, in all cases)) were analysed. Initially, the data had a resolution of 30 min and was
aggregated at different time intervals: hourly, daily, monthly, seasonal and annual.

2.2.2. XEMA Data

The validation of the different IMERG products was conducted taking as a reference
rainfall data from the automatic stations network (XEMA) managed by the Meteorological
Service of Catalonia [49]. Semi-hourly rainfall records with a resolution of 0.1 mm were ob-
tained in UTC time, between 1 January 2015 and 31 December 2020. Quality control applied
to rain gauge data includes comparisons with close stations and correlation analysis [50,51].
From these initial data, hourly accumulation was generated, in which we verified that the
data from the two 30-minute intervals corresponding to the hour did exist. Two criteria
were applied to perform the comparison between the XEMA and IMERG data. The first
criterion (Criterion 1) consists of requiring that there are at least 80% of records for each
tested time scale. The second criterion (Criterion 2) restricts the comparison to couples of
IMERG and XEMA data equal to or greater than 0.1 mm (this threshold is explained in
Section 2.3.1). The results of applying these criteria are shown in Appendix A (Table A1).
This distribution means that of the 417 IMERG pixels covering the region, 40% contain at
least one rain gauge and 5% contain two rain gauges for validation (Figure 1c). The GPCC
rain gauges used to calibrate the IMERG Final come from first order stations of the AEMET
network [38], so all our data are independent from those used for calibration.

2.3. Methodology
2.3.1. Overview

Figure 2 shows a diagram summarizing the validation process of the three IMERG
products based on the comparison with ground-based observations from XEMA rain
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gauges. To overcome the spatial mismatch between the two datasets, a pixel-to-point
method [20,28] was applied to obtain the satellite information at each coordinate of the
meteorological stations. This method allowed for a direct pairwise comparison between the
rainfall data and the IMERG pixel value where the station is located. In case there was over
one rain gauge in an IMERG pixel, the independence of the precipitation records in each
one was maintained for the comparison. This method offers us the advantage of avoiding
additional uncertainties derived from interpolation, considering the complexity of the
topography in the region. Finally, the information from 164 IMERG pixels was associated
with the 186 rain gauges, which corresponds to an overall density of 1.13 rain gauges per
100 km2. This value represents more than six times the threshold recommended by the
World Meteorological Organisation (WMO) for the interior flat and undulating areas [52].
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Figure 2. Schematic methodology applied in the data preparation, classification, and validation.

The first part of the study focused on evaluating and comparing the performance in
the three IMERG products (Early, Late and Final) at multiple time scales: half-hourly, hourly,
daily, monthly, seasonal, annual and annual mean over the period of 2015–2020. The different
datasets were obtained from the aggregation of the semi-hourly precipitation accumulations
(mm), considering only those records with at least 0.1 mm in both the IMERG and XEMA
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products (Criterion 2 described in Section 2.2.2). Note that 0.1 mm is the minimum rainfall
detected by XEMA rain gauge. In this way, only precipitation periods are considered, and no
further biases are introduced due to the different minimum precipitation amounts provided by
each dataset, as discussed by Trapero et al. [42] in their Appendix A.

The second part of the research focuses only on the evaluation of the IMERG products
on a half-hourly time scale and under various classifications. In order to achieve the classi-
fications, the IMERG pixels were grouped and classified according to common orographic
features and Köppen climatic conditions (Table A2).

The stratification of the results according to orography was based on a 5 m DEM [53]
of the region of Catalonia. For each pixel, the topographic position index (TPI) was
calculated [54] and with the tool “Corridor Designer” [55,56] a raster file was obtained
in which each grid was classified as valley (TPI ≤ −12 m), flat (−12 m < TPI < 12 m,
slope < 6◦) and ridgetop (TPI ≥ 12 m).

Similarly, the process to divide the domain according to different climatic conditions
started from a vector file with the Köppen classification in Catalonia [57], which was
rasterised at a high spatial resolution (0.01◦) to better preserve the vector characteristics.
Four climatic categories were thus determined: BSk, Cf (fusion of Cfa and Cfb), Csa and Df
(fusion of Dfb and Dfc).

Finally, the raster files were resampled to IMERG resolution using the so-called major-
ity interpolation method [58] and the corresponding labels were extracted at the station
level at both resolutions (initial high resolution and IMERG resolution). The station points
where the orographic and climatic labels at different spatial resolutions coincided were
taken for the IMERG evaluation process. Figure 3 shows the distribution of the pixels and
weather stations used for validation, according to the category they represent.
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Half-hourly XEMA data were classified into five categories of precipitation intensity:
light, moderate, heavy, very heavy and torrential (Figure 2). These categories were obtained
by scaling the thresholds in mm/h established by AEMET [59].

2.3.2. Categorical and Continuous Verification Scores

To validate IMERG’s ability to detect rainfall events correctly, categorical verification
scores calculated from a 2 × 2 contingency table classifying events exceeding thresholds
are used (Table 1). The recognition of the different possible situations (hits, false alarms,
true positives, and misses) was done for various intensity thresholds. The categorical
verification scores used were the probability of detection (POD) and the false alarm rate
(FAR) (Table 2). The POD represents the proportion of events correctly detected by IMERG
out of the total observed rainfall events, while the FAR represents the fraction of false
detected rainfall events.
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Table 1. Contingency table for comparing rainfall observed by XEMA and estimated by IMERG for a
given threshold.

Estimated Rainfall Observed Rainfall

Gauge Rain ≥ Threshold Gauge Rain < Threshold

IMERG rain ≥ threshold Hits (H) False alarms (F)
IMERG rain < threshold Misses (M) Correct Negatives

Table 2. List of categorical verification metrics used to evaluate IMERG products.

Name Formula Perfect Score

Probability of detection (POD) POD =
Hits

Hits + Misses
1

False alarm ratio (FAR) FAR =
False alarms

False alarms + Hits
0

Additional continuous statistical metrics were used (Table 3). The Spearman correla-
tion coefficient, used in cases such as this wherein there is no normality or homoscedasticity
in the data, ranges from −1 to 1 and measures of the monotonicity of the relationship [60]
between the IMERG and XEMA estimates. We also calculated the confidence interval for
this statistic and tested for statistical significance at 95% of confidence. The other five
metrics are used to quantify the associated error. Bias is a measure of the average error
between IMERG and XEMA, while Rbias describes the systematic error. Positive (negative)
values of Bias and Rbias, as well as those greater than unity (less than unity) of Mbias,
denote the overestimation (underestimation) by the satellite products. The MAE shows the
average magnitude of the absolute errors and, finally, the RMSE measures the magnitude
of the average error, giving more weight to large errors without indicating the direction of
deviation between IMERG and XEMA.

Table 3. List of the continuous verification metrics used to evaluate IMERG products.

Name Formula Unit Perfect Score

Spearman’s correlation coefficient r =
cov(R(Si), R(Oi))

σR(Si) σR(Oi)

- 1

Mean error (Bias) Bias =
1
n

n

∑
i=1

(Si −Oi)
mm 0

Relative bias (Rbias) Rbias =
∑n

i=1(Si −Oi)

∑n
i=1 Oi

× 100 % 0

Multiplicative bias (Mbias) Mbias =
∑n

i=1 Si

∑n
i=1 Oi

- 1

Mean absolute error (MAE) MAE =
∑n

i=1|Si −Oi|
n

mm 0

Root mean square error (RMSE) RMSE =

√√√√ 1
n

n

∑
i=1

(Si −Oi)
2 mm 0

Si is the value of satellite/model precipitation estimates for the ith event, Oi is the value of rain gauge observation
for the ith event, n is the number of observed records, cov(R(Si), R(Oi)) is the covariance of the rank variables,
σR(Si)

and σR(Oi)
are the standard deviations of the rank variables.

3. Results
3.1. Mean Annual Precipitation 2015–2020

A comparison of mean annual precipitation amounts was made between IMERG prod-
ucts and XEMA data. Figure 4 shows the spatial distribution of the mean annual precipitation
of IMERG products compared with rain gauge recorded from 2015 to 2020. In addition, the
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probability of occurrence of annual precipitation and the kernel density estimation (KDE) curve
associated with the distribution of each dataset are plotted (lower panel).
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each dataset, the black (red) dashed line represents the mean of the XEMA observations (IMERG).

According to rain gauge data, the average annual rainfall in Catalonia during this
period varies between 300 mm and 1600 mm/year. The lowest records are observed in
the Central Depression, where they do not exceed 450 mm/year, followed by the coastal
areas with values around 600 mm/year. In contrast, stations close to the Pyrenees have
accumulations usually exceeding 900 mm/year and those located above 2000 masl typically
are over 1600 mm/year, which represents the maximum values for the region under study,
and also some of the highest of the Iberian Peninsula. This high spatial variability is
consistent with previous precipitation climatologies [61–63] in the studied region, which
guarantees the representativeness of the selected sample.

The comparative analysis between the products shows a very similar performance
between IMERG_E and IMERG_L, while in IMERG_F there is evidence of the unbiased
effect thanks to the calibration with GPCC rainfall. It is also worth noting that the three
IMERG products broadly reproduce the spatial rainfall pattern in the region, characterized
by a marked latitudinal gradient that decreases from north to south. However, there are
discrepancies in magnitude that are substantial. IMERG_E and IMERG_L overestimate
precipitation by over 20% in almost all the territory with biases of 160 and 140 mm/year,
respectively. This overestimation is notable in the areas of the Central Depression, charac-
terized by a dry continental climate with low pluviometric values. Similar results were de-
tected by Kazamias et al. [34], wherein the IMERG_unCal show the largest discrepancies in
the areas of Greece with low annual accumulations. Similarly, Navarro et al. [38] also found
a general overestimation of precipitation over the Ebro Delta river, and Tapiador et al. [37]
reported an underestimation in the Pyrenees mountain massif.

Although the tendency of IMERG_E and IMERG_L to overestimate is shown in the
same way at the pre-coastal, coastal and Ebro basin areas, the correction carried out in
IMERG_F is effective and generally reflects annual mean values very similar to the rain
gauge records (Figure 4, bottom panel). However, IMERG_F generally reduces and smooths
the precipitation field over the Pyrenees and some high-altitude stations show an increased
bias exceeding 600 mm/year.
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3.2. Continuous Verification Scores for Different Time Scales

Table 4 shows a summary of various statistics calculated at half-hourly, hourly, daily,
monthly and annual scales considering all valid records between 2015 and 2020. The Bias,
MAE and RMSE are standardized to the mean of the observations at the different time
scales, which allows for comparisons to be made between them.

Table 4. Continuous statistics calculated at different scales for the three IMERG products.

N Bias (mm) Mbias Rbias (%) MAE (mm) MAE (%) RMSE (mm) RMSE (%) CC

30 min

IMERG_F 277616 −0.07 0.95 −4.85 1.19 87.36 2.37 173.30 0.33
IMERG_L 277616 0.20 1.15 14.59 1.39 101.76 2.70 197.15 0.29
IMERG_E 277616 0.26 1.19 18.86 1.49 109.18 2.89 211.11 0.23

Hourly

IMERG_F 199255 −0.05 0.98 −2.16 1.88 87.27 3.51 162.81 0.37
IMERG_L 199255 0.39 1.18 18.25 2.23 103.26 4.21 195.35 0.33
IMERG_E 199255 0.42 1.20 19.60 2.35 109.01 4.46 206.85 0.26

Daily

IMERG_F 70399 −0.12 0.99 −1.44 6.22 72.62 10.68 124.66 0.58
IMERG_L 70399 1.71 1.20 19.94 7.93 92.56 14.68 171.42 0.53
IMERG_E 70399 1.57 1.18 18.35 8.01 93.56 14.72 171.91 0.49

Monthly

IMERG_F 12802 0.81 1.02 1.53 20.32 38.50 30.60 57.97 0.85
IMERG_L 12802 11.75 1.22 22.27 33.17 62.84 51.13 96.87 0.67
IMERG_E 12802 13.44 1.25 25.46 33.79 64.01 51.49 97.55 0.66

Spring

IMERG_F 996 −3.65 0.98 −1.97 48.25 26.03 70.15 37.85 0.83
IMERG_L 996 8.02 1.04 4.33 75.46 40.71 101.30 54.65 0.54
IMERG_E 996 6.61 1.04 3.57 73.81 39.82 100.31 54.12 0.56

Summer

IMERG_F 1020 11.39 1.10 9.64 43.41 36.74 59.73 50.55 0.85
IMERG_L 1020 97.23 1.82 82.28 105.47 89.26 143.32 121.29 0.65
IMERG_E 1020 97.84 1.83 82.80 106.46 90.10 142.63 120.70 0.62

Autumn

IMERG_F 1032 2.34 1.01 1.15 52.09 25.55 70.80 34.73 0.80
IMERG_L 1032 33.69 1.17 16.53 84.27 41.33 109.55 53.73 0.61
IMERG_E 1032 46.89 1.23 23.00 89.53 43.91 114.42 56.12 0.61

Winter

IMERG_F 820 −2.42 0.98 −1.91 37.79 29.83 60.58 47.82 0.91
IMERG_L 820 7.77 1.06 6.14 56.20 44.36 93.27 73.62 0.83
IMERG_E 820 14.11 1.11 11.14 54.51 43.03 88.75 70.06 0.84

Yearly

IMERG_F 6204 9.65 1.02 1.55 139.36 22.35 194.17 31.14 0.86
IMERG_L 6204 139.76 1.22 22.41 226.11 36.26 280.06 44.92 0.60
IMERG_E 6204 159.22 1.26 25.54 230.12 36.91 285.82 45.84 0.63

In terms of Rbias, IMERG_E and IMERG_L present an overestimation of precipitation
close to 20% at all time scales, except at the seasonal and yearly levels. In contrast, this
behaviour only occurs in IMERG_F at monthly and annual scales, although it does not
exceed 2%. At daily and sub-daily scales, IMERG_F slightly underestimates precipitation
relative to observations, with values ranging between −0.05 mm/h and −0.12 mm/day,
which is relatively small compared to the mean of the observations at these scales (2.16 mm
and 8.56 mm, respectively).

The analysis of the average error (Bias) reflects a significant improvement in the
IMERG_F at all scales, although much more appreciable at the monthly and annual scales.
At the latter, the Bias decreases to 9.65 mm compared to the 159.22 mm recorded by
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IMERG_E, which means a reduction of the error close to 90%. At the monthly scale, the
error value decreases by about 16 times compared to the Early and Late products. While
this significant error reduction could represent a good indicator of the improvement in
precipitation estimation with IMERG_F, we must consider the limitations of this statistic
and its relationship with the possible cancellation of positive and negative errors [64]
between IMERG_F and ground-based observations.

As expected, as the temporal resolution decreases, there is a decrease in the MAE
and the normalised RMSE regarding the mean for all products, with few differences at
sub-daily scales. This behaviour is most evident in IMERG_F, in which the MAE decreases
from 0.87 mm at 30 min to 0.22 mm at the annual scale, and the RMSE decreases from
1.73 mm to 0.31 mm. This improvement with a lower scale can be seen in the Taylor plot
shown in Figure 5a, which displays the STD, CC and centred RMSE statistics normalised
to the standard deviation of the three products for all temporal resolutions. A clear
improvement in IMERG_F is observed at the monthly and annual scales, with values
close to the benchmark (correlation and standard deviation equal to 1). The worst results
are shown at the sub-daily scales with low correlation values and in the Early and Late
products, with standard deviations higher than the benchmark unit. These differences
between IMERG_F and the rest of the products, which grow with the increasing scale,
highlight a gradual improvement as more information is integrated into the algorithm.
Finally, while this product is expected to provide the most reliable estimates for research [47],
the other two products can also be used for related to low latency applications [65].
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Figure 5. (a) Taylor diagram at sub-daily, daily, monthly, and annual scales of the products IMERG_E,
IMERG_L and IMERG_F. (b) Same as the (a) figure but shows seasonal scales.

In the seasonal analysis (Figure 5b), IMERG_E and IMERG_L overestimate the precipi-
tation values substantially. These errors are more noticeable during the summer period with
a systematic error of over 97 mm and MAE and RMSE values around 105 mm and 143 mm,
respectively. Interestingly, in this period, IMERG_F introduces significant improvements
that reduce the overestimation to less than 10%, but it is still the season of the year wherein
the worst results are obtained. Precipitation in the summer months is low throughout the
Iberian Peninsula and Catalonia, but local storms with convective development usually
occur, wherein the amount of precipitation fallen is not adequately captured by IMERG.

The values of the errors in autumn, although lower than in summer, also show overes-
timates of precipitation in all products and MAE and RMSE values, which, even with the
unbiasing of the Final product, remain relatively high (MAE equal to 52.09 mm and RMSE
equal to 70.80 mm). A similar behaviour is observed in the rest of the seasons of the year,
although the RMSE values practically double the MAE values, which may be caused by
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the occurrence of extreme phenomena and bring into play the sensitivity of this statistic in
such records.

IMERG_F reproduces the annual cycle of precipitation relatively accurately, identify-
ing the spring and autumn months as those that make the overall greatest contribution
to the annual cycle amount, while the winter and summer months show the lowest accu-
mulations with very few differences between them. On the other hand, IMERG_E and
IMERG_L represent the summer period as the second highest contribution with an average
of approximately 215 mm, higher than that recorded in the observations (118 mm), which
is consistent with the overestimation made by these products during this period.

The correlation coefficient calculated at the different time scales showed statistical
significance at 95% of confidence in all cases. In Figure 5a, at sub-daily scales, similar
correlation values are shown among all products, and although a slight improvement
appears in IMERG_F, it does not exceed 0.37. IMERG_E and IMERG_L at scales higher
than daily show moderate linear correlations close to 0.6, and it is IMERG_F that represents
high correlations, higher than 0.8. Similarly, there is a decrease in the standard deviation,
closer to the reference point (STD = 1), as a result of the unbiasing to which it is subjected.
The performance shown demonstrates that this product would be the most suitable for the
analysis of precipitation at seasonal and annual scales.

3.3. Categorical Verification Scores for Different Time Scales

Figure 6 shows a summary of the contingency table verification score at the different
time scales. For each dataset shown, a threshold greater than or equal to the mean of the
observations recorded at each time step is applied.
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Figure 6. Fraction of events detected as hits, false alarms, misses and correct negatives for the three
IMERG products at different time scales. The thresholds selected for each time scale coincide with the
mean of the observations at that scale: Half-hourly (1.4 mm), Daily (8.6 mm), Monthly (52.8 mm), Spring
(185.8 mm), Summer (118.8 mm), Autumn (203.9 mm), Winter (126.7 mm) and Annual (623.5 mm).

As shown in Figure 6, IMERG_F has a higher ability to detect correct negatives with
values close to 50% at all scales, although IMERG_L and IMERG_E are also very similar at
sub-daily and daily scales. The percentage of hits tends to increase at scales higher than
daily, while the percentage of misses decreases. According to the selected thresholds, the
ability of IMERG to estimate precipitation is affected by the detected false alarms. These
represent the highest percentage during the summer period in IMERG_E and IMERG_L.

Figure 7 provides the performance of the POD, and the FAR values at different time
scales for different precipitation thresholds. The error associated with the calculation of the
statistic at each point, as outlined by Jolliffe and Stephenson [64], is also shown. The figure
shows a clear improvement of IMERG estimates as time scale increases. At a half-hourly
scale, the ability of IMERG to estimate events at different thresholds is remarkably poor.
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If we consider the cut-off point between the POD and FAR line as a limit from which
the satellite shows some decay in its event detection ability, we observe that it increases
considerably with decreasing temporal resolution. At daily scales, this cut-off point occurs
at around 20 mm/day, a value well above the 75th percentile of the sample, which indicates
a much better performance compared to the estimation of events at the half-hourly scale,
where a value slightly lower than the mean of the recorded observations at this scale is
observed (1.4 mm/30 min).

Similarly, for the analysis at monthly and annual scales with cut-off points above
100 mm and 1000 mm, respectively, it ensures the correct identification of rainfall events up
to this threshold. As higher thresholds of rainfall in the domain are assessed, the ability of
the satellite decreases, highlighting the difficulty of IMERG to detect rainfall extremes at
any scale.

Although the three products behave similarly, IMERG_F gives worse results, especially
on scales above the monthly scale, wherein the POD values decrease faster than in the rest
of the products, which is associated with the unbiasing effect induced by the calibration
of GPCC stations. These results are consistent with Shawky et al. [66], which found no
significant improvement of IMERG_F over IMERG_E in the arid environment of Oman.
This result is in line with Sharifi et al. [16], Behrangi et al. [67] and Gosset et al. [68]
when positing that the gauge adjustment product (IMERG_F) can change the precipitation
amounts, but it cannot modify the occurrence of precipitation.

3.4. Half-Hourly IMERG Products for Different Terrain and Climate Conditions

This section will test the abilities and shortcomings of the three IMERG products at a
high temporal resolution (30 min). In addition, differences in the estimation of precipitation
by satellite products will be analysed when considering the terrain over which they are
estimated and under different climatic conditions.

Figure 8 shows the differences over each station between IMERG and the rainfall
records of the XEMA network. In valley areas, the analysis of the systematic error
shows a marked underestimation of precipitation in IMERG_F, with mean values of
−0.15 mm/30 min, which represents an underestimation of 10% regarding the rain gauges.
IMERG_L and IMERG_E show a tendency to overestimate the accumulated values and
show MAE and RMSE values even higher than 100% relative to the mean.

There is a more marked tendency in the behaviour of IMERG in areas representing
ridgetops. While IMERG_E and IMERG_L overestimate precipitation, and this could be
verified in all time scales, the effect of the calibration incorporated in IMERG_F causes a sig-
nificant smoothing, such that the Rbias reaches critical values lower than −30% sometimes,
as in the Bonaigua station (Z1) (Figure 2) at 2266 masl This marked underestimation and
change in behaviour from one product to another is probably related to the low density of
GPCC reference stations in high altitude areas for calibration. The CC shows a pattern in
all three products with poor values, barely exceeding 0.3.

The largest errors occur in the stations in flat areas (Flat) with an average bias higher
than 0.4 mm/30 min and Rbias values higher than 30% in IMERG_E and IMERG_L (Figure 8).
Although IMERG_F significantly decreases the error, the tendency to overestimate the values
is still maintained, and under this terrain classification the highest MAE and RMSE values
regarding the mean are obtained (higher than 100% and 200%, respectively). In these areas,
43% of the automatic stations are located and analysed, which corresponds to the entire
central inland part of the region of Catalonia, the coastal strip, the Ebro basin and the north-
western part of the territory. This plays a significant role in the global results regardless of
terrain classification.

Figure 9 evaluates the Rbias of the three IMERG products under different climatic
classifications. For example, IMERG_E presents a large overestimation over the BSk stations
and IMERG_F shows a high underestimation over the Df stations. Overall, a clear improve-
ment in bias reduction is found for BSk and Csa stations when IMERG_F is compared to
IMERG_E. The improvement is not so evident for the Cf stations, and in contrast, there is a
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clear bias increase for the Df stations. These results obtained for 30 min records coincide
with previous studies by Navarro et al. [38] in the Ebro basin for seasonal and annual scales.
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3.5. Intensity

Table 5 shows a summary of the statistics obtained in the validation process of three
IMERG products, considering five categories of rainfall intensity recorded in 30 min. The
categories of light, moderate, intense, very intense and torrential rain were scaled from a
previous classification of rainfall intensity in 1 h, according to sources from the Spanish
Meteorological Agency (AEMET) [59].

Table 5. Summary of statistics calculated according to the intensity of rainfall recorded by rain gauges
in 30 min.

N BIAS (mm) Mbias Rbias (%) MAE (mm) RMSE (mm)

light (0.1 ≤ Pr < 1)

IMERG_F 177039 0.56 2.35 134.83 0.70 1.25
IMERG_L 177039 0.76 2.81 181.30 0.90 1.81
IMERG_E 177039 0.85 3.04 203.89 1.00 2.06

moderate (1 ≤ Pr < 7.5)

IMERG_F 94589 −0.62 0.74 −25.68 1.55 2.15
IMERG_L 94589 −0.28 0.88 −11.54 1.81 2.70
IMERG_E 94589 −0.27 0.89 −11.31 1.91 2.89

heavy (7.5 ≤ Pr < 15)

IMERG_F 4553 −7.37 0.28 −71.98 7.55 8.12
IMERG_L 4553 −6.36 0.38 −62.12 7.07 7.79
IMERG_E 4553 −6.56 0.36 −64.04 7.34 8.05

very heavy (15 ≤ Pr < 30)

IMERG_F 1296 −16.54 0.16 −83.65 16.63 17.32
IMERG_L 1296 −14.89 0.25 −75.32 15.18 16.16
IMERG_E 1296 −15.07 0.24 −76.23 15.41 16.40

torrential (Pr ≥ 30)

IMERG_F 139 −32.57 0.11 −89.47 32.57 33.19
IMERG_L 139 −29.63 0.19 −81.40 29.63 30.70
IMERG_E 139 −28.98 0.20 −79.60 28.98 30.53

The results obtained show substantial overestimation discrepancies for all rainfall
intensity categories and in all IMERG products. Light rainfall, represented by the highest
number of records, is overestimated by twice as much Mbias by IMERG_F and nearly three
times as much by the rest of the products. This implies a relative error rate (Rbias) higher
than 100% in all cases and a systematic error significantly higher than the mean of the
observations. The best performance based on the MAE and RMSE is obtained by IMERG_F,
although they are still quite high compared to the average of the studied records. Such
indicators of overestimation in this category have been reported in previous studies [23,27].

On the contrary, at precipitation thresholds above 1 mm/30 min (moderate, heavy,
very heavy and torrential), IMERG shows a tendency to underestimate precipitation, which
becomes more significant as the intensity of precipitation increases (Figure 10). For the
classes heavy, very heavy and torrential, the satellite shows errors ranging between −60%
and −90% of the deficit in relation to the rain gauges. The systematic errors in these groups
are similar in magnitude to the mean absolute errors and to the mean of the values recorded
by the stations in each of the corresponding thresholds, which register a more realistic,
significant underestimation.

Among the three products, IMERG_F provides the worst results, while IMERG_L
presents the best values, although these differences are not marked. These results are
in agreement with studies by Mazzoglio et al. [69] and show the challenge of detecting
precipitation extremes at this resolution. Many of these extremes occur in the form of
short and local intense rainfall, so they cannot be correctly captured due to the spatial and
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temporal resolution of satellite sensors. Precipitation at the daily and sub-daily scales is
much more variable than monthly precipitation, and regional effects such as topography
and local circulation play an important role in rainfall occurrence and distribution [16].
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Figure 10. Violin plots of half-hourly rain gauge observations (XEMA) and IMERG products for the
five rainfall intensity classes considered. Rainfall rate thresholds are given in mm/30 min.

4. Discussion

In line with previous work, IMERG roughly reproduces the spatial pattern and tempo-
ral variability of rainfall in the region of study [17,24,70]. However, there are differences in
the magnitude estimation for the different run types: Early, Late and Final. While there is a
tendency to overestimate the accumulations in the Early and Late products across the whole
territory, IMERG_F reduces the errors and shows a better ability to estimate the amount
of precipitation at all time scales, with higher accuracy at monthly, seasonal and annual
scales. However, for this product, there is again a tendency to underestimate in areas
with complex topography, i.e., high mountain areas such as the Pyrenees. This result is
reasonable and has been reported in other high mountain areas [17]. Navarro et al. [38] and
Tapiador et al. [37] suggested that this may be due to the lack of rain gauges contributing to
the GPCC in high altitude areas, as well as to the low resolution of the GPCC grid (1◦ × 1◦),
which makes detection difficult in areas wherein precipitation is highly variable at small
scales. Finally, Navarro et al. [38] also mentioned the reduced detection capacity of IMERG
in the identification of convective orographic rainfall, mainly related to mesoscale factors.

At the seasonal scale, a similar underestimation is observed in the Final product at all
temporal scales. However, in the Early and Late products, significant errors appear during
the summer with a tendency to overestimate the cumulates producing high MAE and RMSE
errors. This differs from the studies of Moazam and Najafi, [13] and Navarro et al. [71],
wherein the worst results were obtained mainly during winter, when the ground surface is
covered with snow and ice [24]. However, our results are in line with Retalis et al. [15], in
which the best results were obtained in the rainy seasons (winter and autumn). In semi-arid
areas, the summer period is represented by low precipitation values, which makes detection
by satellite sensors difficult [17]. Another important issue to consider is that precipitation
can be affected by a high rate of evaporation, where some of the liquid water evaporates
during the fall process and is no longer part of the effective precipitation [26,31,72], a virga
being the extreme case wherein no precipitation reaches the ground. This phenomenon,
coupled with the fact that satellite retrievals of precipitation are based on the structure of
cloud systems [73] and may not adequately account for the level of evaporation, may lead
to the overestimation of precipitation in arid regions.

The effect of not accounting for evaporation in semi-arid areas further explains that,
in terms of precipitation event detection, the error in IMERG is dominated by the occur-
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rence of false alarms, especially in summer. In the occurrence of typical deep convective
clouds with relatively cold cloud tops (anvils) and, with the absence of PMW measure-
ments, the IR algorithm may falsely assign precipitation to pixels with cold brightness
temperature values [74]. Furthermore, in terms of IMERG’s ability to detect events given a
continuous threshold of cumulates, no significant improvement of one product over the
other is observed. In fact, IMERG_E and IMERG_L offer better performance as the thresh-
olds grow with more stable POD and FAR values and lower uncertainty in the statistics.
This is related to the inability of IMERG_F to detect extremes, similarly associated to the
calibration of GPCC.

Few studies include the validation of IMERG at the highest temporal resolution
(30 min). Even so, the authors of [26,75] agree on the decreased estimation capability of the
three products with increasing temporal resolution. The repetition time of the GPM and
the downscaling and interpolation procedures to 30 min [76] are some of the main causes
of the errors obtained. At this scale, the largest errors occur in flat areas, which coincides
with the BSk climate, with a tendency to overestimate. The authors of [38] found that in
these areas, IMERG tended to overestimate precipitation equally. These regions, mainly
represented in our study by inland depressions (Ebro valley) and coastal areas, are affected
by extreme precipitation events occurring at local scales. Orographic factors and mesoscale
conditions generate an uneven distribution of precipitation over the territory, resulting in a
very spatially uncorrelated precipitation field [37] and therefore an added challenge for
satellite estimates.

Finally, the overestimation of lightprecipitation associated with the detection of false
alarms and the underestimation of precipitation extremes reflects a similar behaviour to
that found in the Tibetan Plateau [27]. Along these lines, it is important to be aware of the
limitations of the assessment procedure, which may influence the accuracy of the results.
Firstly, it is worth mentioning that the rain gauge data used were not corrected for the effect
of wind, so the measurements may suffer from systematic biases caused by wind-induced
evaporation loss and the underestimation of trace values [24]. On the other hand, in terms
of the pixel-to-point method, although it has advantages over other methods [70], it is
very difficult for a (point-scale) rain gauge to represent the actual precipitation situation in
an IMERG pixel-scale range. These inherent differences between the rain gauge estimate
and the precipitation in the satellite area can directly influence the high values of false
alarms, as well as the detection of extreme precipitation events occurring at the local
scale. Especially in a region like Catalonia, characterised by its orographic complexity and
climatic variability, more rain gauges per IMERG cell may provide better results.

5. Conclusions

The main purpose of the current study focused on a comprehensive evaluation of
IMERG precipitation estimates in its three Early, Late and Final runs based on information
from 186 automatic weather stations, managed by the Meteorological Service of Catalonia
(NE Spain). The evaluation was carried out at different time scales (semi-hourly, hourly,
daily, monthly, seasonal and annual) over a period of 6 years (2015–2020), based on the
analysis of several metrics that quantify the error in precipitation accumulations. Similarly,
the behaviour of IMERG was evaluated at a high resolution (30 min) under different
topographic conditions (valley, flat, ridgetop), climatic conditions (BSk, Csa, Csb, Dfb)
and under different precipitation intensity thresholds (light, moderate, heavy, very heavy,
torrential). The main findings of the study are:

1. IMERG generally captures the spatial–temporal pattern and variability of annual
mean precipitation. However, discrepancies appear in the estimation of the magni-
tude. While IMERG_E and IMERG_L overestimate precipitation by 20% in practically
the whole territory, IMERG_F reduces the error significantly, yielding only 2%. The cal-
ibration performance in this run may even cause an underestimation of precipitation
in areas of complex orography such as the Pyrenees.
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2. The calculated statistics showed a significant improvement with decreasing temporal
resolutions, with the monthly, seasonal and annual scales showing the best results
in the estimation of precipitation accumulations. In contrast, the sub-daily scales
showed high Bias values and very low correlation values, indicating the remaining
challenge for satellite sensors to estimate precipitation at very high temporal reso-
lutions. IMERG_F showed much better error statistics compared to IMERG_E and
IMERG_L, wherein a generalised overestimation was evident and especially marked
during the summer period.

3. Similarly, the analysis of the POD and FAR showed a greater ability of IMERG to
identify precipitation events at scales greater than daily, wherein a stable behaviour
of the statistics is observed well above the mean values, although with deficiencies
in the identification of extreme events at all scales. The proportion of false alarms
is a problem for IMERG especially during the summer, which is mainly associated
with the detection of false precipitation in the form of lightrainfall (which is likely
influenced by evaporation processes not assimilated by the algorithm), as well as the
underestimation of locally occurring heavy precipitation.

4. The worst results were obtained on a semi-hourly scale represented by flat areas and
under a BSk climate, wherein IMERG shows a tendency to overestimate rainfall.

5. IMERG tends to overestimate light precipitation, while it tends to underestimate
accumulated precipitation in the rest of the intensity thresholds studied, especially
those marked by high intensity precipitation. Associated with these errors is the
fundamental role of taking rainfall gauges on a point scale that may not represent
the spatial and temporal variability of rainfall in a region where this variable is
spatially uncorrelated.

The evaluation of IMERG products presented here, although not the first one in
Spain, is the first to address in detail the orographic and climatic factors at high temporal
resolutions. Furthermore, we attempted to cover some of the most common weaknesses
of this type of research by extending the analysis simultaneously to different temporal
resolutions and by emphasising the analysis at high temporal resolutions. This study can
be used by other researchers and developers involved in the IMERG algorithm to introduce
improvements in future versions. Additionally, although with the limitation of latency,
time observation and monitoring could be considered in operational work. For more
applications based on the results presented here, and to try to answer some of the questions
raised, in future work we intend to study in greater depth the capacity of IMERG to detect
extreme events and to identify the specific behaviour of IMERG contributing sensors such
as MW and IR.
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Appendix A

Table A1 provides an overview of the data available for each temporal resolution
considered in the study. The first column lists the maximum number of possible data
records for each temporal resolution, calculated considering the number of existing stations
for each year, which varies from 183 to 188 stations depending on the year. The second
and third columns show the number and percentage of records verifying Criterion 1 (80%
minimum availability of records needed for a given temporal period). The fourth and fifth
column show the number and percentage of records verifying Criterion 2 (amounts equal
to or higher than 0.1 mm for both rain gauge and IMERG products).

Table A1. Data availability for each temporal resolution considered in the study.

Temporal
Resolution

Maximum
Number of

Records
Criterion 1 Criterion 2

Number of
Records

Percentage
(%)

Number of
Records

Percentage
(%)

half-hourly 19,482,432 18,804,667 97 277,616 1
daily 405,884 391,446 96 70,399 17

monthly 13,332 12,864 96 12,802 96
spring 1111 996 90 996 90

summer 1111 1020 92 1020 92
autumn 1111 1032 93 1032 93
winter 923 820 89 820 89
annual 1111 1034 93 1034 93

Appendix B

Table A2. Different climate areas of the Köppen climate classification [77–79] considered in this study.

Code Description Group

BSk Cold semi-arid (steppe) climate Arid
Csa Hot-summer Mediterranean climate Temperate
Cf Temperate without dry season Temperate
Df Continental without dry season Cold (continental)
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4
CHAPTER

Detection of Heavy Rainfall in the Mediterranean Area:
Impact of Cloud Top Phase on Spaceborne Precipitation
Estimation

4.1 Disentangling Satellite Precipitation Estimate Errors of
Heavy Rainfall at the Daily and Sub-Daily Scales in the
Western Mediterranean

4.1.1 Summary

In recent years, significant advancements have been made in quantitative satellite precipitation
estimates, which are crucial for various applications. This section evaluates the performance
of Integrated Multi-satellitE Retrievals for GPM (IMERG V06B) at sub-daily and daily scales
over the Western Mediterranean region. The study spans ten years of half-hourly precipitation
records aggregated at different sub-daily periods. The analysis focuses on the contribution of
passive microwave (PMW) and infrared (IR) sources in IMERG estimates and their relationship
with various microphysical cloud properties using Cloud Microphysics (CMIC–NWC SAF) data.

The results reveal a marked tendency to underestimate precipitation compared to rain
gauges, with this underestimation increasing with rainfall intensity and temporal resolution.
Retrievals with PMW data exhibit a negative bias, while the inclusion of IR information to
fill PMW gaps increases the bias. Additionally, the performance improves in the presence
of precipitating ice clouds compared to warm and mixed-phase clouds. These findings can
contribute for understanding the errors associated with IMERG in estimating heavy rainfall
events and the impact of different sensors on these estimates.

4.1.2 Article

Peinó, E., Bech, J., Udina, M., and Polls, F. (2024). Disentangling Satellite Precipitation Estimate
Errors of Heavy Rainfall at the Daily and Sub-Daily Scales in the Western Mediterranean. Remote
Sensing, 16(3), 457.
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OF CLOUD TOP PHASE ON SPACEBORNE PRECIPITATION ESTIMATION

Table 4.1: Summary of the impact and quality of the journal in which the second paper in
accordance with this thesis was published. The data correspond to the year 2023 (last year
available at the date of preparation of this document) according to Scientific Journal Rankings
(SJR).

Journal Name Description Journal Metrics
Remote Sensing Remote Sensing is an inter-

national, peer-reviewed, open
access journal about the sci-
ence and application of re-
mote sensing technology. It is
published semimonthly online
by Multidisciplinary Digital
Publishing Institute (MDPI).

Impact Factor: 4.2 (2023),
5-Year IF: 4.9,
CiteScore: 8.3,
Quartile: Q1 Earth and
Planetary Sciences (miscella-
neous)
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Abstract: In the last decade, substantial improvements have been achieved in quantitative satellite
precipitation estimates, which are essential for a wide range of applications. In this study, we
evaluated the performance of Integrated Multi-satellitE Retrievals for GPM (IMERG V06B) at the
sub-daily and daily scales. Ten years of half-hourly precipitation records aggregated at different
sub-daily periods were evaluated over a region in the Western Mediterranean. The analysis at the
half-hourly scale examined the contribution of passive microwave (PMW) and infrared (IR) sources
in IMERG estimates, as well as the relationship between various microphysical cloud properties
using Cloud Microphysics (CMIC–NWC SAF) data. The results show the following: (1) a marked
tendency to underestimate precipitation compared to rain gauges which increases with rainfall
intensity and temporal resolution, (2) a weaker negative bias for retrievals with PMW data, (3) an
increased bias when filling PMW gaps by including IR information, and (4) an improved performance
in the presence of precipitating ice clouds compared to warm and mixed-phase clouds. This work
contributes to the understanding of the factors affecting satellite estimates of extreme precipitation.
Their relationship with the microphysical characteristics of clouds generates added value for further
downstream applications and users’ decision making.

Keywords: GPM IMERG; extreme precipitation; cloud microphysics; NWC SAF; PMW sources

1. Introduction

The Mediterranean basin is a particularly challenging mid-latitude area for remote
rainfall estimation, as precipitation may be caused by weather systems of different natures,
such as mesoscale convective systems, intense extratropical cyclones, and tropical-type
cyclones [1–5]. This fact, coupled with the uncertainties involved in precipitation projections
and the expected intensification of extreme precipitation in the coming decades [6,7],
makes studies in this area an important issue [8]. Reliable detection of the most intense
precipitation events is crucial for the development of early warning systems, disaster
management strategies, and water resource management.

Satellite precipitation estimates such as the Integrated Multi-satellitE Retrievals for
GPM (IMERG) products provide valuable information over areas not covered by ground-
based weather radars or rain gauge networks [9]. The main basis of IMERG is to incorporate,
merge, and intercalibrate various infrared and microwave (MW) observations [10]. The re-
sulting high spatiotemporal resolution (0.1◦ × 0.1◦ and 30 min) on a global scale makes
IMERG one of the most interesting products for the study of convective phenomena that
generate extreme precipitation [11–13]. Version 06B (V06B) spans a period of more than
20 years with three different latency runs targeting disaster response (Early), agricultural
modelling and public health applications (Late), and research (Final). The validation of
IMERG is of paramount importance for understanding and addressing estimation errors,
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both for algorithm improvements and for documenting the capabilities and limitations of
further applications developed by the scientific and operational communities [14]. Several
studies have confirmed the ability of IMERG to reproduce the global spatial characteristics
of precipitation fields on annual and seasonal scales [15–17]. However, spaceborne precipi-
tation estimates at shorter timescales, particularly in the case of heavy rainfall events, pose
more challenges, with a general tendency to underestimate [13,17–22]. In addition, despite
the large amount of work aimed at evaluating IMERG in different regions around the world,
the authors of [23] reviewed a number of limitations, gaps, and suggestions provided in
recent studies. A relevant conclusion they reported was that the evaluation of IMERG
products at multiple scales simultaneously, rather than constraining the analysis to a single
spatial and temporal resolution, could help to better understand how the accuracy and
errors vary with spatiotemporal aggregation and under different precipitation conditions.
The latter can be addressed for different types of microphysical features of precipitating
clouds, as well as the effect of different sensors contributing to the final IMERG products.
Indeed, the works by [24,25] recommend an individual evaluation of the underlying pas-
sive microwave (PMW) and infrared (IR) sources to detect error cancelation effects. Some
works, such as [12,26] have addressed issues directly related to cloud microphysics in the
retrieval process, as well as the behavior of the different sensors contributing to the IMERG.
From this perspective, they recommend extending these studies to different regions based
on their own characteristics.

Based on these considerations and taking as a reference a previous study comparing
IMERG products at different time scales with a dense rain gauge network over Catalonia
on the northeast of the Iberian Peninsula, the objective of this study was to evaluate IMERG
V06B in the estimation of heavy rainfall events at the daily and sub-daily scales in this region
considering different intensity thresholds. The validation strategy further seeks to identify
the contribution of different sensors (IR and PMW) that contribute to IMERG retrievals
and, in a subsequent step, to identify the linkage of various microphysical properties of the
precipitating cloud top in the estimation of heavy rainfall. Semi-hourly temporal evaluation
based on IMERG sources and cloud properties can provide valuable information on the
behavior, strengths, and weaknesses of IMERG in the detection of such events.

The remainder of this paper is organized as follows. Section 2 provides a detailed
description of the methodology, data, and assessment metrics used. Section 3.1 describes
the different intensity thresholds found for each aggregation period, according to the
methodology introduced in Section 2. Section 3.2 compares the rain gauge observations
and IMERG estimates at different time scales under different intensity thresholds. Section 5
focus on the half-hourly scale, considering sensor contributions and their relationship with
cloud microphysical properties. The most significant results are discussed in Section 6, and
a summary of the most relevant aspects is provided in Section 7.

2. Materials and Methods
2.1. Study Area

The study area covers the region of Catalonia, located in the northeast of the Iberian
Peninsula (southwestern Europe, Figure 1). With approximately 32,107 km2, it is charac-
terized by a relatively wide range of climates derived from its latitudinal situation, the
influence of the Mediterranean Sea, and complex orography [27]. It is limited to the north
by the Pyrenees mountains with elevations exceeding 3000 m ASL, whereas the inland
area is characterized by mostly flat terrain with a few orographic contrasts resulting from
the erosion of the Ebro River and its tributaries. These irregularities generate a marked
average annual rainfall gradient that ranges between 350 mm in inland plains and over
1200 mm in the Pyrenees Mountains. The number of rainy days range from approximately
35 days on the southern coast to 135 days in the northwest Pyrenees (Figure 1). In addition,
the coastal and pre-coastal mountain ranges—oriented northeast to southwest toward the
Mediterranean Sea—may enhance the pluviometric effects of Mediterranean cyclogenesis
along the coast, which favors the occurrence of heavy rainfall, flash floods, and complex
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mesoscale meteorological events [28–30], especially during autumn. The combination of
these characteristics represents a challenge for the remote sensing of precipitation from
satellites, ground-based weather radar, and traditional measurements from rain gauge
stations [31,32].

Figure 1. (a) Digital elevation model of the study region and network of automatic weather stations
(red dots); (b) Histograms of altitude distribution of the terrain (% of Catalonia’s area, dark shaded gray)
and automatic weather stations (unfilled contours); (c) Number of rain gauges per IMERG pixel.

2.2. Datasets
2.2.1. GPM IMERG V06B Data

The GPM core satellite and the rest of the GPM constellation satellites contribute to the
IMERG algorithm [10], where data are used to calibrate, fuse, and interpolate precipitation
estimates from several microwave and infrared sensor sources every 30 min, at a spatial
resolution of 0.1◦ × 0.1◦ and global coverage from −90◦ S to 90◦ N latitude. The GPM
core satellite has a dual-frequency precipitation radar and 13-channel PMW GMI imager.
The IMERG Early and Late V06B Level 3 data with latencies of 4 h and 14 h, respectively,
were considered in this study focused on the low-latency IMERG products. The IMERG
Final run, with 3.5 months’ latency required for gauge data climatological adjustment, was
discarded due to its much higher latency and because it provided worse results for heavy
rainfall at the daily and sub-daily scales according to some studies [17,33].

The IMERG algorithm starts from an initial calibration of all PMW sensors associated
with the GPM Combined Radar-Radiometer (CORRA) precipitation estimates and merges
them from their original spatial resolution into the IMERG grid [14]. In areas without a
direct PMW pass, these are spatiotemporally transformed forward in the Early version
and backward and forward in the Late product using numerical model-derived motion
vectors of total column water vapor (through the so-called Climate Prediction Center
morphing (MORPH) method) [34]. Beyond a forecast time of ± 30 min from near-direct
PMW observation, PMW-calibrated precipitation estimates from geostationary IR satellites
via Kalman filter principles are included [14,35].

IMERG semi-hourly NetCDF files (downloaded from https://disc.gsfc.nasa.gov/,
accessed on 13 October 2023) contained explicit information on the data type used in the
precipitation estimate through the “PrecipitationCal” variable. In this study, we consider
four categories associated with each precipitation estimate: (1) direct PMW overpasses
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(PMW-direct), (2) MORPH, (3) combination of PMW and transformed IR, and (4) direct IR.
These categories were obtained from the IMERG variables “HQprecipitation” (high-quality
precipitation from all available passive microwave sources) and “IRKalmanFilterWeight”
(IR-data weights in MW Kalman smoothing). While the former is used to identify direct
PMW, the latter quantifies the weight of IR observations wherever PMW direct is absent
and varies from 0% (MORPH-only) to 100% (IR-only) [12].

2.2.2. Rain Gauge Data

The IMERG products were validated using rain gauge records (hereafter RG) from
the network of automatic stations of the Meteorological Service of Catalonia (SMC). Semi-
hourly records with a resolution of 0.1 mm were obtained in the UTC time between
1 March 2014 and 11 October 2023, a period starting with the availability of GPM data.
A quality control scheme was applied to SMC rain gauge records based on comparisons
with nearby stations and correlation analysis [36,37]. Of the 417 IMERG pixels covering
the Catalonia region, 164 were associated with 186 rain gauges considered in this study.
According to the spatial distribution, 40% of the IMERG pixels contained at least one rain
gauge, and 5% contained two rain gauges (Figure 1). This corresponds to an overall density
of 1.13 rain gauges per 100 km2, which represents more than six times the threshold recom-
mended by the World Meteorological Organization (WMO) for inland flat and undulating
areas [38].

2.2.3. CMIC NW SAF Product

The relationship between heavy rainfall events recorded both by rain gauges and
IMERG estimates with cloud top microphysical properties was investigated from data
provided by the Cloud Microphysics (CMIC) product, developed by the EUMETSAT’s
Nowcasting Satellite Application Facility (NWC SAF) [39].

CMIC was developed to support nowcasting applications, allowing the characteri-
zation of rapidly developing storms [40]. In this study, four CMIC variables were used:
(1) cloud top phase, of which only those time intervals with liquid, ice, or mixed presence
are analyzed; (2) cloud top effective radius (Re f f ), defined as the weighted mean of the
droplet size distribution; (3) cloud optical thickness (COT); and (4) cloud liquid water path
(LWP) and cloud ice water path (IWP), which quantify the vertically integrated amount of
liquid and frozen water droplets, respectively. These two quantities can be estimated from

LWP, IWP =
2
3

ρ(l,i)COT Re f f (l,i), (1)

where the subindices l and i refer to liquid and ice, respectively, and ρ(l,i) and Re f f (l,i)
represent the density and cloud top effective particle radius of liquid water and ice [12].

The CMIC product has a spatial resolution of 3 km and 15 min of temporal resolution.
To compensate for spatial differences in the rain gauges and IMERG, the values were taken
at the closest grid point to each meteorological station. In terms of temporal resolution, the
15 min CMIC data were aggregated to a 30 min resolution. The cloud top phase variable
was aggregated according to the criteria described in Appendix A, Table A1, and for the
rest of the variables, the mean value of the two 15 min intervals was taken. When one
15 min interval detected ice and the other liquid, the phase was defined as mixed. For these
cases, the variable total water path (TWP) was generated as the sum of the IWP and the
LWP recorded in the two 15 min intervals that contributed to the semi-hourly aggregation.

2.3. Methodology
2.3.1. Definition and Selection of Extreme Precipitation Events

The IMERG validation process performed here was based on a pixel-to-point compari-
son [18,41] applied in such a way that information was obtained from the grid closest to
each weather station. This method allows a pairwise comparison between the concurrent
precipitation data of the RG and IMERG pixels at each time step. This approach avoids
uncertainties arising from interpolating RG data in a region characterized by high oro-
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graphic and climatic variability [17]. As mentioned in Section 2.2.2, the IMERG pixels
contained two rain gauges, but as the gauge data were independent, they were treated as
two different data points.

The first part of this study focused on evaluating the behavior of the IMERG Early
and Late versions in the estimation of intense precipitation, considering different sub-daily
temporal aggregations in the period 2014–2023. Temporal resolutions of 1, 3, 6, 9, 12,
and 24 h were obtained from the aggregation of the semi-hourly accumulations of the
initially created database. This database was constructed with records of at least 0.1 mm
accumulated in 30 min present in both the rain gauges and IMERG. Note that 0.1 mm is the
minimum precipitation threshold detected by the RG and GPM Ka band radar [42].

To obtain the different extreme precipitation thresholds for different temporal aggre-
gations, the method described by [43] and recent studies [44–47] was applied. This method
is based on the fact that a linear relationship between the maximum precipitation amount
P and the temporal duration D in a log-log space can be found, so that the data follow a
power-law equation:

P = aDb, (2)

where a is the prefactor and b is the scaling coefficient [43]. All rain gauge data for the study
period and region were used to obtain the fitted function.

Instead of directly using the curve fit of the extreme data to characterize the extreme
precipitation records in Catalonia, the upper envelope method was used, that is, a curve
that was greater than or equal to all the data, with a power-law scaling line. The specific
method for deriving the envelope line is described in the work of [46], and allows the
generation of curves that estimate the maximum precipitation amounts for different time
periods based on observed records. The scaling law of the adjusted extreme precipitation
derived from Equation (2), expressed as a linear function, is

log(P) = a + blog(D), (3)

Once the upper envelope fitting curve corresponding to the reference data from the
rain gauges was created, proportional curves (1%, 5%, 10%, and 18%) of equal slope were
produced to generate various intensity thresholds. The results and thresholds selected
using this method are presented in Section 3.1.

The second part of the paper focuses on the evaluation of only the IMERG Early
product and sources at half-hourly resolution under different extreme precipitation criteria
based on the envelope curve. The results were stratified according to the characteristics
of the precipitating cloud phase: liquid, ice, or mixed. Owing to the availability of the
NWC SAF data, 17 case studies between 2021 and 2023 were selected for this analysis.
The selected cases were characterized by extreme precipitation events in both RG and
IMERG at multiple weather station locations, exceeding the heavy rainfall threshold set
by the Meteorological Service of Catalonia (20 mm in 30 min). In this way, the sample
was selected to allow for a detailed study of the properties of clouds related to episodes of
intense precipitation observed at ground level by RG and estimated by IMERG.

2.3.2. Point-Pixel Validation Measures

IMERG products were validated using two approaches: categorical scores based on
contingency tables and continuous statistical scores. The first approach considered a 2 × 2
contingency table with four possible scenarios for a given threshold (see Table 1), from
which several categorical scores were computed (Table 2): the probability of detection
(POD), representing the proportion of events correctly detected by IMERG out of the total
observed rainfall events, and the false-alarm ratio (FAR) representing the fraction of false
detected rainfall events.

The continuous statistical scores used were Spearman’s correlation coefficient, BIAS,
Rbias, MAE, and RMSE (Table 3). BIAS is a measure of the average error between IMERG
and RG, while Rbias describes the systematic error. Positive (negative) values of BIAS and
Rbias denote overestimation (underestimation) of the satellite products. MAE shows the
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average size of the absolute errors and, finally, RMSE measures the size of the average error,
giving more weight to large errors without showing the direction of deviation between
IMERG and RG.

Table 1. Contingency table comparing observed rainfall by rain gauges and estimated rainfall by
IMERG for a given threshold.

Estimated Rainfall Observed Rainfall

Gauge ≥ Threshold Gauge < Threshold

IMERG ≥ threshold Hits (H) False alarms (F)
IMERG < threshold Misses (M) Correct Negatives

Table 2. List of categorical verification metrics used to evaluate IMERG products.

Name Formula Perfect Score

Probability of detection (POD) POD = Hits
Hits+Misses 1

False-Alarm Ratio (FAR) FAR = False alarms
False alarms+Hits 0

False-Alarm Rate (POFD) POFD = False alarms
False alarms+correct negatives 0

Hansen and Kuipers (HK) HK = POD − POFD 1

Table 3. List of continuous verification scores used to evaluate IMERG products.

Name Formula Unit Perfect Score

Spearman’s correlation coefficient r = cov(R(Si),R(Oi))
σR(Si )

σR(Oi )
- 1

Mean Error (Bias) BIAS = 1
n

n
∑

i=1
(Si − Oi) Mm 0

Relative Bias (Rbias) Rbias = ∑n
i=1(Si−Oi)
∑n

i=1 Oi
× 100 % 0

Mean Absolute Error (MAE) MAE = ∑n
i=1|Si−Oi |

n Mm 0

Root Mean Square Error (RMSE) RMSE =

√
1
n

n
∑

i=1
(Si − Oi)

2 Mm 0

Si is the value of satellite/model precipitation estimates for the ith event, Oi is the value of rain gauge observation
for the ith event, n is the number of observed records, cov(R(Si), R(Oi)) is the covariance of the rank variables,
and σR(Si)

and σR(Oi)
are the standard deviations of the rank variables.

3. Results
3.1. General Characteristics of Extreme Precipitation Events

Figure 2 shows the log-log plot of the precipitation accumulations or depth (mm)
versus duration (D) in minutes of the extreme precipitation records from 2014 to 2023 in
Catalonia from both the RG and IMERG Early and Late runs taken at the grid points closest
to the location of the rainfall events. In all three datasets, the linear fit (Equation (2)) was
calculated by least-squares linear regression and expressed in the power law. Using the
method described in Section 2.3.1, the envelope curve for the RG records was also plotted.

A graphical inspection allows us to detect a great similarity between the maximum
values estimated by IMERG Early and Late. Both products show a large underestimation
of the maximum threshold detected by the RG in time aggregations below 6 h, which is
more marked on the half-hourly scale. In fact, from 6 h to 18 h, IMERG showed a change in
the trend of overestimating precipitation records compared to the upper envelope curve
of RG. The higher exponent of b in the fitting equation of the IMERG products suggests
that satellite estimates of extreme rainfall increase at a higher rate with duration than
RG extreme precipitation records. This is related to the higher frequency of extreme
precipitation events (Figure 3), especially in northeastern Catalonia. It should be mentioned
that these IMERG extremes are only evaluated on the pixels closest to the location of RG
rainfall events, discarding other IMERG values that can be higher.
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Figure 2. Point precipitation extremes for different temporal aggregations observed by RG (black)
and estimated by IMERG Late (blue) and Early (green) in Catalonia between 2014 and 2023. The
solid lines correspond to the power-law fits, and the black dashed line corresponds to the scaling of
the upper envelope of the observed data. The dashed red lines show different ratios of the upper
reference envelope.

Figure 3. Spatial representation of the half-hourly IMERG and RG extremes, accounting for 18% of
the envelope curve. The frequency of IMERG extremes included events identified by both the Early
and Late products. The grid represents that at the original IMERG resolution.

Finally, 1%, 5%, 10%, and 18% of the envelope curve of the RG were considered
to obtain the threshold values of the reference intensity in each temporal aggregation.
Table 4 lists the precipitation threshold values that were used as references for each temporal
aggregation. Note that 18% of the envelope curve at the half-hourly scale represents an
amount of 20 mm in 30 min, a considerable precipitation amount at this scale, and a
value very close to the reference threshold for short-term heavy rainfall considered by the
Meteorological Service of Catalonia [48].

59



Remote Sens. 2024, 16, 457 8 of 22

Table 4. Precipitation thresholds taken for each temporal aggregation from the upper envelope curve
of extreme precipitation of the RG.

Temporal Aggregation (h) 1% (mm) 5% (mm) 10% (mm) 18% (mm)

0.5 1.1 5.6 11.3 20.3
1 1.4 7.2 14.3 25.8
3 2.1 10.5 21.1 37.9
6 2.7 13.4 26.8 48.3
9 3.1 15.4 30.9 55.6
12 3.4 17.1 34.2 61.5
24 4.4 21.8 43.5 78.3

3.2. Evaluation of IMERG at Multiple Time Scales and Intensity Thresholds

The evaluation of IMERG Early and Late products compared with RG records was
performed for selected sub-daily and daily time aggregations. Figure 4 shows the boxplots
of BIAS and MAE for both products, considering a precipitation intensity threshold of 18%
of the envelope curve. In this figure, the first quartile, median, and third quartile of the
distribution are identifiable considering errors calculated at all stations in the study region;
boxplot whiskers extend to the 1.5 interquartile range and outliers extending further away
are also plotted. For consistency between the aggregations, the results are shown in mm/h.

Figure 4. (Top panel) BIAS and (Bottom panel) MAE comparing IMERG Early (IMERG_E) and
IMERG Late (IMERG_L) products and RG records greater than or equal to 18% of the envelope curve.
For reference, the dotted red lines indicate perfect scores.

According to the BIAS, there was a tendency for IMERG rainfall values to be under-
estimated, decreasing for longer aggregation periods. Underestimation increased as the
precipitation intensity threshold increased. The best results with values between −0.07 and
−0.03 mm/h of BIAS and 0.74 mm/h of MAE are observed at daily scales for the lowest in-
tensity threshold evaluated (1%) (see Table 5). A similar result was found when examining
the Rbias values, although the underestimation varied more (Table A2, Appendix B). On
the other hand, the worst results were observed on a semi-hourly scale, which shows the
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deficiencies of IMERG in the quantification of extreme precipitation at the shortest time
resolution available. This agrees with previous studies [13,19,49,50] where similar results
were obtained.

Table 5. Mean values of BIAS and MAE (both in mm/h) for each temporal aggregation and different
precipitation intensity threshold considered (1%, 5%, 10%, and 18% of the maximum envelope curve).

Score IMERG 0.5 h 1 h 3 h 6 h 9 h 12 h 24 h

≥1%

BIAS E −1.81 −0.88 −0.21 −0.08 −0.05 −0.02 −0.07
L −1.83 −0.79 −0.11 0.00 0.02 0.03 −0.03

MAE E 4.87 3.52 2.06 1.37 1.03 0.86 0.74
L 4.63 3.39 2.02 1.36 1.03 0.86 0.74

≥5%

BIAS E −14.42 −7.16 −2.09 −1.03 −0.75 −0.55 −0.33
L −14.20 −6.80 −1.82 −0.85 −0.59 −0.44 −0.26

MAE E 16.01 9.30 4.24 2.62 1.93 1.57 0.92
L 15.58 8.94 4.09 2.56 1.90 1.56 0.92

≥10%

BIAS E −26.75 −15.07 −4.92 −2.18 −1.55 −1.17 −0.68
L −26.54 −14.68 −4.51 −1.87 −1.23 −0.98 −0.52

MAE E 27.48 16.30 6.80 4.01 2.94 2.34 1.39
L 27.17 15.86 6.46 3.87 2.89 2.29 1.34

≥18%

BIAS E −44.02 −26.83 −9.24 −3.94 −2.55 −2.00 −1.05
L −44.21 −26.68 −8.82 −3.62 −2.01 −1.63 −0.79

MAE E 44.17 27.30 10.65 5.69 3.74 3.15 1.71
L 44.31 27.02 10.13 5.44 3.65 3.00 1.61

A good approximation for the detection of heavy precipitation with near real-time
application was obtained for aggregation intervals equal to or greater than 6 h, with an
average error mean absolute of 1.36 mm/h for a 1% threshold and 5.44 mm/h for an 18%
threshold. Although IMERG Late shows slight improvements over the Early version for
most aggregations, it is not possible to identify a statistically significant difference. The use
of one over the other would be conditioned to the advantages that the latency in which the
data are generated may offer.

Additional analyses stratifying the results according to seasonality, the altitude of the
stations, climatic regime, and terrain orography for each temporal aggregation (not shown)
did not show remarkable differences.

Categorical Scores

Figure 5 shows POD and FAR values based on the contingency table elements for each
temporal aggregation, and according to the envelope curve-based precipitation intensities.
The detection of precipitation events with acceptable skill (dark reddish-shaded colors in
Figure 5, that is, POD ≥ 0.5 and FAR ≤ 0.5) is limited in both products mostly for precipita-
tion intensities greater than or equal to 1% and greater than 6 h of temporal aggregation.
The ability of IMERG to identify extreme rainfall events decreased substantially with in-
creasing rainfall intensity and temporal resolution. If we consider thresholds greater than
or equal to 5% of the envelope curve, no temporal aggregation exceeds 50% of correctly
detected cases. This behavior is more critical in the detection of events at 30 min and 1 h,
where thresholds higher than 10% of the curve do not exceed 8% (30 min) and 15% in 1 h,
respectively. According to these results, IMERG cannot detect events above or equal to 5%
of the envelope curve.
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Figure 5. (a,b) POD and (c,d) FAR scores for different temporal aggregations and precipitation
intensity thresholds of the IMERG Early (IMERG_E) and Late (IMERG_L) products.

While the event detection may be acceptable (greater or equal than 0.50) for 1%
rainfall rate envelope thresholds, these values decrease rapidly for higher rainfall rates,
reaching only 0.02 or 0.03 at 30 min for the 18% threshold: the SMC standard for heavy
rainfall. IMERG products also exhibit significant deficiencies in the generation of false
alarms. For both the Early and Late products, limitations were significant at all temporal
aggregations with intensities above 5% of the envelope curve, and even at a half-hourly
timescale at or above 1% of the envelope curve, FAR exceeded 0.50 values systematically.

For thresholds above 10% of the curve for time aggregations below 3 h, the false-alarm
rates were close to 0.90 (1.0 at 30 min) and above 0.70 for lower resolutions, illustrating the
low skill of IMERG products with heavy rainfall at a high temporal resolution.

4. Assessing the Contribution of Sensors on a Semi-Hourly Scale

To gain a better understanding of the limitations of the IMERG 30 min precipitation
estimates, a deeper analysis using precipitation cloud microphysical characteristics was
performed, considering 17 heavy rainfall days that occurred from 2021 to 2023. The analysis
was performed with both IMERG Early and Late runs, but only the results based on Early
runs are presented here, as they were very similar, and the shorter latency of the Early
products compared to the Late runs (4 h instead of 14 h) makes them more useful for
near-real-time applications. This is of particular interest to early warning systems devoted
to the surveillance of extreme precipitation and subsequent flash floods.

IMERG precipitation estimates are based on direct PMW overpasses (PMW-direct),
spatiotemporal advected PMW information (MORPH), a combination of MORPH and
IR (MORPH+IR), and observations based on IR information only. In the semi-hourly
data for the 17 selected days, IMERG precipitation estimates from MORPH+IR sources
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dominated (61.6%), followed by PMW-direct (20.2%), and MORPH (16%). A small fraction
was represented by IR-only sources (2.1%), which were not considered in the error analysis.

In Figure 6 (top row), a clear underestimation for all IMERG sources is evident, as
all fit lines and the associated 90% error areas are well below the diagonal of the scatter
plot. This was even more marked in the case of MORPH+IR for higher rainfall intensity
thresholds. Figure 6 (bottom row) shows the elements of the contingency table for each
source contributing to the IMERG estimate, according to the selected intensity threshold.
Note that the correct negatives, which represent more than 90% of the cases, are not shown.
As expected, the hit fraction degrades with increasing rainfall rate thresholds, and in all
cases, the estimates showing the highest skill in event detection come from the direct PMW
sensors, followed by MORPH. In fact, for thresholds greater than or equal to 20 mm/30 min,
the few cases detected by IMERG are due to the PMW sensors. Previous studies [14,51,52]
have shown that PMW data generally represent precipitation rates better than IR data
because PMW radiometers are sensitive to hydrometeor precipitation in the atmospheric
column, unlike IR sensors, which are limited to cloud top measurements. In particular, the
authors of [12] mentioned that IR retrievals misjudge cold cloud features as rain and not
precipitation anvils.

While the underestimation of high rainfall rates in IMERG comes from all sources, the
negative bias is the lowest for the PMW-direct and low rainfall rate thresholds (i.e., 1% of
the envelope curve, close to ideal top-left location of Figure 7). However, this bias appears
to be an inherent problem with the PMW algorithm, which is amplified by MORPH and IR
data. In contrast, the worst results were obtained for MORPH+IR and the highest rainfall
rate threshold considered (18%), located at the worst location (bottom right) of Figure 7.

The benefits of filling the IMERG PMW gaps by including MORPH and IR information
come at the expense of increasing Rbias and MAE for heavy rainfall rates. The above
analysis of categorical variables agreed with the trend observed in the analysis of continuous
errors. The BIAS errors for thresholds ≥18% of the curve are close to 20 mm, which
indicates an almost null ability of IMERG to detect the amounts observed by the rain
gauges. Note that a few IMERG estimates based on PMW detected values exceeding the
18% threshold; however, they were false alarms corresponding to lower rain gauge records.

Figure 6. (Top row) Scatter plot for each IMERG source versus rain gauge observations. The RG
rainfall intensities stratified into different envelope curve thresholds (1%, 5%, 10%, and 18%) are
plotted in different colors. The regression adjustment line with 95% confidence error is also plotted
(gray line with grayish shading). (Bottom row) Percentage of distributions of hits, false alarms, and
misses for each IMERG source and for each rain gauge precipitation intensity.
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Figure 7. Scatter plot of Rbias (mm) versus MAE (mm) for each IMERG data source (PMW, MORPH,
and MORPH+IR) and stratified according to rain gauge precipitation intensities (1%, 5%, 10%, and
18%). The marked point (black star) is the reference for no errors, whereas the bottom right is the
location with the highest errors.

5. Relationship between IMERG Sources and Microphysical Properties of the Clouds

In this section, the IMERG comparison with rain gauges is broken down according
to the cloud phases and the different microphysical properties of the precipitating clouds.
The incorporation of high-resolution cloud top information from CMIC NWC SAF provides
additional and independent information that allows us to better understand the behavior
of IMERG and its data sources under different RG rainfall intensity thresholds.

Table 6 shows the error and skill measures from IMERG and its sources stratified by
warm, ice, or mixed heavy precipitation clouds. In our study area, as expected, the highest
number of heavy precipitation events occurred under ice clouds in the order of 4601:117:275
(ice, liquid, mixed), where the numbers indicate the individual 30 min records.

Table 6. Summary of IMERG error statistics for each cloud phase, considering a rainfall threshold
intensity of 1%.

Contingency-Table-Based Measures Continuous Errors Measures

Cloud Phase Source POD HK FAR BIAS (mm) Rbias (%) MAE (mm) RMSE (mm)

Ice phase IMERG_E 0.61 0.38 0.68 −1.28 −27.44 4.30 6.98
PMW-direct 0.76 0.46 0.64 0.23 4.91 4.36 7.12

MORPH-only 0.69 0.44 0.69 −0.35 −7.62 4.15 6.71
MORPH+IR 0.54 0.33 0.68 −2.04 −43.89 3.89 6.44

Liquid phase IMERG_E 0.16 0.07 0.91 −3.00 −82.24 3.22 4.98
PMW-direct 0.11 0.02 0.88 −2.32 −84.79 2.42 3.28

MORPH-only 0.24 0.12 0.88 −2.43 −79.35 2.43 2.96
MORPH+IR 0.21 0.10 0.92 −3.74 −85.43 3.85 6.66

Mixed phase IMERG_E 0.22 0.11 0.80 −2.64 −71.55 3.58 5.63
PMW-direct 0.26 0.16 0.64 −2.26 −70.55 2.87 4.01

MORPH-only 0.44 0.29 0.72 −1.34 −42.11 2.90 4.28
MORPH+IR 0.14 0.02 0.89 −3.12 −78.87 3.70 6.11

The cases of heavy precipitation associated with warm clouds showed the worst results,
similar to those with clouds in the mixed phase. In the latter cases, the BIAS and Rbias values
were greater than twice the errors reported in ice cases in all sources simultaneously, with
the PMW-direct records showing the largest differences between one class and the other. For
intensities greater than or equal to 1%, the PMW sources in ice conditions were the only ones
that overestimated precipitation, thus cutting the underestimation trend of the rest of the
IMERG data sources. The MAE and RMSE values are higher in ice clouds precisely because
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heavy rainfall is mainly associated with deep moist convection; however, it should be noted
that they also present lower BIAS and Rbias values.

Similarly, POD values were much higher for glaciated clouds, especially at lower
precipitation intensities. In observations from PMW-direct and MORPH sources in the
ice phase, POD values reflect a hit rate of 0.76 and 0.69 compared to only 0.11 and 0.24 in
the liquid phase. Although false-alarm rates also increase from ice-phase to liquid-phase
clouds, they follow the same pattern of the best scores for PMW-based estimates compared
with those where IR sources are considered.

For events above 5% precipitation thresholds, the cases under liquid and mixed clouds
provided poor results. For events above the 18% threshold, the ability of IMERG was
almost null under all cloud phases, but specifically in the liquid and mixed phases (with
two cases each), it was totally null.

Figure 8 compares the probability distribution of cloud top properties around all time
steps of intense precipitation greater than or equal to 1%. IMERG Early estimates and
different sources were considered for comparison with RG. Only daytime precipitation
samples were represented, as COT and Re f f retrievals were not available during the night.
Although available, IWP, LWP, and TWP are limited to the same time set for consistency.

Figure 8. Probability distributions of the cloud properties described in Section 2.2.3, based on all
time steps of intense precipitation greater than or equal to 1% of the envelope curve in the RG
(gray shading), IMERG, and its sources (colored lines), separated into (a–c) ice cloud tops and
(d–f) warm/liquid cloud tops and (g–i) mixed cloud tops. The vertical colored lines in each plot
indicate the median values of the respective distribution.
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It should be noted that the case studies selected for the analysis were chosen precisely
because of the occurrence of heavy rainfall. This behavior is reflected in the high probability
of occurrence of high IWP, LWP, and TWP values. IMERG and its sources overestimated the
precipitation related to IWP values below 500 g m−2 and underestimated the precipitation
rates related to higher IWP values compared with RG. This oversensitivity was also evident
for lower COT values. The estimates generated by PMW-direct were the closest to the
RG distribution, and their median values were very similar. The distributions of sensors
related to warm clouds was much more pronounced. A high overestimation is observed for
all sources related to TWP values < 1000 g m−2, and for higher values, an underestimation
is observed, especially for IMERG MORPH+IR. Although once again, this behavior is
reflected in the lower COT values, overestimation is observed for higher values.

Regarding Re f f , IMERG and its sources do quite well for ice clouds but show signifi-
cant overestimates, particularly below 10 µm, and underestimates when Re f f is equal to
or higher than the median of the observations. In the mixed phase, although there was an
overestimation related to low TWP values, it is worth noting that the PMW-direct estimates
maintained this overestimation directly related to a marked sensitivity to high COT values.

The PMW-direct sources, although the most accurate, are often the most sensitive to
different cloud phases. While uncertainties in rainfall occurrence associated with ice and
mixed clouds are directly related to COT characteristics during the liquid phase, they are
also related to COT and Re f f behavior.

In the context of more intense precipitation (5%, 10%, and 18%) (see Figure A1,
Appendix C) associated with ice clouds, a large oversensitivity related to high IWP and
COT values, especially by PMW-direct, can be noted. In all cases, extreme precipitation
was overestimated, with Re f f values close to the median of those recorded by RG. While
observations associated with PMW-direct played a key role for intensities of 5% and 10%,
MORPH+IR sources played a key role for intensities ≥ 18%.

Origin of Hits, Misses, and False Alarms

Figure 9 shows the distributions of the percentages of each IMERG source causing hits,
false alarms, and misses compared to RG. This analysis was also performed considering
various precipitation intensity thresholds according to all case study data and divided
according to the phase of the precipitating cloud.

For intensity thresholds above 1%, there are no clear differences between the IMERG
sources that contribute the most to the hits; this behavior changes for the strongest intensity
extremes (above 5%). The PMW-direct source was responsible for the detection of these more
intense precipitation events coupled with MORPH. In fact, extremes greater than or equal to
18% represent 100% of the detected cases. However, just as they contribute to the hits, they
are responsible for the generation of high false-alarm rates, especially in the ice phase.

As far as the miss rate is concerned, it is the MORPH+IR sensors, even IR direct
(although in very few cases), that have the most influence. This is evident for cases related
to ice clouds from thresholds ≥ 1% and is rather clear for liquid and mixed phases with
thresholds ≥ 5%. The missing of extreme events ≥20 mm/30 min is entirely associated
with sensors with IR information.

A similar analysis to that performed in the previous section is shown in Figure 10,
which focuses on the distribution of the elements of the contingency table for IMERG based
on precipitation events above 1%.

The distribution of hits was very similar to that of RG. This implies that by taking
the IWP as a reference, especially for high values, IMERG can detect precipitation events
measured by RG. It is also evident that for lower values of IWP, the rate of false alarms
and misses increases dramatically, which is directly related to the COT detection behavior.
Although very similar to [12] in this case, hits, false alarms, and misses can hardly be
predicted using Reff.

In the case of liquid and mixed-phase clouds, as indicated by the low POD and high
FAR values in Table 6, the IMERG performance decreases dramatically. Taking LWP as a
reference, there are predominantly false alarms towards low LWP values, and many losses
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are associated with higher values. The fact that the median of the distribution of losses in
the COT and Reff is almost identical to the distribution of the RG suggests that during this
phase, IMERG misinterprets the results. In the mixed phase, false alarms were associated
with low TWP and COT values. In contrast, the highest frequency of hits occurred when
TWP values were quite high.

Figure 9. Percentage of sensors contributing to hits, false alarms, and misses of IMERG estimates
according to cloud phase (a–c) ice, (d–f) liquid, and (g–i) mixed and RG intensity thresholds. The miss-
ing intensity representation (panels d and g) is due to the absence of data for these cases.
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Figure 10. As in Figure 8, but for the elements of the standard contingency table.

6. Discussion

The errors found in IMERG at the daily and sub-daily temporal aggregations and
under different precipitation intensity thresholds for heavy rainfall show several limitations
that should be considered by users of these products. There is a clear underestimation of the
precipitation rain gauge records, which becomes much more marked as the precipitation
intensity threshold increases and as the temporal aggregation becomes shorter. The best
performance in terms of the ability to detect precipitation events by IMERG is limited to
relatively moderate rainfall rates (1% of the extreme rain gauge envelope curve). The errors
measuring the accuracy of the estimates indicate that for temporal aggregations greater
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than 6 h, they start to become acceptable in terms of standard criteria (that is, POD > FAR,
POD ≥ 0.5, FAR ≤ 0.5). The authors in [13] showed similar results when defining an
unacceptable probability of detection for aggregation intervals of less than 12 h. Similarly,
works such as [13,53] show that with decreasing temporal resolution, the ratio between
observations and satellite estimates improves due to the balancing effect of the temporal
aggregation of rainfall over a longer period. According to the results shown in this work, for
intensity thresholds higher than the 5% envelope curve, a high underestimation of IMERG,
lack of detection, and the manifestation of high false-alarm rates start to be inherent in all
temporal aggregations.

Another important aspect to consider is related to the fact that IMERG Late shows
little improvement and, in some cases, no improvement over IMERG Early. This means
that IMERG_E, because of its shorter latency, is the most reliable source in a near-real-time
rainfall detection system. This strongly suggests that the negative BIAS in the identification
of heavy rainfall events is not solved by increasing the amount of satellite data available
later, but it is intrinsic to the algorithm used for the detection and estimation of these events.

Understanding the relationship and contribution of the different data sources used in
IMERG estimates is essential for understanding their limitations. Information from direct
microwave sensors (PMW-direct) provides the best results in the estimation of rainfall
extremes, while those that rely more on IR information are linked to the poorest verification
scores. This is directly related to the fact that microwave estimates are often better at
representing precipitation than IR retrievals [51,52], because they are more sensitive to
hydrometeor precipitation in the atmospheric column, unlike IR sensors, which are mostly
limited to cloud top measurements [14].

Despite the advantages of direct microwave sources in event detection, they are
associated with the highest false-alarm rate, which is higher than the miss rate under
all intensity thresholds. This means that, using these sources, IMERG can detect high
precipitation intensity values, but they do not generally coincide with the time and space
of rain gauge records. In this sense, it should be noted that in addition to the instrumental
limitations, the results of this study must be understood from the perspective of pixel-to-
point evaluation. By comparing area-averaged rainfall data within a 0.1◦ grid with a point
measurement within this area, we assume that each rain gauge represents the average
rainfall of this area with sufficient accuracy, which entails certain limitations [54–56] much
more dominant at sub-daily scales [14].

Considering the microphysical characteristics of precipitating clouds, IMERG sources,
especially PMW-direct data, are sensitive to different cloud phases and other cloud charac-
teristics. The worst results were often related to warm and mixed clouds. This reflects the
dependence of IMERG on the time at which the ice particles finally form within a convective
cloud. The results reported here, although representative of a semiarid climate area in the
Western Mediterranean, are largely in agreement with those of [12] carried out in a forested
area of West Africa. Although there were slight differences, the biases found in this study,
especially for higher intensities, seem to be related to the IMERG processing algorithm and
not to the dynamic mechanisms that originate from precipitation in each region.

7. Conclusions

The present study focused on the evaluation of IMERG Early and Late in the esti-
mation of extreme precipitation. Based on information from 186 meteorological stations
located in the Western Mediterranean region (Catalonia), several intensity thresholds de-
rived from rain gauge records were used as a reference. The evaluation also considered
different temporal aggregations, from the original GPM maximum temporal resolution to
a daily scale, between 2014 and 2023. A selection of cases with semi-hourly episodes of
extreme precipitation was considered to evaluate the dependencies of IMERG retrievals
and their sources on cloud microphysical properties and rain gauge observations. The main
conclusions of this study are as follows.
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1. IMERG shows a marked tendency to underestimate precipitation as the rainfall intensity
threshold increases and the temporal resolution increases. IMERG_L does not offer
relevant advantages over the IMERG_E product in the detection of extreme events.

2. Although the underestimate of intense precipitation in IMERG is found for all source
types, the negative bias is weaker when recoveries are due to PMW-direct data and
increases when information from IR sensors is incorporated.

3. PMW-direct sensors generate high false-alarm rates, while the recovery algorithm with
MORPH+IR sources is associated with the highest miss rates of precipitation events.

4. IMERG performs dramatically better in the presence of precipitating ice clouds than
in warm and mixed clouds. Uncertainties in the occurrence of extreme precipitation
associated with ice clouds are related to COT characteristics, as in the mixed phase.
However, the estimation of intense precipitation associated with warm clouds shows
the worst results and is related to other microphysical characteristics, such as COT
and Re f f .

The assessment presented here is made during the changeover from IMERG 06 to 07,
which includes significant changes, such as the introduction of the SHARPEN scheme.
Therefore, this study contributes to the understanding of the mechanisms of extreme
precipitation satellite estimates and their relationship to cloud microphysical features.
This is one of the few works that considers a semi-hourly resolution to study this type of
event in the Mediterranean and mid-latitudes in general. Future studies will focus, on the
one hand, on the evaluation of the V07 version and check if the updates to the algorithm
improve its performance regarding V06. On the other, it will also be a priority to focus on
the validation of GPM core satellite observations, such as DPR and GMI, in the estimation
of heavy rainfall events.
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Appendix A

Table A1. Semi-hourly configuration of the new cloud phases from the original resolution phases
(15 min) of the CMIC NW SAF product.

Interval 1 (15 min) Interval 2 (15 min) Resulting Phase (30 min)

liquid ice mixed
liquid liquid liquid

ice ice ice
mixed mixed mixed

liquid/ice mixed liquid/ice
liquid/ice/mixed cloud-free/undefined liquid/ice/mixed
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Appendix B

Table A2. Rbias (%) for each temporal aggregation and different precipitation intensity threshold
considered (1%, 5%, 10%, and 18% of the maximum envelope curve).

Score IMERG 0.5 h 1 h 3 h 6 h 9 h 12 h 24 h

≥1%

Rbias E −29.25 −19.80 −7.91 −3.78 −3.00 −0.65 −0.35
L −29.64 −17.96 −3.99 0.71 1.85 3.34 3.57

≥5%

Rbias E −68.45 −54.79 −33.52 −25.82 −24.42 −21.44 −20.63
L −67.40 −52.02 −29.12 −21.19 −19.26 −17.02 −15.76

≥10%

Rbias E −77.22 −68.32 −46.72 −32.33 −29.47 −27.34 −25.05
L −76.58 −66.52 −42.66 −27.70 −23.20 −22.91 −19.15

≥18%

Rbias E −83.20 −77.01 −56.39 −36.50 −32.58 −30.16 −27.69
L −83.39 −76.57 −53.57 −33.38 −25.43 −24.69 −20.73

Appendix C

Figure A1. Probability distributions of the cloud properties described in Section 2.2.3 based on all
time steps of intense precipitation greater than or equal to (a–c) 5%, (d–f) 10%, and (g–i) 18% of the
envelope curve in the RG (gray shading), IMERG, and its sources (colored lines), only for ice cloud
tops. The vertical colored lines in each plot indicate the median values of the respective distribution.
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CHAPTER 4. DETECTION OF HEAVY RAINFALL IN THE MEDITERRANEAN AREA: IMPACT
OF CLOUD TOP PHASE ON SPACEBORNE PRECIPITATION ESTIMATION

4.2 Intercomparison of HSAF and IMERG satellite precipitation
products over a Mediterranean coastal region

4.2.1 Summary

The well-established scientific collaboration between EUMETSAT H SAF and the GPM program
has significantly contributed to the prolific development and advancement of retrieval algorithm
techniques (Rysman et al., 2018; Sanò et al., 2018), as well as validation studies over the
Mediterranean region (Petracca et al., 2018). Therefore, this section focuses on comparing
various H SAF products (H61, H64, H68) and the Early and Late runs of the GPM IMERG. By
analyzing hourly and daily data over 17 days with intense precipitation records, continuous and
categorical statistical indicators are determined to assess the performance of these products in
their estimations.

This section aims to build on the previous section by delving deeper into satellite-derived
estimates of extreme precipitation events comparing IMERG and H SAF products. It represents
one of the first studies in a Mediterranean and coastal region that validates these products
outside the countries included in the H SAF validation program.

The study is the basis of a paper that will be submitted to a high-impact journal on the
subject. This future work will provide additional insights into the comparative performance of
different satellite precipitation products in the Mediterranean area.

4.2.2 Preprint Article

Peinó, E., Bech, J., Petracca, M. and Udina, M. (2024). Intercomparison of H SAF and IMERG
satellite precipitation products over a Mediterranean coastal region.
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Abstract: Satellite-based precipitation products play a crucial role in providing global, continuous, and
reliable estimates of rainfall, essential for understanding and managing Earth’s water cycle. This study aims
to evaluate the accuracy of three H SAF products (H61, H64, H68) and compare their performance with
the Early and Late IMERG products in the western Mediterranean region, particularly in detecting and
estimating extreme precipitation events. The analysis is based on hourly and daily rainfall data collected
from 186 rain gauges in Catalonia, using a point-to-pixel as approach method. The results show that while
all satellite products tend to overestimate observed precipitation, H64 performs best at the daily scale,
and H68 stands out in hourly detection. However, the accuracy of all products significantly decrease with
increasing precipitation intensity, with H68 exhibiting the largest errors in high-intensity events. Despite
significant biases, the IMERG Late product proved to be the most effective in detecting intense precipitation
events. This study offers critical insights into their comparative performance, enhancing their application in
hydrometeorological management and disaster response.

1 Introduction
Observing and measuring precipitation on a global scale is crucial to our understanding of the Earth system
and has a significant impact on society at multiple levels (Kidd et al., 2021; Kirschbaum et al., 2017;
Skofronick-Jackson et al., 2017). Precipitation acts as a direct link between the global energy and water
cycles, regulating energy exchange (Trenberth et al., 2009) and is the main factor controlling many natural
hazards, such as droughts and floods (Vicente-Serrano et al., 2010). Accurate and reliable precipitation
information is of great importance in water resources planning, hydrological simulation, environmental and
ecological management, and irrigation management.

Currently, there are three main approaches to obtain observational precipitation estimates: in situ mea-
surements, remote sensing (including weather radar and satellite) and numerical simulation (Xie et al.,
2022). Rain gauges are the most common and reliable way to directly measure precipitation on a point
scale (Lanza & Stagi, 2008). However, the density and distribution of rain gauge networks vary significantly
around the world, with few or nonexistent in marine and mountainous areas making it difficult to provide
continuous precipitation information. Because of their ability to provide global and continuous coverage,
satellite precipitation products fundamentally present an unprecedented opportunity to overcome the limita-
tions of spatially discontinuous distribution of rain gauges and have shown great potential in a wide range of
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applications (Serrat-Capdevila et al., 2014). However, these products are derived from indirect precipitation
measurements and simulation, so errors in the products exist and vary across different regions, seasons, event
types, and precipitation phases.

Since the launch of the first meteorological satellite in 1960, numerous satellites have been developed
with sensors capable of providing observations from which surface precipitation can be derived (Kidd &
Levizzani, 2019). However, it was not until the launch of the Tropical Rainfall Measuring Mission (TRMM) in
December 1997 and, subsequently, the Global Precipitation Measurement Mission (GPM) in February 2014,
that missions dedicated specifically to satellite precipitation estimation were initiated. NASA’s Integrated
Multi-satellitE Retrievals for GPM (IMERG) algorithm (Huffman et al., 2020) is one of the most reliable
products for quantitative measurement of precipitation from satellites (Pradhan et al., 2022). The evaluation
of IMERG performance has reflected a growing interest in research, with studies stratifying the results
according to time scales, topographic features, climatic conditions and precipitation intensity, allowing a
more specific description of IMERG behavior in different conditions and its most appropriate application
(Lei et al., 2021; Moazami et al., 2022; Rojas et al., 2021; Yang et al., 2020; Zhang et al., 2022).

On the other hand, the Satellite Application Facility (SAF) on support to Operational Hydrology and
Water Management (H SAF, or Hydrology SAF) is one of the current eight SAFs managed by European
Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). H SAF is the main Euro-
pean concerted effort on satellite precipitation estimates, focusing on precipitation products from available
geosynchronous and low-Earth-orbiting satellites using both passive-microwave (PMW) and infrared (IR)
data (Mugnai et al., 2013). H SAF generates operational precipitation products that are not only useful for
hydrological applications but are also valid in themselves because they are based on a series of advanced
and ever-improving algorithms. Since its inception, H SAF has adopted a validation strategy, which is now
growing and reaching the critical mass necessary to validate operational and climate products. Specifically,
H SAF includes a product validation program and a hydrological validation program, involving several coun-
tries and instrumental for evaluating and improving H SAF precipitation products, as well as for assessing
their usefulness in fighting floods, landslides, avalanches, and evaluating water resources (Panegrossi et al.,
2012; Puca et al., 2014).

Several studies characterize and quantify the errors of satellite precipitation retrievals. Since there is no
satellite product that performs best under all conditions, some of these studies have focused on comparing the
performance of various satellite products in specific areas to enhance their application in diverse geographic
and climatological contexts (Baez-Villanueva et al., 2018; Z. Li et al., 2013; Yu et al., 2020). However,
according to the available literature, few studies evaluate the H SAF precipitation products outside the
countries selected in their validation program and directly compare them with other products such as IMERG.
Therefore, this study aims to evaluate the accuracy of three H SAF products (H61, H64, H68) with hourly
and daily temporal aggregations and to intercompare their performance with the Early and Late IMERG
products in the western Mediterranean. The validation includes assessing the ability of these products to
detect and estimate extreme precipitation events. The methodology, like the H SAF validation program,
focuses on two fundamental components: one based on categorical and continuous statistics, and the other
on a selection of cases with precipitation events.

The structure of this study is as follows Section 2 provides a description of the study area, datasets
used (H SAF and IMERG products), the comparison methodology adopted in this study and the evaluation
metrics employed. Section 3 shows results and discussions considering the validation of all products based
on hourly and daily rainfall data for different intensity thresholds according to the rain gauges. Finally, a
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summary and conclusion are provided in Section 4.

2 Materials and Methods

2.1 Study Area

Catalonia, located in the northeast of the Iberian Peninsula, is characterized by a complex topography
that poses challenges for precipitation estimation using remote sensors, as well as for the estimation of
the precipitation field using rain gauge stations (Navarro et al., 2020; Peinó et al., 2022; Trapero et al.,
2009). Covering approximately 32107 km2, Catalonia exhibits a wide range of climates due to its latitudinal
position, the influence of the Mediterranean Sea, and its complex orography. To the north, it is bordered by
the Pyrenees, with elevations exceeding 3000 meters above sea level, while the inland area is predominantly
flat with some orographic contrasts resulting from the erosion of the Ebro River and its tributaries (Figure
1a). Additionally, the coastal and pre-coastal mountain ranges, oriented from northeast to southwest towards
the Mediterranean Sea, enhance the development of flash floods from both a hydrological perspective (small
torrential catchments) and a meteorological perspective (orographic forcing of Mediterranean air masses)
(Jansa et al., 2014; Llasat et al., 2016). Consequently, this region experiences thunderstorms and flash
floods annually (Llasat et al., 2014).
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Figure 1: (a) Digital elevation model of Catalonia and rain gauges network distribution (red dots) (b)
Number of rain gauges per pixel in H61 product considering the spatial resolution of each satellite grid cell
in the Catalonia domain (c) and (d) Same as (b) but for IMERG products and for H64 and H68 products,
respectively.

2.2 Data sets

2.2.1 Satellite precipitation products

Table 1 presents a summary of the five satellite precipitation products used in this study. The columns
represent the original temporal and spatial resolutions of these products, as well as the method used for
extracting data comparable to rain gauge records (see the next section). Finally, we show the temporal
resolution used for validating these products, which was selected in order to compare systematically the
different products to a common framework (1h or 24h).
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Table 1: Summary of satellite precipitation products used.The “Method” column refers to the method of matching
with rain gauge data (more details in Section 2.3).

Product
Temporal

Resolution
Spatial

Resolution
Coverage Method

Temporal
aggregation

used

H SAF 61 1h/24h
3 km at the
sub-satellite

point

60°S - 75°N,
80°W - 80°E

Optimal 1h/24h

H SAF 68 30 min 0.25° x 0.25°
60°S - 75°N,
60°W - 60°E

pixel-to-point 1h

H SAF 64 24h 0.25° x 0.25°
60°S - 75°N,
60°W - 60°E

pixel-to-point 24h

IMERG (Early,
Late)

30 min 0.1° x 0.1° 90°N - S pixel-to-point 1h/24h

The NASA Integrated Multi-satellite Retrievals for GPM (IMERG) algorithm (Huffman et al., 2015)
intercalibrates, merges, and interpolates precipitation estimates from the GPM/TRMM satellite constella-
tion. It utilizes Passive Microwave (PMW) radiometers in low Earth orbits, calibrated PMW estimates with
geostationary IR sensors, and rain gauge records to generate a global-gridded product at a spatial resolution
of 0.1° × 0.1° and a temporal resolution of 30 minutes. The algorithm is executed three times (Early, Late,
and Final runs) for each gridded spatiotemporal estimate, with estimations improving with latency due to
the incorporation of more data and more complex interpolation of PMW estimates (Tan et al., 2019). This
study uses data from the Early and Late version 06B level 3 products, which provide better results in re-
trieving heavy precipitation compared to the IMERG Final product (Furl et al., 2018; Peinó et al., 2022,
2024).

The EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Man-
agement (H SAF) generates and archives high-quality datasets and products for operational hydrological
applications from the acquisition and processing of Earth observation satellite data in both geostationary
and polar orbits, operated by EUMETSAT and other satellite organizations (Force, 2024). Specifically, the
near-real-time product H61B integrates instantaneous precipitation maps generated by the P-IN-SEVIRI-
PMW product, based on intercalibrated PMW Level 2 instantaneous precipitation index estimates combined
with the 10.8µm channel of the SEVIRI instrument (ATBD, 2020). This integration provides hourly accu-
mulated precipitation and 24-hour accumulated precipitation at 00, 06, 12, and 18 UTC.

The H64 product (ATBD, 2022) is a gridded daily precipitation product generated by merging PMW
precipitation estimates from H-AUX-23 and H67 with soil moisture-derived estimates from the SM2RAIN
algorithm (Brocca et al., 2014; Ciabatta et al., 2018; Koster et al., 2016; Massari et al., 2017). Over oceans,
the algorithm relies solely on PMW estimates. Factors such as frozen soils, heavily vegetated areas, and
complex topography, which affect the reliability of the input product, impact the quality of the H64 product.
H64 has a spatial resolution of 0.25° x 0.25°.

The level 3 H68 product (ATBD, 2021) provides a gridded MW precipitation index at regular 30-minute
intervals. It is based on instantaneous precipitation index estimates available in P-IN-SSMIS (H01), P-
IN-MHS (H02B), P-IN-ATMS (H18), H-AUX-17, and H-AUX-20, combined and intercalibrated. For each
30-minute interval, all available orbits of LEO satellites carrying PMW radiometers (SSMIS, AMSR-2, GMI,
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ATMS, AMSU/MHS) over the extended H SAF area are considered to provide a single precipitation index
estimate for each grid cell.

2.2.2 Rain gauge data

The network of automatic surface weather stations of the Meteorological Service of Catalonia was used for the
validation of satellite precipitation products (Peinó et al., 2022, 2024). It includes 186 stations distributed
across the region (Figure 1), with an average minimum distance between station of 8.7 km and a density of
1.13 stations per 100 km2, which is six times the minimum threshold recommended by the WMO for inland
flat and undulating areas (WMO, 1994). Semi-hourly precipitation records with a resolution of 0.1 mm were
utilized. A quality control scheme was applied to the SMC rain gauge records based on comparisons with
nearby stations and correlation analysis (Llabrés-Brustenga et al., 2019, 2020).

2.3 Methodology

2.3.1 Selection of case studies

For the validation exercise, eighteen case studies occurring between 2021 and 2023 were considered (Table 2).
The selection of these cases depended not only on the occurrence of precipitation at any station in the region
but also on whether any records from both rain gauges and satellite indicated extreme precipitation values,
often exceeding the intense precipitation threshold established by the Meteorological Service of Catalonia
(20 mm in 30 minutes). Table 2 provides a summary of the case studies and the number of stations
that exceeded selected precipitation thresholds on an hourly and daily scale. This approach allowed us to
construct a database representing extreme precipitation episodes, facilitating the assessment of the remote
sensing systems’ capabilities in such events.
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Table 2: Selected case studies and number of stations (N) exceeding selected threshold during the day on an hourly
and daily scale. An asterisk (∗) denotes days when any of the stations exceeded the intense precipitation threshold
established by the SMC (≥ 100 mm/day), and double asterisks (∗∗) indicate days classified by the SMC as
exceptional meteorological episodes in the region.

Dates 1h∗∗ (mm/h) 24h (mm/day)
N ≥ 0.5 N ≥ 15 N ≥ 30 N ≥ 1 N ≥ 50 N ≥ 100

09/05/2021 49 0 0 100 1 0
17/06/2021∗∗ 81 13 3 141 10 0

31/07/2021 98 13 1 183 4 0
25/08/2021 25 8 2 88 3 0

01/09/2021∗∗ 69 5 2 114 7 2
09/09/2021 31 3 2 97 0 0
18/09/2021 55 3 1 125 0 0

23/11/2021∗∗ 121 6 3 184 37 9
12/03/2022∗ 181 2 0 187 24 3
20/03/2022∗ 66 2 0 132 3 2

17/08/2022 32 9 4 94 4 0
24/08/2022 45 3 0 72 1 0
25/08/2022 80 7 0 123 2 0

23/09/2022∗∗ 99 11 0 167 8 2
29/06/2023∗∗ 113 16 0 170 6 1

27/07/2023 89 16 0 139 0 0
03/09/2023∗∗ 25 8 5 44 11 7
15/09/2023∗∗ 139 10 5 185 16 1

2.3.2 Point- Pixel comparison method

The validation process considered both hourly and daily temporal aggregations. For the temporal aggrega-
tions of the IMERG and H68 products, we checked that at least 100% of the semi-hourly data was available,
there by guaranteeing the comparison of these products at hourly scale. At the daily scale, H68 product was
not used due to insufficient data; instead, H64 was employed as indicated in Table 1.

A point-to-pixel (Gentilucci et al., 2022; R. Li et al., 2022; Y. Li et al., 2018; Xie et al., 2022) analysis
was conducted in the study area to compare the time series of the selected rain gauge stations with the
corresponding pixel values of the selected satellite products. The implicit assumption of this methodology
is that the rain gauges are representative observations of the respective pixels of the products. For the H61
product, due to its high spatial resolution (approximately 3 km in the study area), each pixel was associated
with only one rain gauge (Figure 1). Following the so-called fuzzy verification approach the point-to-pixel
comparison considered the 9-pixel neighborhood closest to the rain gauge. Among these nine pixels, the one
with the precipitation value closest to that estimated by the rain gauge was used for comparison. Naturally,
only cells with at least one reporting station were selected for computation. For the other products, in
cases where a pixel contained two or more rain gauges, the areal-average precipitation was calculated as the
arithmetic average of all rain gauges located within that pixel. Although the satellite products analyzed have
different spatial resolutions, studies such as Baez-Villanueva et al. (2018) and Wang et al. (2019) suggest
that there are no substantial improvements when applying a resampling method between them. In this case,
we also believe that products such as H61 and even IMERG would be significantly more affected if this
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technique were applied to bring them to the resolution of H68 and H64.
Additionally, prior to the final choice of the method used in this study, we performed a sensitivity analysis

by varying the method to spatially match the records of satellite products and those obtained through rain
gauges. Although all are variants of the point-to-pixel method, three variants were evaluated: (1) In case
there was more than one rain gauge in one satellite pixel, the independence of the precipitation records in
each one was maintained for the comparison; (2) we compared the rain gauge information with the eight
pixels neighboring the one containing it and selected for the comparison the one with the least bias and (3)
in case there was more than one rain gauge per pixel we took the arithmetic mean of the rain gauge records
and compared it directly with the pixel containing them. Finally, the results obtained by these variants
yielded results without substantial differences between them, so variant 2 was applied to H61 due to its high
spatial resolution and variant 3 to the rest of the products.

2.4 Verification Scores

Three continuous statistics were calculated to quantify the magnitude of differences between satellite esti-
mates and rain gauges: modified Kling-Gupta Efficiency (KGE), Correlation Coefficient (CC), percent bias
(Rbias), and Root Mean Square Error (RMSE). RBIAS describes the deviation of satellite products from
gauge data. KGE describes overall accuracy as a multi-component metric integrating correlation coefficient
(CC), bias ratio (β), and variability ratio (γ), proposed by Gupta et al. (2009) and revised by Kling et al.
(2012). The range of KGE is (−∞, 1], with a perfect value of 1. Higher values of KGE indicate better
accuracy. The Rbias ranges from −∞ to ∞, with a perfect value of 0. The sign of Rbias (positive or
negative) indicates the direction of deviation (overestimation or underestimation) and absolute value reflects
the magnitude of deviation. RMSE measures the size of the average error, giving more weight to large errors
without showing the direction of deviation between satellite products and rain gauges. Table 3 shows details
of the calculation of these statistics.

Table 3: List of the continuous verification metrics used to evaluate satellite products.

Name Formula Unit Perfect score

Kling-Gupta Efficiency
(KGE)

KGE = 1 −
√

(r − 1)2 +
(

σs
σo

− 1
)2 + (µs − µo)2 - 1

Correlation Coefficient
(CC)

CC =
∑n

i=1
(Si−S̄)(Oi−Ō)√∑n

i=1
(Si−S̄)2

√∑n

i=1
(Oi−Ō)2

- 1

Relative Bias
(Rbias)

Rbias =
(∑n

i=1
(Si−Oi)∑n

i=1
Oi

)
× 100% % 0

Root-Mean Square Error
(RMSE)

RMSE =
√

1
n

∑n

i=1(Si − Oi)2 mm 0

Si - value of satellite precipitation estimates for the ith event, Oi - value of rain-gauge observation for the ith event,
S̄ and Ō - corresponding mean values, n - number of observed records, β = S̄/Ō, γ = (S̄/σSi

)/(Ō/σOi
), σSi

and
σOi

- corresponding standard deviations.

Additionally, two categorical indices based on contingency tables were used. The first approach involved
a 2 × 2 contingency table with four possible scenarios for a given threshold (see Table 4). Two categorical
scores were computed (see Table 5), including a combined index, the Hansen and Kuipers (HK) categorical
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score (Jolliffe & Stephenson, 2012; Trapero et al., 2013). The HK statistic measures the forecasting system’s
ability to distinguish observed “yes” and “no” cases. Critical Success Index (CSI) was also calculated,
that quantifies the proportion of correct predictions relative to the total number of event and non-event
predictions, focusing on the model’s ability to detect events (Ebert, 2008).

Table 4: Contingency table for comparing rainfall observed by RG and estimated by IMERG for a given threshold.

Estimated rainfall
Observed rainfall

Gauge rainfall ≥ threshold Gauge rainfall < threshold

IMERG rainfall ≥ threshold Hits (H) False alarms (F)

IMERG rainfall < threshold Misses (M) Correct Negatives (CN)

Table 5: List of categorical verification metrics used to evaluate satellite products.

Name of metric Formula Perfect score

Probability of Detection
(POD)

POD = H
H+M 1

False Alarm Ratio
(POFD)

POFD = F
F +CN 0

Hanssen and Kuipers Discriminant
(HK)

HK = POD − POFD 1

Critical Success Index
(CSI)

CSI = H
H+M+F 1

For statistical analysis, only precipitation records determined by the following thresholds were considered:
0.5 mm in 1 hour and 1 mm in 24 hours. Additionally, in a second part of the study, results were stratified
according to predefined intensity thresholds for rain gauge data. At hourly scale (mm/h) the thresholds
selected were RR ≥ 2, RR ≥ 10, RR ≥ 15, and RR ≥ 30. Similarly, at the daily scale (mm/24h): RR ≥ 10,
RR ≥ 30, RR ≥ 50, and RR ≥ 100.

3 Results and Discussion

3.1 Performance of satellite products at hourly and daily scales

This section presents the evaluation of precipitation retrievals from all satellite products using rain gauge
data as a reference, with detection thresholds of 0.5 mm for hourly scales and 1 mm for daily scales. Figure
2) shows the probability distributions of precipitation occurrence from rain gauge observations and estimates
from each satellite product at both hourly and daily resolutions. The number of data points considered in
each analysis is indicated in the title of each panel. As illustrated, both H68 at the hourly scale and H64
at the daily scale represent a much smaller sample compared to the other products. This is because both
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products rely solely on microwave sensors, making them subject to the availability of retrievals based on
orbital geometry.

Figure 2: Probability distribution of precipitation for each product and the corresponding rain gauge
records at the hourly scale (top panel) and at the daily scale (bottom panel). Dashed lines represent the
median of the distributions.

While the distributions are generally similar in shape across all cases, there is a tendency to overestimate
precipitation accumulations, except for H61 at the hourly scale and H64 at the daily scale. 6) summarizes
the continuous metrics (KGE, RBIAS, and RMSE) between rain gauge data and satellite products at hourly
and daily scales. Considering the thresholds for detecting a precipitation event (0.5 mm at the hourly scale
and 1 mm at the daily scale), the CSI and HK indices obtained for each product are also included.
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Table 6: Continuous and categorical errors obtained at hourly and daily resolutions. Best and worst values for each
score are indicated in green and red, respectively.

Hourly
Product KGE Rbias RMSE HK CSI

H61 0.26 -23.47 6.67 0.48 0.37
H68 0.22 25.77 4.96 0.79 0.52

Early 0.18 12.36 8.01 0.57 0.41
Late 0.22 11.68 7.50 0.60 0.41

Daily
Product KGE Rbias RMSE HK CSI

H61 0.21 33.91 24.77 0.27 0.72
H64 0.38 -15.81 19.54 0.27 0.72

Early 0.32 26.09 26.31 0.30 0.72
Late 0.33 38.60 26.74 0.36 0.75

The variability in KGE, Rbias, and RMSE values among the products suggests that the accuracy and
efficiency of satellite products can vary significantly depending on the temporal scale and each product. KGE
values were relatively low for all products regardless of the temporal aggregation, indicating that there exit
challenges in replicating the temporal variability and magnitude of precipitation measured by rain gauges.
The highest value was observed for H64 at the daily scale, although it does not exceed 0.4. Despite not being
very satisfactory, IMERG showed improved efficiency in retrievals with increased temporal aggregation.
Several studies have noted this behavior (Chen et al., 2018; Peinó et al., 2022; Xu et al., 2019), as longer
temporal aggregations smooth out short-term precipitation variations, leading to better alignment with rain
gauge observations.

H61 exhibits a significant negative bias (-23.47%) at the hourly scale, nearly equivalent in magnitude
but opposite in sign to H68 (25.77%). IMERG products at this scale showed similar values and the best
performance, though they also tended to overestimate. RMSE values were quite similar across products,
and although H68 demonstrated the best performance, this metric emphasizes larger errors, so the limited
number of high-intensity records may have positively influenced the result.

At the daily scale, relative bias indicated substantial overestimation, especially for H61 and IMERG
Late, which exceeded 30%, while H64 showed underestimation to a lesser extent and exhibited the best
performance. The products reflected substantial systematic errors in daily precipitation estimation algo-
rithms (between 19 and 26 mm/day). These discrepancies are likely influenced by precipitation intensity
and limitations in spatial and temporal resolution used in comparisons between satellite products and rain
gauges.

Overall, notable differences were observed between hourly and daily scales concerning the products’
ability to detect precipitation events. CSI values increased at the daily scale compared to the hourly scale,
while the products’ ability to discriminate between events and non-events decreased. At the hourly scale, H68
demonstrated superior capability to distinguish between events and non-events (HK = 0.79) with moderately
high accuracy in predicting correct events (CSI = 0.52). H61 showed slightly lower performance in these
aspects. Conversely, at the daily scale, IMERG Late stood out with the best discrimination capability (HK
= 0.36), though it did not exceed 0.5, while all products maintained high accuracy in event prediction (CSI
= 0.72). This indicates that while temporal aggregation improves event detection accuracy, the ability to

86



3 RESULTS AND DISCUSSION Preprint Article

discriminate these events decreases due to a high false alarm rate affecting the index.

3.2 Spatial Distribution of Errors

Figure 3 presents the validation results at the hourly scale for each pixel according to the spatial resolution
of each satellite product in terms of KGE. To better interpret the results, a scale was added where reddish
colors represent poor product performance in these pixels, and green colors indicate better skill (ATBD,
2022). H68 shows poor performance with a high KGE index in several regions (more than 70% of pixels
rated unsatisfactory), particularly in the Pyrenees area. H61 displays high spatial variability, with areas
of unsatisfactory performance (68% of unsatisfactory pixels), particularly in coastal regions, and generally
better performance in inland areas. IMERG products exhibit globally poor values, with only a few acceptable
and very good pixels (4% and 12% of good pixels for Early and Late, respectively), indicating a limited ability
to provide accurate and consistent estimates at this scale based on this index.

Figure 3: Distribution of KGE values at hourly scale in each pixel of all satellite products.
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Figure 4 illustrates the behavior of KGE at the daily scale. Although it is challenging to establish clear
spatial patterns of better performance among these products, it is noteworthy that all of them show the
best results in the southwest of the region. The H64 product stands out as the most suitable, with 32%
of pixels showing KGE values considered acceptable. The main limitations of this product are evident in
the Pyrenees and the northeastern part of the region. H61 exhibits substantially lower KGE values across
almost the entire domain, except near the Ebro Valley, where IMERG products also show the best results.
Coastal areas north of this basin are notably affected by the largest errors. It is important to mention that
many case studies (see Appendix A) coincidentally recorded the highest precipitation accumulations in
this region, suggesting that this behavior is directly related to the intensity of precipitation events.

Figure 4: Same as Figure 3 but at daily scale.
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The comparison between hourly and daily results shows that products with lower spatial resolution, such
as H64, demonstrate the highest accuracy in terms of KGE. This may be primarily due to the limitations of
the point-to-pixel method, which can struggle with high-resolution data due to the mismatch between the
spatial resolution of satellite products and the spatial scale of ground-based measurements. IMERG products
consistently perform poorly at both scales, indicating substantial limitations in their retrievals; however, the
Late version generally outperforms the Early version, especially at the daily scale. Conversely, H61 shows
better performance at the hourly scale, which could be attributed to its algorithm for constructing daily
accumulations. Additionally, the high spatial resolution of H61 may make it more susceptible to the high
variability of precipitation, making it more challenging for spaceborne sensors to accurately capture these
variations.

3.3 Evaluation according to rainfall intensity

Figure 5 illustrates the distribution of hourly (top panel) and daily (bottom panel) precipitation accumu-
lations for each satellite product and the corresponding rain gauge records used for validation. The four
sections in the figure are identified according to different precipitation intensity thresholds in the reference
rain gauges: RR (rain rate) = 2, 10, 15, and 30 mm/h (hourly scale) and RR = 10, 30, 50, and 100 mm/day
(daily scale).

89



3 RESULTS AND DISCUSSION Preprint Article

Figure 5: Violin plots at hourly (top panel) and daily (bottom panel) scale rain gauge observations (gray)
and satellite products (green) for the four-rainfall intensity (mm/h) thresholds considered.

According to the results found here, satellite products tend to systematically underestimate precipitation
accumulations, both hourly and daily, compared to rain gauge data, with this discrepancy becoming more
pronounced as precipitation intensity increases. Notably, for the highest intensities (RR > 30 mm/h and RR
> 100 mm/day), both H61 and H64 show minimal detection in these ranges and H68 lacked sufficient data at
these intensities to establish a distribution. IMERG products exhibit similar performance among themselves
and are the only ones capable of recording comparable precipitation accumulations at high-intensity ranges
defined by rain gauges, although this does not imply perfect spatial and temporal alignment. The greater
variability in rain gauge measurements at all intensity thresholds indicates that satellite products do not
adequately capture this variability.

(Table 7) summarizes the key continuous statistics calculated for each satellite product at both hourly
and daily temporal resolutions for the four predefined intensity thresholds. Generally, all products show
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a decrease in KGE, and an increase in negative bias and RMSE as the precipitation threshold increases,
though values are slightly better at the daily scale. At the hourly scale, H68 tends to exhibit the lowest
bias at lower thresholds, while both IMERG Late and H61 show better performance at low and moderate
thresholds, regardless of temporal aggregation.

Table 7: Continuous and categorical scores for different intensity thresholds.Best and worst values for each score are
indicated in green and red, respectively.

Hourly Daily
Product KGE Rbias RMSE Product KGE Rbias RMSE

≥ 2 mm/h ≥ 10 mm/day
H61 0.23 -38.17 8.01 H61 0.32 1.41 24.82
H68 0.22 2.41 5.67 H64 0.30 -33.17 22.23
Early 0.13 -11.19 9.36 Early 0.29 2.34 29.28
Late 0.18 -10.11 8.81 Late 0.37 15.24 29.11

≥ 10 mm/h ≥ 30 mm/day
H61 -0.07 -61.90 16.22 H61 0.31 -31.70 31.14
H68 -0.75 -45.99 13.01 H64 0.09 -50.64 33.43
Early -0.58 -54.55 17.74 Early 0.03 -19.53 39.74
Late -0.40 -51.93 17.38 Late 0.22 -6.29 36.98

≥ 15 mm/h ≥ 50 mm/day
H61 -0.25 -67.16 21.08 H61 0.19 -43.40 47.46
H68 -1.01 -59.19 16.11 H64 -0.39 -55.65 51.66
Early -0.90 -64.70 22.19 Early -0.27 -29.33 59.96
Late -0.74 -63.73 22.12 Late 0.03 -16.28 52.73

≥ 30 mm/h ≥ 100 mm/day
H61 -0.89 -79.93 37.22 H61 -0.14 -51.72 81.33
H68 -87.54 27.99 H64 -0.91 -54.56 73.54
Early -1.88 -81.83 36.76 Early -1.01 -59.99 96.88
Late -1.41 -80.23 37.17 Late -0.72 -45.96 84.20

According to the categorical statistics shown in Figure 6, all satellite products significantly decrease their
ability to detect correct precipitation events at thresholds above 2 mm/h and 10 mm/day. Although there
are no dramatically marked differences, indicators improve with increased temporal aggregation, which is
particularly notable in the IMERG products. Similar behavior has been reported in other studies (Peinó
et al., 2022), which have also shown significant improvements when dealing with precipitation values over
longer time scales, such as monthly, quarterly, and annual periods.
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Figure 6: Critics Success Index score for each satellite product on an hourly scale (left column) and on a
daily scale (right column) considering different intensity thresholds. Darker bluish colors (darker reddish)
indicate good (bad) performance of the satellite estimates.

4 Conclusions
The performance of three H SAF products (H61, H64, H68) and the IMERG Early and Late versions were
validated using hourly and daily precipitation records from 186 rain gauges distributed over a Mediterranean
coastal region. A point-to-pixel method was used to establish spatial matches between the two datasets, and
several metrics were analyzed to quantify the discrepancies in precipitation accumulations. The validation
and intercomparison of these products’ performance also considered four precipitation intensity thresholds
at both hourly and daily scales. The main findings can be summarized as follows:

• In general satellite estimates tend to overestimate observed values. This overestimation is most notice-
able in H68 products at hourly resolution and H61 at the daily scale.

• From a quantitative perspective, the results of KGE, RBIAS, and RMSE showed that all products
have limited capacity for estimating hourly precipitation, and while the indices improve at the daily
scale, there are no substantial improvements. Particularly, H64 stands out for exhibiting the lowest
errors at the daily scale, while H61, unlike the other products, showed a substantially negative bias
(-23.37%) at the hourly scale.

• Intense precipitation is rarely captured by the satellite products; indeed, all satellite products signifi-
cantly reduce their ability to detect correct precipitation at thresholds above 2 mm/h and 10 mm/day.
H68 presents the worst errors and the lowest ability to detect high-intensity precipitation, while IMERG
Late, despite maintaining significant biases, was the best product for detecting such events.

The results of this study not only validate a range of satellite precipitation estimation products but
also facilitate comparisons among them, providing valuable information to users for various applications.
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The overall agreement between the rain gauge and satellite estimates was weak, indicating that although
the products can capture extreme precipitation values, they do not always align with ground observations.
This limitation reduces their utility in hydrometeorological applications such as disaster management and
highlights the need for continued detailed validation efforts to enhance the accuracy and effectiveness of
precipitation retrieval algorithms.
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5
CHAPTER

Physical validation

5.1 Validation of GPM DPR rainfall and Drop Size Distribu-
tions using disdrometer observations in the Western Mediter-
ranean

5.1.1 Summary

In this chapter the focus is on the evaluation and validation of the Global Precipitation Mea-
surement (GPM) Dual-frequency Precipitation Radar (DPR) rainfall estimates and Drop Size
Distributions (DSD) using ground-based disdrometer observations in the Western Mediterranean
region. Specifically, the Section 4.1, provides a detailed analysis of how well the GPM DPR’s
version 07B data captures various precipitation microphysical parameters.

This study utilizes data from seven Parsivel disdrometers, strategically located across different
topographical zones in the Western Mediterranean, to validate satellite-derived estimates of
rainfall intensity, radar reflectivity factors (ZKu and ZKa), and key DSD parameters such as the
mass-weighted mean diameter (Dm) and the intercept parameter (Nw). The data spans nearly a
decade, from 2014 to 2023, allowing for a comprehensive assessment.

Four comparison techniques were employed to evaluate the agreement between satellite
overpasses and ground-based observations. Furthermore, the study tested the convective and
stratiform classification of precipitation provided by the GPM DPR, uncovering a significant
overestimation of stratiform cases compared to the disdrometer observations. The chapter
discusses these findings within the context of spatial and temporal sampling discrepancies between
the satellite and ground-based instruments, emphasizing the importance of understanding these
limitations for improving precipitation retrieval algorithms.

This validation study is particularly significant as it represents one of the first comprehensive
validations of the GPM DPR in the Iberian Peninsula and Mediterranean climate regions,
especially considering the updates introduced in version 7. The results provide valuable insights
into the potential applications and limitations of satellite-based precipitation observations, which
are crucial for refining future satellite precipitation retrievals and enhancing our understanding
of precipitation processes in this region.
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Peinó, E., Bech, J., Polls, F., Udina, M., Petracca, M., Adirosi, E., Gonzalez, S., Boudevillain,
B., 2024. Validation of GPM DPR rainfall and Drop Size Distributions using disdrometer
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Abstract: Dual-frequency precipitation radar (DPR) on the Core GPM satellite provides spaceborne
three-dimensional observations of precipitation fields and surface rainfall rate with quasi-global
coverage. The present study evaluates the behavior of liquid precipitation intensity, radar reflectivity
factor (ZKu and ZKa) and drop size distribution (DSD) parameters (weighted mean diameter Dm

and intercept parameter Nw) of the GPM DPR-derived products, version 07, from 2014 to 2023.
Observations from seven Parsivel disdrometers located in different topographic zones in the Western
Mediterranean are taken as ground references. Four matching techniques between satellite estimates
and ground level observations were tested, and the best results were found for the so-called optimal
comparison approach. Overall, GPM DPR products captured the variability of the observed DSD well
at different rainfall intensities. However, overestimation of the mean Dm and underestimation of the
mean Nw were observed, being much more sensitive to errors in drop diameters larger than 1.5 mm.
Moreover, the lowest errors were found for radar reflectivity factor and Dm, and the highest for Nw

and rainfall rate. In addition, the GPM DPR convective and stratiform classification was tested, and a
substantial overestimation of stratiform cases compared to disdrometer observations were found.

Keywords: dual-frequency precipitation radar (DPR); GPM; disdrometer; ground validation; precipi-
tation estimates; Western Mediterranean

1. Introduction

Satellite precipitation estimates are an essential input to provide a complete perspective
of the hydrological cycle at the global scale, including the monitoring of extreme events
and complementing traditional ground-based observation methods based on rain gauge
and weather radar networks [1]. The Tropical Rainfall Measuring Mission (TRMM) of the
National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration
Agency (JAXA), launched in 1997, was the first satellite equipped with weather radar,
operating at Ku-band (13.6 GHz), dedicated to measuring precipitation at latitudes between
35◦ S and 35◦ N [2]. In 2014, the same agencies launched the Core Observatory satellite
(CO) on the Global Precipitation Measurement (GPM) mission [3] to provide precipitation
estimates between 65◦ S and 65◦ N and become the basis for future long-term analyses [4].
To this end, GPM CO became the first spaceborne dual-frequency precipitation radar
(DPR), operating at Ka- (35.5 GHz) and Ku-band (13.6 GHz) to offer three-dimensional
measurements of the precipitation structure. Compared to TRMM precipitation radar, DPR
is more sensitive to light rainfall rates, and because of simultaneous measurements from
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overlapping Ka/Ku bands, new information on the drop size distribution over moderate
precipitation intensities can be obtained [5].

Because of the valuable information provided by the DPR and their multiple appli-
cations, validation exercises are essential. In fact, GPM precipitation recovery algorithms
have been subject to frequent updates (seven versions in the first 10 years). Therefore,
it is necessary to identify biases and improve future versions, with ground validation
being an important component for evaluating and improving the performance of the DPR
algorithm [6]. Some of the DPR-derived variables are estimated at ground level, so specific
information about precipitation drop size distributions (DSDs) at that level is needed for
their verification. For this reason, ground-based disdrometers, able to measure DSDs from
which integral rainfall parameters, such as reflectivity, intensity and liquid water content
can be computed, are a key instrument for the verification of DPR-derived products. A
number of field campaigns promoted by the NASA Ground Validation program and other
research groups have been carried out in recent years [7] deploying different disdrometer
types (two-dimensional video disdrometer (2DVD) from Joanneum Research, Inc. in Graz,
Austria; OTT Parsivel Model 2; and Joss–Waldvogel) [8]. Table 1 lists different GPM DPR
validation studies using disdrometers and their region of study.

Table 1. Validation studies of GPM DPR products using disdrometers.

DPR
Version

Disdrometer
Type

Variables
Studied * Region of Study Reference

- OTT Parsivel 2 RR, Nw, Dm, Z, k Iowa, USA Liao et al., (2014) [9]

V03 RD-80 RR, Nw, Dm, Z, k Gadanki, India Radhakrishna et al., (2016) [10]

V05 2DVD RR, DSD, Z Italian Peninsula D’Adderio et al., (2019) [11]

V06 OTT Parsivel 2 RR, Nw, Dm, Z, µ Jianghuai, China Wu et al., (2019) [12]

V06 2DVD RR, Dm Several international sites Chase et al., (2020) [13]

V06 OTT Parsivel 2 RR, Nw, Dm, Z, k Central Andes, Peru Del Castillo-Velarde et al., (2021) [14]

V06 Thies, OTT Parsivel 2 RR, Nw, Dm, Z Italian Peninsula Adirosi et al., (2021) [15]

V07 Joss–Waldvogel RR, Nw, Dm, Z North Taiwan Seela et al., (2023) [8]

* Variables considered are rain rate (RR), mass weighted mean drop diameter (Dm), intercept parameter (Nw),
shape parameter (µ), radar reflectivity (Z), specific attenuation (k).

A first study was performed simulating the DPR algorithm before the GPM CO
launch with disdrometer data [9]. In a comparative DPR-disdrometer study over Gadanki,
India [10], it was observed that the Dm values obtained from GPM DPR were severely
underestimated at high rainfall rates (R > 8 mm/h) during the SW monsoon season.
Meanwhile D’Adderio et al. [11] obtained statistical scores that did not differ significantly
between land and sea [13,14] and found that the GPM DPR showed superior performance
in estimating rainfall parameters in stratiform precipitation than in convective precipitation.
Adirosi et al. [15] compared the precipitation and drop size distribution parameters of a
large network of disdrometers in Italy with the DPR GPM. The sensitivity analysis revealed,
regardless of the type of DPR algorithm (dual- or single-frequency algorithm), a superior
agreement for the mass-weighted mean raindrop diameter (Dm) and a lower agreement for
the normalized gamma DSD intercept parameter (Nw), similar to the results of [8,11,16].
Del Castillo-Velarde et al. [14] concluded that differences with respect to convective rainfall
could be associated with the setting of the shape parameter (µ) in the DPR algorithm. They
also suggested that in the central Andes, the estimation of DSD parameters in stratiform
rainfall is strongly affected by the limitation of the dual-frequency (DF) algorithm in
estimating Dm < 1 mm.

The number of verification studies using disdrometer data has been growing over the
years, but it is still much lower than the number of studies with rain gauges, limited to com-
paring precipitation amounts. As disdrometers are not frequently deployed in operational
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networks, their observations are relatively scarce, so the difficulties of sampling satellite
overpasses matching precipitation events is an important limitation of such studies. For
instance, in the Mediterranean basin, an area vulnerable to climate change, hydrometeoro-
logical extremes and uncertainty of projections regarding precipitation [17], studies of this
type have focused only on the area over Italy using DPR products V05 and V06A. Therefore,
the limited number of geographical regions examined and the continuous upgrade of DPR
product versions require more validation studies of this type. To contribute to fill this gap,
the objective of this study is to evaluate the behavior of the precipitation intensity, radar
reflectivity factor (ZKu and ZKa) and DSD parameters (Dm, Nw) of the GPM DPR level 2
version 07B, the latest available. For this purpose, data from seven disdrometers (OTT
Parsivels 1, 2) covering the period 2015 to 2024 located in different topographic areas of
Catalonia, Spain were used as references.

The remainder of this paper is organized as follows. Section 2 provides a description
of the study area, datasets used (disdrometers and GPM DPR data), the comparison
methodology adopted in this study and the evaluation metrics employed. Section 3 shows
results using disdrometer data, DPR data and their matches, the latter validated considering
four different approaches. The most significant results are discussed in Section 4, and a
summary and conclusion are provided in Section 5.

2. Materials and Methods
2.1. Datasets
2.1.1. GPM-DPR

The GPM CO operates in low Earth orbit, carrying two instruments to measure the
Earth’s precipitation and serving as a calibration standard for other members of the GPM
satellite constellation [18]. The satellite was developed and tested in-house at NASA’s
Goddard Space Flight Center and launched from the Tanegashima Space Center, Japan, on
27 February 2014 [5]. The orbit height has been 442 km since November 2023, and the orbit
inclination is 65◦.

GPM-DPR Version 07B Level 2 products provide three main classes of precipitation
products: (1) Ku-band frequency, derived over a 245 km-wide swath in so-called full
scan (FS, low sensitivity) mode; (2) Ka-band frequency, which, as of May 2018, occupies
a 125 km-wide swath in FS mode and the rest of the swath in high scan mode (HS, high
sensitivity); and (3) dual-frequency-derived data in FS and HS modes. Finally, the swath
structures can be categorized into single- and double-beam pixels based on the availability
of radar reflectivity within the Ku and Ka bands [19].

The derivation of the DSD using the single-frequency (SF) and dual-frequency (DF)
algorithms in the liquid phase intervals assumes a gamma-shaped droplet size distribution
with three parameters: Nw, Dm and the shape parameter (µ). To reduce the number of
unknown parameters from three to two, GPM DPR algorithms consider a constant value
for µ, set to µ = 3 [6]. To determine Dm and Nw, relationships between Dm and k/Ze or
DFR are used, where k is the specific attenuation in dB/km, Ze is the effective reflectivity
factor, and DFR is the dual-frequency ratio. A brief summary of SF and DF algorithms is
shown in Appendix A and further information is available in [19–21].

An important relationship is assumed between the precipitation rate R and Dm [15].
In the current version, V07B, the R-Dm relationship is given by

R = εταDβ
m (1)

where R is the precipitation rate in mm/h for temperatures between −50 ◦C and 50 ◦C
and α, β and τ are constants of 0.392, 6.131 and 4.815, respectively. To reconcile possible
inconsistencies arising from the use of different attenuation estimation techniques [22], the
equation includes an adjustment factor ε. Different R-Dm relations were tested by varying
ε from 0.2 to 5.0. Assuming a gamma DSD with a fixed shape parameter, it is possible
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to establish a relationship between R and Dm for various effective reflectivity values [20].
Thus, given ε = 1.25, a pair (R, Dm) can be obtained.

In this study, DF (DPR) and SF (Ku-band and Ka-band) products were used in the
FS mode of the GPM DPR version 07B from 2014 to 2023. Note that the FS format is
available in version V07 for observations recorded both before and after the scan pattern
change of the Ka-band in May 2018 [21]. The output variables selected to be evaluated
were the precipitation intensity (precipRateNearSurface, mm/h) estimated in the clutter-
free bin closest to the surface (binClutterFreeBottom, CFB), the reflectivity factor with
attenuation correction at the CFB (zFactorFinalNearSurface, dBZ), the normalized gamma
DSD parameters (paramDSD) and Nw (dB) and Dm (mm) evaluated at the CFB, as well as
the precipitation type (TypePrecip) for the case of the DF product. It is worth mentioning
that HS mode data results were not yet available for processing during this study.

2.1.2. Disdrometer Locations

Data from seven disdrometers deployed at different sites in the region of study were
used. The Department of Applied Physics–Meteorology of the University of Barcelona
manages six disdrometers. Three of them, plus a fourth one from the University of Grenoble–
Alpes, were used during the Land Surface Interactions with the Atmosphere over the
Iberian Semi-Arid Environment (LIAISE) field campaign in the Eastern Ebro subbasin [23].
The rest of the disdrometers were at Das Aerodrome (in the Eastern Pyrenees, during the
Cerdanya-2017 [24] and the ARTEMIS field campaigns), the roof of the Faculty of Physics
of the University of Barcelona and the Fabra Observatory of Royal Academy of Sciences
and Arts of Barcelona also supporting the ARTEMIS campaign. Table 2 provides detailed
information about each site, including temporal period covered and valid rainfall data for
each site after quality control (for details, see next section).

Table 2. Information about the Parsivel disdrometers (model 1 and 2 as indicated by the superindex)
used in the present study.

Disdrometer
Type

Disdrometer
Site

Label
(Subregions)

Lon
(◦E)

Lat
(◦N)

Height
(m)

Start
Date

End
Date

Valid Data
(min)

Parsivel 1 Barcelona University C01 (Coast) 2.11 41.38 98 1 January 2015 1 February 2024 51,679
Parsivel 2 Fabra Observatory C02 (Coast) 2.12 41.42 411 26 July 2022 13 February 2024 12,537

Parsivel 1,2 Das M01 (Mountain) 1.87 42.39 1097 9 December 2016 8 February 2024 59,388
Parsivel 2 Tarrega P01 (Plain) 1.16 41.67 427 4 May 2021 14 June 2022 10,218
Parsivel 2 Mollerussa P02 (Plain) 0.87 41.62 247 27 April 2021 5 December 2022 12,855
Parsivel 2 Tordera P03 (Plain) 1.22 41.68 388 30 April 2021 14 June 2022 12,035
Parsivel 2 Cendrosa P04 (Plain) 0.93 41.69 239 9 April 2021 12 October 2021 3616

The locations of the disdrometers are representative of three key areas with different
climatic and orographic characteristics typical of Catalonia: mountain (in the Pyrenees
mountains), plain (inland plain of the Segre River Valley) and coast. The disdrometers of
Tordera, Mollerussa, Tarrega and Cendrosa are in the plain subregion, characterized by flat
terrain with few orographic contrasts and an arid Köppen climate (Figure 1), conditioned by
precipitation deficit. Disdrometers located at the Faculty of Physics and Fabra Observatory
represent the coast subregion with a hot-summer Mediterranean Köppen climate, more
exposed to Mediterranean heavy precipitation. The disdrometer at Das was in a valley at
1094 m a.s.l. in the mountain subregion and had a temperate Köppen climate.
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Figure 1. Digital elevation model of the region of study and the three subregions considered (moun-
tain, plain and coast) and disdrometer sites (black dots), showing range circles of 5 km (thin red line)
and 10 km (black dotted line) around each site where GPM-DPR data were collected for the present
study. The lower right corner shows a map with the Köppen climate classification of the region and
the disdrometer locations.

2.1.3. Disdrometer Data

The OTT Parsiveloptical disdrometer uses a 650 nm laser device with a power of
3 mW [25,26]. The laser emits a horizontal sheet of light 30 mm wide and 180 mm long.
With a horizontal sampling area of 54 cm2, particles passing through it cause a reduction in
light intensity, resulting in the measurement of their size. The signal duration and particle
size allow the estimation of particle velocity [27]. The size and fall speed of each particle
is classified into 32 classes ranging from 0.05 to 20 m/s and 32 particle diameter classes
ranging from 0.062 mm to 24.5 mm. Based on the recorded size and fall speed spectra,
different variables are computed, including the present weather type (synop code 4677 [25]).
Temporal resolution was set to 1 min aggregation periods for all disdrometers.

Quality control was applied, consisting of the following conditions: (1) to exclude non-
liquid particles and errors associated with boundary effects [28], particle fall speeds did not
differ more than ±50% from the empirical terminal fall speed V(D) [29]; (2) to further ensure
liquid precipitation, the reported present weather (code 4677) was checked discarding
all types containing solid particles [30]; (3) to compute DSD parameters consistently a
minimum of 11 drops had to be present in each 1 min sample [15]. The DSD was computed
according to the following expression:

N(Di) =
1

Aeff(Di)× t × ∆Di

32

∑
j=1

nij

VDi

(2)
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where Aeff is the effective sampling area (m2), t is the sampling time (60 s), ∆Di is the bin
width (mm), nij is the number of drops measured in the ith diameter class and jth drop
velocity class, and VDi is the drop velocity according to the theoretical diameter–drop
velocity relationship [29]. In this case, as in [27,28], the edge effects mentioned above are
considered: Aeff(Di) = L(W − 0.5Di) where L = 180 mm and W = 30 mm (laser beam
length and width, respectively). Finally, for each DSD, ZKa,Ku, R, Dm, Nw and µ were
calculated based on the nth-order moment (Mn) of the drop size distribution [8,31–33]
using the following:

R(mm/h) = 3.6
Π
6

10−3
32

∑
i=1

N(Di)V(Di)D3∆Di (3)

ZKa,Ku

(
mm6m−3

)
=

λ4
Ku,Ka

Π5|Kw|2
32

∑
i=1

σKu,Ka(Di)N(Di)∆Di (4)

Mn

(
mmnm−3mm−1

)
=

32

∑
i=1

Dn
i N(Di)∆Di (5)

Dm(mm) =
M4

M3
(6)

LWC
(

gm−3
)
=

Π10−3ρw
6

32

∑
i=1

(D)D3∆Di (7)

Nw

(
m−3mm−1

)
=

44

Π
LWC
D4

m
(8)

µ =
(7 − 11A)−

√
(7 − 11A)′2 − 4(A − 1)(30A − 12)

2(A − 1)
(9)

A =
M2

4
M2M6

(10)

where LWC is the liquid water content (gm−3), λ is the wavelength (mm), Kw is the complex
dielectric constant of water, ρw is the density of water (1 g/cm3), and σKu,Ka

(
mm2) is the

backscatter radar cross-section for the Ku and Ka bands of a droplet of equivalent diameter
D. For the calculation of the cross-sections, the T-matrix [34,35] estimation method was
applied assuming (1) an ambient temperature of 20 ◦C; (2) the shape of hydrometeors ac-
cording to the model proposed by Thurai et al. [36]; and (3) the distribution of hydrometeor
canting angles modeled with a Gaussian distribution with mean 0◦ and standard deviation
10◦ [15]. These calculations were performed using the Python package pyTMatrix 0.3.3 [37].

Additionally, considering that the GPM assumes a normalized gamma-type DSD
to estimate the DSD parameters (Equations (A1) and (A2), Appendix A) and based on
Equations (A3)–(A8), the DSD measurements recorded by the disdrometers were used
to compute k (specific attenuation), as well as the k/Ze and DFR (dB) ratios, by setting
µ = 3 [10,14].

2.2. Methodology

As indicated above, the number of satellite overpasses coincident with rainfall events
may be an important limiting factor when comparing satellite and disdrometer observations.
To overcome or partly mitigate this problem, some previous studies considered not only
satellite matches but also datasets of the area of study of both the disdrometers and
the satellite without necessarily including satellite overpass matches [8,10]. Then these
two relatively independent datasets (as opposed to the datasets with matches) can be
compared, for example, by checking if biases are present, to better interpret the comparison
of satellite matches with ground observations. According to this idea, below are described
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the comparison of the so-called independent (non-matching) DPR and disdrometer datasets
and the matching approaches considered.

2.2.1. Comparison of Independent Datasets

To select DPR data comparable to the reference disdrometer data, precipitation DPR
observations within a 10 km radius around the location of the disdrometer sites were
considered. Duplicate information due to overlapping of the selected areas was eliminated
to avoid redundant data that could affect the characterization statistics (Figure 1). The
results of this analysis were stratified according to each disdrometer separately, into three
geographic areas with different climatic and orographic characteristics and considering all
the data together. For each subregion, it was ensured that only one data record existed at
any given time (in cases where more than one existed, only one was selected randomly).
The characterization of the entire domain was considered based on the union of all valid
data from the three subregions.

According to GPM documentation, the minimum detectable radar reflectivity and
rainfall rate for the Ku- and Ka-bands are 13 dBZ, 17 dBZ and 0.5 and 0.2 mm/h, respectively.
However, previous studies have observed improved detection of light precipitation using
GPM DPR [38]. In addition, GPM DPR estimates over the study region showed minimum
precipitation rates of 0.1 mm/h, therefore, in this work this threshold [8,15] was selected to
fix precipitation events for both GPM DPR and disdrometer data.

2.2.2. Matching Approaches

Four different matching approaches were considered, based on similar previous stud-
ies [8,15]. An attempt was made to determine the most appropriate strategy considering
the performance of each GPM DPR scanning mode (Ka-FS, Ku-FS and DPR-FS). The four
methods are as follows:

a. Point: The disdrometer location was found within the footprint of the DPR (within
the 5 km2 pixel area) and so could be compared directly.

b. Mean 5 km: Disdrometer data were compared with the average of all DPR pixels
within a 5 km radius of the disdrometer.

c. Mean 10 km: Disdrometer data were compared with the average of all DPR pixels
within a radius of 10 km of the disdrometer.

d. Optimal: Disdrometer data were compared with the DPR pixel closest to the dis-
drometer within a 5 km radius and the nine DPR pixels containing the disdrometer.
Finally, among these nine pixels, the pixel with closest radar reflectivity factor to that
of the disdrometer was selected for comparison.

The methods proposed aim to reduce the spatiotemporal uncertainties that arise when
comparing instantaneous measurements from space with ground-based measurements
from disdrometers. Additionally, considering various methodologies allows us to under-
stand the impact on the results and compare them with previous studies. As proposed by
Adirosi et al. [15], due to advection processes, the significant DPR estimates determined
in the CFB may not correspond to the corresponding pixel on the surface. To address
this limitation, averaging methods are employed. The choice of a 5 km radius is based
on the results of a sensitivity study and the physical considerations described by Adirosi
et al. [15]. Similarly, in this work, a 10 km radius was used, which, while not considerably
increasing the number of cases, yielded better results for some variables. A larger radius
was not considered because, particularly in coastal areas, it would include parts of the sea,
affecting the homogeneity of the selected terrain and potentially altering the microphysical
characteristics of precipitation. Finally, the so-called optimal method, based on the work of
Silvestro et al. [39], comparing ground-based weather radar observations with rain gauge
data, primarily seeks to determine if the DPR can detect the characteristics of rain measured
by the disdrometer, at least in its vicinity.

After selecting the GPM overpasses in rainy conditions, the 1-min DSD samples from
the disdrometers were averaged over a 10-min window to reduce the time and space
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sampling problems between the GPM-DPR and the disdrometers. The results for the
total number of precipitation exceedances and matches following these methodologies are
shown in the results section. The comparison was made in terms of Dm (mm), R (mm/h),
ZKu,Ka (mm6m−3) and Nw (dB).

2.2.3. Verification Metrics

The comparison between the GPM DPR and disdrometer data was performed consid-
ering verification scores for both continuous variables and categorical events (Table 3).

Table 3. List of verification metrics used to evaluate DPR products.

Name Formula Perfect Score

Correlation Coefficient (CC) CC =
∑(Oi−Oi)(Si−Si)√

∑(Oi−Oi)
2

∑(Si−Si)
2

1

Normalized Mean Bias (NBias) NBIAS =
1
n ∑n

i=1(Si−Oi)

Oi
× 100 0

Normalized Mean Absolute
Error (MAE) NMAE =

∑n
i=1|Si−Oi|

n
Oi

0

Normalized Root Mean Square
Error (RMSE) NRMSE =

√
1
n ∑n

i=1(Si−Oi)
2

Oi

0

Accuracy TP
All classifications 1

Precision TP
TP+FP 1

Recall TP
TP+FN 1

Si is the value of satellite precipitation estimates for the ith event, Oi is the value of disdrometer observation for
the ith event, and n is the number of observed records. Si and Oi are the mean of satellite and observations,
respectively. The values of TP and FP are based on the confusion matrix (Table 4).

Table 4. Confusion Matrix for multi-class classification (3 × 3).

Observed Class

A B C Total

Predicted
Class

A TPA FBA FCA TPA + FBA + FCA
B FAB TPB FCB FAB + TPB + FCB
C FAC FBC TPC FAC + FBC + TPC

Total TPA + FAB + FAC FBA + TPB + FBC FCA + FCB + TPC All classifications

Note that the scores considered for verification of categorical forecasts are based on
the so-called confusion matrix, also called the contingency table [40]. These scores are
typically used in machine learning applications [41] but in this case are applied to multi-
category events [42] considering a 3 × 3 confusion matrix (Table 4). As shown, TPA, TPB
and TPC are the number of true positive samples in classes A, B and C, respectively. False
negatives (FN) of any class, which are in a column, can be calculated by adding the errors
in that class/column, whereas the false positives for any predicted class, which are in a
row, represent the sum of all errors in that row. For example, the false positive rate in
class A (FPA) is calculated as FPA = FBA + FCA and the false negative rate in the A class is
FNA = FAB + FAC [43].

3. Results
3.1. GPM CO vs. Disdrometer-Derived Independent Estimates

Figure 2 shows the histograms of the probability of occurrence with respect to the
following variables: reflectivity factor (ZKa,Ku), precipitation intensity (R) and DSD param-
eters (Dm, Nw, µ) obtained for both GPM DPR and disdrometer independent datasets. The
dashed lines represent the median of the distribution of each dataset, and the solid curve
represents the kernel density estimation (KDE) curve associated with each distribution.
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between 1.0 and 1.5 mm. In contrast, the Nw values obtained from the DSD of the disdrom-
eters had a wider range, especially with a tendency to detect higher thresholds and a 
higher mean than that of the DPR. Figure 2f shows the discrepancies between the mean µ 
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Figure 2. Histograms of (a) ZKu, (b) ZKa, (c) log10(R), (d) Dm, (e)10 log10 (Nw) and (f) shape parameter
(µ) derived from all disdrometer and GPM DPR (DF) datasets.

Despite the differences in the number of samples and period of record in the two
independent datasets, important similarities can be observed in the distributions. However,
the DPR distributions are slightly shifted to higher values compared to the disdrometer
distributions in reflectivity (ZKa and ZKu), precipitation intensity and Dm, which might
indicate little skill in detecting the lower thresholds in these variables with respect to the
data taken as reference. Specifically, in the case of Dm, while in the disdrometers, the highest
probability of occurrence occurs for values less than 1 mm, in the DPR, this occurs between
1.0 and 1.5 mm. In contrast, the Nw values obtained from the DSD of the disdrometers had
a wider range, especially with a tendency to detect higher thresholds and a higher mean
than that of the DPR. Figure 2f shows the discrepancies between the mean µ close to 10 in
the case of the reference data, which is different from that set by the DPR algorithm (µ = 3).
Several authors [8,9,28] discussed the limitations of setting this parameter.

Tables 5 and 6 show the number and median and maximum values of each variable
analyzed for each dataset. In addition, to evaluate how the location of the disdrometers
might affect the precipitation and DSD parameters, three zones with different orographic
and climatic characteristics were analyzed. The plain, coastal and mountain regions were
constructed by combining the data from the disdrometers that compose these homogeneous
regions (Figure 1).

In general, there is little variability among the disdrometer statistics according to geo-
graphic location. The median reflectivity values range between 20 and 24 dBZ, precipitation
intensities between 0.48 and 0.89 mm/h, Dm close to 1 mm and the intercept parameter
(Nw) around 35 dB. Similarly, in the analysis of the observations in regions with different
climatologies, the behavior of the variables was similar. The coastal area shows slightly
higher median values, and the maximum intensity is reported at the Fabra Observatory,
which is consistent with previous rain gauge-based climatologies in this region reporting
higher rainfall rates near or at the coast compared to inland areas [44]. This behavior of the
variables can be compared with the results obtained by Adirosi et al. [15] in Italy, where
median values of 23.4, 21.9, 0.73, 35.72 and 1.05 (see Table 5 last row) were obtained for the
variables ZKa, ZKu, R, Nw and Dm, respectively.
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Table 5. Statistics of the different rainfall and DSD parameters for each single dataset, three similar
orographic and climatic regions and all datasets together from the disdrometers.

Dataset ZKa (dBZ) ZKu (dBZ) R (mm/h) Nw (dB) Dm (mm)

N Median Max Median Max Median Max Median Max Median Max

C01 51,679 24.77 47.27 24.92 51.86 0.89 60.83 33.75 51.61 1.19 6.28
C02 12,537 22.79 52.40 22.68 55.83 0.77 183.27 35.23 53.06 1.04 4.40
M01 59,388 21.13 49.74 20.92 54.88 0.60 107.70 36.16 52.04 0.96 7.86
P01 10,218 20.30 47.83 20.04 52.47 0.48 74.61 34.77 50.17 0.98 3.85
P02 12,855 21.49 50.26 21.38 53.97 0.54 115.74 34.09 49.98 1.06 4.91
P03 12,035 21.04 50.16 20.79 53.76 0.56 114.86 35.27 50.00 1.00 7.59
P04 3616 21.56 50.71 21.44 55.20 0.54 132.65 34.75 50.88 1.04 4.75

Coast 60,570 24.26 52.40 24.34 55.83 0.85 183.27 34.04 53.06 1.16 6.28
Mountain 59,388 21.13 49.74 20.92 54.88 0.60 107.70 36.16 52.04 0.96 7.86

Plain 24,254 20.44 50.71 20.21 55.20 0.48 132.65 34.43 50.88 1.01 7.59

All 144,212 22.28 52.40 22.16 55.83 0.66 183.27 34.97 53.06 1.04 7.86

Table 6. Same as Table 4, but with dual-frequency DPR data. Note that the number of Ka-band
reflectivity data is different from other variables because only the Ka inner swath was available.

Dataset ZKa (dBZ) ZKu (dBZ) R (mm/h) Nw (dB) Dm (mm)

N Median Max N Median Max Median Max Median Max Median Max

C01 291 25.10 45.70 351 24.46 51.13 0.96 57.07 33.19 51.29 1.19 3.00
C02 312 25.00 42.34 376 24.24 51.13 0.90 36.33 33.24 51.29 1.18 4.45
M01 360 23.47 37.54 423 23.25 46.34 0.78 18.49 33.04 50.65 1.16 3.00
P01 262 23.16 41.37 304 22.38 51.05 0.68 27.75 33.11 43.93 1.12 5.00
P02 203 24.23 38.67 232 23.18 44.61 0.75 11.71 33.34 41.34 1.12 3.00
P03 269 23.63 41.37 304 22.20 51.05 0.67 27.75 33.13 43.93 1.11 4.99
P04 234 23.42 37.44 273 22.38 47.42 0.68 13.18 33.34 41.51 1.11 3.56

Coast 603 25.05 45.70 727 24.40 51.13 0.92 57.07 33.21 51.29 1.18 4.45
Mountain 360 23.47 37.54 423 23.25 46.34 0.78 18.49 33.04 50.65 1.16 3.00

Plain 968 23.55 41.37 1113 22.59 51.05 0.69 27.75 33.21 43.93 1.11 5.00

All 1931 23.89 45.70 2263 23.19 51.12 0.77 57.07 33.17 51.29 1.14 5.00

The statistics obtained from DPR data showed higher median values for all variables,
except Nw. However, DPR data can capture the variability between different zones, ex-
hibiting the highest median values in the coastal zones. Similarly, the maximum values
observed by disdrometers were much higher in all datasets than those recorded by the DPR
DF. Although other studies have commented on the limitations in the detection of extreme
values by remote sensing products [45], in this case, we cannot draw any conclusions
because such values are subject to the availability of DPR data at the time of the occurrence
of this type of extreme event.

3.1.1. Rain Rate Effects

The DSD-derived precipitation characteristics were stratified into six rain rate intensity
classes. For this purpose, the disdrometer and DPR DF records were considered together
and grouped according to the three subregions (plain, mountain and coast) mentioned
above. Figure 3 (top panel) shows the normalized density distributions for the datasets. A
necessary condition to obtain the mean of these variables in each precipitation intensity
interval was that they had at least 10 records. It is evident that all datasets behave similarly,
with a high representation of data -as expected-, at lower precipitation intensities and much
lower for moderate and high intensities. Despite the lack of temporal concurrence between
the disdrometers and the DPR, both sources provide relatively similar results with similar
qualitative behavior.
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Figure 3 (middle and bottom panels) illustrates the variation in the mean Dm and
Nw observed and estimated using the DF DPR algorithm as a function of precipitation
intensity. The DSD parameters were similar in all regions for intensities below 4 mm/h. At
thresholds higher than 16 mm/h, the Dm for example differs by more than 0.5 mm between
coastal and mountain areas according to the disdrometer data. The intercept parameter
begins to differentiate in the regions from intensities between 8–16 mm/h with a difference
of more than 5 dB between coastal and inland areas according to the DPR and close to 6 dB
between coastal and mountain areas according to disdrometer data.

From these figures, the DSD parameters obtained by the DF algorithms capture the
variability observed at different intensities, although with overestimates of the mean Dm
and underestimates of the mean Nw, showing the greatest differences at moderate and
high intensities and being much more sensitive to errors in drops greater than 1.5 mm.
These results are similar to those found by Del Castillo-Velarde [14], in which it is stated
that the DF algorithm is susceptible to the uncertainty of µ fixation, which causes an
underestimation of Nw.

Comparisons of the DSD parameters show an overestimation of Dm of about 0.1 mm at
low and moderate precipitation rates (0.1–1, 1–2, 2–4 mm/h) and of 0.4 mm at precipitation
rates higher than 4 mm/h by the DF algorithm with respect to the disdrometer. In contrast,
the behavior of Nw was underestimated by the DPR, with a maximum value close to 6 dB at
moderate precipitation rates (4–8 mm/h). Compared to the studies of [10], the magnitudes
of underestimation and overestimation of Dm and Nw are very similar. However, here
the behavior of the DSD parameters occurs in reverse; that is, the mean value of Dm is
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overestimated and Nw is underestimated. This sensitivity analysis shows that the results
presented here are consistent and that differences with other studies may be due to spatial
and temporal sampling factors and differences arising from the use of other types of
disdrometers [46,47].

3.1.2. Stratiform vs. Convective Regimes

In this section, we analyze the stratiform and convective regimes associated with the
DPR and disdrometer data, as well as different related microphysical processes. For this
purpose, we consider the classification for a given rainfall DSD proposed by Dolan et al. [48]
based on the clustering of Do and Nw values obtained from global disdrometric records.
From this perspective, six groups with independent characteristics were defined: Group 1,
Group 3, Group 5 and Group 6 (Figure 4b) are characterized by convective precipitation
processes, while the Group 2 and Group 4 are stratiform precipitation processes, with
increasing D0 and decreasing Nw. Complementarily, we also considered the DPR algorithm
classification, in which each pixel is assigned a so-called precipitation type label: stratiform,
convective or other. Figure 4 plots all disdrometer records in the Do-log (Nw) space overlaid
with the diagram proposed by Dolan et al. [48].
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Figure 4. (a) Scatter density plot of raindrop size distribution measurements from all disdrometers in
the D0-log(Nw) space overlapped by the stratiform region (limited by turquoise dashed line) and
convective region (limited by red dashed line) defined by Dolan et al. [48]. Disdrometer data density
increase from dark to white dots, and DPR DF convective and stratiform types are indicated by red
and turquoise dots, respectively. (b) Convective, stratiform and microphysical dominant process
regions in the D0-log(Nw) space according to Dolan et al. [48] overlapped by disdrometer (grey dots)
and DF DPR (cyan dots) data.

Note that in Figure 4a, most of the measurements were in the stratiform part of the
plot, which is consistent with the values of the disdrometer parameters discussed above
(low liquid water content and small mean droplet diameters). In the same figure, the values
classified as stratiform (turquoise dots) and convective (red dots) by the DPR DF algorithm
are plotted. Although the highest percentage of data are in the stratiform domain, there is a
large scatter of data that does not fit this classification, especially for events classified as
convective rain (Table 7).
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Table 7. Percentage (%) of data according to the rainfall regime considering stratiform, convective,
ambiguous (between stratiform and convective) and outlier (out of the stratiform and convective
classification domain) according to Dolan et al. [48].

Stratiform Convective Ambiguous Outlier

Disdrometer 53 31 13 2
GPM DPR (DF) 73 18 8 1

Figure 4b provides information on the dominant precipitation mechanisms in the
disdrometer and DPR DF records following Dolan et al. [48]. According to this classification,
the disdrometer stratiform rainfall was dominant (Table 7) and strongly influenced by vapor
deposition followed by riming processes (Table 8). Convective events, on the other hand,
are not associated with a single well-defined microphysical mechanism. Moreover, an
important part of the events (13%) are classified as ambiguous (neither convective nor
stratiform) and are associated with different microphysical mechanisms. DPR records have
a large percentage of data (46%) in areas that fall outside the classification range, although
the influence of stratiform precipitation processes by riming can be appreciated (Table 8).

Table 8. Percentage (%) of data associated with microphysical precipitation mechanism groups
proposed by Doan et al. [48] (see Figure 4b).

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Vapor
Deposition

Weak
Convection

Aggregation/
Riming

Collision–
Coalescence Ice-Based Ambiguous Outlier

Disdrometer 4 29 4 14 0 1 12 32
GPM DPR (DF) 4 15 0 22 0 2 11 46

3.2. Analysis of Satellite Overpass Events Coincident with Disdrometer Data

This section evaluates the performance of the GPM-DPR estimates for the different
matching methods with disdrometer data described in Section 2.2. Table 9 shows the
number of overpasses of the GPM-DPR (2014–2023) with precipitation, and the number of
matches from the different proposed methods. A comparison was carried out for the two
algorithms: DPR DF and SF in the FS mode. Analyses of the variables Z, R, Dm and Nw
were considered.

Table 9. Summary of overpasses over disdrometer sites without (Group A) and with (Group B)
concurrent disdrometer rainfall data for DPR, Ka and Ku FS modes. Matching methods between
GPM observations and disdrometer sites are point, 5 km, 10 km, 9 pixels (Group A) and optimal
(Group B).

GPM
Product

Group A: GPM CO Overpasses with
Rain without Necessarily Matching Disdrometer Data

Group B: GPM CO Overpasses with Rain
Matching Disdrometer Data

Matching
Method Point 5 km 10 km 9 pixels Point Mean 5 km Mean 10 km Optimal

DPR-FS 142 272 460 567 19 33 39 40
Ka-FS 69 157 289 328 12 27 33 34
Ku-FS 142 270 463 569 20 34 41 41

Between March 2014 and November 2023, the GPM CO passed (at least one footprint)
over the region of Catalonia 2089 times and, of them, 1126 had at least one footprint with
rainfall (hereafter rain overpasses). It is important to mention that the Ka-band presents a
lower number of cases compared to the others (Table 9) because only inner swath data are
available due to the DPR scan pattern change in May 2018. After that change, the data were
reprocessed, leaving the payoffs in HS scan mode in the outer swath, for which no data are
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available as of the date of this study. The differences in the number of overpasses between
the DPR and Ku-band products in both Group A and Group B, although insignificant
in this case, are due to differences in the precipitation estimation algorithms around the
0.1 mm/h threshold.

The main statistics for quantifying the error between the DPR estimates at the CFB and
disdrometer ground-based values are shown in Table 10. Values marked in red represent
the worst scores and those in green the best scores for each group of variables and error
statistics analyzed.

Table 10. Statistics of the comparison between the GPM DF and SF products and disdrometer data
for different variables and matching methods. Statistical significance of CC is indicated with an
asterisk(*) and was tested with the t-test using a significance level of 0.05. The best and worst statistics
obtained for each product, method and variable are marked in green and red, respectively. Note that
all variables listed in the table are dimensionless.

Point Mean 5 km Mean 10 km Optimal
NBIAS NMAE NRMSE CC NBIAS NMAE NRMSE CC NBIAS NMAE NRMSE CC NBIAS NMAE NRMSE CC

R DF −46.12 0.70 1.20 0.48 * −39.21 0.66 1.02 0.31 −16.88 0.59 0.90 0.70 * 0.26 0.61 1.60 0.77 *
SF −49.84 0.69 1.18 0.37 * −46.93 0.64 1.01 0.30 * −31.63 0.66 0.99 0.44 * −35.35 0.43 0.78 0.78 *

ZKa DF −6.07 0.19 0.27 0.61 −7.55 0.17 0.22 0.61 * −4.68 0.18 0.23 0.66 * −2.58 0.09 0.14 0.88 *
SF −13.55 0.16 0.20 0.27 −11.58 0.16 0.19 0.42 * −7.37 0.17 0.21 0.48 * −2.81 0.10 0.16 0.77 *

ZKu DF −10.23 0.20 0.29 0.63 * −10.75 0.18 0.25 0.63 * −8.27 0.20 0.26 0.66 * −6.04 0.12 0.16 0.88 *
SF −9.23 0.20 0.29 0.63 * −11.53 0.18 0.27 0.64 * −8.12 0.20 0.25 0.65 * −5.37 0.10 0.16 0.88 *

Dm DF −1.08 0.24 0.28 0.65 * 2.05 0.21 0.27 0.56 * 1.82 0.22 0.28 0.51 * 0.96 0.14 0.18 0.83 *
SF −1.68 0.23 0.27 0.67 * 2.82 0.23 0.32 0.38 * 5.30 0.23 0.34 0.33 * 2.99 0.14 0.19 0.83 *

Nw DF −7.01 0.12 0.16 0.34 −7.59 0.11 0.14 0.32 −5.83 0.09 0.12 0.35 * −5.12 0.11 0.13 0.39 *
SF −6.77 0.12 0.15 0.34 −8.61 0.12 0.15 0.16 −8.36 0.12 0.15 −0.01 0.29 0.12 0.14 0.19

Figure 5 shows the scatterplots of rainfall rate R (mm/h), ZKa (dBZ), ZKu (dBZ), mass-
weighted mean drop diameter (Dm, mm) and Nw (dB) of the GPM DPR and disdrometers.
Regarding rainfall intensity, the point and mean methods show a certain dispersion of the
data in general around the 1:1 line (dashed line). Although it is less evident in the optimal
methods, for intensity values higher than 4 mm/h, it is again marked in all methodologies.
In fact, the correlation values are generally higher than 0.7 in the optimal method, and in
the point and mean methods most cases are lower than 0.5, showing a worse performance
in the SF algorithm.

In the analysis of the intensity of precipitation, the optimal and mean 10 km methods,
generally, show the lowest values of NBIAS, NMAE and NRMSE, as well as higher values
of correlation, displaying also a substantial improvement of the DF algorithm over the
SF over a mean of 10 km. For the rest of the methods, the behavior of the SF and DF is
similar. The NBIAS shows a marked difference in the DF algorithm between the point
method (−46%) and optimal (0.26%); however, this could be due to error compensation, a
disadvantage associated with this statistic.

The errors associated with the reflectivity in both Ka and Ku-bands are generally
below 10%. Again, the worst results are observed with the point method and are better
in the optimal method, with errors not exceeding 6%. It should be noted that the optimal
method precisely optimizes the comparison with respect to reflectivity. The improvements
in SF and DF behave similarly, although a slight improvement is observed in the SF returns
associated with the Ka-band, which may be associated with a smaller number of records in
the selected sample. A higher dispersion of the Ka-band reflectivity can also be observed,
which can be verified with slightly lower correlation values and errors in the Ku-band. In
terms of the MAE and RMSE, there were hardly any differences between the point and
mean methods. However, these values were almost halved, with values barely exceeding
0.15 in the optimal method.
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rate (first row), ZKa (second row), ZKu (third row), Dm (fourth row) and dBNw (fifth row) and four
matching methods (point, mean 5 km, mean 10 km and optimal).

Agreement with respect to the Dm values depends on the method applied to the
selection of cases. In the point method, unlike the others, the Dm values tended to be
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underestimated by approximately 1 mm and 1.7 mm under the SF and DF algorithms,
respectively. However, the mean methods show an overestimation that reaches a maximum
value of 5.3 mm in the SF (mean 10 km). In these methods, the lowest correlation values
were also obtained, whereas the best values were recorded in the optimal method with
0.83, and the highest point was 0.65. There is a clear improvement in the DF algorithms
with respect to SF, especially in the mean methods, where values of 1 and 2 mm are
overestimated, and values higher than 2 mm are underestimated.

As in the results of Adirosi et al. [15], the concordance in terms of Nw was not satis-
factory. Although the correlations this time turned out to be better, they lack statistical
significance: the NMAE values were very similar, close to 12% in all cases, while the NBIAS
was higher, similar to the work of Seela et al. [8], increasing the underestimation in our
cases. Although earlier versions of the DPR were used in those works, it is shown that
the deficiencies in Nw estimates remain. This may support the idea that the discrepancies
between satellite- and disdrometer-based Nw may be due to the parameterization used by
the GPM to model DSD.

3.2.1. Single- vs. Dual-Frequency-derived Estimates

Figure 6 shows the behavior of Nw versus Dm comparing all disdrometer data and
two overpass matching methods (9-pixels and optimal) with GPM CO single- and dual-
frequency estimates. The GPM data follow the typical Dm-10log10 Nw behavior reported by
Adirosi et al. [15], although they are concentrated, mainly SF, at approximately 30–35 dBNw.
As illustrated in Figure 6, comparing single- vs. dual-frequency estimates, it is apparent
that the dual-frequency pattern in the Dm-10log10 Nw space is closer to disdrometer data
than the single-frequency pattern, which is consistent with the improved scores obtained
by DF-derived estimates seen in Table 10.
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Figure 6. Dm vs. Nw for all available disdrometer data (grey dots), GPM data of nine pixels around
the disdrometers (cyan dots) and GPM data coincident with disdrometers (violet dots) under optimal
method showing GPM single-frequency (a)- and dual-frequency (b)-derived estimates. The black
and red dots with the error bars represent the averages and standard deviations of the disdrometer
dataset and GPM 9 pixels method.

Further insight about differences between single- and dual-frequency-derived esti-
mates can be seen in Figure 7, which shows a Taylor Diagram that displays the STD-
normalized CC and RMSE with the data obtained by the point method and the optimal
method for the five variables of analysis. The benchmark represents the standard deviation
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and the correlation coefficient equal to unity. We observe an improvement using the optimal
method, especially in the estimates of ZKa,Ku and Dm. However, considering the analysis
of precipitation intensity using the DF algorithm, the optimal yielded worse results. The
differences between the methods may be related to the variability in precipitation in the
pixels around the disdrometer.
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3.2.2. Stratiform vs. Convective Regimes

The precipitation type classification (including stratiform, convective and other regimes)
provided by the DPR (variable named TypePrecip) was compared with the classification
proposed by Dolan et al. [48] applied to disdrometer data. Table 11 shows the confusion
matrix obtained by comparing the two datasets and considering the matches with the optimal
method. Note that an “ambiguous” class appears to classify records that do not belong to
stratiform or convective regimes using either method.

Table 11. Confusion matrix between ambiguous, stratiform and convective regimes classified by DPR
DF and disdrometer data matched with the optimal approach, listing totals for each regime.

Disdrometer

Ambiguous Convective Stratiform Total

DPR DF
Ambiguous 1 0 1 2
Convective 2 0 0 2
Stratiform 5 15 17 37

Total 8 15 18 41

According to Table 11, disdrometer data presents a similar proportion of convective
(37%) and stratiform cases (44%) and a smaller ratio of ambiguous cases. However, this is
not the case for the DPR data where stratiform cases are clearly predominant (90%) and
convective and ambiguous cases are marginal (5% each). The overall DPR classification is
rather limited according to the value of the accuracy (below 0.50), as only 46% (precision of
0.46) of the predominant predicted regime (stratiform) is correctly done, despite 94% of

121



Remote Sens. 2024, 16, 2594 18 of 23

cases identified as stratiform by the disdrometers where correctly predicted. Worse scores
are obtained for convective cases.

4. Discussion

As discussed in previous research, discrepancies observed in DSD parameter values
between disdrometer data and GPM-DPR estimates may be associated with spatial and/or
temporal sampling problems [49,50]. The spatial sampling uncertainties are due to the
difference in the observation area of the two instruments, as the disdrometer has a sampling
area of about 50 cm2 and the GPM-DPR footprint circular radius is 5 km at nadir [10].
Another aspect to consider is the effect of updrafts and downdrafts present from the lowest
GPM-DPR measurement to the ground, which can actually modify the estimated DSD at
ground level [51]. As mentioned above there is also a problem associated with the limited
GPM-DPR overpasses over a given region which implies a low probability of coincidence
with observing precipitation over the disdrometer sites.

Similarly to other investigations [14], results found here indicate the DF algorithm
overestimated the mean Dm values and underestimated the intercept parameter Nw. Such
a problem has been primarily associated with the DPR assumption of a constant shape
parameter. In Section 3.1, Figure 2f, we compared the µ distribution observed by disdrom-
eters with the fixed value set by DPR (µ = 3) finding that it corresponded to the mode
value but differed from the median (µ = 7). To better understand the limitation of fixing
the shape parameter µ in the calculation of DSD-derived variables, we examine the k/Ze
ratio vs. the Dm, and the DFR vs. Dm with the disdrometer DSD (Figure 8). The k/Ze
ratio was calculated assuming the SF algorithm applied to ZKu and the DFR was calculated
considering the DF algorithm.
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Figure 8. (a) Attenuation (k) to reflectivity (Zh) ratio as a function of Dm at Ku-band frequency
obtained from disdrometer measurements without and with fixed shape parameter (µ = 3). (b) As
panel (a) but for DFR estimated with the dual-frequency algorithm.

Each panel of Figure 8 shows the variable considered in two ways: fixing the shape
parameter (grey dots) and not fixing it (blue dots). When µ is set to 3 in both single- and
dual-frequency algorithms (Figure 8a,b), a much higher variability of the data is observed.
Radhakrishna et al. [10] posited that the high scatter in the values of (k/Zh) and DFR is
caused by the high variability in the DSD of convective rainfall. When µ is fixed, part of this
variability is lost, increasing the uncertainty in the estimates. These results and the strong
correlation between µ and Nw [33,52] are among the factors that generate the differences

122



Remote Sens. 2024, 16, 2594 19 of 23

in the DSD parameter values between the disdrometers and the DPR DF. In addition,
Del Castillo-Velarde [14] and Radhakrishna et al. [10] showed that the DF algorithm has
limitations when attempting to estimate Dm for DFR values less than 0 dB, where there are
two possible Dm values for a DFR measurement as the DF algorithm selects the drop with
the highest Dm if two solutions exist [19]. Here we also observe that, for DFR values below
0 dB, Dm grows when DFR decreases for Dm below 0.5 mm as reported [10,14].

As seen in Equation (1), the GPM DPR rainfall rate computation is based on an
adjustable R-Dm relationship linked to ε. In version 6 of the DPR algorithm, ε was assumed
to be invariant, which imposed constraints on rainfall retrieval and caused the natural DSD
variations along the rainfall column to be missed. In version 7, a two-scale model of ε was
introduced, allowing it to vary with range [6]. To assess the consistency of this approach
with our disdrometer observations, the Dm vs R observations were plotted overlaid with
the corresponding GPM DPR curves computed for values of ε equal to 1.25 and 0.2 and 5.0
thus covering the possible range of values (Figure 9).
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Figure 9. Scatter density plot of log10 (R) vs. Dm observed by disdrometers overlayed with the
relation used in the GPM DPR algorithm for ε equal to 0.2 (upper dashed line), 1.25 (solid line) and
5.0 (lower dashed line).

The disdrometer data are clearly contained in the region limited by the GPM DPR
lines and higher observation densities correspond well to the ε = 1.25 for Dm < 1.5 mm,
but for larger diameters, the GPM DPR relationships tend to underestimate R. As posited
by [8,15], this may be due to the use of predefined constants (α, β and τ) in the relationships
between the precipitation rate and mass-weighted mean diameter (Equation (1)) that may
not be adequate for the rainfall characteristics of the region of study. In addition, factors
such as the attenuation effect, multiple scattering, non-uniform beam filling, and terrain
interference directly affect the accuracy of the GPM DPR parameter estimation [6,53].

The results of the analysis of the matches between GPM DPR overpasses with disdrom-
eters were consistent with those of similar studies [8,15]. The superiority of the optimal
matching approach and the lower errors associated with the radar reflectivity factor and
the mass-weighted mean diameter, as well as the poorer agreement between the intercept
parameter and the rainfall rate, are indications of limitations in the DPR algorithm. In
addition, it is worth mentioning that there is no clear trend of improvement of the DF
algorithms over SF in version 07, which agrees with what was observed with version 6 by
Adirosi et al. [15]. Finally, the limited ability to detect the convective precipitation type,
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documented in studies analyzing previous GPM DPR previous versions [11,13,14], is also
found here for version 07 as reported by Seela et al. [8].

5. Conclusions

In this study, more than nine years of data ranging from March 2014 to November
2023 recorded by the GPM DPR over different geographical areas of the northeastern
Iberian Peninsula were analyzed. Based on information from seven disdrometers, the
first part of the study focuses on the characterization and comparison of DSD-derived
parameters obtained from both datasets independently considering 162,328 and 2263 min
of precipitation records observed by disdrometers and the GPM DPR, respectively. Results
were stratified by orographic and climatic characteristics and several rainfall rate intensity
thresholds. The second part of the study focused on validating four spatial matching
methods between DPR overpasses and disdrometers. The main results are as follows:

1. The behavior of DSD-derived variables among the plain, mountain and coastal sub-
regions showed some differences according to the disdrometer data, which were
captured by the DPR DF algorithm. However, the GPM DSD parameters show an
overestimation of Dm by about 0.1 mm at low and moderate precipitation rates (0.1–1,
1–2, 2–4 mm/h) and by 0.4 mm at precipitation rates greater than 4 mm/h by the
DF algorithm with respect to the disdrometer. In contrast, the behavior of Nw was
underestimated by the DPR, with a maximum value close to 6 dBNw at moderate
precipitation rates (4–8 mm/h).

2. Disdrometer data indicated that the shape parameter mode over the area of study
corresponds to the DPR fixed value (µ = 3), but the median was higher (µ = 7). More-
over, µ presents a distribution with a substantial natural variability which implies an
increase in the uncertainty of DSD estimates based on the constant value assumption.

3. The superiority of the optimal matching approach was observed when validating the
GPM DPR rainfall parameters with disdrometers. The GPM DPR estimates showed
better verification statistics for the radar reflectivity factor in both Ku and Ka bands
and the mass-weighted mean diameter, while worse results were found for the rainfall
rate and the shape parameter Nw.

4. According to the available sample of overpass matches (41 cases) the DPR DF rainfall
classification algorithm showed little ability to detect events identified as convective
by the disdrometers.

To the authors’ knowledge, this validation study is the first of its kind covering the
Iberian Peninsula and one of the few carried out in areas with a Mediterranean climate.
Moreover, this is one of the first analyses in which recent updates incorporated in version
7 are validated. Results reported here may contribute to enhance our understanding of
potential applications and limitations of satellite precipitation observations and can be
considered in the development of future satellite precipitation retrievals.
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Appendix A

The GPM algorithm assumes a gamma-type DSD (normalized version) to estimate the
DSD parameters of the form:

N(D) = Nwf(D; µ; Dm) (A1)

f(D; µ; Dm) =
6(µ + 4)(µ+4)

44Γ(µ + 4)

(
D

Dm

)µ

exp
[−(µ + 4)D

Dm

]
(A2)

where N(D) is the drop size distribution (in mm−1m−3), D is the diameter of the raindrop
(mm), Dm (mm) is the mass-weighted mean diameter which represents a mean particle size
of the distribution. Nw is the normalized scaling parameter for concentration (mm−1m−3),
µ the shape parameter for gamma distribution and Γ denotes the gamma function. Letting
σb (in mm2) and σe (in mm2) be the backscattering cross section and the extinction cross
section of raindrops at a given temperature, respectively, K as a constant defined as a
function of complex refractive index and λ the radar wavelength (in mm), the equivalent
reflectivity Z (in mm6/m3) and specific attenuation k (in dB/km) are expressed as follows:

Ze = NwF(λ; µ; Dm) (A3)

F(λ; µ; Dm) =
λ4

Π5|K|2
∫

f(D; µ; Dm)σb∆D (A4)

k = NwG(D; µ; Dm) (A5)

G(D; µ; Dm) = 4.343 × 10−3
∫

f(D; µ; Dm)σe∆D (A6)

Equations (A3) and (A5) are used by the SF and DF algorithms to determine the DSD
parameters. The terms F(λ; µ; Dm) and G(D; µ; Dm) refer to normalized radar reflectivity
and specific attenuation (in dB/km) and are the same as F(Dm) and G(Dm) in [19] and Ib
(Dm, µ, λ) and Ie (Dm, µ, λ) in [9]. To determine parameters Dm and Nw, the GPM-DPR
uses the SF and DF algorithms defined by Equations (A7) and (A8), respectively.

k
Ze

=
G(D; µ; Dm)

F(λ; µ; Dm)
(A7)

DFR = 10 log10

(
F(λ1;µ; Dm)

F(λ2;µ; Dm)

)
(A8)

The aim of these algorithms is to define a monotonic function that only depends on
Dm [10,14,19]. It means that from measurements of k/Ze or DFR we will obtain a value of
Dm and then, Nw can be calculated by replacing Dm in (A3) or (A5).
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6
CHAPTER

Conclusions

6.1 Original Contributions

This thesis offers a comprehensive validation of the Global Precipitation Measurement (GPM)
satellite products over the Western Mediterranean region. By conducting four specific studies
using traditional surface observation data, it provides a deeper understanding of the accuracy of
precipitation estimates derived from NASA-JAXA GPM mission products at mid-latitudes. The
main contributions of this research are as follows:

• It represents one of the first studies in the Iberian Peninsula that evaluates IMERG
products with a detailed focus on orographic and climatic factors, as well as precipitation
intensity, at a high temporal resolution.

• This research is among the few that utilize half-hourly resolution data to investigate
extreme precipitation events in the Mediterranean region. It also assesses the impact of
retrievals obtained from microwave and infrared sensors and their relationship to cloud
microphysical characteristics.

• For the first time, it compares IMERG product retrievals with several products from the
H SAF program in a study region outside the scope of the Validation Program.

• This is the first validation in a Mediterranean region to evaluate recent updates incorporated
in version 7 of the GPM DPR. Precipitation microphysics parameters were thoroughly
assessed using a network of disdrometers representing diverse climatic regions.

6.2 Key Findings

The key findings of this thesis related to the Specific Objectives (SO) of the thesis are:

• SO1: Evaluating the precipitation estimates from the three IMERG (Integrated
Multi-satellite Retrievals for GPM) runs (Early, Late, and Final) at various
temporal scales (half-hourly, hourly, daily, monthly, seasonal, and annual).

IMERG generally captures the spatial and temporal pattern of average annual precipitation,
although with discrepancies in the estimated magnitude. At monthly, seasonal, and annual
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scales, IMERG performs reasonably well, with IMERG Final standing out for a significant
reduction in estimation error (2%) compared to IMERG Early and IMERG Late (20%).
However, at sub-daily temporal scales, such as half-hourly, there are high bias values and
low correlation values, particularly during the summer, indicating that satellite retrievals
still face challenges in estimating precipitation at high temporal resolution. Additionally,
the underestimation of precipitation values in IMERG Final compared to the other versions
is notable, in mountainous areas, when incorporating calibration with GPCC data .

• SO2. To analyze the IMERG estimates at the highest temporal resolution
(30 minutes), considering different orographic features, climatic conditions,
and precipitation intensity thresholds, to understand their performance under
varying conditions.

The high temporal resolution analysis showed that IMERG tends to overestimate precipita-
tion in flat areas and under BSk climates. Orographic (valleys, plains, ridges) and climatic
conditions types (BSk, Csa, Csb, Dfb) affected IMERG’s performance, with difficulties in
identifying extreme events and underestimating intense precipitation. IMERG’s ability to
identify precipitation events improves at scales greater than a day, but it faces challenges
in identifying extreme events at shorter scales and detecting light precipitation that may
be influenced by processes such as evaporation not considered by the algorithm. These
conclusions highlight the achievements in the detailed evaluation of IMERG at different
temporal scales and conditions, as well as the areas that require improvement for greater
accuracy in detecting extreme events and in varied orographic and climatic conditions.

• SO3. To quantify the errors associated with IMERG in estimating heavy
rainfall events at daily and sub-daily scales, considering different intensity
thresholds, to identify and address sources of error.

IMERG products tend to underestimate precipitation as the rainfall intensity threshold and
temporal resolution increase. IMERG Late shows no significant advantages over IMERG
Early in detecting extreme events. The underestimation is widespread, although less
pronounced when direct PMW data are used compared to IR sensor data, which increase
the negative bias. High false alarm rates are associated with PMW-direct sensors, while
the MORPH+IR combination is linked to higher omission rates of precipitation events.
These results suggest that the main sources of error stem from the incorporation of IR
sensor data and IMERG’s tendency to underestimate intense precipitation, especially at
finer temporal scales.

• SO4. To investigate the impact of the contribution of different sensors to
IMERG retrievals and their linkage to the microphysical properties of precipi-
tating cloud tops, focusing on the estimation of heavy rainfall events.

The study indicates that IMERG performs better in the presence of ice clouds compared to
warm and mixed clouds. Uncertainties in extreme precipitation estimation are related to
microphysical characteristics, such as cloud optical thickness (COT) and cloud top effective
radius (Reff ), especially in warm clouds, which show the worst results. PMW-direct
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sensors generate high false alarm rates, while the MORPH+IR combination is associated
with higher omission rates of precipitation events. These findings highlight the importance
of PMW-direct sensors in improving the detection of extreme events and the need to
address deficiencies in estimating intense precipitation in warm and mixed clouds.

• SO5. Comparing the performance of three HSAF products and the Early and
Late versions of IMERG in the estimation of extreme precipitation events at
hourly and daily scales.

The comparison of the three H SAF products (H61, H64, H68) and the Early and Late
versions of IMERG, based on hourly and daily precipitation records from 186 rain gauges
in the Catalonia region, revealed that, in general, satellite estimates tend to overestimate
observed values. This overestimation is more notable in H68 products at hourly scale and
in H61 at daily scale. From a quantitative perspective, the results of the KGE, RBIAS,
and RMSE metrics indicated that all products have limited capability in estimating hourly
precipitation, with modest improvements at daily scale. The H64 product stood out by
presenting the lowest errors at the daily scale, while H61 showed a substantial negative
bias (-23.37%) at hourly scale. In terms of KGE error distribution, H61 stood out at
hourly scale and H64 at daily scale. The ability of satellite products to capture intense
precipitation is limited; all products significantly reduce their capacity to detect correct
precipitation at thresholds above 2 mm/h and 10 mm/day, with H68 showing the worst
errors and the lowest ability to detect high-intensity precipitation. Despite maintaining
significant biases, IMERG Late was the best product for detecting extreme precipitation
events.

The overall weak agreement between satellite estimates and ground measurements indicates
that while the products may capture extreme precipitation values, they do not always
align with observations, limiting their usefulness in hydrometeorological applications and
highlighting the need for continued detailed validation efforts to improve the accuracy and
effectiveness of precipitation retrieval algorithms.

• SO6. To evaluate the precipitation intensity, radar reflectivity factors, and drop
size distribution (DSD) parameters of GPM’s Dual-frequency Precipitation
Radar (DPR) Level 2 version 07B considering a network of disdrometers.

The study, covering GPM DPR data from March 2014 to November 2023, reveals that the
DPR DF algorithm tends to overestimate the mean drop diameter (Dm) by approximately
0.1 mm at low and moderate precipitation rates (0.1–1, 1–2, 2–4 mm/h), and by 0.4
mm at rates above 4 mm/h compared to disdrometers. On the other hand, the intercept
parameter (Nw) variable is underestimated by the DPR, showing a maximum value close
to 6 dBNw at moderate precipitation rates (4–8 mm/h). Additionally, disdrometer data
indicate that the mode of the drop shape parameter (µ) in the study area correspond
reasonably well to the fixed DPR value (µ = 3), but the median is higher (µ = 7), showing
considerable natural variability that increases uncertainty in DSD estimates based on its
constant value assumption.
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The validation of spatial matching methods between DPR overpasses and disdrometers
highlighted the superiority of the so-called optimal approach, showing that DPR estimates
had better verification statistics for radar reflectivity factors in the Ku and Ka bands and
mass-weighted mean diameter, while the results were worse for precipitation rate and the
intercept parameter. The DPR DF precipitation classification algorithm showed limited
ability to detect events identified as convective by the disdrometers in the available sample
of 41 overpass matches.

This study is pioneering in the Iberian Peninsula and one of the few conducted in areas
with a Mediterranean climate. It is also one of the first evaluations of recent updates
incorporated in version 7 of the DPR, which evaluates microphysical parameters. The
results provide a deeper understanding of the potential applications and limitations of
satellite precipitation observations and can be considered in the development of future
satellite precipitation retrievals.

6.3 Main research limitations

A key limitation in this study stems from the inherent challenges in comparing point-based
precipitation measurements, such as those from rain gauges or disdrometers, with gridded
satellite-derived products. The fundamental difference in spatial scales between the point
measurements, which capture precipitation at a single location, and satellite grids, which average
precipitation over a larger area, can lead to significant discrepancies. These differences are often
exacerbated in regions with high precipitation variability, where localized events may be captured
by ground instruments but diluted or missed entirely in the satellite grid. This variability can
introduce biases and affect the accuracy of comparisons, making it crucial to consider these
limitations when interpreting the results. Understanding and accounting for these discrepancies
is essential for accurate analysis and meaningful conclusions in satellite precipitation validation
studies.

Another important limitation identified in this research is related to a geolocation error in the
IMERG V06 grid code, discovered in the summer of 2022 by the product developers. As shown
in Figure 6.1, this error caused IMERG’s PMW estimates to be incorrectly geolocated by 0.1°
eastward in the latitude band 75°N-S, affecting V06 and all preceding versions. This geolocation
error primarily impacts the PMW component of IMERG V06, with its effects propagating
through the morphing algorithm, thereby influencing most of the precipitation estimates.

The nature of this error is such that it cannot be corrected in any of the precipitation
outputs because it occurs at the initial step of the IMERG algorithm. Consequently, studies
utilizing IMERG V06 data are particularly affected by this issue, especially those involving
fine-resolution data. The error’s impact is more pronounced for GPM PMW constellation
sensors with finer footprint sizes, such as GMI and AMSR2. However, analyses using aggregated
IMERG data—such as those compiling histograms over time and space—are less affected, as
demonstrated by the minimal changes in mean relative bias. Despite the correction in IMERG
V07, this limitation is a significant concern for any research relying on V06 or earlier versions, as
it introduces biases that cannot be easily mitigated. Specifically, in two of the articles published
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Figure 6.1: An example of the IMERG PMW gridder geolocation error and the necessary
correction corresonding to July 12, 2019. a) GPROF climate product (GPROF-CLIM) V05B
precipitation estimates computed from the GMI footprint measurements. b) The original gridding
of the GPROF-CLIM V05B precipitation estimates by the IMERG V06B algorithm, which
includes the geolocation error. c) Corrected version of the IMERG V06B gridding (showing
a 0.1° one-pixel shift westward for all grid boxes). The red box highlights cases where the
geolocation error in the IMERG gridding is clear; however, note that the one-gridbox offset
applies to all gridboxes. Also, note that these gridded values are not yet calibrated, which
happens in computing the HQprecipitation variable (Huffman et al., 2023).

in this study (Chapter 3 and Chapter 4), this limitation may have affected some of the calculated
statistics, although we consider that, as shown in (Huffman et al., 2023), it does not represent a
serious error and should only be taken into account for comparison in future research.

6.4 Future Perspectives

The future of the GPM mission and its associated products is centered on ensuring and expanding
the global capability for precipitation observation by leveraging both existing and emerging
technologies. While GPM has significantly advanced our understanding of the global cycle of pre-
cipitation, the continuation of these observations is critical. As the current satellite constellation
ages, with many satellites exceeding their expected operational lifespans, it becomes imperative
to develop and deploy new sensors to maintain the quality and continuity of precipitation
observations.

Future versions of products like IMERG are expected to incorporate new constellations of
low-cost satellites equipped with passive microwave radiometers and advanced radars. This
integration will not only enhance spatial and temporal coverage but also improve the accuracy
of precipitation estimates, particularly for extreme events and daily variability. Additionally,
the inclusion of radars in non-sun-synchronous orbits, such as those in the upcoming GPM-CO
mission, will allow for more precise cross-calibrations and consistent data retrieval across different
sensors and orbits.

Future precipitation observation missions must address several key challenges. Maintaining
a long-term strategy is crucial—not only to ensure the continuity of observations but also
to incorporate technological innovations like CubeSats and SmallSats. These smaller, more
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cost-effective platforms could play a critical role in increasing the frequency and coverage of
observations, especially in regions where precipitation exhibits significant temporal and spatial
variability. Moreover, mitigation strategies need to be implemented in precipitation retrieval
schemes to maximize the use of suboptimal observations and ensure continuous and reliable
sampling, even in the event of sensor failure or channel loss.

I am particularly interested in continuing and expanding the use of satellite and in situ
observation data to quantify precipitation. While validation exercises for these estimates in
different regions and climates remain a core interest of mine, I am eager to explore further.
I am especially keen to study the applicability of these data and their potential integration
into numerical models to improve short- and long-term predictions of meteorological events.
Fundamentally, I aim to investigate how the combination of satellite observations with advanced
atmospheric circulation models can enhance the accuracy of extreme precipitation event estimates,
such as tropical cyclones, in the context of climate change.
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