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Abstract

The idea of zero-knowledge proof was first introduced by Goldwasser, Micali
and Rackoff [GMR89] and has found its way to many real-world applications. The
growing need for privacy in information exchange (e.g. transactions, digital sig-
natures, commitment schemes, ...) lead to the development of proofs that yield
nothing more than their validity.

We introduce the building blocks for zero-knowledge proofs through mathe-
matical rigour, allowing the reader to gain a solid foundation to research further
related topics. We explore some necessary notions of cryptography and probabil-
ity, as well as computation theory by utilizing Turing machines as an automation
abstraction. We delve into the theory of decision problems and the consequent
classification through complexity classes, specially P , NP , BPP and IP . We
use the concepts of repetition and interaction to prove that the decision error for
languages in BPP and IP can be decreased exponentially and explore the exam-
ple of Graph Non-Isomorphism. We introduce the idea of zero-knowledge interactive
proof systems and define some variations of its definition. We explore the exam-
ple of Graph Isomorphism and conclude showing that the sequential repetition of
zero-knowledge interactive proofs is indeed a zero-knowledge interactive proof.

2020 Mathematics Subject Classification. 03D10, 03D15, 68Q04, 68Q10, 68V15
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Chapter 1

Introduction

Information is a powerful asset in today’s digitalized world. The need to keep
private data private has been a major topic in Cryptography and Mathematics and
new models of information exchange have appeared in recent years.

Zero-Knowledge proofs were first introduced in the late 80s [GMR89] and are now
being embedded in many systems and protocols for their main property: convey-
ing no additional information other than the least necessary. Their use is booming with
the rise of Blockchain technologies and Cryptocurrencies, where public transactions
need to be verified while keeping information of each party secret. Let us explore
an illustrative example of zero-knowledge proof systems:

Alice and Bob are in front of a circular cave with a single entrance. The only
way to walk through the entire cave is by using a door in the middle of the
cave that can only be opened with a magic word. Alice claims that she knows
the magic word and Bob asks her to prove it. Alice doesn’t want anyone to
know the magic word. Also, she doesn’t want anyone except for Bob to know
whether she knows the magic word or not, so Bob and her decide to follow a
process to convince him and keep any unwanted third party from finding out
whether she knows it or not.

There are only two ways to reach the door from the outside entrance: left (i.e.
path A) and right (i.e. path B). The "proof" proceeds as follows:

• Bob waits outside the entrance and Alice goes in the cave. While Bob is
outside and unable to see Alice, she chooses a path between A and B and
goes to the door.

• Bob enters the cave and screams either A or B. If Alice knows the magic

1



2 Introduction

Figure 1.1: Scheme of a successful iteration

word, then she will exit the cave through the path instructed by Bob.

• If Alice exits through the wrong side, then it will be clear that she doesn’t
know the magic word. However, if she exits through the right side, then
Bob can be convinced that she might know the magic word (with 50%
probability).

Since Alice could have been (by chance) on the same path instructed by Bob,
they decide to repeat the process enough times to convince Bob that she most
likely knows the magic word. If a third party was spying on them, the only
thing they would see is Alice going in the cave, Bob going in as well and then
both of them exiting the cave. Hence, if they wanted to know whether Alice
knows the word, they would have to redo the whole process (or ask Bob, but
he could be untrustworthy).

This example clearly illustrates what we already introduced: a first entity
(Alice) with undisclosed information (the magic word) and a second entity (Bob)
who wants to be convinced of the validity of the first entity’s claim. It would be
easy for the first entity with the secret information (i.e. the prover) to just disclose
it to the second entity (i.e. the verifier), but it is often not desirable to do so. We
will be formalizing all these ideas and proving some results that are crucial for the
secure implementation of protocols with the property of "yielding nothing more
than the validity of the claim" (i.e. zero-knowledge proof systems).

The contents of this work are probability based, meaning that there is a chance
that our protocols can fail. To mitigate this problem, we will use the power of
repetition and independence to reduce this error as much as necessary, making it
negligible for all practical purposes. It seems somehow intuitive that, repeating
many times an action that has a chance of succeeding to prove something, and we
succeed every time (or most times in some cases) we will be confident on the va-
lidity of the proof. It is shown in this work that, if we accept a really small chance



1.1 Organization of the Work 3

of error, we can prove claims revealing "no knowledge" (i.e. "zero knowledge") on
the specifics of the proof.

It seems pretty general to talk about information and knowledge. We will discuss
further what we mean in Section 3.2.2, but we could sum it up as computational
power. Zero-knowledge will be used to verify claims on problems that are hard to
compute (e.g. factoring a large natural number into its prime factors). If an entity
knows something that is not computable in a reasonable amount of time (without
some extra data), then it is understandable that, unless it possesses such informa-
tion, it won’t be able to solve a related problem (we won’t normally ask to solve
the original claim, since it would reveal too much information; instead, we will
pose some other problems that can only be solved if the prover entity actually has
the knowledge it claims to have).

This computational component leads to the introduction of decision problems
and complexity theory. We will classify problems by their computational complexity
and delve into those with a probabilistic aspect. This will relate with the afore-
mentioned "acceptable" error in zero-knowledge proofs and will lead to the formal
definition of these. It will be made clear that this definition can vary depending
on its practical use, but it will always focus on keeping any verifier entity away
from any knowledge known by the prover entity.

The last underlying idea in this work is interaction. In the cave example above,
we clearly see how the two entities need to interact with one another. We will
explore the interaction between machines (i.e. Turing machines) to build interactive
proof systems, which are the building blocks for zero-knowledge interactive proof
systems. Though we will end our discussion considering interaction between two
parties, in real-world applications these are expensive in terms of time and compu-
tation resources. This leads to the study of non-interactive systems and protocols,
which we propose as a continuation of this work to match the current state of
investigation in the field.

1.1 Organization of the Work

This work is heavily based on [Gol06] and follows a similar schema as chap-
ters 1 and 3 of said resource. The organization’s intention is to lay the foundations
needed to define and understand the concept of zero-knowledge interactive proof sys-
tems.
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The content is split in three different parts: preliminaries, interaction and zero-
knowledge proofs. In particular,

1. Preliminary introduces some basic concepts related to cryptography and re-
sults from probability theory used in other sections.

2. Interaction focuses on computational theory (Turing machines and complex-
ity classes) and the effect of interaction on proof systems (with an example
on Graph Non-Isomorphism).

3. Zero-Knowledge Proofs culminates with the main topic of this work through
definitions, formal and informal examples (e.g. Graph Isomorphism) and im-
portant results.

Every section is built on top of the previous one, so a reader with knowledge on
the first (or second) parts, can skip them and go to the next.

At the end, there are two appendixes:

A Quadratic Resiudosity Protocol contains a practical example of the zero-knowledge
proof system presented in Section 4.1.1. It consists of a computer program
in C language and its results.

B Graph Isomorphism Proof contains a separate part of the extensive proof from
Proposition 4.5.
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1.2 Notation Cheatsheet

Symbol Description

X, Y, Z, . . . Random variables

E(X) Expected value of the variable X

Var(X) Variance of the variable X

Pr[X = x] Probability of X to be equal to x (similar for ≥ and ≤)

Σ Alphabet

a, b, c, . . . Letters or symbols of an alphabet Σ

x, y, z, . . . Strings or sequence of letters

L Language or set of strings

(x, L) Statement s.t. x ∈ L

|x| Length of x

{0, 1}∗ Set of all finite strings

p(·), t(·) Positive polynomials p and t

M Machine

M(x) Machine’s output on input x

RL Boolean Relation

P ,NP ,BPP , IP Complexity Classes

ITM Interactive Turing Machine

σ Identity of a machine

P Prover

V Verifier

⟨A, B⟩(x) Output of a pair of ITMs on input x

c(·) Completeness bound

s(·) Soundness bound

Table 1.1: Notation



Chapter 2

Preliminary

2.1 Introduction to Cryptography

Cryptography (in the modern sense) aims to create and build schemes that
can handle information with secrecy (i.e. keep secrets away from any unwanted
entity). These schemes must withstand any malicious attempts of deviating them
from their desired functionality.

The design of cryptographic systems shouldn’t be based on possible strategies
taken by some malicious party (since these could escape our imagination or ap-
pear with technological breakthroughs) but based on strong and firm foundations.
The only assumptions to be taken on any adversary are related to their computa-
tional power. In this sense, cryptography can be said to be based on computational
complexity.

With the arrival of the digital era, the topics embraced by cryptography have
grown in number.

2.1.1 Encryption Schemes

Originally, cryptography focused on the construction of encryption schemes (i.e.,
schemes that provide secret communication over insecure media). These schemes
consist of two algorithms: an encryption and a decryption algorithm. There are
normally two parties involved in the process: a sender and a receiver. The sender
first applies the encryption algorithm to the original message (called plaintext),
obtaining the encrypted message (called ciphertext). Then, he sends the ciphertext
to the receiver, who proceeds to apply the decryption algorithm retrieving this
way the original message.

6
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Figure 2.1: Encryption scheme

If there would be a third malicious party "listening" on the communication
(say a wire-tapper) they would only be able to read the ciphertext. The wire-tapper
wants to gain insight on the plaintext and he could very well know which decryp-
tion algorithm is being used. To prevent this, the receiver must have some infor-
mation that is not known to anyone else (maybe just the sender, if it’s a trusted
party). This secret information is known as the decryption key.

At this point, it is fair to raise the question of what do we mean by "security".
The modern definition is based on the computational complexity to extract any in-
formation about the plaintext from the cihpertext. In this modern sense, we are
pondering the question of the feasibility of the endeavour, not whether it is possi-
ble or not. For example, using "pseudo-random generators" (see [Gol06]) one can
increase the length of a key to make it seem longer and more secure. Another
example that stems from the computational complexity definition is public-key en-
cryption schemes (see [KL07]) which have an asymmetric key distribution. In these
schemes, the encryption key is released to the public, who is able to encrypt the
plaintext. The catch is that there exists a private key needed to decrypt the cipher-
text. So even if someone has a plaintext and an encryption key, it is not feasible to
extract the decryption key.

2.1.2 Digital Signatures

The digital era brought great changes to the way people did business and a
new problem arose when trying to secure commitments between different parties:
the need to create unique and non-reproducible signatures that could identify
a party in a digital setting. Digital signatures are, roughly speaking, the digital
version of handwritten signatures. These new signatures needed to fulfill three
requirements:

• to be efficiently generated on a specific document,



8 Preliminary

• to be efficiently verified as a signature from a specific party on a specific doc-
ument, and

• to not be efficiently reproducible by someone other than the original party.

In other words, the aim is to provide all parties of the system a way of making
self-binding statements and of ensuring that one party cannot make statements
that would bind another party.

Following this train of thought, one could redefine cryptography as the study
of problems in which one wishes to limit the effects of dishonest parties. These
problems are treated in a more general way by "fault-tolerant" protocols.

2.1.3 Fault-Tolerant Protocols

A cryptographic or "fault-tolerant" protocol (see [Sch24]) is a distributed algo-
rithm describing precisely the interactions between two or more entities, achieving
certain security objectives.

Cryptographic protocols concern themselves with problems such as simultane-
ity (e.g. contract signing), secure implementation (e.g. implementing secret and
incorruptible voting) and zero-knowledge proofs. In this work, we will focus entirely
on the latter problem. We will give the theoretical basis to define and understand
zero-knowledge proof systems from a probabilistic and computational point of
view as explained in [Gol06].
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2.2 Probability Theory Background

This section focuses on probabilistic concepts used throughout this work and
expects some basic prior knowledge from the reader (e.g. probability distribution,
expected value, variance, etc.). We will work only with discrete random variables,
unless stated otherwise.

2.2.1 Basic Concepts

Throughout this work, we will consider sets and sequences of discrete random
variables. Next, we will introduce some of the most important ideas that we will
need.

Definition 2.1. Two random variables X and Y are identically distributed if each ran-
dom variable has the same probability distribution.

Definition 2.2. Two random variables X and Y are independent if Pr[X = x ∩ Y =

y] = Pr[X = x] · Pr[Y = y], where x and y are possible values for X and Y, respectively.

Definition 2.3. A Bernoulli distribution is a discrete distribution that has two possible
outcomes: a success (denoted by 1) and a failure (denoted by 0). We denote the probability
of success by p and the probability of failure by 1 − p. If a random variable X follows a
Bernoulli distribution with parameter p, we write X ∼ Bernoulli(p).

It will be useful to know the expected value and the variance of a Bernoulli
distribution. Let X ∼ Bernoulli(p), then

E(X) = p

Var(X) = p(1 − p)

We will be working with Bernoulli distributions where the probability is not ex-
plicitly given, but instead it is bounded. Namely, let X1 and X2 be Bernoulli dis-
tributions with bounded probability and let p ∈ [0, 1] be the lower (resp. upper)
bound for the success probability of X1 (resp. X2). Then

Pr [X1 = 0] ≤ 1 − p, Pr [X1 = 1] ≥ p

or

Pr [X2 = 0] ≥ 1 − p, Pr [X2 = 1] ≤ p

The expected values are:
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E(X1) = Pr [X1 = 0] · 0 + Pr [X1 = 1] · 1 = Pr [X1 = 1] ≥ p

and

E(X2) = Pr [X2 = 0] · 0 + Pr [X2 = 1] · 1 = Pr [X2 = 1] ≤ p

The variances depend on the distance between p and 1
2 and whether they are

a lower or an upper bound. We will only need two combinations out of these
four. Let X1 and X2 be Bernoulli distributions with bounded probability and let
p1, p2 ∈ [0, 1] such that p1 ≥ 1

2 and p2 ≤ 1
2 be the lower (resp. upper) bound for

the success probability of X1 (resp. X2). Then

Var(X1) ≤ p1(1 − p1)

and

Var(X2) ≤ p2(1 − p2)

Figure 2.2: Sketch of the bounds for X1 and X2

2.2.2 Chebyshev’s Inequality

Chebyshev’s inequality will be used in this work to proof certain propositions.
A first step to understand its use is Markov’s inequality, which is typically used in
cases in which one knows very little about the distribution of the random variable.

Proposition 2.4 (Markov’s Inequality). Let X be a non-negative discrete random vari-
able and v a real number. Then

Pr [X ≥ v] ≤ E(X)

v
(2.1)
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Proof.

E(X) = ∑
x

Pr [X = x] · x

≥ ∑
x<v

Pr [X = x] · 0 + ∑
x≥v

Pr [X = x] · v

= Pr [X ≥ v] · v

If one has a good upper bound of a random variable’s variance, a "possibly
stronger" bound can be derived from Markov’s inequality.
Note. It will be useful to remember the definition of variance:

Var(X)
def
= E

[
(X − E(X))2] (2.2)

Proposition 2.5 (Chebyshev’s Inequality). Let X be a random variable, and δ > 0.
Then

Pr [|X − E(X)| ≥ δ] ≤ Var(X)

δ2 (2.3)

Proof. We define a random variable Y := (X − E(X))2 and apply the Markov
inequality:

Pr [|X − E(X)| ≥ δ] = Pr
[
(X − E(X))2 ≥ δ2]

2.1
≤

E
[
X − E(X))2]

δ2
2.2
=

Var(X)

δ2

Chebyshev’s inequality is particularly useful to analyze the error probability
of approximation via repeated sampling.

2.2.3 Chernoff’s Bound

Chernoff’s bound can be found in many different shapes, depending on the
purpose of its use. We will use it in the context of independent random variables
with the same expected value.
Note. The random variables X1, X2, . . . , Xn are (totally) independent if

Pr [X1 = x1, X2 = x2, . . . , Xn = xn] = Pr [X1 = x1]Pr [X2 = x2] · · ·Pr [Xn = xn]
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Proposition 2.6 (Chernoff’s Bound). Let q ≤ 1
2 , and let X1, X2, . . . , Xn be independent

random variables taking values 0 or 1 almost surely, so that Pr [Xi = 1] = q for each i.
Then for all ε, 0 < ε ≤ q(1 − q), we have

Pr


∣∣∣∣∣∣∣∣∣

n

∑
i=1

Xi

n
− q

∣∣∣∣∣∣∣∣∣ ≥ ε

 < 2 · e
− ε2

2q(1 − q)
·n

(2.4)

2.2.4 Ensembles

An important concept that arises in computational complexity is the property
of two sequences (e.g. sequences of strings or sequences of random variables)
to be indistinguishable by any efficient algorithm. This discussion concerns two
infinite sequences of distributions (rather than two fixed distributions) and these
are called probability ensembles.

Definition 2.7 (Probability Ensemble). Let I be a countable index set. An ensemble
indexed by I is a sequence of random variables indexed by I. Namely, any X = {Xi}i∈I ,
where each Xi is a random variable, is an ensemble indexed by I.

We will normally use a subset of {0, 1}∗ where {0, 1}∗ is the set of all finite
strings (see Definition 3.3). An ensemble of the form X = {Xw}w∈{0,1}∗ will have
each Xw ranging over strings of length p(|w|) (see definition 3.5), where p(·) is
some positive polynomial.



Chapter 3

Interaction

In this chapter, we will focus on the concept of interaction and its (surprisingly)
powerful utility. Firstly, we will set the foundations of what (or rather who) exactly
interacts with what and we will formalize it. Secondly, we will introduce some
cases in which we can have interaction and why does it make a difference whether
there is interaction or not. Finally, we will see the main topic of this chapter with
interactive proof systems and the well-known (non-trivial) example of Graph Non-
Isomorphism.

3.1 The Computational Model

As mentioned in previous sections, the modern definition of cryptography
is based on computational complexity. In this section, we will go through the
definitions of language and some complexity classes and we will establish some
assumptions taken throughout this work.

3.1.1 Decision Problems

A computational problem is just a question that can be solved by an algo-
rithm. A decision problem [Koz97] is a "yes" or "no" question. More specifically,

Definition 3.1. A decision problem is a function with a one-bit output: "yes" or "no".
To specify a decision problem, one must specify

• the set A of possible inputs, and

• the subset B ⊆ A of "yes" instances.

For example, to decide if a given graph is connected, the set of possible inputs
is the set of all graphs and the "yes" instances are the connected graphs.

13
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We will always take the set of possible inputs to a decision problem to be the set
of finite-length strings over some fixed alphabet (definitions below). Other types
of data (e.g. graphs, the set of natural numbers N, trees, etc.) can be encoded
naturally as strings. This abstraction allows us to deal with a single type of data
and a few basic operations.

Definition 3.2. An alphabet is any finite set Σ. We call elements in Σ letters or sym-
bols and denote them by a, b, c, ... .

Definition 3.3. A string over Σ is any finite-length sequence of letters. We denote them
by x, y, z, ... .

Definition 3.4. A language L is a set of strings . A statement is a tuple (x, L) s.t.
x ∈ L.

Definition 3.5. The length of a string x is a function | · | : L → N returning the number
of letters in x. We denote it by |x|.

The alphabet we will be using is Σ = {0, 1} (i.e. bits) and L ⊂ {0, 1}∗ where
{0, 1}∗ is the set of all finite strings. An example of a string x ∈ L could be
x = 01010 and its length is |x| = 5.

At the beginning of this section, we already established the need of an algo-
rithm to solve a decision problem. The "tools" we are going to use to compute these
algorithms and find out whether a string x is a solution (i.e. x ∈ L) or not (i.e.
x /∈ L) are Turing machines.

Turing machines are a model of computation believed to compute any algo-
rithm (we will use the concept of Turing machine as a synonym of algorithm).
The formal definition won’t be used much throughout this work, but it is good to
have a rigorous definition [Gas14] of it, since it establishes our theoretical base.

Definition 3.6 (formal). A (deterministic) Turing machine M is a tuple (Q, Σ, δ, s)
where

• Q is a finite set of states. It has the states s, qacc, qrej.

• Σ is a finite alphabet. It contains the symbol #.

• δ : Q \ {qacc, qrej} × Σ → Σ × {L, R} × Q is a transition function determining the
next move.

• s ∈ Q is the start state, qacc is the accept state, qrej is the reject state.

We use the following convention:
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1. On input x ∈ Σ∗, x = x1 · · · xn, the machine starts with tape

#x1x2 · · · xn#### · ··

that is one way infinite.

2. The head is initially looking at the xn.

3. If δ(q, σ) = (τ, L, p) then the symbol σ is overwritten with τ, the head moves to the
Left and the state changes from q to p.

4. If δ(q, σ) = (τ, R, p) then the symbol σ is overwritten with τ, the head moves to
the Right and the state changes from q to p.

5. If the machine halts in state qacc then we say M ACCEPTS x. If the machine halts
in state qrej then we say M REJECTS x.

We will denote the output of M on input x as

M(x) = 1 ⇐⇒ M ACCEPTS x

M(x) = 0 ⇐⇒ M REJECTS x

From the previous definition, we will mainly use the notion of deciding (i.e.
accepting or rejecting a string x). In this sense, we can talk about the decidability of
a language:

Definition 3.7. A language L is decidable if there is a Turing Machine M such that

x ∈ L → M(x) = 1

x /∈ L → M(x) = 0

3.1.2 Complexity Classes P and NP

We will now define complexity classes that capture the power of efficient al-
gorithms. As is common in complexity theory, these classes are defined in terms
of decision problems, where the set of inputs where the answer should be "yes" is
specified by a language L ⊂ {0, 1}∗.

Each complexity class is defined by the type of algorithm (i.e. Turing machine)
that decides over a set of languages.

Definition 3.8. A deterministic algorithm A is an algorithm that, given a particular
input, will always produce the same output. We say that A runs in polynomial time
if there exists a polynomial t : N → N such that, for every input x ∈ {0, 1}∗, its
computation takes at most t(|x|) steps.
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Definition 3.9 (alternative). A deterministic Turing machine M is a hypothetical
machine capable of simulating any deterministic algorithm. We say that M runs in poly-
nomial time if the simulated deterministic algorithm runs in polynomial time.

Having established the first type of algorithms, we can now define a complex-
ity class:

Definition 3.10 (Complexity Class P). The complexity class P is the class of languages
L for which there exists a deterministic polynomial-time Turing Machine M such that

• ∀x ∈ L ⇒ M(x) = 1,

• ∀x /∈ L ⇒ M(x) = 0.

The complexity class P is associated with languages that are efficient to recog-
nize. The complexity class NP is associated with computational problems having
solutions that, once given, can be efficiently tested for validity.

Definition 3.11 (Complexity Class NP). The complexity class NP is the class of
languages L for which there exists a Boolean relation RL ⊆ {0, 1}∗ × {0, 1}∗ and a poly-
nomial p(·) such that

• RL can be recognized in (deterministic) polynomial time, and

• x ∈ L iff there exists a y such that |y| ≤ p(|x|) and (x, y) ∈ RL.

Such a y is called a witness for membership of x ∈ L.

Then, NP consists of the set of languages for which there exists short proofs of
membership that can be efficiently verified. It is an open problem to determine
whether P ̸= NP .

3.1.3 Complexity Class BPP

For the sake of this work, we need to consider algorithms that include a prob-
abilistic element to them. Probabilistic algorithms play a central role in cryptog-
raphy. They are needed to allow legitimate parties to generate secrets. There are
two equivalent ways in which we can view probabilistic Turing Machines (i.e. al-
gorithms).

One way is to allow the Turing Machine to make random moves (i.e. inter-
nal "coin tosses"). Looking back at Definition 3.6, we can modify the transition
function:

δ : Q − {qacc, qrej} × Σ × {0, 1} → Σ × {L, R} × Q
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The new transition function maps each pair of (⟨state⟩, ⟨symbol⟩, ⟨coin toss⟩) to
two possible triples of the form (⟨symbol⟩, ⟨direction⟩, ⟨state⟩). At each step, the
machine chooses at random (with probability 1/2 for each possibility) and then
acts accordingly. These random choices are known as the internal coin tosses of
the machine. Under these conditions, a machine M outputs a random variable,
denoted by M(x), induced by its internal coin tosses. We denote by Pr[M(x) = y]
as the probability that, on input x, machine M outputs y. Since we consider only
polynomial-time machines, we can assume, without loss of generality, that the
number of coin tosses made by M on input x is independent of their outcome and
is denoted by tM(x).

Another way of looking at probabilistic Turing Machines is to add an auxiliary
input tape with all the coin tosses (i.e. we consider deterministic Turing Machines
with two inputs). From this point of view, the coin tosses are "external" (i.e. ex-
ternal coin tosses). We denote the auxiliary input as r which is uniformly chosen
r ∈ {0, 1}tM(x) and the output of a machine M as M(x)r (i.e. output of M on input
x and auxiliary input r).

We sum up these concepts with the next two definitions:

Definition 3.12. A probabilistic algorithm A is an algorithm which relies on a certain
degree of randomness (typically uniformly random "coin tosses"). We say that A runs
in polynomial time if there exists a polynomial t : N → N such that, for every input
x ∈ {0, 1}∗ and every sequence of coin tosses, its computation takes at most t(|x|) steps
and a polynomial amount of random bits.

Definition 3.13. A probabilistic Turing Machine M is a hypothetical machine capable
of simulating any probabilistic algorithm. We say that M runs in polynomial time if the
simulated probabilistic algorithm runs in polynomial time.

The complexity class capturing these computations is the class denoted BPP
(definition below). The probability we are talking about in this complexity class
refers to the event in which the machine makes the correct verdict on string x.

Definition 3.14 (Complexity Class BPP). The complexity class BPP (i.e. Bounded-
Probability Polynomial Time) is the class of languages L for which there exists a proba-
bilistic polynomial-time Turing machine M such that

• ∀x ∈ L ⇒ Pr[M(x) = 1] ≥ 2
3 ,

• ∀x /∈ L ⇒ Pr[M(x) = 0] ≥ 2
3 .
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The phrase bounded probability indicates that the success probability is bounded
away from 1/2. By replacing the constant 2/3 by any other constant grater than
1/2 will not change the class defined. In fact, the constant 2/3 can be replaced by
1 − 2−|x| and the class will remain invariant [Vad12]. Let us proof these last two
statements.

Before starting the proofs, it is very important to establish what type of prob-
ability distribution fits the description of a probabilistic Turing Machine. As we
have seen in the formal Definition 3.6 of Turing Machine, the only possible out-
puts are 0 or 1. When working with languages in BPP , the probabilities attached
to the two possible outputs are bounded by a constant (on the length of the input
x). Namely, if q ∈ [0, 1] then

• ∀x ∈ L ⇒ Pr [M(x) = 0] ≤ 1 − q, Pr [M(x) = 1] ≥ q,

• ∀x /∈ L ⇒ Pr [M(x) = 0] ≥ 1 − q, Pr [M(x) = 1] ≤ q.

This will lead us to work with bounds on the expected value and variance of a
probabilistic Turing machine (see Section 2.2.1).

Proposition 3.15 (Equivalent definition of BPP . Part 1). Let L be a language.
L ∈ BPP iff there exists a polynomial p(·) and a probabilistic polynomial-time Turing
machine M such that

• ∀x ∈ L ⇒ Pr[M(x) = 1] ≥ 1
2 +

1
p(|x|) , and

• ∀x /∈ L ⇒ Pr[M(x) = 0] ≥ 1
2 +

1
p(|x|) .

Proof. =⇒) Suppose L ∈ BPP . By Definition 3.14, there exists a probabilistic
polynomial-time Turing machine M with two-sided error probability at most 1

3 .
Let p = k be a positive constant value polynomial. Using the same machine M,
we can find a bound for k:

2
3
≥ 1

2
+

1
k

⇐⇒ k ≥ 6

Finally, since L ∈ BPP , using p = k ≥ 6 and M, we obtain the desired result.

⇐=) Let M be a probabilistic polynomial-time Turing machine as described
above. Let us construct another probabilistic polynomial-time Turing machine M′

that, on input x, runs p(|x|)2 independent copies of M (i.e. Mi) and rules by
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majority. Namely,

M′(x) :=

p(|x|)2

∑
i=1

Mi(x)

p(|x|)2 , and

M′ ACCEPTS x ⇐⇒ M′(x) >
1
2

We are going to apply Chebyshev’s inequality to show that M′ satisfies the propo-
sition.
First, let us find a bound for the expected value E(M′(x)) and the variance
Var(M′(x)) of M′. Let x ∈ L, then

E(M′(x)) = E

[ p(|x|)2

∑
i=1

Mi(x)

p(|x|)2

]
Mi(x)
=

independent

p(|x|)2

∑
i=1

E (Mi(x))

p(|x|)2 ≥

=
����p(|x|)2

(
1
2 +

1
p(|x|)

)
����p(|x|)2 =

1
2
+

1
p(|x|) (3.1)

Var(M′(x)) = Var

[ p(|x|)2

∑
i=1

Mi(x)

p(|x|)2

]
Mi(x)
=

independent

p(|x|)2

∑
i=1

Var (Mi(x))

p(|x|)4 ≤

=
����p(|x|)2

(
1
2 +

1
p(|x|)

) (
1
2 −

1
p(|x|)

)
p(|x|)�4

=

1
4 −

1
p(|x|)2

p(|x|)2 (3.2)

Where the last inequality comes from having the largest possible variance (i.e.
when Pr[M(x) = 1] = 1

2 +
1

p(|x|) ).
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Suppose that x ∈ L (analogous for x /∈ L). Then

Pr
[

M′(x) ≤ 1
2

]
= Pr

[
M′(x) +

1
p(|x|) ≤ 1

2
+

1
p(|x|)

]
3.1
≤

≤ Pr
[

M′(x) +
1

p(|x|) ≤ E(M′(x))
]
=

= Pr
[

M′(x)− E(M′(x)) ≤ − 1
p(|x|)

]
=

= Pr
[
−M′(x) + E(M′(x)) ≥ 1

p(|x|)

]
≤

≤ Pr
[∣∣M′(x)− E(M′(x))

∣∣ ≥ 1
p(|x|)

]
=

= Pr
[∣∣M′(x)− E(M′(x))

∣∣ ≥ δ
] 2.3
≤

≤ Var [M′(x)]
δ2

3.2
≤

1
4 −

1
p(|x|)2

����p(|x|)2

1
����p(|x|)2

=
1
4
− 1

p(|x|)2 ≤ 1
4
≤ 1

3

and finally

Pr
[

M′(x) >
1
2

]
= 1 − Pr

[
M′(x) ≤ 1

2

]
≥ 2

3

We have seen that the error bound decreases by repetition (with a speed of
O(nc) on input’s length n). It is possible to get an exponential decrease on the
bound:

Proposition 3.16 (Equivalent definition of BPP . Part 2). Let L be a language.
L ∈ BPP iff for every positive polynomial p(·) there exists a probabilistic polynomial-
time Turing machine M such that

• ∀x ∈ L ⇒ Pr[M(x) = 1] ≥ 1 − 2−p(|x|), and

• ∀x /∈ L ⇒ Pr[M(x) = 0] ≥ 1 − 2−p(|x|).

Proof. =⇒) Suppose L ∈ BPP . By Definition 3.14, there exists a probabilistic
polynomial-time Turing machine M with bounded probability at most 2

3 . Let p be
any positive polynomial.
We will use a similar setup as the previous proof. Let us construct another proba-
bilistic polynomial-time Turing machine M′ that, on input x, runs p(|x|) copies of
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M and rules by majority. Namely,

M′(x) :=

p(|x|)

∑
i=1

Mi(x)

p(|x|) , and

M′ ACCEPTS x ⇐⇒ M′(x) >
1
2

We are going to apply Chernoff’s inequality to show that M′ satisfies the proposi-
tion.
Note. Let p ∈ R[x] be any positive real polynomial. Then

e−p(x) < 2−p(x) for a big enough x (3.3)

Suppose that x ∈ L (analogous for x /∈ L). Then

Pr
[

M′(x) ≤ 1
2

]
= Pr

[
M′(x)− 1

3
≤ 1

6

]
=

= Pr
[
−M′(x) +

1
3
≥ −1

6

]
≤

≤ Pr
[∣∣∣∣M′(x)− 1

3

∣∣∣∣ ≥ 1
6

]
=

= Pr
[∣∣M′(x)− q

∣∣ ≥ ε
] 2.4
≤

≤ 2 · e
− ε2

2 · q(1 − q)
p(|x|)

=

= 2 · e
−

( 1
6

)2

2 · 1
3

(
1 − 1

3

) p(|x|)
=

= 2 · e
− 1

16
p(|x|) 3.3

< 2−p(|x|)

and finally

Pr
[

M′(x) >
1
2

]
= 1 − Pr

[
M′(x) ≤ 1

2

]
≥ 1 − 2−p(|x|)

⇐=) Let p be a positive polynomial and M a probabilistic polynomial-time Turing
machine satisfying the proposition. Since we can pick any polynomial, let us find
a bound for it:

1 − 2−p(x) ≥ 2
3

⇐⇒ 1
3
≥ 2−p(x) ⇐⇒ 2p(x) ≥ 3 ⇐⇒ p(x) ≥ log(3)

log(2)
(3.4)

Finally, choosing any polynomial p(x) ≥ log(3)
log(2) we get the desired result (e.g.

p(x) = 2). Namely,
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• ∀x ∈ L ⇒ Pr[M(x) = 1] ≥ 1 − 2−p(|x|) 3.4
≥ 2

3 , and

• ∀x /∈ L ⇒ Pr[M(x) = 0] ≥ 1 − 2−p(|x|) 3.4
≥ 2

3 .

The main use for these last two propositions is to understand that the proba-
bility of making an incorrect verdict can be made as small as necessary.

Definition 3.17. A function f : N → R is negligible if for every positive polynomial
p(·) there exists an N such that for all n > N,

f (n) <
1

p(n)

In other words, f is negligible if it decreases faster than the reciprocal of any polynomial.

Proposition 3.18. Let f : N → R be a negligible function and p be a polynomial. The
function f ′(n) := p(n) · f (n) is negligible.

Then, negligible functions stay that way when multiplied by any fixed polyno-
mial. We conclude that that languages in BPP can be recognized by probabilistic
polynomial-time Turing machines with a negligible error probability. It follows that
an event that occurs with negligible probability would be highly unlikely to occur
even if we repeated the experiment polynomially many times.

3.1.4 Intractability Assumptions

The differentiation between NP and BPP is of great interest, since we con-
sider intractable those tasks that cannot be performed by probabilistic polynomial-
time machines. On the other hand, the adversarial tasks in which we shall be
interested can be performed by non-deterministic polynomial-time machines (be-
cause the solutions, once found, can be tested for validity). Thus, the content of
this work is only interesting if NP ⊈ BPP (it is not known whether BPP ⊈ NP).
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3.2 Interactive Proof

In this section we introduce interactive proof systems which play an impor-
tant role in zero-knowledge interactive proofs and we will present the non-trivial
example of graph isomorphism. Firstly, we will discuss what do we understand
by proof and knowledge and introduce the concept of interactive Turing machines.
Secondly, we will define how these machines interact with each other. Finally, we
will explore the aforementioned example.

3.2.1 Proofs

The concept of proof can be said to have a static nature in mathematics. Proofs
are viewed as fixed objects derived from axioms and commonly-agreed (or even
self-evident) deviation rules and are as fundamental as their consequences (i.e.
theorems).
In other areas of study, proofs can be said to have a more dynamic nature (e.g.
proving your age by showing your ID, evidence in a court of law, etc.). By dynamic
we mean to say that it requires an interaction and this is the approach most ap-
propriate to understand the notion of zero-knowledge proofs.

Having established that we will understand proofs from an interactive point
of view, there are two concepts that arise naturally: the prover and the verifier.
The prover is the entity providing the proof, which can sometimes be hidden or
implicit. In contrast, the verifier is usually more explicit and its role is central in
our dynamic definition of proof. The role of the verifier is known as the verification
process and it is considered to be relatively easy (the burden is placed on the prover
to supply the proof). It is important to note that the verifier has a "distrustful atti-
tude" towards the prover (else, no proof would be needed). This is not so different
in traditional mathematics, where the prover usually requires a long time while
the verifier (i.e. the mathematics community) usually needs less time to asses its
validity.

Two fundamental properties of any verification procedure are: soundness and
completeness. Soundness captures the ability of the verifier to not accept false
statements from any prover. Completeness captures the existence of some prover
with the ability to convince the verifier of a true statement (belonging to some
predefined set of true statements). Though it is known that not every set of true
statements has a proof system, in this work we will focus only on those that do
have one.
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The complexity class NP captures the aforementioned asymmetry between
prover and verifier. Recall from the Definition 3.11 that any language L ∈ NP is
characterized by a polynomial-time-recognizable boolean relation RL such that

L = {x : ∃y s.t. (x, y) ∈ RL}

and (x, y) ∈ RL iff |y| ≤ p(|x|) for some positive polynomial p(·). Hence, the
verification procedure for membership claims of the form "x ∈ L" consists of ap-
plying the (polynomial-time) algorithm for recognizing RL to the claim x and a
prospective proof y. Any y satisfying (x, y) ∈ RL is considered a proof of mem-
bership of x ∈ L. Thus, correct statements are the only ones to have proofs in this
proof system. Here it is easy to see that the verification procedure is "easy" (i.e.
polynomial-time), but coming up with proofs may be "difficult".

3.2.2 Knowledge

The concept of knowledge is central to the discussion of zero-knowledge proofs.
Though defining what knowledge is would seem the correct procedure, it is a
very complex topic. Thus, we will focus on what a gain in knowledge is and we
will not give a formal definition on the previous question. This approach, though
seemingly imprecise, it is sufficient regarding cryptography and, more precisely,
zero-knowledge proofs.

As we have seen in this work, the fact that some statement (i.e. (x, L)) is recog-
nizable in polynomial-time (i.e. x ∈ L) is of great importance, since it is efficient
to compute. Thus, knowledge is related to computational difficulty and we say
that we gain knowledge if we receive a result of a computation that is infeasible to
us and we gain no knowledge if we can compute the result ourselves.

To get a better understanding on this discussion, let’s see an example. Consider
a conversation between Alice and Bob in which Bob asks Alice whether or not a
graph is Eulerian. We know that a graph is Eulerian iff it is connected and all
its vertices have even degrees. We can run a polynomial-time algorithm (actually
linear-time) to check such a statement, so Bob has gained no knowledge, since he
could run the algorithm himself. In contrast, if Bob asks Alice whether or not the
graph is Hamiltonian and Alice (somehow) answers this question, then we can
say that Bob has gained some knowledge (since we don’t know any polynomial-
time algorithm to answer such question). We say that Bob has gained knowledge
from the interaction if his computational ability, concerning the publicly known
graph, has increased.
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3.2.3 Interactive Turing Machines

A central paradigm in zero-knowledge proofs is interaction (e.g. between
Alice and Bob in the previous example). We will understand interaction as the
exchange of information (in a very broad sense) between two (or more) parties on
a common input (i.e. the statement to be proved). We first introduce the notion of
interactive machine and then the notion of interaction between two such machines.

Definition 3.19 (Interactive Turing Machine). An interactive Turing machine (ITM)
is a (deterministic) multi-tape Turing machine. The tapes and the names of their contents
are:

• a read-only input tape containing the input,

• a read-only random tape containing the random input,

• a read-and-write work tape,

• a write-only output tape containing the output,

• a read-only communication tape containing the message received,

• a write-only communication tape containing the message sent, and

• a read-and-write switch tape consisting of a single cell containing the current active
machine.

Each ITM is associated with a single bit σ ∈ {0, 1}, called its identity. An ITM is said
to be active if the content of its switch tape equals the machine identity. Otherwise the
machine is said to be idle. While being idle, the state of the machine, the locations of
its heads on the various tapes and the contents of the writable tapes of the ITM are not
modified.
Without loss of generality, the machine movement on both communication tapes are in
only one direction (e.g. from left to right).

We will consider the content of the random input to be uniformly and indepen-
dently chosen from an infinite sequence of internal coin tosses. Hence, interactive
Turing machines are probabilistic. Though there is an infinite amount, consider
that, in a finite computation, only a finite prefix is read.
The distinction between the input tape and the read-only communication tape
might seem unnecessary (as well as between the output tape and the write-only
communication tape), but we establish such difference because we will not con-
sider a single interactive Turing machine. Instead, we will always consider a pair
of interactive Turing machines where some of its tapes match.
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Figure 3.1: Interactive Turing machine schema

Definition 3.20 (Linked ITMs). Two interactive Turing machines are said to be linked
if they have opposite identities, their input and switch tapes coincide and the read-only
communication tape of one machine coincides with the write-only communication tape of
the other machine and vice versa. The other tapes of both machines (i.e. the random tape,
the work tape and the output tape) are distinct.

Figure 3.2: Linked interactive Turing machines (Input* is equal for both machines)

Definition 3.21 (Joint Computation of Two ITMs). The joint computation of a
linked pair of ITMs, on a common input x, is a sequence of pairs representing the local
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configurations of both machines. That is, each pairs consists of two strings, each represent-
ing the local configuration of one of the machines. In each such pair of local configurations,
one machine (not necessarily the same one) is active, while the other machine is idle. The
first pair in the sequence consists of initial configurations corresponding to the common in-
put x, with the content of the switch tape set to zero. If one machine halts while the switch
tape still holds its identity, then we say that both machines have halted. The outputs of
both machines are determined at that time.

It is interesting to notice that none of the interactive Turing machines have an
individual input tape, even thought they do have an individual random tape. We
will consider this added feature further down this work, since it is important for
practical purposes to give a local input tape to both machines (e.g. to use some
partial piece of information only available to the specific interactive Turing ma-
chine). Until then, we will keep this simpler definition, since it is sufficient to
demonstrate the power of this concept.

It is natural to consider the time-complexity of an interactive Turing machine
(as we did for other Turing machines). The time-complexity of an interactive
Turing machine is dependent on the length of its input.

Definition 3.22 (Complexity of an ITM). We say that an interactive Turing machine
A has time-complexity t : N → N if for every interactive Turing machine B and every
string x, it holds that when interacting with machine B, on common input x, machine A
always (i.e. regardless of the content of its random tape and B’s random tape) halts within
t(|x|) steps. In particular, we say that A is polynomial-time if there exists a polynomial
p such that A has time-complexity p.

We have seen that time-complexity is an upper bound of the machine and it
is independent of the content of the input. In particular, an interactive Turing
machine with time-complexity t(·) may read, on input x, only a prefix of total
length t(|x|) of the messages sent to it.

3.2.4 Interactive Proof Systems

As mentioned in a previous section 3.2.1, there are two central figures in any
proof (from our dynamic definition of proof): the prover and the verifier. A proof
system is defined in terms of its verification procedure (i.e. the verifier) and proofs
are external to this verification procedure (i.e. from the prover). We stress that
the verification procedure does not generate proofs, it only checks their validity.
Interactive proof systems capture the nature of "interaction with the outside" and
can consist of several message exchanges (as long as the verification procedure
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happens in polynomial time).

We also mentioned that a proof system must fulfill two important properties:
completeness (i.e. accept true statements) and soundness (i.e. not accept false state-
ments). These properties will be now given with a certain error margin, in other
words, there is a probabilistic aspect to interactive proof system. Hence, we can
redefine completeness as accepting true statements with a "high" probability and
soundness as accepting false statements with "low" probability.
As we saw with probabilistic Turing machines, the output of a pair of interactive
Turing machines is a random variable. Let A and B be a pair of interactive Tur-
ing machines and let x be their common input. We denote ⟨A, B⟩(x) the random
variable representing the output of B after interacting with machine A on input x,
when the random input on each machine is uniformly and independently chosen.

Definition 3.23 (Interactive Proof System). A pair of ITMs (P, V) is called an inter-
active proof system for a language L if machine V is polynomial-time and the following
two conditions hold:

• Completeness: ∀x ∈ L,

Pr [⟨P, V⟩(x) = 1] ≥ 2
3

• Soundness: ∀x /∈ L and every interactive Turing machine B,

Pr [⟨B, V⟩(x) = 1] ≤ 1
3

From the definition, we can observe the probabilistic nature of interactive proof
systems in both the completeness and the soundness conditions. It is important
to understand some details in the definition. Firstly, the verifier V must be a
probabilistic polynomial-time Turing machine, while the prover P has no resource
bounds on its computing power. Secondly, the completeness property refers only
to the interaction between the prescribed prover P and the verifier V, while the
soundness condition refers to all potential machines interacting with V (i.e. all
potential provers). Finally, the error probability is very similar to that of the com-
plexity class BPP ans can be made exponentially small by repetition.

We can now define a new complexity class containing all languages with an inter-
active proof system.

Definition 3.24 (Complexity Class IP). The class IP consists of all languages having
interactive proof systems.
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We will now see an interesting relationship between the class IP and the
classes NP and BPP . This shows the power of interactive proof systems and the
potential for zero-knowledge proofs.

Proposition 3.25. Let L ∈ NP . Then, there exists an interactive proof system for the
language L.

Proof. Let L ∈ NP . By Definition 3.11, there exists a polynomial p(·) and a
boolean relation RL recognizable in polynomial time, such that

L = {x : ∃y s.t. |y| ≤ p(|x|) and (x, y) ∈ RL}

Lets consider the pair of interactive Turing machines (P, V) such that, on com-
mon input x, P sends a witness y and V checks the conditions |y| ≤ p(|x|) and
(x, y) ∈ RL. Clearly, V is polynomial-time (since both conditions are computable
in polynomial time by definition) and

• ∀x ∈ L,

Pr [⟨P, V⟩(x) = 1] = 1 ≥ 2
3

• ∀x /∈ L, and every interactive Turing machine B,

Pr [⟨B, V⟩(x) = 1] = 0 ≤ 1
3

This is a specific type of proof system, where the interaction is unidirectional
(from prover to verifier) and both machines are deterministic (i.e. no probabilistic
aspect). Thus, the verifier will always accept an input in the language (i.e. output
1) and reject any other input (i.e. output 0).

Corollary 3.26. BPP ∪NP ⊆ IP

Proof. It follows from Proposition 3.25 that NP ⊆ IP . Let L be a language such
that L ∈ BPP . Languages in BPP can be viewed as each having a verifier
that decides on membership without interaction. Namely, let V be an interactive
Turing machine with a configuration following that of the existing probabilistic
polynomial-time Turing machine from Definition 3.14. Let P be any prover. Then,

• ∀x ∈ L,

Pr [⟨P, V⟩(x) = 1] = Pr [V(x) = 1] ≥ 2
3
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• ∀x /∈ L, and every interactive Turing machine B,

Pr [⟨B, V⟩(x) = 1] = Pr [V(x) = 1] ≤ 1
3

It follows that BPP ⊆ IP .

It is an open problem whether or not BPP ⊆ NP .

As we saw with the complexity class BPP , we can change the constant bounds
in Definition 3.23 for other functions such that the class IP remains invariant.
These functions can be made negligible (see 3.17) by repetition so that the error
probability is as small as needed.

Definition 3.27 (Generalized Interactive Proof System). Let c, s : N → R be func-
tions satisfying c(n) > s(n) + 1

p(n) for some polynomial p(·). An interactive pair (P, V)

is called a (generalized) interactive proof system for the language L, with complete-
ness bound c(·) and soundness bound s(·), if

• (modified) Completeness: ∀x ∈ L,

Pr [⟨P, V⟩(x) = 1] ≥ c(|x|)

• (modified) Soundness: ∀x /∈ L and every interactive Turing machine B,

Pr [⟨B, V⟩(x) = 1] ≤ s(|x|)

The function g(·) defined as g(n) def
= c(n)− s(n) is called the acceptance gap of (P, V)

and the function e(·), defined as e(n) def
= max{1 − c(n), s(n)}, is called the error prob-

ability of (P, V). In particular, s is the soundness error of (P, V) and 1 − c is its
completeness error.

Figure 3.3: Bounds for a Generalized Interactive Proof System

Proposition 3.28. The following three conditions are equivalent:
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1. L ∈ IP (As in Definition 3.23).

2. L has a very strong interactive proof system: For every positive polynomial p(·),
there exists an interactive proof system for the language L, with error probability
bounded above by 2−p(·) (i.e. Definition 3.27 with two additional conditions: c(n) <
1 − 2−p(n) and s(n) > 2−p(n)).

3. There exists a positive polynomial p(·) and a generalized interactive proof system
for a language L, with acceptance gap bounded below by 1/p(·). Furthermore,
completeness and soundness bounds for this system (i.e. c(n) and s(n)) can be
computed in time polynomial in n.

Proof. We will only proof (1) ⇐⇒ (3), since (2) ⇐⇒ (1) can be easily derived
from it and the proof of Proposition 3.16.
3 =⇒ 1 ) Let (P′, V ′) be a linked pair of ITMs that, on input x, repeat p(|x|)2

times the interactive proof (P, V) and rule by number of accepting executions up
to s(|x|). Namely,

⟨P′, V ′⟩(x) :=

p2(|x|)

∑
i=1

⟨Pi, Vi⟩(x)

p2(|x|)
, and

(P′, V ′) ACCEPTS x ⇐⇒ ⟨P′, V ′⟩(x) > s(|x|)

We are going to apply Chebyshev’s inequality to show that (P′, V ′) satisfies the
completeness condition.
First, let us find a bound for the expected value E(⟨P′, V ′⟩(x)) and the variance
Var(⟨P′, V ′⟩(x)). Let x ∈ L, then:

E(⟨P′, V ′⟩(x)) = E

[ p(|x|)2

∑
i=1

⟨Pi, Vi⟩(x)

p(|x|)2

]
⟨Pi ,Vi⟩(x)
=

independent

p(|x|)2

∑
i=1

E (⟨Pi, Vi⟩(x))

p(|x|)2 ≥

=
����p(|x|)2c(|x|)

����p(|x|)2 = c(|x|) (3.5)

Var(⟨P′, V ′⟩(x)) = Var

[ p(|x|)2

∑
i=1

⟨Pi, Vi⟩(x)

p(|x|)2

]
⟨Pi ,Vi⟩(x)
=

independent

p(|x|)2

∑
i=1

Var(⟨Pi, Vi⟩(x))

p(|x|)4 ≤

=
����p(|x|)2c(|x|)(1 − c(|x|)

p(|x|)�4
=

c(|x|)(1 − c(|x|)
p(|x|)2 (3.6)
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Where the last inequality comes from having the largest possible variance (i.e.
when Pr[⟨P, V⟩(x) = 1] = c(|x|)).
Suppose that x ∈ L. Let us check the completeness bound:

Pr
[
⟨P′, V ′⟩(x) ≤ s(|x|)

]
= Pr

[
⟨P′, V ′⟩(x) +

1
p(|x|) ≤ s(|x|) + 1

p(|x|)

]
≤

≤ Pr
[
⟨P′, V ′⟩(x) +

1
p(|x|) ≤ c(|x|)

]
=

= Pr
[
⟨P′, V ′⟩(x)− c(|x|) ≤ − 1

p(|x|)

]
=

= Pr
[
−⟨P′, V ′⟩(x) + c(|x|) ≥ 1

p(|x|)

]
≤

≤ Pr
[∣∣⟨P′, V ′⟩(x)− c(|x|)

∣∣ ≥ 1
p(|x|)

]
=

= Pr
[∣∣⟨P′, V ′⟩(x)− E(⟨P′, V ′⟩(x))

∣∣ ≥ δ
] 2.3
≤

≤ Var [⟨P′, V ′⟩(x)]
δ2

3.6
≤

c(|x|)(1 − c(|x|)
����p(|x|)2

1
����p(|x|)2

=

= c(|x|)(1 − c(|x|) ≤ 1
4
≤ 1

3

and finally

Pr
[
⟨P′, V ′⟩(x) > s(|x|)

]
= 1 − Pr

[
⟨P′, V ′⟩(x) ≤ s(|x|)

]
≥ 2

3

Suppose that x /∈ L and let B be a interactive Turing machine. The soundness
bound is found in an analogous way to the completeness bound (changing the
rule bound appropriately), though we must consider a possible cheating B (i.e. B
doesn’t use independent coin tosses at every repetition). Though this could seem
as an issue, the verifier V ′ will only take independent internal coin tosses and
won’t be affected by this possibly cheating prover B [AB09].

1 =⇒ 3 ) Let s = 1
3 , c = 2

3 and p = 4. Then,

c > s +
1
p

and Pr[⟨P, V⟩(x) = 1] ≥ 2
3

Thus, any language in IP has a (generalized) interactive proof system with
negligible error probability. The proof to this proposition is similar to the proofs
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for Propositions 3.15 and 3.16 using repetitive executions. It is possible to prove it
by considering sequential repetitions or parallel repetitions, but the former is easier
(see [Gol06]).

3.2.5 Graph Non-Isomorphism

Alice claims that cola stored in a glass bottle tastes better than cola stored in
a can. Bob doesn’t believe her, so they decide to test Alice’s claim.
Bob selects randomly a bottle or a can of cola and pours it into a glass without
Alice seeing it. Alice drinks from the glass and tells Bob whether the cola
was stored in a can or in a bottle. If Alice is right, Bob is convinced of her
claim with a 50% probability. If they repeat the process, Bob will be further
convinced or Alice will be proven to be mistaken.

This story introduces the idea behind an interactive proof system for the lan-
guage known as Graph Non-Isomorphism (or GNI) [Rub17], which is the set of
pairs of non-isomorphic graphs. This language is not known to be in BPP ∪NP .

Let G and H be two graphs with n nodes and (P, V) an ITM described below.
On input G and H, the interactive proof system (P, V) for GNI will ACCEPT if
G ≇ H (i.e. G and H are not isomorphic) and will REJECT if G ∼= H (i.e. G and H
are isomorphic):

1. V uses its private random coins to compute a graph G′ that is isomorphic to
G and a graph H′ that is isomorphic to H.

2. V then flips a coin to decide whether to send (G, G′) or (G, H′) to the prover.

3. P returns a bit indicating the result of coin flipped by V in step 2.

Pair sent to P Correct response if G ≇ H P response V output

(G, G′) ∼= ∼= Continue

(G, G′) ∼= ≇ Reject and Stop

(G, H′) ≇ ∼= Continue

(G, H′) ≇ ≇ Reject and Stop

Table 3.1: Table of possible response and outputs.
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Proposition 3.29. GNI ∈ IP .

Proof. If G is not isomorphic to H, then H′ is not isomorphic to G, so the prover
will always be able to determine whether it was sent (G, G′) or (G, H′) by simply
testing if the second graph is isomorphic to G (since the prover claims to have a
superior computational power). Therefore, if the two graphs are not isomorphic
and the prover and the verifier both follow the protocol, the prover can always
determine the result of the coin flip. Namely,

• ∀x = {G ≇ H} ∈ GNI,

Pr [⟨P, V⟩(x) = 1] = 1

However, if G and H are isomorphic, then G′ and H′ are statistically indistin-
guishable, since they are equivalent up to isomorphism. Therefore, the prover can-
not distinguish between (G, G′) and (G, H′) better than random guessing. More
formally, let q be the fraction of random permutations π such that the prover out-
puts that (G, π(G)) are not isomorphic. For a given round of the protocol, we
have the probability that the prover fails to pass the challenge is:

Pr [P fails the round] =
1
2

q +
1
2
(1 − q) =

1
2

This probability is over the graphs produced by the verifier, since both G′ and H′

are permutations of G. Since the prover cannot do better than random guessing
when G ∼= H, repeating the loop above twice will result in the following probabil-
ities:

• ∀x /∈ GNI, and every interactive Turing machine B,

Pr [⟨B, V⟩(x) = 1] ≤ 1
4

Therefore, the completeness and soundness conditions are fulfilled. Clearly, the
verifier V is polynomial-time, since it only computes a randomized permutation
of a graph and checks whether the answer of P is correct or not.



Chapter 4

Zero-Knowledge Proof

4.1 Zero-Knowledge Proof Systems

In this section, we will finally introduce the concept of zero-knowledge proof (also
known as ZKP). Firstly, we will explore some examples and define different types
of zero-knowledge proofs. Secondly, we will focus on the well-known protocol for
Graph Isomorphism. Finally, we will state a central result for zero-knowledge proofs
and explore further related concepts.

4.1.1 Motivation

The term zero-knowledge refers to the concept of proving a statement without
giving away "anything more" than the validity of the statement. As we have dis-
cussed previously, we say we gain knowledge if, after an interaction, we are able to
compute something we weren’t able to compute before.

Imagine you are driving your car and an officer stops you and asks whether
or not you have a driving permit. The most common thing to do is give your
physical driving license to the officer for him or her to check. In doing so, you
(i.e. the prover) has given a proof (i.e. the driving license) to the officer (i.e. the
verifier) and the officer can now easily accept or decline your proof. But there
is a "problem" in this interaction: the officer can get your personal information
from the driving license (when all he or she wanted to do was answer the ques-
tion Do you have a driving permit?). This is a clear example of an interaction that
is not zero-knowledge. Another example would be answering the question Are
these two graphs isomorphic? by giving away an explicit isomorphism between
them (see section 4.1.5).

35
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This motivates the research on zero-knowledge proof systems, where the in-
teraction yields nothing beyond the validity of the assertion (though we normally
refer to computational power, this is still a good depiction of the interest of zero-
knowledge).

Let us explore the well-known (and fairly simple) example of Quadratic Residu-
osity Protocol. It is a direct result of the Chinese remainder theorem that, knowing
the factorization of a natural number N, there is an efficient algorithm to check
if a given number is a quadratic residue and, if so, to find a square root [Tre15].
However, it is believed to be hard to find square roots and to check residuosity
modulo N if the factorization of N is not known.

Let N, r ∈ N be two integers such that N > r. We want to answer the question
Is there an x ∈ N such that x2 ≡ r mod N? A possible prover may claim to know
the value of x but doesn’t want to give it away. In order for a verifier to check
whether or not the prover knows the value of x, they can both interact in the
subsequent form:

• Common input: N, r ∈ N such that N > r and N be the product of two
unknown odd primes.

• The prover picks a random y ∈ N such that N > y and sends a := y2

mod N to the verifier.

• The verifier picks a uniformly distributed random bit b ∈ {0, 1} and sends it
to the prover.

• The prover sends back

c := y if b = 0

c := y · x mod N if b = 1

• The verifier outputs 1 if

c2 ≡ a mod N if b = 0

c2 ≡ a · r mod N if b = 1

and outputs 0 otherwise.

It is easy to see that, if the prover does know the value of x, then the output
of the interaction will always be 1 (verifier ACCEPTS with probability 1). On the
other hand, if the prover doesn’t know the value of x, the verifier REJECTS with
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probability 1
2 . Indeed, suppose r is not a quadratic residue. If the verifier chooses

b = 0 and the prover guesses it, then the verifier would ACCEPT a false claim with
probability 1

2 . Also, it is not possible that both a and a · r are quadratic residues. If
a ≡ y2 mod N and a · r ≡ w2 mod N, then r ≡ w2(y−1)2 mod N, meaning that
r is also a perfect square. Thus, the verifier REJECTS with probability 1

2 .

4.1.2 Simulation in ZKPs

Zero-knowledge is a property of the prescribed prover P in an interactive proof
system (P, V) for a language L. It captures P’s robustness against attempts (not
just from the prescribed verifier V) to gain knowledge by interacting with it. Thus,
we can say that whatever can be efficiently computed after interacting with P on
input x ∈ L can also be efficiently computed from x.

A central concept related to zero-knowledge proofs is the idea of simulation.
We have talked informally about what does it mean to be zero-knowledge, estab-
lishing that, if an interactive proof system is zero-knowledge, then there is no real
gain in computational power. Thus, we will always need some kind of algorithm
(i.e. Turing machine) to show that the interaction in the process can be simulated
without actually going through it.

The simulation paradigm postulates that whatever a party can (efficiently) do
by itself cannot be considered a gain from interaction with the outside. Thus, no
"real gain" can occur whenever we are able to present a simulation (the opposite
is not necessarily true: failure to provide a simulation of an interaction with the
outside does not necessarily mean that this interaction results in some "real gain").
A trivial example of languages with zero-knowledge interactive proof systems are
all languages in BPP (see Definition 3.14) in which the prover does nothing and
the verifier checks by itself whether to accept or reject the common input. In terms
of simulation, one can present for every probabilistic polynomial-time machine V∗

(i.e. for every verifier V∗) a simulator M∗ that is essentially identical to V∗.

4.1.3 Perfect ZKP

We will start with a natural and easy to understand definition (although more
"strict") of zero-knowledge interactive proof systems. In the next section, we will
"relax" this definition since it is not necessary in a practical sense.

Definition 4.1 (Perfect Zero-Knowledge). Let (P, V) be an interactive proof system
for some language L. We say that (P, V) is perfect zero-knowledge if for every proba-
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bilistic polynomial-time interactive machine V∗ there exists a probabilistic polynomial-time
algorithm M∗ such that ∀x ∈ L the following two conditions hold:

1. With probability at most 1
2 , on input x, machine M∗ outputs a special symbol de-

noted ⊥ (i.e. Pr [M∗(x) =⊥] ≤ 1
2 )

2. Let m∗(x) be a random variable describing the distribution of M∗(x) conditioned on
M∗(x) ̸=⊥. Namely, ∀α ∈ {0, 1}∗, Pr [m∗(x) = α] = Pr [M∗(x) = α|M∗(x) ̸=⊥].
Then, the following random variables are identically distributed (see Definition 2.1):

• ⟨P, V∗⟩(x) (i.e. the output of the interactive machine V∗ after interacting with
the interactive machine P on common input x)

• m∗(x) (i.e. the output of machine M∗ on input x, conditioned on not being ⊥)

Machine M∗ is called a perfect simulator for the interaction of V∗ with P.

The last definition is a formalization of the previous discussions on the con-
cept of yielding nothing. The statistical difference between the random variables
⟨P, V∗⟩(x) and M∗(x) can be made negligible (in |x|) by changing the bound on
the probability that machine M∗ will output ⊥ (on input x) from 1

2 to 2−p(|x|)

(similarly to Proposition 3.16), for any positive polynomial p(·). Hence, whatever
the verifier efficiently computes after interacting with the prover can be efficiently
computed (with an extremely small error) by the simulator (and hence by the
verifier himself).

4.1.4 Computational ZKP

The definition of perfect zero-knowledge is too strict (it is not necessary to "per-
fectly simulate" the output of V∗ after it interacts with P). Thus, we introduce the
concept of computational indistinguishability which yields the same results from a
computational point of view.

Definition 4.2 (Polynomial-Time Indistinguishability). Let S ⊂ {0, 1}∗ be a set of
strings and X

de f
= {Xw}w∈S and Y

de f
= {Yw}w∈S be two ensembles (see Definition 2.7). We

say that X and Y are indistinguishable in polynomial time if for every probabilistic
polynomial-time algorithm (i.e. Turing machine) D, every positive polynomial p(·) and
all sufficiently long w ∈ S,

|Pr [D(Xw, w) = 1]− Pr [D(Yw, w) = 1]| < 1
p(|w|)

We often say computational indistinguishability instead of indistinguishability in
polynomial time.
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This last definition reminds of the concept of negligible function (we are actu-
ally saying that the function |Pr [D(Xn, n) = 1]− Pr [D(Yn, n) = 1]| with n ∈ N is
negligible as in Definition 3.17). Now we can modify the definition of perfect ZKP
to avoid the conditional probability of machine M∗ outputting ⊥.

Definition 4.3 (Computational Zero-Knowledge). Let (P, V) be an interactive proof
system for some language L. We say that (P, V) is computational zero-knowledge (or
just zero-knowledge) if for every probabilistic polynomial-time interactive machine V∗

there exists a probabilistic polynomial-time algorithm M∗ such that ∀x ∈ L the following
two ensembles are computationally indistinguishable:

• {⟨P, V∗⟩(x)}x∈L

• {M∗(x)}x∈L

Machine M∗ is called a simulator for the interaction of V∗ with P.

In other words, we will consider an interactive proof system (P, V) to be (com-
putational) zero-knowledge if we can simulate the interaction between any verifier
V∗ and the prescribed prover P on common input x (i.e. if there exists a simulator
M∗). Thus, the interaction gives no knowledge. We can also talk about a single in-
teractive Turing machine A being zero-knowledge on a language L if whatever can
be efficiently computed after interacting with A on input x ∈ L can be computed
from x itself.

We have formulated zero-knowledge from the point of view of the output of
⟨P, V∗⟩(x), but we could also consider the viewpoint of verifier V∗. By "viewpoint
of verifier V∗" we mean the entire sequence of the local configurations of the
verifier during an interaction (execution) with the prover. In other words, we just
need to consider the internal coin tosses of machine V∗ and the messages received
from the prover P, since we can compute the same output from these. This leads
to an alternative formulation of (computational) zero-knowledge which will be
very useful in the upcoming sections.

Definition 4.4 (Computational Zero-Knowledge: Alternative Formulation). Let
(P, V), L and V∗ be as defined in Definition 4.3. We denote by viewP

V∗(x) a random
variable describing the content of the random tape of V∗ and the messages V∗ receives
from P during a joint computation on common input x. We say that (P, V) is (compu-
tational) zero-knowledge if for every probabilistic polynomial-time interactive machine
V∗ there exists a probabilistic polynomial-time algorithm M∗ such that the ensembles
{viewP

V∗(x)}x∈L and {M∗(x)}x∈L are computationally indistinguishable.
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We have mainly replaced ⟨P, V∗⟩(x) with viewP
V∗(x) since it is possible to com-

pute in polynomial time the former from the latter. Although it is a less natural
definition of ZKP, it is more convenient to use and it is equivalent to it [Gol06]. It
is important to notice that this change can also be applied to the first definition of
perfect zero-knowledge proof in the same manner (see Definition 4.1).

4.1.5 Graph Isomorphism

In section 4.1.2, we already established that every language in BPP is a trivial
example of zero-knowledge proof system. We will now introduce a well-known
example of a language not known to be in BPP , we will give a perfect ZKP for
the language and we will proof that it is indeed a perfect zero-knowledge proof
system (as in Definition 4.1 but using the changes introduced in Definition 4.4).

Let GI (i.e. Graph Isomorphism) be the set of pairs of isomorphic graphs. Let us
construct a perfect zero-knowledge proof for GI:

• Common input: A pair of two graphs, G1 = (V1, E1) and G2 = (V2, E2). Let
ϕ be an isomorphism between the input graphs. Namely,

ϕ : V1 → V2

such that (u1, v1) ∈ E1 ⇐⇒ (ϕ(u1), ϕ(v1)) = (u2, v2) ∈ E2.

• Prover’s first step (P1): The prover selects a random isomorphic copy of G2

and sends it to the verifier. Namely, the prover selects at random , with uni-
form probability distribution, a permutation π from the set of permutations
over the vertex set V2 and constructs a graph with vertex set V2 and edge set

F
de f
= {(π(u), π(v)) : (u, v) ∈ E2}

The prover sends (V2, F) to the verifier.

• Verifier’s first step (V1): Upon receiving a graph G′ = (V ′, E′) from the
prover, the verifier asks the prover to show an isomorphism between G′ and
one of the input graphs, chosen at random by he verifier. Namely, the verifier
uniformly selects σ ∈ {1, 2} and sends it to the prover (who is supposed to
answer with an isomorphism between Gσ and G′).

• Prover’s second step (P2): If the message σ received from the verifier equals
2, then the prover sends π to the verifier. Otherwise (i.e. σ ̸= 2 treated by
the prover as σ = 1), the prover sends π ◦ ϕ to the verifier.
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• Verifier’s second step (V2): If the message, denoted ψ, received from the
prover is an isomorphism between Gσ and G′, then the verifier outputs 1.
Otherwise it outputs 0.

Let us denote the prover’s program PGI .

Both the prover’s and verifier’s programs are easily implemented in proba-
bilistic polynomial time. We will now show that this pair of interactive machines
constitutes a zero-knowledge interactive proof system for the language GI.

Proposition 4.5. The language GI has a perfect zero-knowledge interactive proof system.
Furthermore, the programs previously specified satisfy the following:

1. If G1 and G2 are isomorphic (i.e. (G1, G2) ∈ GI), then the verifier always accepts
(when interacting with PGI .

2. If G1 and G2 are not isomorphic (i.e. (G1, G2) /∈ GI), then no matter with which
machine the verifier interacts, it will reject the input with probability at least 1

2 .

3. The prover (i.e. PGI) is perfect zero-knowledge. Namely, for every probabilistic
polynomial-time interactive Turing machine V∗, there exists a probabilistic polynomial-
time algorithm M∗ outputting ⊥ with probability at most 1

2 , so that for every

x
de f
= (G1.G2) ∈ GI, the following two random variables are identically distributed:

• viewPGI
V∗ (x) (i.e. the view of V∗ after interacting with PGI , on common input

x)

• m∗(x) (i.e. the output of machine M∗, on input x, conditioned on not being
⊥).

As always, we can reduce the error probability (only in the soundness condition)
to 2−k by repeating the protocol a number of k times. It is important that at every
repetition, both prover and verifier use independent and new internal coin tosses.

We will proof the Proposition 4.5 in several steps. First, we will proof items 1
and 2. Then we will focus on item 3.

Proof (1). If the input graphs G1 and G2 are isomorphic, then the graph G′ con-
structed in Step P1 will be isomorphic to both of them. Thus, if each party follows
its prescribed program, then the verifier will always output 1.

Proof (2). If the input graphs G1 and G2 are not isomorphic, then no graph pre-
sented to the prover can be isomorphic to both G1 and G2. It follows that, no
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matter how the prover (cheating or not) constructs G′, there exists σ ∈ {1, 2} such
that G′ and Gσ are not isomorphic. Thus, if the verifier follows its program, then
it will output 0 with probability at least 1

2 .

Before tackling the last part of the proof, we will need the next result:

Lemma 4.6. Suppose that the graphs G1 and G2 are isomorphic. Let τ be a random vari-
able uniformly distributed in {1, 2}, and let Π be a random variable uniformly distributed
over the set of permutations over Vτ. Then for every graph G′′ that is isomorphic to G1

(and G2), it holds that

Pr
[
τ = 1 | Π(Gτ) = G′′] = Pr

[
τ = 2 | Π(Gτ) = G′′] = 1

2

Proof. We first claim that the sets S1
de f
= {π : π(G1) = G′′} and S2

de f
= {π : π(G2) =

G′′} are of the same cardinality (this is a direct consequence of G1
∼= G2). Thus,

Pr
[
Π(Gτ) = G′′ | τ = 1

]
= Pr

[
Π(G1) = G′′]

= Pr [Π ∈ S1]

= Pr [Π ∈ S2]

= Pr
[
Π(G2) = G′′]

= Pr
[
Π(Gτ) = G′′ | τ = 2

]
Using Bayes’ rule (analogous for τ = 2),

Pr
[
τ = 1 | Π(Gτ) = G′′] = Pr [Π(Gτ) = G′′ | τ = 1] · Pr [τ = 1]

Pr [Π(Gτ) = G′′]

= Pr [τ = 1] =
1
2

Let us begin with the last part of the proof. We will construct a simulator and
proof it simulates the view of the verifier V∗.

Proof (3). Let us construct a probabilistic polynomial-time algorithm M∗. Let x
de f
=

(G1, G2) be the input. Then,

1. Setting the random tape of V∗: Let q(·) denote a polynomial bounding the
running time of V∗. The simulator M∗ starts by uniformly selecting r ∈
{0, 1}q(|x|) to be used as the content of the random tape of V∗.
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2. Simulating the prover’s first step (P1): The simulator M∗ selects at random ,
with uniform probability distribution, a "bit" τ ∈ {1, 2} and a permutation
ψ from the set of permutations over the vertex set Vτ and edge set

F
de f
= {(ψ(u), ψ(v)) : (u, v) ∈ Eτ},

and sets G′′ de f
= (Vτ, F).

3. Simulating the verifier’s first step (V1): The simulator M∗ initiates an execution
of V∗ by placing x on V∗’s common input tape, placing r on V∗’s random
tape and placing G′′ on V∗’s incoming message tape. After executing a poly-
nomial number of steps of V∗, the simulator can read the outgoing message
of V∗, denoted σ. To simplify the rest of the description, we normalize σ by
setting σ = 1 if σ ̸= 2 (and leave σ unchanged if σ = 2).

4. Simulating the prover’s second step (P2): If σ = τ, then the simulator halts with
output (x, r, G′′, ψ).

5. Failure of the simulation: If σ ̸= τ, then the simulator halts with output ⊥.

Clearly, if V∗ is polynomial-time, then so is M∗. We have shown that M∗ out-
puts ⊥ with probability at most 1

2 (follows from Lemma 4.6). It is left to show
that, conditioned on not outputting ⊥, the simulator’s output is distributed as the
verifier’s view in a "real interaction with PGI". Namely,

Lemma 4.7. Let x = (G1, G2) ∈ GI. Then for every string r, graph H, and permutation
ψ, it holds that

Pr
[
viewPGI

V∗ (x) = (x, r, H, ψ)
]
= Pr [M∗(x) = (x, r, H, ψ) | M∗(x) ̸=⊥]

The proof of this lemma can be found in Appendix B and is extracted from [Gol06].

This ends the proof of Proposition 4.5.

4.1.6 Auxiliary Input

When using zero-knowledge proof systems as sub-protocols inside larger pro-
tocols, the need of a private local input for each party arises. Though the general
results stay the same, it is a generalized approach to add a local auxiliary-input
tape to the definition of interactive Turing machine (and subsequently change the
definitions based on it). Let us redefine some of these concepts.
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Definition 4.8 (Interactive Turing Machine, Revisited). An interactive Turing ma-
chine is defined as in Definition 3.2.3, except that the machine has an additional read-only
tape called the auxiliary-input tape. The content of this tape is called auxiliary input.

Definition 4.9 (Complexity of an ITM, Revisited). The complexity of such an inter-
active Turing machine is defined as in Definition 3.22 (i.e. still measured as a function of
the (common) input length, regardless of the content of its auxiliary input tape).

Notation: We denote by ⟨A(y), B(z)⟩(x) the random variable representing the
(local) output of B when interacting with machine A on common input x, when
the random input to each machine is uniformly and independently chosen, and A
(resp. B) has auxiliary input y (resp. z).

Definition 4.10 (Interactive Proof System, Revisited). A pair of interactive machines
(P, V) is called an interactive proof system (see Definition 3.23) for a language L if
machine V is polynomial-time and the following two conditions hold:

• Completeness: ∀x ∈ L, there exists a string y such that for every z ∈ {0, 1}∗,

Pr [⟨P(y), V(z)⟩(x) = 1] ≥ 2
3

• Soundness: ∀x /∈ L, every interactive Turing machine B and every y, z ∈ {0, 1}∗,

Pr [⟨B(y), V(z)⟩(x) = 1] ≤ 1
3

These changes lead to a revisited definition of (computational) zero-knowledge
interactive proof systems. This is not done as a theoretical exercise, but rather
as a practicality. It is common to have ZKPs as part of larger protocols and it
can happen that the verifier has access to some additional a priori information,
that may assist in its attempts to "extract knowledge" from the prover. Thus, we
can rethink of an interaction to be zero-knowledge if whatever can be efficiently
computed after interacting with the prescribed prover on input x and auxiliary-
input z can be computed from x and z.

Definition 4.11 (Auxiliary-Input Zero-Knowledge). Let (P, V) be an interactive
proof for a language L (as in Definition 4.10). Denote by PL(x) the set of strings y satis-
fying the completeness condition with respect to x ∈ L (i.e. Pr[⟨P(y), V(z)⟩(x) = 1] ≥ 2

3
for every z ∈ {0, 1}∗). We say that (P, V) is zero-knowledge with respect to auxiliary
input (or is auxiliary-input zero-knowledge) if for every probabilistic polynomial-time
interactive machine V∗ there exists a probabilistic algorithm M∗, running in time poly-
nomial in the length of its first input, such that the following two ensembles are compu-
tationally indistinguishable (when the distinguishing gap is considered as a function of
|x|):
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• {⟨P(yx), V∗(z)⟩(x)}x∈L,z∈{0,1}∗ for arbitrary yx ∈ PL(x)

• {M∗(x, z)}x∈L,z∈{0,1}∗

Namely, for every probabilistic algorithm D with running time polynomial in the length of
the first input, for every polynomial p(·), and for all sufficiently long x ∈ L, all y ∈ PL(x)
and z ∈ {0, 1}∗, it holds that

|Pr [D(x, z, ⟨P(y), V∗(z)⟩(x)) = 1]− Pr [D(x, z, M∗(x, z)) = 1]| < 1
p(|x|)

The auxiliary inputs y (i.e. the prover’s auxiliary input) and z (i.e. the verifier’s
auxiliary input) may not be known to the other party. Also, it is important to keep
in mind that the prover, the verifier and the simulator all must run in time poly-
nomial in the length of the common input x (and not on time polynomial on the
total length of all their inputs). Thus, the verifier V∗ reads at most a polynomial-
long prefix (from the common input x) of its auxiliary input. A similar convention
holds for the simulator M∗ (i.e. its running time is polynomial in the length of its
first input and consequently it may only read a prefix of the second input) [GO94].

In general, a demonstration of zero-knowledge can be extended to yield zero-
knowledge with respect to auxiliary input whenever the simulator used in the
original demonstration works by invoking the verifier’s program as a black box
[Gol06]. All simulation in this work have this property.

4.1.7 Sequential-Composition

We have seen in the Graph Isomorphism example (see Section 4.1.5) that by re-
peating the protocol, the soundness error quickly diminishes. However, does the
zero-knowledge property hold? It seems intuitive that if a single repetition of the
protocol doesn’t yield any knowledge, several repetitions wouldn’t as well. This
concept is captured by the definition of zero-knowledge with respect to auxiliary
input (see Definition 4.11) in the sense that, if an interaction yields no knowledge
whatever the auxiliary input may be, then any information passed from repetition
to repetition won’t yield any knowledge [Hoh07].

Formally speaking, the definition of zero-knowledge interactive proof systems
should be closed under sequential composition. It is known that, without the
addition of auxiliary input to the ZKP definition, this wouldn’t hold [Gol06]. This
is idea is captured by the sequential-composition lemma.
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Lemma 4.12 (Sequential-Composition Lemma). Let P be an interactive Turing ma-
chine (i.e. a prover) that is zero-knowledge with respect to auxiliary input on some lan-
guage L. Suppose that the last message sent by P, on input x, bears a special end-of-proof
symbol. Let Q(·) be a polynomial, and let PQ be an interactive Turing machine that, on
common input x, proceeds in Q(|x|) phases, each of them consisting of running P on
common input x. (We stress that in case P is probabilistic, the interactive machine PQ

uses independent coin tosses for each of the Q(|x|) phases). Then PQ is zero-knowledge
(with respect to auxiliary input) on L. Furthermore, if P is perfect zero-knowledge (with
respect to auxiliary input), then so is PQ.

The convention concerning the end-of-proof symbol is introduced for technical
purposes and every machine P can be easily modified so that its last message will
output an appropriate symbol. The lemma doesn’t take in account the effect that
repetition has on the gap between the acceptance probabilities for inputs inside
and outside the language (this aspect is already dealt with in Section 3.2.4). Then,
zero-knowledge interactive proof systems with respect to auxiliary input can be
repeated sequentially and do preserve the property of zero-knowledge, as well
as diminishing the error probability. The proof of this lemma is long and can be
found in [Gol06].

Note on Parallel Composition: Parallel composition does reduce the error proba-
bility in interactive proof systems, while maintaining the number of rounds. This
is known to NOT preserve the property of zero-knowledge, as shown in [GK94].

4.1.8 Further Topics

Zero-knowledge proofs have many different uses and this work could expand
in different possible directions. A very natural next step would be to study Non-
Interactive Zero-Knowledge Proof Systems (NIZKPs), which are proofs that don’t re-
quire interaction between the prover and the verifier. Their main advantage is
their efficiency (due to the lack of interaction, the proof can be verified with fewer
computational resources) and they are well suited for use in decentralized systems
with few (if any) trusted parties (e.g. blockchain networks). Their main disadvan-
tages are their lack of flexibility (compared to interactive ZKPs) and have a limited
scope to specific types of information.

From NIZKPs, one could research some of its most famous protocols like the
Succinct Non-Interactive Arguments of Knowledge (or SNARKs) and the Zero-
Knowledge Scalable Transparent Arguments of Knowledge (or STARKs), which
are currently at the front of research and application in the field.



Chapter 5

Conclusions

In the course of this work, we have established the theoretical foundations to
zero-knowledge interactive proof systems through probability and computation the-
ory, as well as a number of examples to depict its utility in real-world problems.

From the definition of Turing machine, we laid down the ideas of simulation
and computation power to solve decision problems, captured by different com-
plexity classes. We focused on probabilistic algorithms where decision problems
are allowed to fail with a certain error. We have introduced the necessary concepts
of probability underlying the idea of repetition to decrease the aforementioned
error. We continued by familiarizing ourselves with the notion of interaction be-
tween (interacting) Turing machines, leading to the definition of interactive proof
systems and their use cases. From these building blocks, we constructed the idea
of interactive proof systems being zero-knowledge and saw some variations of this
definition. Finally, we captured all these notions with the example of Graph Isomor-
phism and showed that sequential repetition holds the property of zero-knowledge.
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Appendix A

Quadratic Residuosity Protocol

In this annex we will present a small program written in c that replicates the
quadratic residuosity protocol from section 4.1.1. We will be using a very simple set
of numbers: N = 11 · 13 = 143, r = 82 and x = 15 since x2 ≡ r mod N. We
will also review the output to show that the theoretical results match the practical
computations. Let us first introduce the program. It has two main functionalities:
compute the protocol with a single interaction (for 10.000 iterations) and compute
the protocol with 1 ≤ k ≤ 10 interactions (for 10.000 iterations each k). There are
6 different functions:

• main: declares and initializes the input values for the protocol and executes
it for both aforementioned functionalities.

• randRange: used to balance the function rand(). When we use variables with
value rand ()% N;, we don’t get a uniform distribution so we ignore the
last numbers in [0, RAND_MAX] (i.e. we ignore the numbers in (RAND_MAX - (
RAND_MAX % N), RAND_MAX].

• smart_prover: a single run of the protocol in the case that the prover does
provide a valid proof.

• dumb_prover: a single run of the protocol in the case that the prover does not
provide a valid proof.

• single_interaction: computes the single interaction protocol 10.000 times
for both smart_prover and dumb_prover and writes the average success prob-
ability in two different files. The results are two columns of the form

(iterations, success probability)
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• multiple_interaction: computes the k interactions protocol 10.000 times for
both smart_prover and dumb_prover and writes the average success probabil-
ity in two different files. The results are two columns of the form

(k, success probability)

We now present the results by means of two plots (one for a single interaction
and one for multiple interactions).

In Figure A.1, we can clearly see that a "smart" prover (i.e. having a valid
proof) is successful with a probability of 1 in every case. However, a "dumb"
prover (i.e. not having a valid proof) fails with probability ≈ 1

2 . The graph for a
"dumb" prover shows some fluctuation for lower iterations, but it stabilizes to its
theoretical probability by the law of large numbers.

Figure A.1: Success probability for 1 interaction as a "smart" and "dumb" prover

In Figure A.2, the X-axis is the number of k interactions between prover and
verifier. We can see an identical result for the "smart" prover (since the probability
is always 1 when having a valid proof), but the success probability for the "dumb"
prover has an almost exponential decrease as interactions increase. This is also
in line with our theoretical results, where we showed that the success probability
of a cheating prover should decrease with a rate of 2−k. Indeed, for 1 interaction
we get ≈ 1

2 success probability, for 2 interactions ≈ 1
4 success probability, for 3

interactions ≈ 1
8 success probability, etc.
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Figure A.2: Success probability for k interactions as a "smart" and "dumb" prover

We now present the entire code:

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4

5 #define ITER 10000
6

7 void single_interaction(int N, int r, int x);
8 void multiple_interaction(int N, int r, int x, int k_max);
9 int smart_prover(int N, int r, int x);

10 int dumb_prover(int N, int r);
11 int randRange(int N);
12

13 int main()
14 {
15 int N, r, x, k_max;
16

17 srand(time(NULL));
18

19 // Common input
20 N = 143;
21 r = 82;
22

23 // Prover ’s private input



53

24 x = 15;
25

26 // Maximum interactions
27 k_max = 10;
28

29 single_interaction(N, r, x);
30 multiple_interaction(N, r, x, k_max);
31

32 return 0;
33 }
34

35 void single_interaction(int N, int r, int x)
36 {
37 int i;
38 double smart_sum , dumb_sum;
39 char smart_file [30] = "smart_single.txt", dumb_file [30] = "

dumb_single.txt";
40 FILE *f;
41

42 f = fopen(smart_file , "w");
43 if (f == NULL)
44 {
45 printf("Error opening %s!\n", smart_file);
46 exit (1);
47 }
48

49 smart_sum = 0.;
50 for (i = 1; i <= ITER; i++)
51 {
52 smart_sum += smart_prover(N, r, x);
53 fprintf(f, "%d %5.3lf\n", i, smart_sum / i);
54 }
55

56 fclose(f);
57 f = fopen(dumb_file , "w");
58 if (f == NULL)
59 {
60 printf("Error opening %s!\n", dumb_file);
61 exit (1);
62 }
63

64 dumb_sum = 0.;
65 for (i = 1; i <= ITER; i++)
66 {
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67 dumb_sum += dumb_prover(N, r);
68 fprintf(f, "%d %5.3lf\n", i, dumb_sum / i);
69 }
70

71 fclose(f);
72

73 return;
74 }
75

76 void multiple_interaction(int N, int r, int x, int k_max)
77 {
78 int i, j, k, pass;
79 double smart_sum , dumb_sum;
80 char smart_file [30] = "smart_multiple.txt", dumb_file [30] = "

dumb_multiple.txt";
81 FILE *f;
82

83 f = fopen(smart_file , "w");
84 if (f == NULL)
85 {
86 printf("Error opening %s!\n", smart_file);
87 exit (1);
88 }
89

90 for (k = 1; k <= k_max; k++)
91 {
92 smart_sum = 0.;
93 for (i = 1; i <= ITER; i++)
94 {
95 pass = smart_prover(N, r, x);
96 for (j = 1; j < k && pass == 1; j++)
97 pass = smart_prover(N, r, x);
98 smart_sum += pass;
99 }

100 fprintf(f, "%d %5.3lf\n", k, smart_sum / ITER);
101 }
102

103 fclose(f);
104 f = fopen(dumb_file , "w");
105 if (f == NULL)
106 {
107 printf("Error opening %s!\n", dumb_file);
108 exit (1);
109 }
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110

111 for (k = 1; k <= k_max; k++)
112 {
113 dumb_sum = 0;
114 for (i = 1; i <= ITER; i++)
115 {
116 pass = dumb_prover(N, r);
117 for (j = 1; j < k && pass == 1; j++)
118 {
119 pass = dumb_prover(N, r);
120 }
121 dumb_sum += pass;
122 }
123 fprintf(f, "%d %7.5lf\n", k, dumb_sum / ITER);
124 }
125

126 fclose(f);
127

128 return;
129 }
130

131 int smart_prover(int N, int r, int x)
132 {
133 int y, a, b, c;
134

135 // Prover ’s first step: choose a random y < N and calculate a
= y*y (mod N)

136 y = randRange(N);
137 a = y * y % N;
138

139 // Verifier ’s first step: flipping a coin b.
140 b = randRange (2);
141

142 // Prover ’s second step: c = y if b = 0 or c = y*x (mod N) if
b = 1

143 if (b == 0)
144 c = y;
145 else
146 c = y * x % N;
147

148 // Verifier\’s second step: calculating the output.
149 if (b == 0)
150 return ((c * c % N) == a);
151
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152 return ((c * c % N) == (a * r % N));
153 }
154

155 int dumb_prover(int N, int r)
156 {
157 int y, a, b, c;
158

159 // Prover ’s first step: choose a random y < N and calculate a
= y*y (mod N)

160 y = randRange(N);
161 a = y * y % N;
162

163 // Verifier ’s first step: flipping a coin b.
164 b = randRange (2);
165

166 // Prover ’s second step: c = y if b = 0 or choose a RANDOM c
< N if b = 1

167 if (b == 0)
168 c = y;
169 else
170 c = randRange(N);
171

172 // Verifier\’s second step: calculating the output.
173 if (b == 0)
174 return ((c * c % N) == a);
175

176 return ((c * c % N) == (a * r % N));
177 }
178

179 int randRange(int N)
180 {
181 int limit , r;
182

183 limit = RAND_MAX - (RAND_MAX % N);
184

185 while ((r = rand()) >= limit)
186 ;
187

188 return r % N;
189 }



Appendix B

Graph Isomorphism Proof

Lemma B.1. Let x = (G1, G2) ∈ GI. Then for every string r, graph H, and permutation
ψ, it holds that

Pr
[
viewPGI

V∗ (x) = (x, r, H, ψ)
]
= Pr [M∗(x) = (x, r, H, ψ) | M∗(x) ̸=⊥]

Proof. Let m∗(x) describe M∗(x) conditioned on its output not being ⊥. We first
observe that both m∗(x) and viewPGI

V∗ (x) are distributed over quadruples of the
form (x, r, ·, ·), with uniformly distributed r ∈ {0, 1}q(|x|). Let ν(x, r) be a random
variable describing the last two elements of viewPGI

V∗ (x) conditioned on the second
element equaling r. Similarly, let µ(x, r) describe the last two elements of m∗(x)
(conditioned on the second element equaling r). We need to show that ν(x, r) and
µ(x, r) are identically distributed for every x and r.

Observe that once r is fixed, the message sent by V∗, on common input x, random
tape r, and incoming message H, is uniquely defined. Let us denote this message
by ν∗(x, r, H). We show that both ν(x, r) and µ(x, r) are uniformly distributed over
the set

Cx,r
def
=

{
(H, ψ) : H = ψ(Gν∗(x,r,H))

}
where (again) ψ(G) denotes the graph obtained from G by relabeling the vertices
using the permutation ψ (i.e. if G = (V, E), then ψ(G) = (V, F), so that (u, v) ∈ R
iff (ψ(u), ψ(v)) ∈ F).

To prove this last claim, we will use results related to the automorphism group
of the graph G2 (i.e. the set of permutations π for which π(G2) is identical with
G2, not just isomorphic to G2). For simplicity, consider first the special case in
which the automorphism group of G2 consists of merely the identity permutation.
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In this case, (H, ψ) ∈ Cx,r iff H is isomorphic to (both G1 and) G2 and ψ is the
(unique) isomorphism between H and Gν∗(x,r,H). Hence, Cx,r contains exactly |V2|!
pairs, each containing a different graph H as the first element. In the general case,
(H, ψ) ∈ Cx,r iff H is isomorphic to (both G1 and) G2 and ψ is an isomorphism
between H and Gν∗(x,r,H). We stress that ν∗(x, r, H) is the same in all pairs con-
taining H. Let aut(G2) denote the size of the automorphism group of G2. Then
each H (isomorphic to G2) appears in exactly aut(G2) pairs of Cx,r, and each such
pair contains a different isomorphism between H and Gν∗(x,r,H). The number of
different H’s that are isomorphic to G2 is |V2|!/aut(G2), and so |Cx,r| = |V2|! also
in the general case.

We first consider the random variable µ(x, r) (describing the suffix of m∗(x)). Re-
call that µ(x, r) is defined by the following two-step process:

1. One selects uniformly a pair (τ, ψ), over the set of pairs ({1, 2}×permutation),
and sets H = ψ(Gτ).

2. One outputs (i.e. sets µ(x, r) to) (ψ(Gτ), ψ) if ν∗(x, r, H) = τ (and ignores
the (τ, ψ) pair otherwise).

Hence, each graph H (isomorphic to G2) is generated, at the first step, by exactly
aut(G2) different (1, ·)-pairs (i.e. the pairs (1, ψ) satisfying H = ψ(G1)) and by
exactly aut(G2) different (2, ·)-pairs (i.e. the pairs (2, ψ) satisfying H = ψ(G2)).
All these 2 · aut(G2) pairs yield the same graph H and hence lead to the same
value of ν∗(x, r, H). It follows that out of the 2 · aut(G2) pairs of the form (τ, ψ)

that yield the graph H = ψ(G2), only the aut(G2) pairs satisfying τ = ν∗(x, r, H)

lead to an output. Hence, for each H (that is isomorphic to G2), the probability
that µ(x, r) = (H, ·) equals aut(G2)/(|V2|!). Furthermore, for each H (that is
isomorphic to G2),

Pr[µ(x, r) = (H, ψ)] =

 1
|V2|! if H = ψ(Gν∗(x,r,H))

0 otherwise

Hence µ(x, r) is uniformly distributed over Cx,r.

We now consider the random variable ν(x, r) (describing the suffix of the verifier’s
view in a "real interaction" with the prover). Recall that ν(x, r) is defined by select-
ing uniformly a permutation π (over the set V2) and setting ν(x, r) = (π(G2), π)

if ν∗(x, r, π(G2)) = 2, and ν(x, r) = (π(G2), π ◦ ϕ) otherwise, where ϕ is the iso-
morphism between G1 and G2. Clearly, for each H (that is isomorphic to G2), the
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probability that ν(x, r) = (H, ·) equals aut(G2)/(|V2|!). Furthermore, for each H
(that is isomorphic to G2),

Pr[ν(x, r) = (H, ψ)] =

 1
|V2|! if ψ = π ◦ ϕ2−ν∗(x,r,H)

0 otherwise

Observing that H = ψ(Gν∗(x,r,H)) iff ψ = π ◦ ϕ2−ν∗(x,r,H), we conclude that µ(x, r)
and ν(x, r) are identically distributed.

The claim follows.
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