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Abstract

The forager problem, often referred to as the optimal foraging prob-
lem, is a concept from behavioural ecology that seeks to understand the
decision-making process of entities searching for resources (hereafter re-
ferred to as foragers). In general, it addresses the strategies foragers use to
maximize the resource acquisition during the foraging process.
Many studies suggest that animals searching for randomly distributed food
sources display Lévy flight behaviour.
This work thus focuses on laying down the mathematical framework needed
to approach this problem and later use it, along with computer simulations,
to verify some results related to this problem.

Resum

El problema del recol·lector, sovint conegut com el problema de l’opti-
mització del recol·lector, és un concepte en el camp de l’ecologia del com-
portament que tracta d’entendre el procés de presa de decisions d’entitats
que busquen recursos (referides d’ara endavant com recol·lectors). En ge-
neral aborda les estratègies que utilitzen els recol·lectors per maximitzar
l’adquisició de recursos en el procés de recol·lecció.
Diversos estudis suggereixen que els animals que busquen fonts d’aliment
distribuïdes de manera aleatòria, mostren un comportament de tipus vols
de Lévy.
Per tant, aquest treball se centra en establir el marc matemàtic necessari
per abordar el problema del recol·lector, i utilitzar aquest marc, conjun-
tament amb simulacions d’ordinador, per tal de verificar alguns resultats
relacionats amb el problema.

Notation:
Iff is an abbreviation for if and only if.
RNG is an abbreviation for random number generator.
1A(x) is the indicator function of a set A, that is, 1A(x) = 1 for x ∈ A and
0 for x /∈ A.
a ∧ b = min(a, b), a ∨ b = max(a, b).

2020 Mathematics Subject Classification. 60K40, 92-10



iv Prologue

⟨z, x⟩ is the inner product between two vectors z and x.

|x| =
√

∑d
j=1 x2

j is the norm of the vector x.

B(Rd)is the Borel σ-algebra of Rd. For any B ∈ B(Rd), B(B) is the σ-
algebra of Borel sets included in B. B(B) is also written as BB.
O, o, and ∼. Let u and v depend on a parameter x which tends, say, to a.
Assuming that v is positive we write

u = O(v)

u = o(v)

u ∼ v

if
u
v

remains bounded

→ 0

→ 1
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Chapter 1

Introduction

In order to study the forager problem, we will first introduce the needed
concepts of probability theory and stochastic processes, and later expand
on them. To that end, we will mostly follow [1] and [2] as references.
We will assume the reader is already familiar with calculus, analysis and
measure theory concepts such as limits, measurable space or measurable
application.

1.1 The basics

Definition 1.1. An experiment is a procedure with a well-defined set of
outcomes that can be infinitely repeated.

Definition 1.2. An experiment which can result in more than one outcome
is called random experiment.

Definition 1.3. The sample space is the set of all possible outcomes of an
experiment.

Definition 1.4. An event is a set of possible outcomes of a random experi-
ment.

Example 1.5. Given a 20 sided dice roll experiment, the outcome being an
even number is an event.

Definition 1.6. The event space is the set of all possible events.

Definition 1.7. P is a probability measure of an event space F if it's a real
valued function that satisfies the following conditions.

1



2 Introduction

(a) P must return a value in the interval [0, 1], with P(∅) = 0 and
P(Ω) = 1.

(b) For all countable collections of events E1, E2, . . . of pairwise disjoint
sets:

P

(⋃
i∈N

Ei

)
= ∑

i∈N

P(Ei).

Note: We will use probability measure, probability distribution and
distribution interchangeably.

Definition 1.8. A probability space is a triple (Ω,F , P), where Ω is the sam-
ple space of a random experiment, F is the event space of Ω, and P is the
probability measure of F .

Remark 1.9. The pair (Ω,F ) is a measurable space. For A ∈ F , P(A) is
called the probability of the event A.

Definition 1.10. Given a probability space (Ω,F , P), a mapping X from Ω
into Rd is an Rd-valued random variable (or random variable on Rd) if it is
F -measurable, that is, {ω : X(ω) ∈ B} is in F for each B ∈ B(Rd).

Definition 1.11. If X is a real-valued random variable and if the integral∫
Ω X(ω)dFX(ω) exists, then it is called the expectation (or expected value) of

X and denoted by E[X]. If X is a random variable on Rd, and f (x) is a
bounded measurable function on Rd, then E[ f (X)] =

∫
Rd f (x)PX(dx).

Definition 1.12. The cumulative distribution function (CDF) FX of a real-
valued random variable X is the function that satisfies FX(x) = P(X ≤ x).

Remark 1.13. If X is a Rd-valued random variable, then E[ f (X)] =∫
Rd f (x)PX(dx) =

∫
Rd f (x)dFX(x).

Definition 1.14. A distribution of a random variable X is said to be heavy-
tailed if

∫
Rd et⟨x,x⟩ dFX(x) = ∞ for all t > 0.

Example 1.15. The Pareto distribution with parameters α = 1, xm > 1 is
heavy-tailed.

Proof.
∫ ∞

xm
etx αxα

m
xα+1 dx = ∞ since etx grows faster than any polynomial.

Definition 1.16. A distribution of a random variable X is concentrated on the
interval a ≤ x ≤ b if dF vanishes outside this interval.
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Definition 1.17. A distribution of a random variable X is concentrated at a
point a if P(X = a) = 1.

Remark 1.18. A concentrated at a point distribution may also be called
degenerate.

Definition 1.19. A finite set of n random variables {X1, . . . , Xn} is (mutu-
ally) independent if and only if FX1,...,Xn(x1, . . . , xn) = FX1(x1) · . . . · FXn(xn)

for all x1, . . . , xn.

Definition 1.20. A finite set of n random variables {X1, . . . , Xn} is identically
distributed if and only if FX1(x) = FXk(x)∀k ∈ {1, . . . , n} and ∀x ∈ I.

1.2 Stochastic Processes

Definition 1.21. A stochastic process X = {Xt : t ∈ T } is a collection of
random variables in a probability space indexed by T . Xt is called the
state of the process at t.

Remark 1.22. For any fixed 0 ≤ t1 < t2 < · · · < tn, P(X(t1) ∈ B1, . . . , X(tn) ∈
Bn) determines a probability measure on B((Rd)n).

Remark 1.23. A stochastic process {Yt} is called a modification of a stochas-
tic process {Xt}, if P(Xt = Yt) = 1 for t ∈ [0, ∞).

Remark 1.24. Given that stochastic processes are mathematical constructs
that model random phenomena over time, we shall use the word time for
t.

Definition 1.25. Two stochastic processes {Xt} and {Yt} (not necessarily
defined on a common probability space) are identical in law, written as

{Xt}
d
= {Yt}, if the systems of their finite-dimensional distributions are

identical.

Definition 1.26. A stochastic process {Yt} is called a modification of a stochas-
tic process {Xt}, if P(Xt = Yt) = 1 for t ∈ [0, ∞).

Definition 1.27. A stochastic process {Xt} on Rd where T is a subset of R

is stochastically continuous or continuous in probability if, for every t ≥ 0 and
ϵ > 0, lims→tP(|Xs − Xt| > ϵ) = 0.
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Definition 1.28. A stochastic process {Xt, t ∈ T } where T is a subset of R,
is said to have independent increments if for every t1 < t2 < · · · < tn, the
random variables Xt2 − Xt1 , . . . , Xtn − Xtn−1 are independent.

Remark 1.29. If the index set T is discrete, then a process with independent
increments reduces to a sequence of independent random variables Z0 =

X0, Zi = Xi − Xi−1 (i = 1, 2, 3, . . .). Knowing the individual distributions
of Z0, Z1, . . . enables one to determine the joint distribution of any finite
set of the Xi. In fact, Xi = Z0 + Z1 + · · ·+ Zi, i = 0, 1, 2, . . ..

Definition 1.30. A stochastic process {Xt, t ∈ T } where T is a subset of
R, is said to have stationary increments if for every t1 < t2, la the law of the
random variable Xt2 − Xt1 is the same as the law of the random variable
Xt2−t1 − X0.

The existence of stochastic processes with a given system of finite-
dimensional distributions is guaranteed by the following theorems:

Theorem 1.31. (Kolmogorov’s extension theorem) Suppose that, for any choice
of n and 0 ≤ t1 < · · · < tn, a distribution µt1,...,tn is given and that, if B1, . . . , Bn ∈
B(Rd) and Bk = Rd, then

µt1,...,tn(B1 × · · ·× Bn) = µt1,...,tk−1,tk+1,...,tn(B1 × · · ·× Bk−1 × Bk+1 × · · ·× Bn).

Then, there exists a unique probability measure P on F that has {µt1,...,tn} as its
system of finite-dimensional distributions.

Proof. See [1].

Theorem 1.32. Let (Ωn,Fn, Pn) be probability spaces for n = 1, 2, . . .. Let
Ω = Ω1 × Ω2 × · · · and let F be the σ-algebra generated by the collection of sets

C = {ω = (ω1, ω2, . . .) : ωk ∈ Ak for k = 1, . . . , n},

over all n and all Ak ∈ Fk for k = 1, . . . , n. Then there exists a unique probability
measure P on F such that

P(C) = P1(A1) · · ·Pn(An)

for each C.

Proof. See [1].
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1.3 Renewal Processes

For this section we will mostly follow [3] and [2].

Definition 1.33. A renewal (counting) process {N(t), t ≥ 0} is a nonnegative
integer-valued stochastic process that registers the successive occurrences
of an event during the time interval (0, t], where the time durations be-
tween consecutive events are positive, independent identically distributed
random variables.

Remark 1.34. We may use {N(t), t ≥ 0} or {Nt, t ≥ 0} interchangeably.

Definition 1.35. Let the successive occurrence times between events be
{Xk}∞

k=1, such that Xi is the elapsed time from the (i − 1)th event until the
occurrence of the ith event. We write F(x) = P(Xk ≤ x), k = 1, 2, 3, . . .
for the common probability distribution of {Xk}.

Remark 1.36. It is usually stipulated that F(0) = 0.

Definition 1.37. We refer to Sn = X1 + X2 + · · ·+ Xn, n ≥ 1 (S0 = 0, by
convention as the waiting time or renewal epochs until the occurrence of the
nth event.

Definition 1.38. The renewal process {Sn} is called pure if S0 = 0 and
delayed otherwise.

Remark 1.39. The counting process function is N(t) = number of indices
n for which 0 < Sn ≤ t, thus N(t) ≥ k if and only if Sk ≤ t.

Remark 1.40. The counting process {N(t), t ≥ 0} and the partial sum
process {Sn, n ≥ 0} are interchangeably called the renewal process.

Definition 1.41. The expected number of renewals for the time duration
(0, t], E[N(t)] = M(t) is called the renewal function.

Remark 1.42. The probability law of Sn = X1 + · · · + Xn can be calcu-
lated in accordance with the convolution formula P(Sn ≤ x) = Fn(x),
where F1(x) = F(x) is assumed known or prescribed, and then Fn(x) =∫ ∞

0 Fn−1(x − y) dF(y) =
∫ x

0 Fn−1(x − y) dF(y).

Proposition 1.43. The renewal function can be computed with the expression
M(t) = ∑∞

k=1 Fk(t).

Proof. M(t) = E[N(t)] = ∑∞
k=1 kP(N(t) = k) = ∑∞

k=1 P(N(t) ≥ k) =

∑∞
k=1 P(Sk ≤ t) = ∑∞

k=1 Fk(t)
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1.4 Lévy Processes

We will retake [1] as main reference

Definition 1.44. A stochastic process {Xt : t ≥ 0} on Rd is an additive
process in law if the following conditions are satisfied.

(a) X0 = 0 almost surely.

(b) Xt is continuous in probability.

(c) Xt is of independent increments.

Definition 1.45. An additive in law process {Xt : t ≥ 0} on Rd is an additive
process if there is Ω0 ∈ F with P(Ω0) = 1 such that, for every ω ∈ Ω0,
Xt(ω) is right-continuous in t ≥ 0 and has left limits in t > 0.

Definition 1.46. An additive in law process {Xt : t ≥ 0} on Rd is a Lévy
process in law if Xt is also a process of stationary increments.

Definition 1.47. An additive in law process {Xt : t ≥ 0} on Rd is a Lévy
process if Xt is also a process of stationary increments.

Example 1.48. Let {Xt} be a Lévy process on Rd and h(t) be a strictly
increasing continuous function from [0, ∞) into [0, ∞) satisfying h(0) = 0.
Then {Xh(t)} is an additive process on Rd. If h(t) = ct with c > 0, then
{Xh(t)} has temporal homogeneity and it is a Lévy process.

The existence of Lévy processes and additive processes can also be
proven:

Theorem 1.49. Let {Xt} be a Lévy or additive process in law on Rd. Then it has
a modification which is, respectively, a Lévy or additive process.

Proof. See [1].

Definition 1.50. A probability measure µ on Rd is infinitely divisible if, for
any positive integer n, there is a probability measure µn on Rd such that
µ = µn

n.

Definition 1.51. The characteristic function µ̂(z) of a probability measure µ

on Rd is the Fourier transform µ̂(z) =
∫

Rd ei⟨z,x⟩µ(dx), z ∈ Rd.
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Definition 1.52. The characteristic function of the distribution PX of a ran-
dom variable X on Rd is P̂X(z) =

∫
Rd ei⟨z,x⟩PX(dx) = E[ei⟨z,X⟩].

Example 1.53. The characteristic function of an univariate Normal distri-
bution N (µ, σ2) is

φ(t) = E[eitX] =
∫ ∞

−∞

1√
2πσ2

e−
1
2(

x−µ
σ )

2

eitx dx = eiµte−
1
2 (σt)2

.

Corollary 1.54. For every infinitely divisible distribution µ on Rd, there is a Lévy
process {Xt} such that PX1 = µ. It is unique up to identity in law.

Definition 1.55. The Lévy process {Xt} in Corollary 1.54 is called the Lévy
process corresponding to µ.

Remark 1.56. To each infinitely divisible distribution there corresponds a
Lévy process. Poisson and compound Poisson processes respectively corre-
spond to Poisson and compound Poisson distributions. The Lévy process
on Rd corresponding to a Cauchy distribution is called a Cauchy process.
The Lévy process on R corresponding to an exponential distribution is
called a Γ-process, since it has Γ-distribution at any t.

Theorem 1.57. If {Xt} is an additive process on Rd with a Gaussian distribution
at each t, then {Xt} has continuous paths a.s., that is, there is Ω1 ∈ F such that
P(Ω1) = 1 and, for every ω ∈ Ω1, Xt(ω) is continuous in t.

Proof. See [1].

With this, the existence of Lévy processes for infinitely divisible distri-
bution is proven, so we proceed by characterizing them:

Theorem 1.58. (Lévy–Khintchine representation) Let D = {x : |x| ≤ 1},
the closed unit ball.

(a) If µ is an infinitely divisible distribution on Rd, then, for z ∈ Rd,

µ̂(z) = exp
[
−1

2
⟨z, Az⟩+ i⟨γ, z⟩+

∫
Rd

(
ei⟨z,x⟩ − 1 − i⟨z, x⟩1D(x)

)
ν(dx)

]
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where A is a symmetric nonnegative-definite d × d matrix, ν is a measure
on Rd satisfying

ν({0}) = 0 and
∫

Rd

(
|x|2 ∧ 1

)
ν(dx) < ∞,

and γ ∈ Rd.

(b) The representation of µ̂(z) in (i) by A, ν, and γ is unique.

(c) Conversely, if A is a symmetric nonnegative-definite d × d matrix, ν is a
measure satisfying (b), and γ ∈ Rd, then there exists an infinitely divisible
distribution µ whose characteristic function µ̂(z) is given by (a).

Proof. See [1].

Definition 1.59. We call (A, ν, γ) in Theorem 1.58 the generating triplet of µ.

Definition 1.60. Given (A, ν, γ) a generating triplet, the A and the ν are
called, respectively, the Gaussian covariance matrix and the Lévy measure of
µ. When A = 0, µ is called purely non-Gaussian.

Definition 1.61. Let {Xt} be a Lévy process on Rd with generating triplet
(A, ν, γ). It is said to be of type

(A) if A = 0 and ν(Rd) < ∞;

(B) if A = 0, ν(Rd) = ∞, and
∫
{|x|≤1} |x|ν(dx) < ∞;

(C) if A ̸= 0 or
∫
{|x|≤1} |x|ν(dx) = ∞.

1.5 Random Walks

A Lévy process is a continuous time analogue of a random walk.

Definition 1.62. Let {Zn : n = 1, 2, . . .} be a sequence of independent and
identically distributed Rd-valued random variables. Let S0 = 0, Sn =

∑n
j=1 Zj for n = 1, 2, . . .. Then {Sn : n = 0, 1, . . .} is a random walk on

Rd, or a d-dimensional random walk.

Remark 1.63. For any distribution µ on Rd, there exists a random walk
such that Zn has distribution µ. This follows from Theorem 1.32.
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Definition 1.64. Rn is a simple symmetric random walk, if R0 = 0, Rn =

∆1 + · · ·+ ∆n = ∑n
i=1 ∆i, n ≥ 1, where the ∆i are independent identically

distributed with P(∆ = −1) = P(∆ = 1) = 0.5. Thus E(∆) = 0 and
Var(∆) = E(∆2) = 1.
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Chapter 2

Behaviour of Lévy Processes

2.1 Brownian Motion

Definition 2.1. A stochastic process {Xt : t ≥ 0} on Rd is a (d-dimensional)
Brownian Motion, or a Wiener process, if it is a Lévy process and satisfies:

(a) For t > 0, Xt has a Gaussian distribution with mean 0 and covariance
matrix tI (I is the identity matrix).

(b) There is Ω0 ∈ F with P(Ω0) = 1 such that, for every ω ∈ Ω0, Xt(ω)

is continuous in t.

Corollary 2.2. Following Theorem 1.57, the Brownian motion on Rd exists.

Proposition 2.3. Let {X(t)} be a stochastic process on Rd and let X1(t), . . . , Xd(t)
be the components of X(t). Then the following are equivalent.

1. {X(t)} is a d-dimensional Brownian motion.

2. {Xj(t)} is a one-dimensional Brownian motion for each j and {X1(t)}, . . . , {Xd(t)}
are independent.

Proof. Assume (2). Let 0 ≤ t0 < · · · < tn. Since the family

{Xj(tl)− Xj(tl−1) : l = 1, . . . , n, j = 1, . . . , d}

11



12 Behaviour of Lévy Processes

is independent, the family

{X(tl)− X(tl−1) : l = 1, . . . , n}

is independent. As it is easy to check the other conditions in Definition 1.47,
{X(t)} is a Lévy process. For 0 ≤ s < t,

E[exp(iz(Xj(t)− Xj(s)))] = exp(−1
2
(t − s)z2), z ∈ R,

and hence, by the independence of the components,

E[exp(i⟨z, X(t)− X(s)⟩)] = exp(−1
2
(t − s)∥z∥2), z ∈ Rd.

Almost sure continuity of X(t) follows from that of the components. There-
fore {X(t)} is a d-dimensional Brownian motion.

The converse proof goes beyond beyond the scope of this work and is
available at [1].

Proposition 2.4. Let {X(t)} be a d-dimensional Brownian motion. For any choice
of t1, . . . , tn ∈ [0, ∞), (X(tl) : l = 1, . . . , n) has Gaussian distribution on Rnd

with mean 0 and the covariance matrix is determined by

E[Xj(tl)Xk(tm)] = δjk(tl ∧ tm).

Here δjk is 1 or 0 according as j = k or j ̸= k.

Proof. In general, if (Yl : l = 1, . . . , n) has Gaussian distribution on Rn

with mean 0 and if Zm = ∑n
l=1 cmlYl, m = 1, . . . , n′, with real numbers cml,

then (Zm : m = 1, . . . , n′) is Gaussian distributed on Rn′
with mean 0. Let

0 = t0 ≤ t1 ≤ · · · ≤ tn. Since (Xj(tl)− Xj(tl−1) : l = 1, . . . , n, j = 1, . . . , d)
is Gaussian distributed on Rnd with mean 0, we see that (Xj(tl) : l =

1, . . . , n, j = 1, . . . , d) is also Gaussian distributed on Rnd with mean 0. To
see the determination of covariance matrix for j ̸= k, use the independence
of the components. For j = k, it follows from E[Xj(s)Xj(t)]
= E[Xj(s ∧ t)2] = s ∧ t.
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Theorem 2.5. Let {X(t)} be a d-dimensional Brownian motion.

(a) {−X(t)} is a d-dimensional Brownian motion.

(b) For each c > 0, {c−1/2X(ct)} is a d-dimensional Brownian motion.

(c) Define Y(t) = tX(t−1) for t > 0 and Y(0) = 0. Then {Y(t)} is a d-
dimensional Brownian motion.

Proof. The assertion (a) follows from the symmetry of Gaussian distribu-
tions with mean 0. To see (b), notice that, for 0 ≤ s < t,

P
(

exp
(

i⟨z, c−1/2X(ct)− c−1/2X(cs)⟩
))

= exp
(
−1

2
(ct − cs)|c−1/2z|2

)
=

= exp
(
−1

2
(t − s)|z|2

)
.

The other conditions are easy to check. Let us show (c). For any choice
of t1, . . . , tn, (Y(tl) : l = 1, . . . , n) is Gaussian distributed with mean 0 as in
the preceding proposition. Further, for any positive s, t, we have

E[Yj(s)Yk(t)] = sE[Xj(s−1)Xk(t−1)] = δjk(s ∧ t).

It follows that {Y(t)} is identical in law with a Brownian motion. Let Ω0 be
the set for {X(t)} in Definition 2.1. For any ω ∈ Ω0, Y(t, ω) is continuous
in t > 0 by the definition of Y(t). We claim that Y(t) → 0 as t → 0 a.s.
Define

Ω1 =
∞⋂

n=1

∞⋃
m=1

⋂
t∈Q∩(0,1/m)

{|X(t)| ≤ 1/n}

and define Ω′
1 in the same way with Y(t) in place of X(t). Then Ω0 ∩ Ω′

1 =

Ω0 ∩ {limt→0 Y(t) = 0} and Ω0 ∩ Ω1 = Ω0 ∩ {limt→0 X(t) = 0} = Ω0 ∩
{X(0) = 0}. We have P(Ω′

1) = P(Ω1) by the identity in law of {Y(t)} and
{X(t)}. Thus P(Ω0 ∩ Ω′

1) = P(Ω0 ∩ Ω1) = 1.

The following 2 theorems will be introduced in order to study the be-
haviour of Brownian motion for the asymptotic cases of t.

Theorem 2.6. (Fatou’s lemma) Given a measure space (Ω,F , µ) and a set X ∈
F , let { fn} be a sequence of (F ,BR≥0)-measurable non-negative functions fn :
X → [0,+∞]. Define the function f : X → [0,+∞] by setting

f (x) = lim inf
n→∞

fn(x), for every x ∈ X.
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Then f is (F ,BR≥0)-measurable, and also∫
X

f dµ ≤ lim inf
n→∞

∫
X

fn dµ,

where the integrals may be infinite.

Proof. See [8].

Theorem 2.7. (Kolmogorov’s 0-1 law) Let {Fn : n = 1, 2, . . .} be an inde-
pendent family of sub-σ-algebras of F . If an event A belongs to the σ-algebra
σ (
⋃∞

n=m Fn) for each m, then P(A) is 0 or 1.

Proof. See [1].

Theorem 2.8. (Behavior for large t) (d = 1) Fix a sequence tn ↑ ∞. Then

lim sup
n→∞

X(tn) = ∞ a.s.,

lim inf
n→∞

X(tn) = −∞ a.s.

Proof. Since X(tn)
d
= t1/2

n X(1), we have

P(X(tn) > K) = P(X(1) > t−1/2
n K) → 1/2, n → ∞,

for any K. By Theorem 2.6

P(X(tn) > K for infinitely many n) ≥ E

[
lim sup

n→∞
1{X(tn)>K}

]
≥

≥ lim sup
n→∞

E[1{X(tn)>K}] = 1/2.

Hence P(lim supn→∞ X(tn) > K) ≥ 1/2. Therefore

P

(
lim sup

n→∞
X(tn) = ∞

)
≥ 1/2.

Let t0 = 0 and let Zn = X(tn)− X(tn−1). Then {Zn} is independent and
X(tn) = Z1 + · · ·+ Zn. We have{

lim sup
n→∞

X(tn) = ∞
}

=

{
lim sup

n→∞
(X(tn)− X(tm)) = ∞

}
∈ σ(Zm+1, Zm+2, . . .)

for each m. So Theorem 2.7 says that this event has probability 0 or 1. Since
the probability is not less than 1/2, it must be 1. By the symmetry implied
by Theorem 2.5(a), lim infn→∞ X(tn) = −∞ a.s. is automatic.
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Theorem 2.9. (Behavior for small t) (d = 1) Let

T0(ω) = inf{t > 0 : Xt(ω) > 0},

T′
0(ω) = inf{t > 0 : Xt(ω) < 0}

for ω ∈ Ω. Then

T0 = 0 a.s.,

T′
0 = 0 a.s.

Proof. Let tn ↓ 0. Use Y(t) = tX(t−1). It follows from Theorem 2.5(c)
and Theorem 2.8 that P(X(tn) > 0 for infinitely many n) = P(Y(tn) >

0 for infinitely many n)
= P(X(t−1

n ) > 0 for infinitely many n) = 1. This shows T0 = 0 a.s.. The
symmetry leads to T′

0 = 0 a.s..

2.2 Stable processes

A property of interest is that if {Xt : t ≥ 0} is the Brownian motion on

Rd, then {Xat : t ≥ 0} d
= {a1/2Xt : t ≥ 0}, which means that a change of

time scale has the same effect as some change of "spatial" scale. We will
then proceed by studying Lévy processes with related properties called
stable processes.

Theorem 2.10. (a) If {Xt : t ≥ 0} is a Lévy process in law on Rd, then, for any
t ≥ 0, PXt is infinitely divisible and, letting PX1 = µ, we have PXt = µt.

(b) If µ is an infinitely divisible distribution on Rd, then there is a Lévy process
in law {Xt : t ≥ 0} such that PX1 = µ.

(c) If {Xt} and {X′
t} are Lévy processes in law on Rd such that PX1 = PX′

1
,

then {Xt} and {X′
t} are identical in law.

Proof. See [1].

Definition 2.11. Let µ be an infinitely divisible probability measure on Rd.
It is called stable if, for any a > 0, there are b > 0 and c ∈ Rd such that
µ̂(z)a = µ̂(bz)ei⟨c,z⟩.
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Definition 2.12. A probability measure is called strictly stable if, for any
a > 0, there is b > 0 such that µ̂(z)a = µ̂(bz).

Definition 2.13. A probability measure is called semi-stable if it is stable for
some a > 0, a ̸= 1.

Definition 2.14. A probability measure is called strictly semi-stable if it is
strictly stable for some a > 0, a ̸= 1.

Definition 2.15. Let {Xt : t ≥ 0} be a stochastic process on Rd, t is called

selfsimilar if, for any a > 0, there is b > 0 such that {Xat : t ≥ 0} d
=

{bXt : t ≥ 0}.

Definition 2.16. Let {Xt : t ≥ 0} be a stochastic process on Rd, it is called
broad-sense selfsimilar if, for any a > 0, there are b > 0 and a function c(t)

from [0, ∞) to Rd such that {Xat : t ≥ 0} d
= {bXt + c(t) : t ≥ 0}.

Definition 2.17. Let {Xt : t ≥ 0} be a stochastic process on Rd, it is called
semi-selfsimilar if it is selfsimilar for some a > 0 with a ̸= 1.

Definition 2.18. Let {Xt : t ≥ 0} be a stochastic process on Rd, it is called
broad-sense semi-selfsimilar if, for some a > 0 with a ̸= 1, there are b > 0 and
a function c(t) satisfying Definition 2.16.

Proposition 2.19. Let {Xt : t ≥ 0} be a Lévy process on Rd. Then it is selfsimilar,
broad-sense selfsimilar, semi-selfsimilar, or broad-sense semi-selfsimilar if and only
if it is, respectively, strictly stable, stable, strictly semi-stable, or semi-stable.

Proof. Let µ = PX1 . Suppose that {Xt} is semi-stable. By the definition
there is a positive a ̸= 1 for which Definition 2.11 holds with some b and c.
The Lévy processes {Xat} and {bXt + tc} correspond to the distributions
with characteristic functions µ̂(z)a and µ̂(bz)ei⟨c,z⟩, respectively. Hence, by
Theorem 2.10(c),

{Xat}
d
= {bXt + tc},

and hence {Xt} is broad-sense semi-selfsimilar. Conversely, if {Xt} is
broad-sense semi-selfsimilar, then it follows from Definition 2.16 that PXa =

PbX1+c(1), that is, µ̂(z)a = µ̂(bz)ei⟨c,z⟩, and {Xt} is semi-stable. (At the same
time it is shown that c(t) = tc(1).) The other assertions are proved simi-
larly.
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Lemma 2.20. (i) Let X be a non-zero random variable on Rd. Suppose that

b1, b2 ∈ (0, ∞) satisfy b1X d
= b2X. Then b1 = b2.

(ii) Let X be a non-constant random variable on Rd. Suppose that b1, b2 ∈
(0, ∞) and c1, c2 ∈ Rd satisfy b1X + c1

d
= b2X + c2. Then b1 = b2 and

c1 = c2.

Proof. (i) Suppose that b1 ̸= b2. Then X d
= bX with some b ∈ (0, 1). Hence

X d
= bnX for n = 1, 2, . . . and, letting n → ∞, we have X d

= 0 a.s.

(ii) We have X d
= b−1

2 (b1X + c1 − c2). So we assume that X d
= bX + c with

b > 0 and c ∈ Rd and claim that b = 1 and c = 0. Let X1 and X2 be
independent random variables, each of which has the same distribution as
X. Then

X1 − X2
d
= (bX1 + c)− (bX2 + c) = b(X1 − X2).

The random variable X1 −X2 is non-zero, because X is non-constant. Hence
b = 1 by (i). Therefore X d

= X + nc for n = 1, 2, . . .. It follows that c = 0.

Lemma 2.21. Let {Xt : t ≥ 0} be a non-trivial stochastic process on Rd. If it is
broad-sense selfsimilar, then b and c(t) are uniquely determined by a.

Proof. Suppose that

{X(at)} d
= {b1X(t) + c1(t)}

d
= {b2X(t) + c2(t)}.

If X(t) is non-constant, then we have b1 = b2 and c1(t) = c2(t) for this t
by Lemma 2.20. By non-triviality such a t exists. Hence b1 = b2. Now

c1(t) = c2(t) follows even if X(t) is constant at t, because b1X(t) + c1(t)
d
=

b1X(t) + c2(t).

2.3 Poisson Processes

Definition 2.22. Let (Θ,B, ρ) be a σ-finite measure space. A family of Z+-
valued random variables {N(B) : B ∈ B} is called a Poisson random measure
on Θ with intensity measure ρ, if the following conditions hold:

(A) for every B, N(B) has Poisson distribution with mean ρ(B);
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(B) if B1, . . . , Bn are disjoint, then N(B1), . . . , N(Bn) are independent;

(C) for every ω, N(·, ω) is a measure on Θ.

Proposition 2.23. (Existence of Random Poisson Measure) For any given σ-
finite measure space (Θ,B, ρ), there exists, on some probability space (Ω,F , P),
a Poisson random measure {N(B) : B ∈ B} on Θ with intensity measure ρ.

Proof. See [1].

In our case, we will focus on the case that ρ is the standard measure
over Rd.

Theorem 2.24. (d-Dimensional Poisson Distribution) If a random process
X(S) defined with respect to regions S of Rd which satisfies

(a) For X(S) only nonnegative integer values are assumed and
0 < P(X(S) = 0) < 1 if A(S) > 0.

(b) The probability distribution of X(S) depends on S only through the value of
A(S) with the further property that if A(S) → 0 then P(X(S) ≥ 1) → 0.

(c) If S1, S2, . . . , Sn (n ≥ 1) are disjoint regions, then X(S1), . . . , X(Sn) are
mutually independent random variables and

X(S1 ∪ · · · ∪ Sn) = X(S1) + · · ·+ X(Sn).

(d)

lim
A(S)→0

P(X(S) ≥ 1)
P(X(S) = 1)

= 1.

then X(S) has the (Poisson) distribution

P(X(S) = k) = e−λA(S) [λA(S)]k

k!
for k = 0, 1, 2, . . . .

Proof. [4]

Remark 2.25. Poisson processes are Lévy process where Xt has Poisson
distribution with mean ct, c > 0.
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Theorem 2.26. If X(S) satisfies Theorem 2.24 then under the condition X(S) =
k, for A(S) > 0, these k points are independent and uniformly distributed in S.

Proof. See [4].

Theorem 2.27. (Construction of 1-Dimensional Poisson Processes) Let
{Wn : n = 0, 1, . . .} be a random walk on R, defined on a probability space
(Ω,F , P), such that Tn = Wn − Wn−1 has exponential distribution with mean
c > 0. Define Xt by Xt(ω) = n iff Wn(ω) ≤ t < Wn+1(ω). Then, {Xt} is a
Poisson process with parameter c.

Proof. See [1].

Definition 2.28. Given a Poisson process {Xt}, we define the conditional
distribution of the positions W1, . . . , Wn in [0, t] given Xt = n.

Definition 2.29. For any interval I, the number of jumps of Xt(ω), t ∈ I, is
denoted by J(I) = J(I)(ω).

Proposition 2.30. Let n ≥ 1 and t > 0. The conditional distribution of W1, . . . , Wn

given that Xt = n coincides with the distribution of the order statistics V1 ≤ V2 ≤
· · · ≤ Vn obtained from n samples Z1, . . . , Zn from the population with uniform
distribution on [0, t].

Proof. See [1].

Proposition 2.31. Let n ≥ 1 and t > 0. The conditional distribution of W1, . . . , Wn

given that Xt = n coincides with the distribution of the order statistics V1 ≤ V2 ≤
· · · ≤ Vn obtained from n samples Z1, . . . , Zn from the population with uniform
distribution on [0, t].

Proof. See [1].
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2.4 Convergence of Stable and Renewal Processes

Theorem 2.32. (Central Limit Theorem) Suppose X1, X2, X3, . . . is a sequence
of independent identically distributed random variables with E[Xi] = µ and
Var[Xi] = σ2 < ∞, we define X̄n ≡ X1+···+Xn

n . Then the following holds:

as n → ∞,
√

n (X̄n − µ)
d−→ N

(
0, σ2

)
.

Proof. See [7].

Corollary 2.33. Suppose X1, X2, X3, . . . is a sequence of independent identically
distributed random variables with E[Xi] = µ and Var[Xi] = σ2 < ∞, then as
n → ∞,

(X1 + · · ·+ Xn)− nµ√
nσ2

d−→ N (0, 1) .

Proof. This follows from Theorem 2.32 and the property that if X ∼ N
(
µ, σ2)

and Y ∼ aX then Y ∼ N
(
aµ, (aσ)2).

Definition 2.34. A measurable function L : (0,+∞) → (0,+∞) is called
regularly varying (at infinity) with index ρ if for all a > 0, limx→∞

L(ax)
L(x) = aρ

for some ρ.

Definition 2.35. A measurable function L : (0,+∞) → (0,+∞) is called
slowly varying (at infinity) if for all a > 0, it is regularly varying with index
0, that is, limx→∞

L(ax)
L(x) = 1.

Definition 2.36. A distribution F belongs to the domain of attraction of G if
there exist constants an > 0 and bn such that the distribution of a−1

n (X1 +

· · ·+Xn)− bn tends to G, where G is a proper distribution not concentrated
at a point.

Theorem 2.37. Given a distribution F, let U(x) =
∫ x
−x y2 F(dy), then F

(a) belongs to the domain of attraction of the normal distribution iff U varies
slowly.
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(b) belongs to some other domain of attraction iff for some 0 < α < 2 either 1 −
F(x)+ F(−x) ∼ 2−α

α x−αL(x) or 1−F(x)
1−F(x)+F(−x) → p and F(−x)

1−F(x)+F(−x) →
q hold.

Proof. See [2].

Theorem 2.38. (Convergence of Stable Processes) A distribution possesses a
domain of attraction iff it is stable.

Proof. See [2].

Corollary 2.39. A distribution F not concentrated at one point belongs to the
domain of attraction of the normal distribution iff µ varies slowly. This is the case
iff x2[1−F(x)+F(−x)]

µ(x) → 2−α
α holds with α = 2.

Needless to say, µ varies slowly whenever F has a finite variance.

Proof. See [2].

Corollary 2.40. A distribution F belongs to the domain of attraction of a sta-
ble distribution with exponent α < 2 iff its tails satisfy the balancing condition
Theorem 2.37(b) and 1 − F(x) + F(−x) varies regularly with index α.

Proof. See [2].

Lemma 2.41. A distribution F belonging to a domain of attraction with index α

possesses absolute moments mβ of all orders β < α. If α < 2 no moments of order
β > α exist.

If β < α then as t → ∞ t2−β

µ(t)

∫
|x|>t |x|

βF{dx} → 2−α
α−β .

For α < 2 and β > α then
∫
|x|<t |x|

βF{dx} ∼ α
β−α tβ[1 − F(t) + F(−t)].

Proof. See [2].
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Theorem 2.42. (Generalized Central Limit Theorem) A non-degenerate ran-
dom variable Z is α-stable for some 0 < α ≤ 2 iff there is an independent, iden-
tically distributed sequence of heavy-tailed distribution of order α X1, X2, X3, . . .
and constants an > 0, bn ∈ R with

an(X1 + · · ·+ Xn)− bn
d→ Z.

Proof. See [2].

Remark 2.43. The normal distribution, the Cauchy distribution and the
Lévy distribution (including its reflection) are the only distributions with
known closed form expressions for their densities. There are no known
closed form expressions for general stable densities and it is unlikely that
any other stable distributions have closed forms for their densities [12].

Example 2.44. From [13], the density f (x; α, β) of a standard α-stable ran-
dom variable in X ∼ S0

α(1, β, 0) representation, when α ̸= 1, ζ = −β tan πα
2

and x > ζ, can be expressed as:

f (x; α, β) =
α(x − ζ)

1
α−1

π|α − 1|

∫ π
2

−ξ
V(θ; α, β) exp

{
−(x − ζ)

α
α−1 V(θ; α, β)

}
dθ,

where

ξ =

{
1
α arctan(−ζ), α ̸= 1,
π
2 , α = 1,

and

V(θ; α, β) =

(cos αξ)
1

α−1
(

cos θ
sin α(ξ+θ)

) α
α−1 cos{αξ+(α−1)θ}

cos θ , α ̸= 1,
2
π

(
π
2 + βθ

)
exp

{
1
β

(
π
2 + βθ

)
tan θ

}
, α = 1, β ̸= 0.

With the convergence of stable processes ensured but the lack of closed
form expressions as an unavoidable issue, we will then focus on the char-
acteristic function and on how the Generalized Central Limit Theorem can
be applied to compute it.

Definition 2.45. Given a secuence of independent identically distributed
random variables X1, X2, X3, . . ., we define ξn = X1+···+Xn−bn

an
as the partial

sum (general) linear scaling .
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Theorem 2.46. (Characteristic Function Expression) Given a heavy-tailed
distribution with p(x) ∼ 1

x1+µ for 0 < µ ≤ 2, µ ̸= 1, we define β = (a+ −
a−)/(a+ + a−) where a+ and a− satisfy, for x → ∞, P(X > x) ∼ a+x−µ and
P(X < −x) ∼ a−x−µ. Then the general form of the characteristic function of ξn

is
φ(ω) = e−a|ω|µ[1−iβsgn(ω) tan(πµ

2 )].

For the case µ = 1 we have

φ(ω) = e−a|ω|µ[1−iβsgn(ω) tan(πµ
2 )].

where the parameter a > 0 is univocally determined by µ.

Proof. See [9].

Remark 2.47. β = 1(β = −1) corresponds to a distribution with positive
(negative) support, and β = 0 corresponds to a symmetric distribution.

Remark 2.48. From [11], there exists an infinite set of sequences of normal-
izing coefficients an and bn that exhibit the same asymptotic behaviour for
n → ∞. In particular, taking a+, a− and β from Theorem 2.46 and taking
c = a+ + a−, then these coefficients can be defined as follows:

• for µ = 2, bn = n⟨X⟩ and an =
√

cn ln n;

• for µ ∈ (1, 2), bn = n⟨X⟩ and an =
(

πcn
2Γ(µ) sin(µπ/2)

)1/µ
;

• for µ = 1, bn = βcn ln n and an = πcn
2 ;

• for µ ∈ (0, 1), bn = 0 and an =
(

πcn
2Γ(µ) sin(µπ/2)

)1/µ
.

We note that for 0 < µ ≤ 1, the first moment also diverges so ⟨X⟩ can’t
be used. We also note that the normalizing coefficients for µ = 2 closely
resemble those of Corollary 2.33, with bn using the estimation of µ and√

c ln n echoing
√

σ2.

The previous results about the Central Limit Theorem and the general-
ized one make the basis to prove the convergence of renewal processes and
will also be relevant in the next chapter.
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Theorem 2.49. (Central Limit Theorem for Renewal Processes) If F has
expectation µ and variance σ2 < ∞ then for large t the number Nt of renewal
epochs is approximately normally distributed with expectation tµ−1 and variance
tσ2µ−3.

Proof. See [2].

Theorem 2.50. (Convergence of Renewal Processes) A limit distribution for
Nt exists iff F belongs to some domain of attraction, and it follows that Nt has a
proper limit distribution iff 1 − F(x) ∼ x−αL(x), x → ∞, where L is slowly
varying and 0 < α < 2.
Given Gα the one-sided stable distribution satisfying the condition xα[1−Gα(x)] →
(2 − α)/α as x → ∞, the limit distribution for Nt is

(a) for 0 < α < 1. If ar is chosen so that r[1 − F(ar)] ∼ 2−α
α , then Far(x) →

Gα(x).
Let r and t increase in such a manner that t ∼ arr. On account of the slow
variation of L we get then r ∼ 2−α

α
x−α

1−F(t) and P
[
(1 − F(t))Nt ≥ 2−α

α x−α
]
→

Gα(x).

(b) for 1 < α < 2 the distribution F has an expectation µ < ∞ and the same
type of calculation shows that P

[
Nt ≥ t−λ(t)x

µ

]
→ Gα(x) where λ(t) sat-

isfies t[1 − F(λ(t))] → 2−α
α µ.

Proof. See [2].

Remark 2.51. Theorem 2.50(a) is an analogue to the central limit theorem.
Very roughly, 1− F(t) is of the order of magnitude t−α and so the probable
order of magnitude of Nt is of the order tα; the density of the renewal
epochs must decrease radically.

In theTheorem 2.50(b) case, the expected number of renewal epochs
increases linearly, but the norming λ(t) indicates that the fluctuations about
the expectation are extremely violent.

We have now proved that under certain condition over F, Nt converges
to a Normal distribution or to a Stable process law. It can also be proven
that processes can be built from renewal processes which converge to Brow-
nian motion, as it is shown in [5].



Chapter 3

Lévy Walks

3.1 Diffusion

In physics, diffusion refers to the process by which anything spreads
from regions of higher concentration to regions of lower concentration
due to random motion. We can model this behaviour into a mathemati-
cal framework using stochastic processes. In the general sense, we use two
random variables, T representing time and R representing a displacement
in space.
Many diffusion processes in the real world behave like Brownian motion.
Einstein proved in [14] that these satisfy some relation between travelled
distance r (displacement) and time passed t. We will assume that r

Definition 3.1. A diffusion process is typical if the following correlation holds:
⟨r2⟩ = 2Dt. That is, the mean squared displacement is linear to the time
that passed. We will say it is an anomalous diffusion process otherwise.

Definition 3.2. Anomalous diffusion processes also subdivide into further
categories. Given the following expression ⟨r2⟩ ∝ tα we will use the follo-
wing naming convention:

• if α < 1: subdiffusion.

• if 1 < α < 2: superdiffusion.

• if α = 2: ballistic motion.

• if α > 2: hyperballistic.

25
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When modelling superdiffusion, we encounter the symmetric Lévy dis-
tribution Lκ[x, σ(t)], which describes the distribution of the sum of inde-
pendent and identically distributed variables with power law PDFs [11].
Not only that, we also come across the fact that all moments of order n ≥ 2
diverge [15].

3.2 Lévy Flights

Definition 3.3. Let {Xt : t ≥ 0} be a stochastic process on Rd. Then it is a
Lévy motion if it is a heavy-tailed Lévy process with E[X2] = ∞.

Remark 3.4. Lévy motion can be understood as Brownian motion with Xt

having a heavy-tailed distribution instead of Gaussian.

Proposition 3.5. If {Xt : t ≥ 0} is a Lévy motion, then Sn with the appropriate
scaling factors an and bn converges to a Lévy stable law.

Proof. This is a direct consecuence of Corollary 2.40 and Theorem 2.42.

Definition 3.6. We define Lévy flight as a superdiffusion process where
there are instantaneous Lévy motion displacements alternating with non-
negative time pauses. That is, the diffusion process is composed by two
different random variables, and the stochastic process is the pair {(Xi, Ti),
i ∈ Z+}.

Remark 3.7. Lévy flights fail to properly model real world behaviour be-
cause they assume there exist instantaneous jumps of arbitrary length. This
would imply infinite propagation speed, something real world entities lack.

A reasonable approach to this issue is to couple the displacement with
the time so that bigger displacements require more time.

3.3 Lévy Walks

The Lévy walks model address the issue Lévy flights face by assuming
there’s a linear dependence between displacement and time r = vt, v > 0,
that is, the entity facing the displacement moves at a constant speed.
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This implies that, for any given time τ ≥ 0, the furthest entities from the
origin are those that have followed an uninterrupted straight line escape
trajectory, thus for any entity |rτ| ≤ vτ. We highlight that with this model,
the superdiffusion condition of ⟨r2⟩ ∝ tα for α < 2 is satisfied.

Furthermore, the fact that |rτ| ≤ vτ implies that for a given initial po-
sition x0, all entities are located in [x0 − vτ, x0 + vτ]. We shall refer to this
region as ballistic cone.
We can see an example of a Lévy walk superdiffusion model in Figure 3.1.

Figure 3.1:
Inspired from [15]. A particle under Lévy walk diffusion, it moves at a

constant speed in a random direction until some kind of interaction
randomly changes it. At a given time, the ballistic cone delineates the

region where any particle could be found, and beyond it lies the shaded
area, marking the region that no particles have reached yet.

A deeper study in [15] shows that the law of the diffusion regimes for
Lévy walks strongly depend on the power law tail.
It is also shown that the average squared displacement encountered is cor-
related to the time. Given the power tails that satisfy P(|R| > r) ∝ r−γ,
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then the following behaviour is observed:

⟨r2(τ)⟩ ∝



τ2 0 < γ < 1
τ2

ln τ γ = 1

τ3−γ 1 < γ < 2

τ ln τ γ = 2

τ γ > 2

We remark that there are other type of models which go beyond the
Lévy walks. For example, by considering the entities’ displacement and
time are coupled by a non-constant velocity, like random speed fluctua-
tions, or by alternating Lévy walks and pauses in a similar way the Lévy
flight model did.



Chapter 4

Stopping Time

With the processes involved in the problem presented, we conclude the
establishment of the mathematical framework by introducing the key con-
cept around which the forager problem revolves: the stopping time.

Definition 4.1. Let {Xn, n ≥ 1} constitute a sequence of random variables
and {Fn, n ≥ 1} an increasing sequence of sub-σ-algebras of F , that is,
F1 ⊆ F2 ⊆ · · · ⊆ F , such that Xn is Fn-measurable for each n ≥ 1. Then
{Xn, Fn, n ≥ 1} will be called a stochastic sequence.

Remark 4.2. For any sequence of random variables {Xn}, {Xn, σ(X1, . . . , Xn),
n ≥ 1} is a stochastic sequence.

Definition 4.3. A measurable function T = T(ω) taking values 1, 2, . . . , ∞
is called a stopping (or hitting) time, a stopping rule or a stopping variable
relative to {Fn} or simply an {Fn}-time if {T = j} ∈ Fj, j = 1, 2, . . .. If
T is an Fn-time, then setting F0 = {∅, Ω}, F∞ = σ(

⋃∞
1 Fn), {T ≥ n} =

Ω −⋃n−1
1 {T = j} ∈ Fn−1, 1 ≤ n ≤ ∞.

Definition 4.4. A stopping time T is said to be finite if P(T = ∞) = 0 and
defective if P(T = ∞) > 0.

Remark 4.5. When Fn = σ(X1, . . . , Xn), n ≥ 1, for some sequence of ran-
dom variables {Xn}, an Fn-time will generally be alluded to as an {Xn}-
time or a stopping time relative to {Xn}.
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Lemma 4.6. If T is an {Xn}-time for some sequence {Xn} of random variables,
there exists a sequence {Cn} of disjoint Borel cylinder sets of (R∞,B∞) whose
corresponding bases Bn are n-dimensional Borel sets, n ≥ 1, such that
{ω : T = n} = {ω : (X1, . . . , Xn, . . .) ∈ Cn}, n = 1, 2, . . .
. Conversely, given any sequence {Cn}, n ≥ 1 of disjoint Borel cylinder sets with
n-dimensional Borel bases, an {Xn}-time T is defined by {ω : T = n} = {ω :
(X1, . . . , Xn, . . .) ∈ Cn}, n = 1, 2, . . . and {T = ∞} = Ω −⋃∞

1 {T = n}.

Proof. See citechow1997probability.

Lemma 4.7. If {Xn, n ≥ 1} are independent identically distributed random vari-
ables and T is a finite {Fn}-time where Fn and σ(Xj, j > n) are independent,
n ≥ 1, then FT and σ(XT+1, XT+2, . . .) are independent and {XT+n, n ≥ 1} are
independent identically distributed. with the same distribution as X1.

Proof. See [6].

Corollary 4.8. σ(T) and σ(XT+1, XT+2, . . .) are independent.

Proof. It suffices to recall that T is FT-measurable.

Definition 4.9. Given disjoint cylinder sets {Cn, n ≥ 1} in B∞ with n-
dimensional Borel bases such that {T = n} = {ω : (X1, X2, . . .) ∈ Cn}, 1 ≤
n < ∞, we define T(1) = T1 = T and T(j+1), j ≥ 1, via Tj = ∑

j
i=1 T(i), by

{T(j+1) = n} = {ω : (XTj+1, XTj+2, . . .) ∈ Cn}, 1 ≤ n < ∞. The stopping
variables {T(j), j ≥ 1} will be called copies of T.

Lemma 4.10. Let {Xn, n ≥ 1} be independent identically distributed random
variables and T a finite {Xn}-time. If T0 = 0, T(1) = T, and {T(j), j >

1} are copies of T, then, setting Tm = ∑m
j=1 T(j), the random vectorsVm =

(T(m), XTm−1+1, XTm−1+2, . . . , XTm), m ≥ 1, are independent identically dis-
tributed.

Proof. See citechow1997probability.

Corollary 4.11. If T is a finite {Xn}-time, where {Xn, n ≥ 1} are independent
identically distributed random variables, then the copies {T(n), n ≥ 1} of T are
independent identically distributed random variables.
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4.1 Stopping Time Equations

Theorem 4.12. (Wald’s Equation) Let {Xn, n ≥ 1} be independent identi-
cally distributed random variables on (Ω,F , P), Sn = ∑n

i=1 Xi, n ≥ 1, and let
{Fn, n ≥ 1} constitute an increasing sequence of sub-σ-algebras of F with (i) Fn

and σ(Xn+1) independent, n ≥ 1. If E[X1] exists and T is an {Fn}-time with
E[T] < ∞, then

E[ST] = E[X1]E[T].

Proof. See citechow1997probability.

Corollary 4.13. If {Xn} are independent identically distributed random variables
for which E[X1] exists and T is an {Xn}-time with E[T] < ∞, then, setting
Sn = ∑n

i=1 Xi, Theorem 4.12 holds.

Theorem 4.14. Let {Xn} be independent identically distributed random variables,
let Sn = ∑n

i=1 Xi, and let T be a finite {Xn}-time for which E[ST] exists.

(a) If E[X1] exists and either E[X1] ̸= 0 or E[T] < ∞, then Theorem 4.12
holds.

(b) If P(|X1| > n) = o(n−1) and E[T] < ∞, then E[ST ]
E[T] =

limn→∞ E[X11{|X1|≤n}], and when ST is integrable, Sn
n

P−→ E[ST ]
E[T] .

Proof. See citechow1997probability.

Corollary 4.15. Let {Xn, n ≥ 1} be independent identically distributed random
variables, let Sn = ∑n

i=1 Xi and let T be an integrable {Xn}-time. If
nP(|X1| > n) = o(1) and E[X1 1{|X1|≤n}] has no limit as n → ∞, then E[ST]

does not exist.

Theorem 4.16. (Second Moment analogue of Wald’s Equation) If {Xn}
are independent random variables with E[Xn] = 0, E[X2

n] = σ2 < ∞, Sn =

∑n
i=1 Xi, n ≥ 1 and T is an {Fn}-time with E[T] < ∞ where Fn ⊇ σ(X1, . . . , Xn)

and Fn and σ(Xn+1) are independent, n ≥ 1, then

E[S2
T] = σ2E[T].
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Proof. See citechow1997probability.

Corollary 4.17. If {Xn} are independent identically distributed random variables
with E[X1] = 0, E[X2

1] = σ2 < ∞ and T is an {Xn}-time with E[T] < ∞, then
Theorem 4.16 holds.

Proof. See citechow1997probability.

Proposition 4.18. (Brownian Motion Stopping Time) Let τ = min{t ≥
0 : B(t) ∈ {a,−b}|B(0) = 0} be the stopping time of Brownian motion, then
E(τ) = ab. If we consider σ ̸= 1, σ > 0, then E(τ) = ab

σ2 .

Proof. From [10], we know that pa = b
a+b , a > 0, b > 0., 0 = E[B2

0 − 0] =
E[B2

τ − τ], hence E[τ] = E[B2
τ] = a2P(Bτ = −a) + b2P(Bτ = b) = ab.

When a variance term is introduced, σB(t), σ > 0, then σB(t) ∈ {a,−b} iff
B(t) ∈

{
a
σ ,− b

σ

}
yielding E(τ) = ab

σ2 .

Lemma 4.19. Let {Xn, n ≥ 1} be independent identically distributed random
variables and T = inf{n ≥ 1 : Xn ∈ B}, where B is a linear Borel set such that
0 < P{X1 ∈ B} < 1. If T0 = 0, Tn = ∑n

j=1 T(j), n ≥ 1, where {T(j), j ≥
1} are copies of T, then setting Yn = XTn , Zn = ∑Tn−1<j<Tn Xj, n ≥ 1,
{Y1, Z1, Y2, Z2, . . .} is a sequence of independent variables.

Proof. See citechow1997probability.

Theorem 4.20. (Stone) If Sn = ∑n
j=1 Xj, n ≥ 1, where {Xn, n ≥ 1} are inde-

pendent identically distributed random variables with E[X1] = 0, E[|X1|] > 0,
then

lim sup
n→∞

Sn

n1/2 = ∞ = − lim inf
n→∞

Sn

n1/2 , a.s.

Proof. See citechow1997probability.



Chapter 5

The Forager Problem

With the relevant framework already established, we can now address
the forager problem by developing a model.

5.1 The Model

The forager problem involves determining the most efficient strategy
for an entity to locate randomly distributed resources. We will take the
random searches approach by assuming the forager will wander through
space looking for nodes with a heavy-tailed random walk pattern. The
nodes the forager must locate are uniformly distributed on Rd d ≥ 1, with
certain density ρ = N/A, N being the amount of nodes counted in a re-
gion with measure A. The forager will start at a certain position p0, and
will check for existing targets within a distance rv from his actual position
Brv(p). If at least one node exists in Brv(p), it will move to the closest target
in a straight line. If no target is found, it will decide to relocate to a new
position. During the motion, if a node is spotted, the forager will stop and
move in a straight line towards the target. If no target is encountered after
it has finished moving, a new relocating decision will be made. Repeating
the loop. The forager will move at constant velocity v and the displace-
ment decision will be determined by the product of two random random
variables, length L and direction D. L is a heavy-tailed univariate power
law distribution that provides us with the total distance the forager will
travel. D will supply us the direction of the displacement in space (mainly
in the form of angles). The forager has no memory of past visited nodes
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34 The Forager Problem

and assumes there is no privileged direction, so the same likelihood will
be allocated to all possible directions.

The last relevant consideration in the problem is the result in the in-
teraction between the forager and the encountered node. We will say a
forager (or the act of foraging) is destructive if nodes disappear after being
encountered, non-destructive otherwise.

Example 5.1. A sphinx moth searching for plants to feed on the nectar
of their flowers. Once all the flowers have been harvested, it will take
a while for the nectar to be replenished. This scenario could match the
destructive foraging model because even if the flowers may be resupplied
by the following day, they become unavailable for the rest of the moth’s
foraging session.

We have considered in all instances that the probability distribution for
the relocation length l is:

fl(z) =
(µ − 1)rµ−1

v

zµ 1(rv,∞) dz, a > 1, rv > 0. (5.1)

5.2 General Results

We assume that targets are distributed according to a Poisson distribu-
tion of intensity ρ, that is, if N(Br) is the number of targets in a d-ball of
radius r

P(N(Br) = k) =
1
k!

 ρπd/2rd

Γ
(

d
2 + 1

)
k

exp

− ρπd/2rd

Γ
(

d
2 + 1

)


Now if Λ is the random distance to one target given a position x we have

P (Λ > λ) = P(N(Bλ) = 0) = exp

− ρπd/2λd

Γ
(

d
2 + 1

)
 ,
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and the density of Λ is given by

fΛ (λ) = − d
dλ

P (Λ > λ) =
ρπd/2dλd−1

Γ
(

d
2 + 1

) exp

− ρπd/2λd

Γ
(

d
2 + 1

)
 ,

in other words
Λd ∼ Exponential (α)

with

α =
ρπd/2

Γ
(

d
2 + 1

) .

In particular, the mean distance between targets is

E (Λ) = E
(

d√
Λd
)
=
∫ ∞

0
αu1/de−αudu

=
Γ( 1

d + 1)
α1/d =

Γ( 1
d + 1)Γ

(
d
2 + 1

)1/d

π1/2ρ1/d .

Another interesting quantity we can compute is how long the flight can be
witout finding a target. Let S this random variable. The d-volume cover by
the foreager in a flight with lenght x is given by

Vx :=
π

d−1
2 rd−1

v x

Γ
(

d−1
2 + 1

) +
πd/2rd

v

Γ
(

d
2 + 1

) .

Then assuming a Poisson distribution for the targets we have

P (S = 0) = P (N(Brv) ̸= 0) = 1 − e
−ρ

πd/2rd
v

Γ( d
2 +1)

and
P (S > x) = P (N(Vx) = 0) = e−ρVx ,

then, the density for x > 0 is

fS(x) = − d
dλ

P (S > x) = ρ
π

d−1
2 rd−1

v

Γ
(

d−1
2 + 1

) e
−ρ

π
d−1

2 rd−1
v x

Γ( d−1
2 +1) e

−ρ
πd/2rd

v
Γ( d

2 +1) .



36 The Forager Problem

Consequently

E (S) = e
− πd/2rd

v
Γ( d

2 +1)
Γ
(

d−1
2 + 1

)
ρπ

d−1
2 rd−1

v
.

We assume random flights with random lenght l with density given by 5.1.
Let le the effective flight defined as the random variable given by

le := l ∧ S,

then for z > 0, since l and S are independent

P (le > z) = P (l > z, S > z) = P (l > z)P (S > z) ,

also
P (le = 0) = P (S = 0) .

Consequently for z ≥ 0

fle(z) = fl(z)P (S > z) + P (l > z) fS(z)

and
E (le) =

∫
R

z fl(z)P (S > z)dz +
∫

R
zP (l > z) fS(z)dz.

A first approximation could be to replace S by the constant λ ≡ E (S) ,
then

E (le) ≈
∫ λ

rv
z fl(z)dz + λP (l > λ)

= (µ − 1) rµ−1
v

{(
λ−µ+2

2 − µ
− r−µ+2

v

2 − µ

)
+

λ−µ+2

µ − 1

}

=

(
µ − 1

rv1−µ(2 − µ)

)
(λ2−µ − rv

2−µ) + rµ−1
v λ2−µ

=

(
µ − 1
2 − µ

)(
λ2−µ − rv

2−µ

rv1−µ

)
+

λ2−µ

r1−µ
v

.

It is worth remarking that this approximation matches the expression for
the mean flight distance ⟨l⟩ that is provided in [16].

The exact computation gives

E (le) =
∫ ∞

rv
(µ − 1)

(rv

z

)µ−1
e−ρVzdz +

∫ ∞

rv
rv

(rv

z

)µ−2
ρ

d
dz

Vze−ρVzdz

+
∫ rv

0
ρ

d
dz

Vze−ρVzdz,
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that can be written in terms of incomplete gamma functions. The probabil-
ity of doing a flight without finding a target is given by

P (S > l) =
∫ ∞

rv
P (S > l|l = u) fl(u)du

=
∫ ∞

rv
P (S > u) fl(u)du =

∫ ∞

rv
e−ρVu fl(u)du.

By using the same approximation as above

P (S > l) ≈ P (l < λ) = 1 −
(rv

λ

)µ−1

and the mean number of flights before finding a target will be

1
1 − P (S > l)

=

(
λ

rv

)µ−1

It is noteworthy that λ
rv

µ−1
matches the expression for expected number of

flights between successes of a destructive forager (Nd) presented by [16].
Since the expressions lack closed form and we have to rely on approxi-

mate results, we took on the the cases with dimensions one and two. The
simulations have been run in programs written in C++ and their code can
be found in the following GitHub repository [?]. The programs’ function-
ality can be split in two main blocks. The node generation and the forager
simulation. To improve the simulation performance, the programs rely on
direct computations and do not lean on ticks to run checks. This saves time
by reducing the amount of operations needed and improves precision by
not missing the cases between refreshes. We also used 128 bit data to min-
imize floating point errors. Most simulations were also run in batches of
1000 total successes. This means a map (not necessarily randomly gener-
ated) of nodes hosted a forager until it collected 1000 nodes.
It is worth noting that relevant data like travel distance, encountered nodes
and total relocation decisions taken are monitored.

5.3 One Dimensional Forager

The one dimensional case is the simplest case. The nodes ni ∈ R and D
is a Bernoulli(1

2) experiment with P(positive displacement) =
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P(negative displacement) = 0.5. This means the forager performs a heavy-
tailed symmetric random walk between two targets. Once a target is reached,
depending on whether the foraging is destructive or not, two things hap-
pen. Assuming the i-th node is encountered:

• if the forager is destructive, the i-th node disappears and the forager
finds itself performing the heavy-tailed symmetric random walk be-
tween ni−1 and ni+1.

• if the forager is non-destructive, he will move away from the i-th
node and could either end up landing on a neighbouring node (ni−1
or ni+1), or in some space in-between ni−1 and ni, or, in the middle
ground of ni and ni+1.

In order to generate the nodes for the one dimension simulation, we
take the fixed length regions [iA, (i + 1)A), i ∈ {−j,−j + 1, · · · , j − 2, j −
1}, j ∈ N. The amount of nodes assigned to each interval follows a one
dimension Poisson distribution of parameter ρA. The allocated nodes in
each region get their position assigned following a uniform distribution
over it. By Theorem 2.26 and Proposition 2.31, we can guarantee the nodes
in [−jA, jA] are are uniformly distributed in the region. We also sort the
nodes by position to ensure we have an ordered vector of nodes. Forager
is then placed in some random position p ∈ [−jA, jA], the closest nodes n
and m are located and it is checked whether (d(p, n) ∧ d(p, m)) ≤ rv holds
or not. If the inequality doesn’t hold, this means the nodes are beyond the
forager’s vision field, so a displacement will occur (increasing the taken
decision counter). l is provided by the power law RNG and the direction
is given by the Bernoulli RNG. Let l̂ be the displacement, we calculate the
future position q = p + l̂, and then check if q is within bounds (q > n + rv

and q < m − rv) or not. If it is within bounds, then the forager position
is updated (p = q) and the total travelled distance gets increased by |l̂|.
If q is outside bounds, we check whether the forager would encounter n
(q ≤ n+ rv) or m (q ≥ m− rv), let k be the node that gets overtaken, then the
total travelled distance gets increased by d(p, k), the forager position gets
updated p = k and the total encountered nodes counter gets increased.
If the forager is destructive, the foraged node disappears, the two closest
nodes to the forager are located, and the process repeats. If the forager
is non-destructive, the logic follows the same steps as the destructive case
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with the difference that the rummaged node is restored after the forager
leaves it, and the closest nodes are updated a second time after the node
gets restored.

In order to ensure the simulations behave as intended, some were run
with big values of µ and sparse nodes (λ >> rv).
If we assume µ > 3, the variance is finite and the forager behaves following
Brownian motion. Considering the nodes are on average λ units from each
other, we assume the forager finds itself in some intermediate value after
having left a node. We can use Proposition 4.18 to compute the expected
stopping time of the forager. We assume the lower bound node is located
at the origin, and thus the other node is at position λ. Due to the sparsity
(and for the sake of simplicity), λ − rv ∼ ∞. Therefore, the forager will be
located at

E[l] =
∫ ∞

rv
z
(µ − 1)rv

µ−1

zµ dz =
µ − 1
µ − 2

rv.

The variance of the displacements matches the second moment since
the random walk is symmetric:

E[l2] =
∫ ∞

rv
z2 (µ − 1)rv

µ−1

zµ dz =
µ − 1
µ − 3

rv
2.

Thus the stopping time is

E[τ] =

µ−1
µ−2rv

(
λ − µ−1

µ−2rv

)
µ−1
µ−3rv2

=
µ − 3
µ − 2

λ

rv
− µ − 1

µ − 2
.

For big values of µ we have that the average distance travelled between
successes is

E[τ] =
µ − 3
µ − 2

λ

rv
− µ − 1

µ − 2
→ λ

rv
− 1 ∼ λ

rv
.

Assuming the velocity of the forager is 1, we can identify total travelled
distance S with τ.

We highlight that λ
rv

does not take into account that the forager had
already relocated away from the node, so we have to add the distance from
this change in position

L =
λ

rv
+ ⟨l⟩ = λ

rv
+

µ − 1
µ − 2

rv ∼ λ

rv
.
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For rv = 0.25, µ ≈ 30 and λ = 100, we encountered that total displace-
ment between successes reasonably matched the expected L = 400, so we
proceeded to simulate the Lévy flights cases for 1 < µ ≤ 3 with rv = 0.25
and 1 < λ ≤ 100.

For both the destructive and the non-destructive cases we encountered
that for small λ, µ hardly contributes to the results for the simulations.
However, in the destructive case, as the region depletes µ’s role becomes
more relevant.
For the destructive the smaller µ values would minimize the total displace-
ment between nodes after several targets get foraged. Bigger µ values make
it more likely to waste time in already depleted regions. It is also a reason-
able observation because as it is stated in [15] and [16], the optimal strategy
in destructive foraging is to move in a straight line.
In the non-destructive case, the simulations show that µ → 2 minimizes
S. We remark that for this case, the data seems to match the theoretical
expressions of the average flight count (Nn and Nd) from [16].

For example, after 10000 successes, for a non-destructive forager with
parameters rv = 0.25, λ = 100, we encountered:

µ Nn S

1.1 1.35 42

2 12.82 18

5 178 59

27.5 405 105

Note: We did not delve further into this scenario. For the the sake of
completeness and for anyone curious enough, we provide the expressions
for E[l], E[l2] and E[τ] without taking limits :

E[l] =
µ − 1
µ − 2

(
−rµ

v λ2 + 2rµ+1
v λ − rµ+2

v + r2
v(λ − rv)µ

)
rv(λ − rv)µ

E[l2] =
µ − 1
µ − 3

(
−rµ

v λ3 + 3rµ+1
v λ2 − 3rµ+2

v λ + rµ+3
v + r3

v(λ − rv)µ
)

rv(λ − rv)µ
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E[τ] =

µ−1
µ−2

(
−rµ

v λ2+2rµ+1
v λ−rµ+2

v +r2
v(λ−rv)µ

)
rv(λ−rv)µ

λ− µ−1
µ−2

(
−rµ

v λ2+2rµ+1
v λ−rµ+2

v +r2
v(λ−rv)µ

)
rv(λ−rv)µ


µ−1
µ−3

(
−rµ

v λ3+3rµ+1
v λ2−3rµ+2

v λ+rµ+3
v +r3

v(λ−rv)µ
)

rv(λ−rv)µ

5.4 Two Dimensional Forager

The two dimensional forager adds an extra layer of complexity. The
forager is no longer bounded by two nodes in a line, and rv takes on a
more relevant role. ni ∈ R2 and D is the two-dimension unitary vector
−→u = (cos(d), sin(d)), d provided by a uniform distribution in [0, 2π) (so
displacement would be the vector

−→
l = l(cos(d), sin(d)) in Cartesian coor-

dinates). The relocation could also be understood as a random vector in
polar coordinates (l, d), with l being the radius and d the angle. If no node
is within distance rv, the forager will perform a heavy-tailed random walk
sweeping a surface of 2lrv squared units worth of area (the semicircle of
radius rv ahead of the forager by the end of the displacement has the same
surface as the semicircle that was scouted before motion began). Check 5.1
to see a case example.

It is worth noting that once the first relocation decision has been made,
what would be the check for nodes within rv distance is no longer needed
because that check had already been made when q position was reached in
the previous flight.
If a target is found in the initial circle, the forager will relocate to its position
in a straight line. If a node is spotted while the forager is in motion, it will
change direction so that it heads straight to the target. Destructive and
non-destructive foraging behave in a manner similar to one dimensional
case. The main difference being we no longer have the forager bound by
the ni−1 and ni+1 nodes since there’s no order relation and the forager
could decide to relocate in some direction that misses them due to parallax
effect. The average distance between nodes is replaced by the mean free
path with expression λ ≡ 1

2rvρ [16].
Regarding the program functionality, the node generating algorithm

produces uniformly distributed points in [−A
2 , A

2 ]x[
−A

2 , A
2 ]. The target den-

sity in the region is ρ = M/A2, where M is the total amount of points
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Figure 5.1:
Inspired from [16]. The region sweeped by the forager. In dark grey the
area before it has decided to relocate around the initial position p. Light

grey denotes the total area swept by the Lévy flight until the forager
reaches the final position q = p +

−→
l .

allocated. The forager starts at (0, 0) and checks if some target is within it’s
range of vision. If there is at least one, the forager will move in a straight
line towards it. Otherwise a relocation will occur.
In order to find the closest node while moving, the algorithm performs the
following steps:

• each node is assigned a circumference of radius rv (the circumference
of influence),

• the line between the initial position p and what would be the final
position, q is parametrized,

• a loop checks possible intersections between the line and all circum-
ferences of influence,

• if at least one intersection is found, the forager will relocate towards
the closest one, and then heads to the node in a straight line,
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• if no intersection is found, the forager reaches position q and a new
displacement decision is made.

In the same way used in the one dimensional case, if the forager is de-
structive, the visited node is removed from the list. In the non-destructive
scenario, the node gets restored once the flight immediately after leaving
its position finishes.

A fail-safe check was also implemented to halt the simulation in the
case the forager went out of bounds.

It is essential to point out that unlike in the one dimensional case, where
getting significant amounts of data is relatively fast, the two dimensional
simulations can take days to run, making it hard to have results.

All in all, we encountered that for small values of λ, the value of µ was
not really significant, and as λ increased, improved efficiency for µ → 2
was witnessed. The data collected for lambda > 100 also seems to follow
this pattern, but due to limited computation resources and time constraints,
not enough simulations were made to be assertive over it. We also noticed
that ⟨l⟩ ≈ E(le), so assuming constant distance between targets was a rea-
sonable choice.

However,two discrepancies were encountered.
First, in the average flight count between successes of a non-destructive for-

ager Nn ≈
(

λ
rv

) (µ−1)
2 expression provided by [16], we consistently observed

that, as λ
rv

increased, Nno would steadily grow until some point around
λ ≈ 50, at which Nno ≈ 2Nn. A possible reason this disparity was en-
countered is that across the many simulations that were run, in a portion
of them the average flight count would be greatly smaller (mostly because
the forager would get stuck looping around two close nodes d(nj, nk) < rv).
These trapped forager simulations were considered faulty and discarded
under the reasonable assumption that no actual flights would be occur-
ring. In hindsight, these cases could have counterbalanced the observed
mean flight count making Nno ≈ Nn hold.

The second discrepancy encountered was in the average flight count

between successes of a destructive forager Nd ≈
(

λ
rv

)µ−1
. For a fixed

λ/rv, the increase of µ would make the theoretical approximation Ndt

greatly outpace the observed values Ndo . For the purpose of better un-
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Figure 5.2: Log-log plot of Ndt (y-axis) as a function of Ndo (x-axis). Each
point represents the theoretical Ndt and the observed Ndo mean flight
count between successes for a given µ value. In red the polynomial

regression curve that fits the data points.

derstanding the discrepancy, a total of 109 simulations were run. By tak-
ing fixed λ = 100 and rv = 0.25, we picked µ using a uniform distribu-
tion RNG over the interval [1.02, 2.98], and the forager would be moni-
tored until 1000 successes were registered. A second degree polynomial
regression was was used to compare the observed values with the the-
oretical ones. As it can be seen in 5.2, the resulting polynomial Ndt =

0.174562498298977Ndo
2 + 0.696946763611601Ndo could be a good approxi-

mation when correlating both expressions for 1 < µ ≤ 3. However it does
not properly reflect the observed non-linear (in the log-log plot) behaviour
of Ndt(Nd0).
A possible explanation for this disparity could be that λ was not big enough.
This seems unlikely since a stable behaviour was perceived for the non-
destructive case at smaller values of λ. The most likely justification is that
the simulations were cut short by halting them after 1000 successes.



Chapter 6

Conclusions

In this work, we have laid the mathematical background underlying
the observed optimal foraging strategies employed by entities looking for
randomly distributed resources. With it, a strong formal basis was set to
compare different foraging strategies with simulations. We highlighted the
importance of Lévy flights and their impact on foraging efficiency while
also corroborating many existing results. A deeper understanding of the
forager problem could also help in fields beyond the behavioural ecology
field. For example, it may aid in the enhancement of currently existing
frameworks that rely on random searches to optimize parameters in com-
plex systems (like artificial intelligence). Moreover, some aspects that could
be of interest have been left unaddressed. As an illustration, it has been
shown that Lévy motion converges to a stable law with the appropriate
rescaling parameters, which means the characteristic function could have
been used to obtain information about the foraging process without relying
on simulations.

Further matters that could be discussed involve adding more intricacies
to the model used. For instance, how would the destructive forager behave
if nodes reappeared after a while? What if new nodes randomly spawn
and disappear at certain paces? How about the case in which the forager
is not in Rd with the usual metric but is located on some kind of mani-
fold which increases the cost of travelling in certain directions? Would the
model change if some some nodes took longer to rummage than others?
After all, nectar producing flowers refill after some time has passed. They
also get pollinated or wither becoming unavailable as food providers while
buds bloom becoming readily available sources. Each plant may have a dif-
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ferent amount of flowers, each with varying amounts of nectar. At the same
time, foragers may not always find themselves scavenging on flatlands.
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