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Abstract

This project embarks on an in-depth exploration of diversity metrics within
the realm of deep learning embeddings, under the mentorship of Nahuel Statuto
and Santiago Seguí. Our work begins with an introductory overview of our ob-
jectives, which were to study the possibility of using a neural network which has
been trained for a task to perform well enough in a different task for which it
has not been trained, and to approach this study from the perspective of diver-
sity in neural network embeddings. Finally delving into machine learning and
the role of diversity in this field. We also lay the foundational knowledge of deep
learning, covering the architecture and training of feedforward neural networks.
This includes a detailed examination of artificial neurons, their organization into
layers, the incorporation of activation functions to model nonlinear relationships,
and a deep explanation of the training process, including loss functions, the feed-
forward process, gradient descent, and backpropagation, explaining how these
elements minimize the loss and improve the model’s performance.
We then shift the focus to the concept of diversity, first in machine learning, high-
lighting the limitations of existing metrics and introducing the Vendi Score as a
promising alternative. Then, delving into the domain of ecology, we discuss the
treatment of diversity in this field, presenting key metrics and a set of properties
aligned with the intuition for diversity and considered fundamental by ecologists
for diversity metrics that account for species similarity.
Following this, we define the Hill numbers, an ecological diversity metric that
serves as the foundation for the Vendi Score and despite being a powerful metric,
its main drawback is that it does not take into account similarity between species.
After addressing the Hill numbers’ limitations, we present the Vendi Score as the
extension of the Hill number of order 1, alongside necessary lemmas to demon-
strate its adherence to desired properties. Recognizing the Vendi Score’s suscep-
tibility to imbalanced data classes, we introduce its extensions, the Cousins of the
Vendi Score, which mitigate this issue by extending the Vendi Score to the rest of
the Hill numbers, while acknowledging remaining challenges.
The concluding chapter presents empirical studies conducted to study our ob-
jectives in a practical setting. Our findings reveal no explicit correlation, other
than the diversity of embeddings being directly related to a classifier’s number
of classes. We conclude that the potential for repurposing a neural network to
excel in an untrained task is minimal, highlighting how the relationship between
diversity metrics and the effectiveness of deep learning models is more complex
than it seems.

2020 Mathematics Subject Classification. 68T07, 68R12.



Chapter 1

Introduction

Artificial intelligence is the field of computer science that studies the develop-
ment of algorithms and systems which can perform tasks that are usually carried
out by humans. Machine learning (ML) is a branch of artificial intelligence and
the science of credit assignment: finding patterns in observations that predict the
consequences of actions and help to improve future performance [7]. Originally, it
was invented to solve tasks that are hard or unfeasible for traditional algorithms
(tasks which can not be carried out just by following a set of programmed instruc-
tions). For instance, image and speech recognition, natural language processing,
and prediction tasks in finance, healthcare or any other field where large amounts
of data are available.
Machine learning models learn from data. In supervised learning, the learning
process involves training a model on a dataset, which is a collection of examples,
each containing a set of features and a target label. The model’s goal is to learn
a mapping from features to targets that generalizes well to new examples. This
goal is established by a loss function, chosen according to the task. To ensure the
generalization capability of a model which is to be trained, it is common to split
the dataset into two parts: a training set and a test or validation set. The training
set is used to train the model, while the test set is used to evaluate the model’s
performance, without letting the model learn from it. The learning process is
guided by the loss function, which measures the discrepancy between the model’s
predictions for the targets and the actual targets in the training data. The model’s
parameters are adjusted to minimize this loss function, typically using iterative
optimization algorithms.
However, supervised learning is just one method of machine learning. There are
other methods that do not involve a labeled dataset. For instance, in unsupervised
learning, models are trained on data without explicit labels, aiming to find pat-
terns or structures within the data itself. Common tasks in unsupervised learning
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2 Introduction

include clustering, where the goal is to group similar examples together, and di-
mensionality reduction, which seeks to simplify the data without losing important
information. Another method is reinforcement learning, where a learner learns to
make decisions by performing actions in an environment to achieve some goals.
The agent receives feedback in the form of rewards or penalties and learns to
maximize cumulative rewards over time. This method is particularly useful for
sequential decision-making problems and has been successfully applied in areas
such as game playing and robotics.
Among the various machine learning models, neural networks have gained signifi-
cant popularity over the last decades, due to their ability to learn complex patterns
in data. A neural network is a model inspired by the human brain, consisting of
interconnected nodes or "neurons". Neural networks have led to the emergence of
deep learning, a subfield of machine learning that focuses on training these types
of models. A neural network consists of many simple, connected processors called
neurons, each producing a sequence of real-valued activations. Input neurons get
activated through sensors perceiving the environment, other neurons get activated
through weighted connections from previously active neurons [8]. These models
have achieved state-of-the-art performance on a wide range of tasks, outperform-
ing traditional machine learning models in many cases.

Diversity is a concept which has been studied for many years in various fields
such as ecology, sociology, and economics, as it is an intrinsic property of many
complex systems. Usually, diversity refers to the grade of presence of a multitude
of distinct elements within a system. This principle is a fundamental characteristic
of both social constructs and natural ecosystems.
In ecology, diversity is a measure of the health of biological systems, as a diverse
ecosystem is more resilient to changes and disturbances as well as more capable
of sustaining a wide range of life forms. Diversity in ecology is often measured by
the variety of species, genetic variability and heterogeneity.
Translating this concept into the realm of technology, particularly to the field of
machine learning, diversity is a relevant criterion in many areas, such as dataset
curation, generative modeling, reinforcement learning, active learning and decod-
ing algorithms.
A lack of diversity in datasets and models can limit the usefulness of machine
learning in many critical applications, for instance scientific discovery [20]. Diver-
sity is also used in recommender systems [11] to ensure that users are exposed to
a wide range of content, rather than being stuck in a filter bubble. It is therefore
important to be able to measure diversity in machine learning.
Narrowing down to the field of deep learning embeddings, diversity is a crucial
aspect in the evaluation of the quality of embeddings, as it is essential that the
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embeddings capture a wide range of patterns in the data, or in other words, that
they are sufficiently diverse.
In many cases, when using machine learning models for a specific task , we come
across the need of using the same models for different tasks for which they have
not been trained specifically. In this context, we are interested in the ability of
the models for retaining the diversity of the original training examples. In this
project we will study ways to approach this issue, focusing in neural networks
and the Vendi Score, a diversity metric in machine learning introduced in [20]
which presents several advantages over other existing diversity metrics in ma-
chine learning.

Machine learning has fascinated me ever since I discovered its capabilities and
the wide range of applications it has. Deep learning scales up this capabilities even
further, especially the most recent generative models, which keep improving day
by day. Deep learning interested me even more when I understood how it works,
the mathematics behind it, how calculus and linear algebra are fused together to
allow models to learn from huge amounts of data in an efficient manner. When
my advisors proposed me to work on diversity in deep learning embeddings and
after I started to do some research, I quickly got interested in the topic, as it has
not yet been studied in depth and it is still being developed (as a matter of fact,
the Vendi Score was introduced in 2022 [20] and its extension, the Cousins of the
Vendi Score, was introduced during the development of this project [21]).
I am very grateful to my advisors for proposing me this project, as it has al-
lowed me to learn about diversity in machine learning in general, and to deepen
my knowledge in deep learning as a whole, which is a field I am very passion-
ate about. I am also grateful to them for the guidance they have provided me
throughout the development of this project.

We start by introducing the fundamentals of deep learning in Chapter 2, in-
cluding the structure of neural networks and the training process for these type of
models. Most of the concepts in Chapter 2 are required in order to understand the
following concepts discussed in the project. In Chapter 3, we explore the concept
of diversity in deep learning, its importance, the existing metrics and their limita-
tions, focusing on the Vendi Score, which we present along with its extension to
the family of Vendi Scores, after a brief review of ecological diversity and the met-
rics used in this field for measuring diversity, with a focus on the Hill numbers,
which are the foundation for the Vendi Score.
In Chapter 4, we present the experiments carried out by ourselves and their re-
spective results, along with a discussion of the results. Finally, in Chapter 5, we
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present the conclusions drawn from the results and the conclusions of the project
as a whole. Moreover, we discuss possible future work that can be done in this
field.



Chapter 2

Fundamentals of deep learning

We already introduced machine learning and mentioned neural networks as
the model that gives arise to deep learning. From now on, this project will focus
on deep learning and therefore on neural networks.
In modern deep learning, there are many types of neural networks and new types
are being developed constantly. However, to limit the scope of this project, we will
focus on feedforward neural networks, which are the basic type of neural networks
and the baseline for more complex models. In this chapter we explain the structure
of feedforward neural networks (which is a specific type of neural networks), from
the basic building block, the artificial neuron. We explain how these neurons
are grouped into layers, forming the multilayer perceptron and concluding with
the concept of activation functions, in which lies the non-linearity of the neural
network. We also explain in detail the training process of neural networks, starting
by explaining the loss or objective functions, which determine what the neural
network will minimize throughout its learning process, the feed forward process,
which is the computation of the output of the neural network given an input
vector, and concluding with an explanation of the gradient descent algorithm and
how it is used to minimize the loss function in the backpropagation algorithm, in
which the parameters of the neural network are updated.

2.1 Structure of Feedforward Neural Networks

The purpose of this section is to explain how are feedforward neural networks
structured from the artificial neurons to the whole network, going through the
concept of activation functions and the layers of the network.
Let us start by defining the artificial neuron.
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6 Fundamentals of deep learning

Artificial Neuron

We can think of artificial neurons as simple functions, which take an input
vector and produce an output through a weighted sum of the input vector and a
bias term.

Definition 2.1. Given an input vector x = (x1, x2, . . . , xn) ∈ Rn, an artificial neuron
is a function y : Rn → R such that:

y(x) =
n

∑
i=1

wixi + b,

where w = (w1, w2, . . . , wn) ∈ Rn is the weight vector of the neuron and b ∈ R is its
bias term.

Multilayer Perceptron

Now that we know what is the basic unit of a neural network, we can com-
bine multiple artificial neurons to form an artificial neural network or multi-
layer perceptron (MLP). However, as we have defined it, a single neuron can
only model linear relationships between the input and the output. Therefore, if
we were to stack multiple neurons in a single layer and multiple layers in a net-
work, the network would essentially be a really complex linear model. For that
reason, we now introduce the concept of activation functions, which allow the
network to model non-linear relationships between the input and the target. An
activation function ϕ is a non-linear function ϕ : R → R, which takes a single
input z, the weighted sum of the inputs to the neuron, and produces an output
a = ϕ(z) = ϕ (∑n

i=1 wixi + b), which we call the activation of the neuron.
Here are some of the most common examples of activation functions.

Example 2.2. Rectified Linear Unit (ReLU):

ϕ(z) = max(0, z).

It has become the most popular activation function in recent years due to its sim-
plicity and computational efficiency, since it simplifies the computation of the
gradient during the training process which we will explain in the next section.

Example 2.3. Softmax Function:

ϕ(zi) =
ezi

∑K
j=1 ezj

,

for a vector z = (z1, z2, . . . , zK) where each zi is the output of a neuron. The vector
ϕ(z) = (ϕ(z1), ϕ(z2), . . . , ϕ(zK)) can be interpreted as a probability distribution



2.1 Structure of Feedforward Neural Networks 7

over K different possible outcomes. Hence, the softmax function is often used
in the output layer of a neural network trained for K-class classification tasks.
Namely, the output of such a network is interpreted as a vector of probabilities for
each class being the correct one.

Figure 1: Structure of a feedforward neural network. [1] This type of neural
network is what we call fully connected, which means that each neuron in a layer
is connected to each neuron in the next layer, and thus each neuron in a layer
receives input from each neuron of the previous layer and has a weight parameter
for the connection with each of the neurons of the previous layer.

Let us use the feedforward fully connected neural network from Figure 1 to
exemplify the structure of this type of neural network. The first column of neu-
rons (what we call input layer) is essentially weighing the input evidence. With
respect to the neurons in the second and third layers (which we call hidden lay-
ers), each of them is creating an activation by weighing up the results from the
previous layer of outputs. In this way, a neuron in the second layer, for instance,
can create an activation at a more complex and more abstract level than neurons
in the first layer. And even more complex activations can be made by the neuron
in the fourth layer (which we call output layer). In this way, a many-layer network
of perceptrons can engage in sophisticated activation making. The dimension (e.g.
number of neurons) of the input layer always corresponds to the dimension of the
input vector. Every layer which is neither the input layer nor the output layer is
called a hidden layer, and the dimension of hidden layers can be tweaked to find
the best model for the task at hand. This task also determines the dimension of
the output layer, which is usually the number of classes in a classification task or
the number of dimensions of the target in a regression task.
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2.2 Training Feedforward Neural Networks

As mentioned in the Introduction, the learning process of any machine learn-
ing model consists in adjusting the model’s parameters to minimize a loss func-
tion, which is chosen according to the task at hand and in such a way that it is
able to measure the discrepancy between the model’s predictions and the actual
targets in the data. In the context of feedforward neural networks, training con-
sists in adjusting the weights and biases of each of the neurons in the network in
order to minimize the loss function. This training process involves two steps: the
feedforward process, in which the output of the network given an input vector is
computed, and the backpropagation algorithm, in which the gradient of the loss
function with respect to the weights and biases of the network is computed and
these weights and biases are updated following the algorithm of gradient descent.
In this section we formalize and explain all the concepts involved in training feed-
forward neural networks in detail.

Loss Function

A loss function, also known as a cost or objective function, is a function that
measures the discrepancy between the predicted output ŷ (produced by the net-
work) and the true output y, which is the target label for the input data.
Let us proceed with a formal definition for loss function.

Definition 2.4. [3] A loss function ℓ is defined as a mapping of ŷ(i) with its corre-
sponding y(i) to a real number l ∈ R, which captures the similarity between ŷ(i) and y(i).
Aggregating over all the points in the dataset we find the overall loss, L:

L(W, b) =
1
N

N

∑
i=1

ℓ(ŷ(i), y(i)).

Here,

• N is the number of points in the dataset,

• W and b represent the collection of all weights and biases in the network,

• ŷ(i) is the predicted output vector for the i-th training example,

• y(i) is the true output vector for the i-th training example.

Remark 2.5. Although in practice this is not the case, any loss function ℓ treated
in this project will be differentiable, since the optimization algorithm which we
explain later for minimizing L, requires the computation of the gradient of L,
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which is the average over the number of training examples N of the individual
gradients of ℓ for each training example.
In practice, there is a list of mathematical properties that a loss function may or
may not satisfy, and according to these properties, the optimization method chosen
for computing the gradient of the loss function in order to minimize it may vary.
[3] provides a fully detailed explanation of these properties and the implications
of each of them.

Here are some examples of loss functions widely used in practice.

Example 2.6. Cross-Entropy Loss commonly used for classification tasks:

LCE = − 1
N

N

∑
i=1

m

∑
j=1

y(i)j log(ŷ(i)j ),

where y(i)j is the true label (0 or 1) for the j-th class of the i-th training example,

and ŷ(i)j is the predicted probability for the j-th class of the i-th training example.
It is suitable for both binary and multi-class classification tasks. By minimizing
the cross-entropy loss, we are minimizing the difference between the predicted
probabilities for each class and the true labels.
For instance, in an m-class classification task, if the true label for an arbitrary
example is the k-th class, with 1 ≤ k ≤ m, namely y = (0, . . . , 1, . . . , 0) where the
k-th entry is 1 and the rest are 0, and the vector of predicted probabilities for each
class (usually produced by the softmax function) is ŷ = (ŷ1, . . . , ŷk, . . . , ŷm), then
the cross-entropy loss for this example is − log(ŷk), which is minimized when ŷk

is 1 and the rest of the entries are 0.

Example 2.7. Mean Squared Error (MSE) commonly used for regression tasks:

LMSE =
1
N

N

∑
i=1

(ŷ(i) − y(i))2.

When minimizing the MSE, we are minimizing the average squared difference
between the predicted output and the true output, which is a common goal in
regression tasks as it leads to the model predicting the true output as closely as
possible.

Recapping, the loss function allows us to evaluate how well the network is
performing on predicting the target variable for the data examples, and thus by
optimizing the loss function, we would ideally be able to improve the network’s
performance. In order to optimize the loss function, we want to know how the
loss function changes as we change the weights and biases of the network.
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Feed Forward Process

Until now, we have mentioned outputs of neurons, layers and even neural
networks themselves, although we have only formalized how the output for an ar-
tificial neuron is produced. Let us now formalize the processes that take place in a
feedforward neural network when computing the output. The process of comput-
ing the output of a neural network given an input vector involves computing the
output of each layer inside the network, and it is called the feed forward process.
Suppose we have a neural network with L layers. For each layer l with 1 ≤ l ≤ L,
let:

• W(l) be the weight matrix associated with layer l, that is, the matrix whose
rows are the weight vectors of the neurons in layer l,

• b(l) be the bias vector associated with layer l, that is, the column vector whose
entries are the biases of the neurons in layer l,

• ϕ(l) be the activation function in layer l, that is, the activation function used
in the neurons in layer l.

Now, if layer l has k neurons and layer l − 1 has j neurons, then the output of layer
l is given by

a(l) =


a(l)1

a(l)2
...

a(l)k

 = ϕ(l)
(

z(l)
)

, (2.1)

where the expression ϕ(l)(z(l)) indicates the element-wise application of the acti-
vation function ϕ(l) to the vector z(l) and

z(l) = W(l)a(l−1) + b(l) =


w(l)

11 w(l)
12 · · · w(l)

1j

w(l)
21 w(l)

22 · · · w(l)
2j

...
...

. . .
...

w(l)
k1 w(l)

k2 · · · w(l)
kj




a(l−1)

1

a(l−1)
2

...

a(l−1)
j

+


b(l)1

b(l)2
...

b(l)k

 . (2.2)

a(l) serves as the input to layer l + 1. If x ∈ Rn is the input vector for the neural
network, then the input of the first layer is a(0) = x and the output of the last layer
and thus of the neural network as a whole is a(L).
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Gradient Descent

Recalling, the goal of training a neural network is to minimize a function,
the loss function, by adjusting its parameters, the weights and biases. Let us
explain what is the gradient descent algorithm and how it is used to minimize an
arbitrary function before explaining how it is used to minimize the loss function
of a neural network. Suppose that f : Rn → R is a differentiable function of
n variables x1, x2, . . . , xn. Then the change ∆ f in f produced by a small change
∆x = (∆x1, ∆x2, . . . , ∆xn)T in the variables is given by

∆ f ≈ ∇ f · ∆x, (2.3)

where ∇ f is the gradient of f at the point x, formally defined below.

Definition 2.8. We define the gradient of a scalar-valued differentiable function f of
several variables x1, x2, . . . , xn at a point x as the vector of partial derivatives of f at x,
expressed as:

∇ f (x) =
(

∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

)T

.

If the gradient of a function is non-zero at a point x, the direction of the gra-
dient is the direction in which the function increases most quickly from x, or
informally, the direction of steepest ascent of the function. As a consequence,
the negative of the gradient is the direction of steepest descent of the function.
Following this idea, we can choose

∆x = −α∇ f (x), (2.4)

for a small, positive parameter α ∈ R, known as the learning rate. Then, equation
2.3 becomes

∆ f ≈ −α∇ f (x) · ∇ f (x) = −α∥∇ f (x)∥2,

where the notation ∥ · ∥ denotes the Euclidean norm of a vector. Since ∥∇ f (x)∥2 ≥
0, this implies that ∆ f ≤ 0, which means that the function will decrease (within
the limits of the approximation in Equation 2.3), as long as we change x according
to the following update rule derived from Equation 2.4:

xnew = xold − α∇ f (xold). (2.5)

We can think of this update rule as defining the gradient descent algorithm [1].
In order to allow Gradient Descent to work as intended, we must choose a small
enough learning rate α, so that the approximation in Equation 2.3 is accurate
enough. If the learning rate is too large, the approximation may not hold and
the function may not decrease, or it may even increase. On the other hand, if
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the learning rate is too small, the algorithm may take too long to converge to the
minimum of the function. In practice, the learning rate is often varied during
the training process, decreasing as the algorithm approaches the minimum of the
function, which is known as learning rate scheduling.

Remark 2.9. Gradient Descent was introduced by Agoustin-Louis Cauchy in 1847.
In 1907, Jacques Hadamard independently proposed a similar method [7].

If we were to apply the gradient descent algorithm to minimize a loss func-
tion of the form L = 1

N ∑N
i=1 ℓi, where ℓi is the loss function for the i-th training

example, we would have to compute the gradients ∇ℓi for each training example
separately, and then average them to obtain the gradient ∇L of the loss function.
This is computationally expensive, since the number of training examples N can
be very large. To avoid this, we can use the stochastic gradient descent algorithm
[2], which approximates the gradient ∇L by computing ∇ℓi for a small randomly
sampled subset of the training examples, called a mini-batch. The number of
samples contained in each mini-batch is called batch size.

In practice, the gradient descent algorithm is often modified to improve its
performance, giving arise to new optimization algorithms. However, to limit the
scope of this work, we will not discuss these in detail and we will just mention
some of the most popular along with references for the reader to further explore
the details on these algorithms.

• Adagrad [4]: adapts the learning rate of each parameter based on the histor-
ical gradients of that parameter.

• RMSprop [5]: a modification of Adagrad which divides the learning rate by
an exponentially decaying average of the squared gradients.

• Adam [6]: combines the benefits of Adagrad and RMSprop. Particularly
useful for large datasets and high dimensional parameter spaces.

Backpropagation

Now that we know that in order to train a neural network we need to minimize
a loss function, which we choose to be of a certain form such that it can be mini-
mized using the gradient descent algorithm, we need to explain how to compute
the gradient of the loss function in order to update the weights and biases of the
network.
Backpropagation is the algorithm used to compute the gradient of the loss func-
tion with respect to the weights and biases of the network and update these using
an optimization algorithm, in this case, gradient descent.
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Backpropagation is carried out for each training example in the following steps:
First, perform a feedforward pass to compute the output a(L) for the given training
example. Now, we want to compute the gradient of the loss function

∇ℓ =

. . . ,
∂ℓ

∂w(l)
jk

, . . . ,
∂ℓ

∂b(l)j

, . . .

 ,

where w(l)
jk denotes the weight connecting the j-th neuron in layer l to the k-th

neuron in layer l − 1 and b(l)j denotes the bias term for the j-th neuron in layer l.
Using the chain rule, we can express the gradient of the loss function with respect
to the weights and biases of the network as:

∂ℓ

∂w(l)
jk

=
∂z(l)j

∂w(l)
jk

∂a(l)j

∂z(l)j

∂ℓ

∂a(l)j

= a(l−1)
k ϕ′(l)(z(l)j )

∂ℓ

∂a(l)j

,

∂ℓ

∂b(l)j

=
∂z(l)j

∂b(l)j

∂a(l)j

∂z(l)j

∂ℓ

∂a(l)j

= ϕ′(l)(z(l)j )
∂ℓ

∂a(l)j

,

where z(l)j is the j-th component of the vector z(l) given in equation 2.2, a(l)j is

the output of the j-th neuron in layer l and ϕ′(l) is the derivative of the activation
function used in layer l. If layer l is the output layer, namely when l = L, we can
compute ∂ℓ

∂a(L)
j

using the predicted and true outputs (a(L) and y) for our training

example. Otherwise,

∂ℓ

∂a(l)j

=
nl+1

∑
i=1

∂z(l+1)
i

∂a(l)j

∂a(l+1)
i

∂z(l+1)
i

∂ℓ

∂a(l+1)
i

,

where nl+1 is the number of neurons in layer l + 1.
Backpropagation starts from the output layer L and moves backwards through
each layer l to the input layer. Finally, the weights and biases of the network are
updated using the chosen optimization algorithm’s update rule. Using gradient
descent, we would update the weights and biases as follows:

w(l)
jk = w(l)

jk − α
∂ℓ

∂w(l)
jk

,

b(l)j = b(l)j − α
∂ℓ

∂b(l)j

,

where α is the learning rate. Now, we can repeat the process for each training
example in the dataset, and iterate over the entire dataset multiple times until the
loss function converges to a minimum.
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Remark 2.10. If we chose to use Stochastic Gradient Descent for optimization,
supposing wk and bl denote the weights and biases of the network, we would pick
a randomly sampled mini-batch of m training examples and we would update the
weights and biases as follows:

wk → w′
k = wk − α

m

∑
j=1

∂ℓj

∂wk
,

bl → b′l = bl − α
m

∑
j=1

∂ℓj

∂bl
,

where ℓj is the loss function for the j-th training example in the current mini-batch.
Then we would pick out another randomly chosen mini-batch and train with those
samples. And so on, until we we have exhausted the training inputs, which is said
to complete an epoch of training. We can repeat this process for multiple epochs
until the loss function converges to a minimum.

Related concepts

Before concluding this chapter, we introduce some related concepts which are
relevant in the context of training neural networks and that we will use in the
following chapters.

Overfitting

Overfitting is a phenomenon in machine learning where a model learns the
training data too well during training, to the point where it performs poorly on
unseen data, for instance the validation set. A cause for overfitting could be carry-
ing on training for too many iterations, making the parameters of the model adjust
to fit the noise in the training data or remembering specific examples in the train-
ing data, rather than capturing general underlying patterns [9]. Overfitting can be
detected by comparing the performance of the model on the training set and the
validation set. We know a model is starting to overfit when the performance on
the validation set starts to degrade while the performance on the training keeps
improving. In deep learning, some common techniques for preventing overfitting
are:

• Early Stopping: Stop training the model when the performance on a valida-
tion set starts to degrade.

• Dropout: Randomly set a fraction of the neurons’ outputs to zero during
each training iteration.
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• Data Augmentation: Increase the amount of examples in the training dataset
by applying transformations to the data.

Embeddings

As a general concept, embeddings can be defined as follows:

Definition 2.11. Given an input x ∈ Rn, an embedding corresponding to x is a vector
e ∈ Rd given by a mapping function

E : Rn → Rd

where d is the dimension of the embedding space.

In the context of neural networks, given an input vector x, the corresponding
embedding vector e is the output of an arbitrarily (although not randomly) chosen
layer in the network during the feedforward process for x, we call this layer the
embedding layer. The embedding layer maps input information from a high-
dimensional to a lower-dimensional space, allowing the network to learn more
about the relationship between inputs and to process the data more efficiently [10].
The dimension of the embedding space corresponds to the number of neurons in
the embedding layer or its dimension.

Evaluation Metrics

An evaluation metric is a measure used to evaluate the performance of a ma-
chine learning model. Each task has its own set of evaluation metrics, which are
chosen based on the desired outcome of the model.
Some common evaluation metrics for classification tasks are:

• Accuracy: The proportion of correctly classified examples.

Accuracy =
Number of correct predictions

Total number of predictions
.

• Precision: The proportion of true positive predictions among all positive
predictions.

Precision =
True Positives

True Positives + False Positives
,

where True Positives is the number of correctly predicted positive examples
and False Positives is the number of negative examples incorrectly predicted
as positive.
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• Recall: The proportion of true positive predictions among all actual positive
examples.

Recall =
True Positives

True Positives + False Negatives
.

Remark 2.12. Note that as defined above, precision and recall are only suitable
for binary classification tasks. For multi-class classification tasks, these metrics are
extended to the multi-class setting.

Some common evaluation metrics for regression tasks are:

• Mean Squared Error (MSE): As defined above when talking about loss func-
tions, MSE is the average of the squared differences between the predicted
and true values.

MSE =
1
N

N

∑
i=1

(ŷ(i) − y(i))2

• Mean Absolute Error (MAE): The average of the absolute differences be-
tween the predicted and true values.

MAE =
1
N

N

∑
i=1

|ŷ(i) − y(i)|



Chapter 3

Diversity in Deep Learning

In this chapter, we briefly expand the importance of diversity in deep learning
models, we introduce some metrics used to evaluate diversity in machine learn-
ing, with a focus on the Vendi Score, a metric derived from ecology, which we
will use in our experiments in Chapter 4 and which has numerous advantages
over other metrics, reviewed in this chapter. Before introducing the Vendi Score,
we will dedicate some space to explain how diversity is treated in ecology, which
metrics are used to measure it, which properties must these metrics satisfy and
what are their limitations, focusing on the Hill numbers, which are the basis for
the Vendi Score. We then introduce the Vendi Score and explain its properties
through the required definitions and lemmas. We end by extending the Vendi
Score to a family of Vendi Scores which extends the applicability of this metric to
problems involving datasets with imbalanced classes, among others.

We define diversity as the variety of examples that a model can capture in
the data. The following points summarize the importance of diversity in deep
learning models:

• Generalization: A diverse model is more likely to generalize well to unseen
data, as it can capture a broader range of patterns in the data.

• Robustness: Diverse models are more robust to noise and perturbations in
the data, as they are less likely to overfit to specific features.

• Creativity: In generative deep learning, diversity is crucial for generating
novel and varied outputs. For instance, in molecular generative modeling,
diversity enables the discovery of new molecules with potential applications
in medicine and materials science. Evaluating diversity also helps prevent
issues like mode collapse, where a model only generates a limited range of
outputs.

17



18 Diversity in Deep Learning

Diversity Metrics in Machine Learning

In order to evaluate diversity, researchers across many machine learning fields
have developed or even adapted existing metrics. In this section, we will introduce
some of the most used metrics along with their shortcomings, comparing them to
the Vendi Score, a similarity-based metric which we will introduce in a subsequent
section.
[21] Machine Learning researchers often use some form of average pairwise sim-
ilarity to quantify diversity, e.g. pairwise-BLEU [24] and D-Lex Sim [25] for text
data or IntDiv for molecular data [26]. However, as discussed in [20], average
similarity can fail to effectively capture diversity, even in simple scenarios, for in-
stance it can score two populations with the same number of components/species
but different levels of per-component variance the same. This is not the case for
the Vendi Score, which accounts for correlations between features and is able to
capture the increased diversity resulting from combining distinct similarity func-
tions.
Other metrics used to evaluate diversity, especially in computer vision, include a
two-metric evaluation paradigm using precision and recall [27] and Fréchet Incep-
tion distance (FID) [28], which measures the Wasserstein-2 distance between two
Gaussian distributions, one Gaussian fit to the embeddings of the reference sample
and another one fit to the embeddings of the sample to be evaluated for diversity.
However, these metrics are less flexible as they rely on a reference distribution, and
in the case of FID, additionally require the availability of an embedding function.
Compared to these approaches, the Vendi Score can measure diversity without
relying on a reference distribution or dataset and is therefore more general.
Some other existing metrics evaluate diversity using a pre-trained classifier, there-
fore requiring labeled datasets. For example, the Inception score (IS) [29], which
evaluates diversity using the entropy of the marginal distribution of class labels
predicted by an ImageNet classifier. Another example is number of modes (NOM)
[30], a metric used to evaluate the diversity of GANs (Generative Adversarial Net-
works). NOM is calculated by using a classifier trained on a labeled dataset and
then counting the number of unique labels predicted by the classifier when us-
ing samples from a GAN as input. Both IS and NOM define diversity in terms
of predefined labels, and therefore require knowledge of the ground truth labels
and a separate classifier, which limits their applicability. Once again, the Vendi
Score does not suffer from these limitations, as it can be used to evaluate diversity
without relying on labeled data or a pre-trained classifier.

Recapping, several attempts have been made to measure diversity in machine
learning. However, the proposed metrics can be limited in their applicability as
they require a reference dataset or predefined labels, or are domain-specific and
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applicable to one class of models. Besides, these metrics do not give their user
the ability to decide which type of diversity they want to measure. The existing
metrics that do not have those applicability limitations have serious shortcomings
when it comes to capturing diversity. These shortcomings are addressed by the
Vendi Score, as we will see in the upcoming sections.

3.1 Ecological Diversity and Hill Numbers

Ecologists have been studying diversity of species in ecosystems for decades,
and they have developed a variety of metrics that capture intuitive aspects of
diversity. Some of the most used metrics in ecology are the Hill numbers [17] and
the triplets alpha diversity, beta diversity, and gamma diversity [18]. However,
these metrics have some drawbacks.
The Vendi Score is a new metric based on the Hill numbers that aims to alleviate
many of the challenges faced by the commonly used diversity metrics in ecology
and machine learning.
In this section, we introduce ecological diversity and the Hill numbers in detail,
along with their properties and limitations.

Ecological Diversity

A diversity index is a measure that quantifies the diversity of a population of
species by reflecting how many different types (e.g., species) there are. Consider
a probability distribution p = (p1, . . . , pS) on a space X = {1, . . . , S}. Ecologists
refer to each member of X as a species and to the individual probability pi as the
relative abundance of the i-th species in X. Most ecological diversity indices do
not account for species similarity, assuming all species in a community are com-
pletely dissimilar and defining diversity only in terms of the relative abundance
p. Ecologists have proposed a number of properties which encode basic scientific
intuition, stating that any diversity measure taking species similarity into account
should satisfy [12]. These properties apply to a sequence (DZ : ∆S → (0, ∞))S≥1

of functions, that is, a diversity measure for communities modelled as finite prob-
ability distributions. Here, the similarities between species are encoded in a S × S
matrix Z = (Zij), with Zij representing the similarity between species i and j. We
assume that 0 ≤ Zij ≤ 1, with 0 indicating complete dissimilarity and 1 indicating
complete similarity (identical) species. Hence we also have Zii = 1. For S ≥ 1, we
write

∆S = {probability distributions on {1, . . . , S}} ,
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and

uS =

(
1
S

, . . . ,
1
S

)
,

which denotes the uniform distribution on n elements or species.
Geometrically, ∆S is the standard (S− 1)-dimensional simplex and uS is the center
of this simplex.

1. Effective number
Let (DZ : ∆S → (0, ∞))S≥1 be a diversity measure. Then DZ is an effective
number if DZ(uS) = S for all S ≥ 1.
In other words, a population containing S equally abundant, completely
dissimilar species should have a diversity score of S. In the other hand, if
all species are identical, namely, if one species accounts for the total of the
community, the diversity should be minimized and equal to 1.

2. Modularity
Suppose the community X is partitioned into m disjoint subcommunities
and species within subcommunities are totally dissimilar. Then the diversity
of the whole community should be entirely determined by the sizes and
diversities of the subcommunities.
Modularity enables us to calculate the diversity of a partitioned community
from the diversities and sizes of the subcommunities alone, without having
to know the abundance and similarity data within the subcommunities. [12]
gives the formula for the diversity of a partitioned community in terms of
the diversities and sizes of the subcommunities with its corresponding proof.

3. Replication principle
Following the context of the previous property, if these m subcommunities
within the system have the same relative abundance distribution p (meaning
they are of equal size and diversity DZ(p)), then the diversity of the whole
system X should be mDZ(p).
Formally, a diversity measure (DZ : ∆S → (0, ∞))S≥1 satisfies the replication
principle if for all m, S ≥ 1 and p ∈ ∆S, we have:

DZ(um ⊗ p) = mDZ(p),

where ⊗ denotes the tensor product [13] of probability distributions.
When m = 2, replication is called "doubling". This concept is used and
treated in [17], for instance.

4. Symmetry
A diversity measure (DZ : ∆S → (0, ∞))S≥1 is said to be symmetric if

DZ(p) = DZ(pσ(1), . . . , pσ(S)),
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for all p ∈ ∆S and σ a permutation of {1, . . . , S}.
This means that the diversity of a population should not depend on the order
in which the species are listed.

5. Absence-invariant
A diversity measure (DZ : ∆S → (0, ∞))S≥1 is said to be absence-invariant
if whenever p ∈ ∆S and 1 ≤ i ≤ S with pi = 0, then:

DZ(p) = DZ(p1, . . . , pi−1, pi+1, . . . , pS).

6. Identical species
If two species are identical, then merging them into a single species should
not change the diversity of the community.
Formally, let Z be a S × S similarity such that Zi,S = Zi,S−1 and ZS,i = ZS−1,i

for all i. Let p ∈ ∆S. Write Z′ for the restriction of Z to the first S − 1 species,
and define p′ ∈ ∆S−1 by

p′j =

{
pj if j < S − 1
pS−1 + pS if j = S − 1

.

Then a diversity measure (DZ : ∆S → (0, ∞))S≥1 verifies the identical
species property if DZ′

(p′) = DZ(p).

7. Monotonicity
When the similarities between species are increased, diversity decreases.
Formally, let Z and Z′ be S × S matrices such with Zij ≤ Z′

ij for all i, j.
Then a diversity measure (DZ : ∆S → (0, ∞))S≥1 is said to be monotone if
DZ(p) ≥ DZ′

(p), for all p ∈ ∆S.

8. Naive Model
When similarities between species are ignored, diversity is greater than when
they are taken into account. This property is an extreme case of monotonic-
ity, if a measure knows nothing of the commonalities between species, it will
evaluate the community as more diverse than it really is.

9. Range
The diversity of a community of S species is between 1 and S.
Formally, a diversity measure (DZ : ∆S → (0, ∞))S≥1 is said to verify the
range property if DZ(p) ∈ [1, S] for all p ∈ ∆S and S ≥ 1.

In the next section we define the Hill numbers, and we will show that they do
not consider similarity among species, which makes them not suitable for satis-
fying some of the above properties. In the subsequent section, we will introduce
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and show that the Vendi Score takes into account the similarity between species
and satisfies all the properties described above.

Hill numbers

Before defining the Hill numbers, we may introduce the concept of generalized
means, since it will be useful to understand the Hill numbers.

Definition 3.1. [31] If p is a non-zero real number, given a set of n positive real numbers
x1, x2, . . . , xn, the generalized mean of order p is defined as:

Mp(x1, x2, . . . , xn) =

(
1
n

n

∑
i=1

xp
i

)1/p

.

Example 3.2. The arithmetic mean is the generalized mean of order 1:

M1(x1, x2, . . . , xn) =
1
n

n

∑
i=1

xi.

Definition 3.3. [16] Consider a probability distribution p = (p1, . . . , pS) on a space
X = {1, . . . , S}. We define the Hill number of order q as the reciprocal of the weighted
generalized mean Mq−1 of the proportional abundances of the species in the population:

qD =
1

Mq−1
=

(
S

∑
i=1

pq
i

)1/(1−q)

, q ≥ 0, q ̸= 1.

Where p = (p1, . . . , pS) is the relative abundance vector of the species in the population
and S is the species richness (the number of different types within the dataset). All Hill
numbers are in units of “species”.

With respect to q:

• When q = 0, the species abundances do not count at all and the species
richness 0D = S is obtained.

• When q = 1, the metric is undefined, but its limit as q approaches 1 is well-
defined and gives:

1D = lim
q→1

qD = exp

(
−

S

∑
i=1

pi log(pi)

)
= exp(−H(p)),

where H(p) is the Shannon entropy of the distribution p. In this case, the
species are weighed in proportion to their frequencies, and the measure 1D
can be interpreted as the effective number of common species (species with
typical abundances) in the community.
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• When q = 2, abundant species are favored and rare species are discounted.
The measure 2D can be interpreted as the effective number of dominant or
very abundant species in the community.

• When q = ∞, all the weight is given to the most abundant species, and the
Hill number is also a limit:

∞D = lim
q→∞

qD = exp
(
− log

(
max

i
pi

))
=

1
maxi pi

.

In practice, q acts as a sensitivity parameter, controlling the relative emphasis
that the user wishes to place on common and rare species.
As we said before and are able to deduce from the definition, Hill numbers do
not take into account the similarity between species and thus do not satisfy all the
properties of an ideal diversity measure. Nevertheless, Chapter 7 of [14] shows,
using results on generalized means from [15], the list of properties satisfied by the
Hill numbers.

Recapping, Hill numbers, although interpretable and grounded in intuitive
notions of diversity, have important drawbacks which limit their applicability:

1. They assume some concept of classes and an ability to classify samples
within classes.

2. They assume knowledge of an abundance vector p quantifying the number
of elements in each class.

3. They do not take into account similarity between species, therefore not veri-
fying all the properties of an ideal diversity measure.

In order to lift these limitations of the Hill numbers, the Vendi Score was
introduced in [20], providing a solution for q = 1. Later, in [21], the Vendi Score
was extended to the other Hill numbers, providing a solution for all q.

3.2 Vendi Score

The Vendi Score is born from the idea of extending the way of thinking about
diversity in ecology to machine learning. The Vendi Score is designed to be a di-
versity metric that only relies on the samples being evaluated for diversity, which
achieves its maximum value when all samples are dissimilar and its minimum
value when all samples are the same, and achieves this by using a similarity func-
tion or kernel on the samples.
Before defining the Vendi Score, let us define similarity function or kernel.
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Definition 3.4. [19] We define similarity function or kernel in a vector (feature) space
X as an inner-product, that is, a function k : X × X → R that satisfies the following
properties:

• k(x, x) ≥ 0 for all x ∈ X and k(x, x) = 0 if and only if x = 0 (positive-definite),

• k(x, y) = k(y, x) for all x, y ∈ X (symmetry),

• k(αx, y) = αk(x, y) for all x, y ∈ X and α ∈ R,

• k(x + y, z) = k(x, z) + k(y, z) for all x, y, z ∈ X.

Definition 3.5. (Vendi Score). Let x1, . . . , xn ∈ X denote a collection of samples, let
k : X × X → R be a positive semidefinite similarity function, with k(x, x) = 1 for all
x, and let K ∈ Rn×n denote the kernel matrix with entry Ki,j = k(xi, xj). Denote by
λ1, . . . , λn the eigenvalues of K/n. The Vendi Score (VS) is defined as the exponential of
the Shannon entropy of the eigenvalues of K/n:

VSk(x1, . . . , xn) = exp

(
−

n

∑
i=1

λi log(λi)

)
, (3.1)

where we use the convention 0 log(0) = 0.

Remark 3.6. Notice that in Definition 3.5, the similarity function k must verify
k(x, x) = 1 for all x, while in the general definition of a similarity function, this
is not a requirement. Following these requirements, the similarity function k is
user-defined in practice.

The proofs corresponding to the following lemmas and theorems can be found
in the appendix of [20].
The following Lemma proves that the Vendi Score is well-defined.

Lemma 3.7. Let K ∈ Rn×n denote a positive semi-definite kernel matrix with Ki,i = 1
for all i. Denote by ∆n the (n − 1)-dimensional simplex. Let λ = (λ1, . . . , λn) denote the
vector of eigenvalues of K/n. Then λ ∈ ∆n.

Lemma 3.7 implies that, in particular, the eigenvalues of K/n as defined in
Definition 3.5 are nonnegative and sum to 1. The Shannon entropy of the eigen-
values of K/n is thus well-defined and the Vendi Score is well-defined.
By the following lemma, the Vendi Score can be expressed directly as a function
of the kernel similarity matrix K. This expression is useful for proving upcoming
lemmas and theorems.



3.2 Vendi Score 25

Lemma 3.8. Consider the same setting as Definition 3.5. Then

VSk(x1, . . . , xn) = exp
(
−tr

(
K
n

log
K
n

))
.

The formulation of the Vendi Score given by Definition 3.5 assumes that the
collection of samples x1, . . . , xn were sampled independently. However, this metric
can be extended to the case where there is an explicit probability distribution over
the sample space, given by the following definition.

Definition 3.9. (Probability-Weighted Vendi Score). Let p ∈ ∆n denote a probability
distribution on a discrete space X = {x1, . . . , xn}. Let:

• k : X × X → R be a positive semidefinite similarity function, with k(x, x) = 1 for
all x.

• K ∈ Rn×n denote the kernel matrix with Ki,j = k(xi, xj).

• K̃p = diag(
√

p)K diag(
√

p) denote the probability-weighted kernel matrix.

• λ1, . . . , λn denote the eigenvalues of K̃p.

The Vendi Score (VS) is defined as the exponential of the Shannon entropy of the eigenval-
ues of K̃p:

VSk(x1, . . . , xn, p) = exp

(
−

n

∑
i=1

λi log(λi)

)
.

Remark 3.10. Equation 3.1 is a special case of the probability-weighted Vendi Score
where the probability distribution is uniform (i.e., p = (1/n, . . . , 1/n)).

Lemma 3.11. Let p ∈ ∆n be a probability distribution over {x1, . . . , xn} and suppose
k(xi, xj) = 0 for all i ̸= j. Then the Vendi Score is the exponential of the Shannon entropy
of p,

VSk(x1, . . . , xn, p) = exp(−H(p)).

The following theorem summarizes some of the properties possessed by the
Vendi Score which are part of the stated in Section 3.1.

Theorem 3.12. (Properties of the Vendi Score). Consider the same definitions in Defini-
tion 3.5 and Definition 3.9.

1. Effective number. If k(xi, xj) = 0 for all i ̸= j, then VSk(x1, . . . , xn) is maximized
and equal to n. If k(xi, xj) = 1 for all i, j, then VSk(x1, . . . , xn) is minimized and
equal to 1.
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2. Identical elements. Suppose k(xi, xj) = 1 for some i ̸= j. Let p′ denote the
probability distribution created by combining i and j, i.e., p′i = pi + pj and p′j = 0.
Then the Vendi Score is unchanged,

VSk(x1, . . . , xn, p) = VSk(x1, . . . , xn, p′).

3. Partitioning. Suppose S1, . . . , Sm are collections of samples such that, for any i ̸= j,
for all x ∈ Si, x′ ∈ Sj, k(x, x′) = 0. Then the diversity of the combined samples
depends only on the diversities of S1, . . . , Sm and their relative sizes. In particular, if
pi = |Si|/ ∑j |Sj| is the relative size of Si and H(p1, . . . , pm) denotes the Shannon
entropy, then the Vendi Score is the geometric mean:

VSk(S1, . . . , Sm) = exp(H(p1, . . . , pm))
m

∏
i=1

VSk(Si)
pi .

4. Symmetry. If π1, . . . , πn is a permutation of 1, . . . , n, then

VSk(x1, . . . , xn) = VSk(xπ1 , . . . , xπn).

The rest of the properties which are not proven to be verified by the Vendi
Score in Theorem 3.12 can be easily proven either by being derived from these
proven properties or by using the lemmas and definitions previously presented in
this section.

Contrary to many diversity metrics in ecology, the Vendi Score accounts for
similarity and does not require knowledge of the prevalence of the categories in
the collection to be evaluated for diversity. However, the Vendi Score treats each
item in a given collection with a level of sensitivity proportional to the item’s
prevalence. This is undesirable in settings where there is a significant imbalance
in item prevalence. In the following section Cousins of the Vendi Score, we intro-
duce a family of diversity metrics—Vendi scores with different levels of sensitivity
controlled by the order parameter q—which can be used in a variety of applica-
tions [21].

3.2.1 Cousins of the Vendi Score

As we mentioned earlier, the Vendi Score introduced by [20] which we re-
viewed in the previous section only provides an extension for the Hill number of
order q = 1. And it was in [21] where the authors provided a theorem that relates
the eigenvalues of a normalized similarity matrix to item prevalence and used this
result to extend the Vendi Score to the other Hill numbers.
Let us present this theorem and the extended Vendi Scores.
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Theorem 3.13. [The Similarity-Eigenvalue-Prevalence Theorem] Let (x1, . . . , xN) denote
a collection of elements, where each xi = (xi1, . . . , xiMi) contains a unique element re-
peated Mi times, i.e., xij = xik for all j, k ∈ {1, . . . , Mi}. Define C = ∑N

i=1 Mi. Let
K ∈ RC×C denote a kernel matrix such that K(xi�, xj�) = 1 when i = j and 0 otherwise,
∀i, j ∈ {1, . . . , N}. Denote by K̃ = K

C the normalized kernel. Then K̃ has exactly N
non-zero eigenvalues λ1, . . . , λN and λi =

Mi
C ∀i ∈ {1, . . . , N}.

Proof. The proof of this theorem can be found in the Appendix of [21].

The theorem states that under the assumption that members of different species
are completely dissimilar there are as many nonzero eigenvalues of the species
similarity matrix as there are species and that these eigenvalues are exactly equal
to the prevalence of the different species. This theorem therefore provides a recipe
for recovering the different Hill numbers exactly using the similarity-based con-
struct the Vendi Score is based on. The benefit of computing the Hill numbers
using the same similarity-based approach as the Vendi Score is it hints at the pos-
sibility of not needing to assume knowledge of species prevalence. Furthermore,
the assumption of complete dissimilarity between species is strong and limits the
Hill numbers’ applicability. The similarity-based approach described above read-
ily allows us to lift that assumption, by simply replacing the zero entries in the
similarity matrix with a user-defined similarity function between species.
Endowed with Theorem 3.13, we can safely transition from Hill numbers—diversity
indices that assume knowledge of species prevalence and that don’t account for
species similarity—to Vendi scores, diversity indices that do not assume knowl-
edge of species prevalence and that effectively account for species similarity.

Definition 3.14. We denote by VSq(x, k) the Vendi score of order q for the collection x
under similarity function k(·, ·) and define,

VSq(x, k) = exp

 1
1 − q

log ∑
i∈supp(λ(x,k))

λ
q
i (x, k)

 ,

where λ(x, k) denotes the set of eigenvalues of the normalized similarity matrix induced by
the input similarity function k(·, ·), and supp(λ(x, k)) denotes the indices for the nonzero
eigenvalues.

Vendi scores are differentiable, which makes them suitable for gradient-based
methods in machine learning and science. This differentiability enables us to go
beyond simply evaluating diversity to effectively enforcing diversity, by embed-
ding the scores into objective functions of interest [22].
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Limitations of the Vendi Scores

Despite being a powerful tool for evaluating diversity, the Vendi Score still has
some limitations.

• The choice of the similarity function to evaluate the Vendi Score does affect
the behavior of the metric, the study of how the Vendi Score is modified by
the choice of the kernel is a work in progress.

• The Vendi scores can be computationally expensive to compute in settings
with large sets of data which do not have vector representations. Therefore,
finding methods for scaling the scores when no embeddings are available,
like large collections of raw textual data, remains an open problem.

Figure 2 shows the similarity matrices induced by a shape similarity function
and/or a color similarity function. Each entry in the matrices shown is defined to
be 1 if the column and the row share both shape and color, 0.5 if they share either
shape or color, and 0 otherwise.
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Figure 2: Sensitivity of Different Vendi Scores Under Different Scenarios.
(Source: [21]) (A) Varying the number of classes under perfect balance. Each
Vendi score measures the number of classes exactly; they are effective numbers.
(B) Varying the number of classes under imbalance. Smaller orders q more accu-
rately describe the correct number of modes. (C) q = ∞ gives a Vendi Score that
is more resistant to intra-class variance. For smaller values of q, the Vendi scores
increase with larger amounts of variance, although the Vendi score with q = 0.1
decreases slightly between example S2 and S3.
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Chapter 4

Empirical Study

In this chapter, we present the experiments conducted using the metrics devel-
oped in the previous chapter. As explained in the introduction, our objective is to
analyze the tradeoff between the performance of a model when carrying out the
task it has been trained for and the performance of the same model when carrying
out a different task for which it has not been thoroughly trained, and we want to
do so by evaluating the diversity of the embeddings generated by the model.

We will start by presenting the setting of the experiments, in which we will
describe the steps that make up the experiments, followed by our initial hypoth-
esis for the results, namely what we think the behavior of the experiments will
be and the reasons for this expected behavior. Finally we expose the results ob-
tained and a discussion of these, comparing them to our hypothesis and extracting
conclusions from them.

Setting

We constructed a toy model which allows us to simulate real world examples
of applicability of our main objective but in a smaller scale and a reproducible
manner. To minimize the margin of error of the experiments and ensure the re-
liability of the results, we carried out the procedure for the experiments using
two different datasets separately. The chosen datasets were the MNIST and Fash-
ion MNIST datasets. These were chosen because they are relatively small and thus
computationally inexpensive to work with. Additionally, they are well-known and
widely used in the machine learning community for benchmarking purposes and
image classification tasks due to the previously exposed reasons.

In order to simulate the context of having a neural network trained for a task
and wondering whether this network can be used to perform another task, we
established a set of fine classes included into a set of metaclasses for each of the
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datasets (for details on the specific classes and metaclasses in each dataset, refer
to the section Description of the Used Datasets in the Appendix). and supposed
our main task for the neural network in the toy model was classifying into the
metaclasses of the dataset, while the secondary task was classifying into the fine
classes of the dataset. We use a simple neural network with two 16-dimensional
fully connected hidden layers. We chose the embedding layer of the neural net-
work to be the second 16-dimensional fully connected hidden layer. Considering
that in both datasets the number of fine classes is ten and the number of meta-
classes is two, the dimension of the embedding layer of the network is big enough
to prevent it from becoming a bottleneck for the diversity of the embeddings.

Procedure

For each dataset, the procedure is as follows: We start by training the network
for the classification into the metaclasses of the dataset, implying that the network
will have an output layer with dimension equal to the number of metaclasses in
the dataset (hereafter, metaclass classifier output layer). For each training epoch,
the accuracy on both the train and test sets is evaluated, and these values are
stored. After each epoch of training of the network, we freeze the parameters (e.g.
we make them fixed) of the hidden layers and we swap the metaclass classifier
output layer by a new output layer suited to perform classification into the fine
classes in the dataset (hereafter, fine class classifier ouput layer). Once the output
layer has been swapped and the rest of the layers in the network have been frozen,
the network is trained for a small number of epochs to classify into the fine classes
of the dataset (notice that although we say that the network is trained, only the
parameters of the fine class classifier output layer will actually change since the
rest of parameters are fixed). The accuracy of this modified network for classify-
ing into the fine classes is evaluated on the train and test sets and the resulting
values are stored. These values allow us to know how the network is performing
when classifying into the fine classes of the dataset. Before resuming the original
training, we feed the neural network with the entire training dataset by batches
in order to get the output of the embedding layer, namely the embeddings of the
samples in the train dataset. Batch by batch, the Vendi Score of order 1 (hereafter,
just Vendi Score. Order 1 was chosen because the three datasets used in the exper-
iments contain the same number of samples per class, in other words, the classes
are balanced in all datasets) is evaluated on the embeddings and the results are
averaged and stored. The Vendi Score is the metric that allows us to know the di-
versity of the embeddings produced by the neural network in each training epoch
while being trained for classifying into the metaclasses of the dataset. Finally, we
swap the fine class classifier output layer back to the original metaclass classifier
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output layer with its previous weights and we unfreeze all the previously frozen
parameters. We resume the training of the original network until the end of the
next epoch, when we repeat the process from the start.
The loss function used for both training processes is the categorical cross-entropy
loss and the optimizer used is the Adam optimizer.
We use learning rate scheduler to adjust the learning rate during the training pro-
cess and achieve higher accuracy scores. This scheduler can be set to monitor
either the loss on the training set or the loss on the validation set of the metaclass
classification task. Monitoring the loss on the training set can lead to overfitting
the data, while monitoring the loss on the validation set can lead to a better gen-
eralization of the model. Hence we will replicate the procedure for both settings
of the learning rate scheduler in order to get insights on how do our experiments
change when overfitting the data and when favoring generalization. We will also
replicate the procedure for different values of the batch size used in the training
process to see how this parameter affects the results. The procedure ends when
the objective number of training epochs has been reached.

4.1 Hypothesis and discussion of the results

In this section, we present the results obtained from the experiments and com-
ment them in comparison to our initial hypothesis, which we present below. These
results are presented in the form of plots containing the Vendi Score of the embed-
dings (Vendi Score (order 1) of the embeddings), the accuracy of the network when
classifying into the metaclasses in both the train ((Metaclass Classifier Accuracy))
and test (Metaclass Classifier Validation Accuracy) sets and the accuracy of the net-
work when classifying into the fine classes in both the train (Fine classes Classifier
Accuracy) and test (Fine classes Classifier Validation Accuracy) sets over the training
epochs.

The main hypothesis for the experiment is that the longer the neural network
is trained for classifying the data into metaclasses and the more it overfits the
training data, the more collapsed will the embeddings corresponding to samples
of the same metaclass be, resulting in the Vendi Score of the embeddings stabi-
lizing around the number of metaclasses of the dataset, and the accuracy of the
network when classifying into the fine classes being lower, as the embeddings
corresponding to samples of different fine classes but the same metaclass will be
more likely to be collapsed into the same region of the embedding space, hence
making it harder for the fine class classifier output layer to distinguish and classify
these embeddings.
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Figure 3: Accuracy Scores and Vendi Score over training epochs on MNIST
with batch size 256 and validation loss as the monitor for the learning rate

scheduler.

Figure 4: Accuracy Scores and Vendi Score over training epochs on MNIST
with batch size 256 and training loss as the monitor for the learning rate

scheduler.
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Figure 5: Accuracy Scores and Vendi Score over training epochs on FASHION
MNIST with batch size 256 and validation loss as the monitor for the learning

rate scheduler.

Figure 6: Accuracy Scores and Vendi Score over training epochs on FASHION
MNIST with batch size 256 and training loss as the monitor for the learning

rate scheduler.

From Figures 3, 4, 5 and 6, we observe that when training our network in the
MNIST and FASHION MNIST datasets, independently of the specific parameters
for the learning rate scheduler, the Vendi Score seems to be converging to a specific
value throughout the training epochs, although with some continuous random
spiking along the process, which is most likely due to the constant tweak in the
network’s parameters, as we can observe that this spiking is less noticeable as the
learning rate scheduler keeps reducing the learning rate, until the reduction of the
learning rate by the learning rate scheduler is enough to make the Vendi Score
stabilize. When favoring the overfitting of the model, the Vendi Score stabilizes at
a higher value than the number of metaclasses, although at a close enough value
to consider the results fitting to our hypothesis. On the other hand, when favoring
the generalization of the method, the value at which the Vendi Score stabilizes is
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further from the number of metaclasses, meaning the embeddings being generated
are more diverse. This comes with higher values for the accuracy of the model
in the fine classes classification and the validation accuracy in the metaclasses
classification, which as a whole indicates that a sufficiently low diversity is indeed
a bottleneck for classification into any type of classes.
The plots corresponding to the experiments carried out with a batch size of 1024
can be found in the section Additional Plots of the Appendix as Figures 9-12.

FASHION MNIST MNIST

Batch size 256 Batch size 1024 Batch size 256 Batch size 1024

Validation accuracy 0,975 0,975 0,98 0,975

LRs monitor: Fine classification accuracy 0,86 0,865 0,94 0,95

Training loss Vendi Score 3,2 2,6 2,25 2,5

Epochs until convergence 150 115 125 140

Validation accuracy 0,975 0,97 0,98 0,975

LRs monitor: Fine classification accuracy 0,86 0,86 0,95 0,95

Validation loss Vendi Score 2,8 2,18 3,35 2,5

Epochs until convergence 25 50 25 40

Table 1: Summary of the approximated values on stabilization from the ex-
periments. The table summarizes the approximate values for some of the metrics
in our results once the learning rate scheduler has stabilized the training process
on these. LRs monitor refers to the metric monitored by the learning rate sched-
uler. Validation accuracy and Fine classification accuracy refer to the accuracy of the
network when classifying the test set into the metaclasses and the accuracy of the
network when classifying the training set into the fine classes of the dataset re-
spectively. Epochs until convergence refers to the number of epochs needed for the
Vendi Score to stabilize as a consequence of the reduction of the learning rate.

The metric Epochs until convergence is included in Table 1 to emphasize that
when setting the learning rate scheduler to focus on optimizing the training loss,
it will take longer to stabilize, since we are essentially overfitting the training data,
and we can thus keep improving the training loss every epoch, making the learn-
ing rate scheduler take longer to consider the improvement in the training loss
insufficient between epochs and hence reducing the learning rate. When focusing
on the validation loss, on the other hand, achieving a significant improvement
between epochs is not as easy or common, making the learning rate scheduler
reduce the learning rate in less epochs.
A fact worth taking into account is that when increasing the batch size for the
training of the neural network, the diversity of the embeddings produced by the
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network decreases, as we can observe in Table 1, where the Vendi Score is lower
for the experiments with a batch size of 1024 than for the experiments with a batch
size of 256.
The reason for this behavior when modifying the batch size is that the lower the
batch size, the more precise are the changes made to the parameters of the network
in each step of the backpropagation process, hence leading to a higher specificity
when mapping the samples to the embeddings (e.g. less "collapse" of the embed-
dings) and a higher diversity among the embeddings.

Extra experiments on CIFAR-100

Once the experiments on the MNIST and FASHION MNIST datasets were car-
ried out, we decided to replicate the procedure on the CIFAR-100 dataset, a more
complex dataset as explained in section Description of the Used Datasets in the
Appendix, in order to see how would the results be impacted by the use of a
more complex dataset. In order to achieve significant results, we had to use a
more complex neural network architecture, the efficientNetB0 architecture, which
is a more sophisticated model originally proposed in [23]. However, as we will
explain in the following paragraph, the results obtained from the experiments on
the CIFAR-100 dataset were not quite satisfying.

Figure 7: Accuracy Scores (upper) and Vendi Score (lower) over training epochs
on CIFAR-100 with batch size 32 and validation loss as the monitor for the

learning rate scheduler.
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Figure 8: Accuracy Scores and Vendi Score over training epochs on CIFAR-100
with batch size 32 and training loss as the monitor for the learning rate

scheduler.

As we can observe in Figure 7, the model stabilizes around epoch 15, which
is a very low number of epochs compared to the experiments on the MNIST and
FASHION MNIST datasets, and does not leave room for us to analyze the behavior
of the Vendi Score before it is stabilized. On the contrary, in Figure 8, the model
does not stabilize at all and all we are left is with a plot of the Vendi Score that is
constantly spiking, which makes it impossible to extract any conclusions from it.
What stands out the most from the results on CIFAR-100 (Figures 7 and 8) com-
pared to the results in MNIST and FASHION MNIST (Figures 3-6) is that in the
former, all the accuracy metrics except for the training accuracy have an identical
behavior to the Vendi Score, being their plots almost a copy of the Vendi Score
plot. The only explicable reason we could find behind this behavior is that since
the classes and the neural network used with the CIFAR-100 dataset are more com-
plex than the ones used with the MNIST and FASHION MNIST datasets, when
training with the latter datasets and swapping the metaclass classifier output layer
by the fine class classifier output layer, after training the fine class classifier output
layer, this last output layer becomes more or less capable of distinguishing between
the embeddings corresponding to samples from different fine classes without the
need of the embeddings being very representative of these samples, while the
same is not true for the CIFAR-100 dataset, where the embeddings need to be
more representative of the samples in order to allow the fine class classifier output
layer to be able to distinguish between the embeddings of the samples of the dif-
ferent fine classes. In other words, the diversity of the embeddings in CIFAR-100
is a more impactful and direct bottleneck for the accuracy of the network when
classifying into the fine classes and when classifying the test set into metaclasses,
acting as a limit for these metrics.
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Conclusions

As the reader may have noticed by now, although the project is about diver-
sity metrics in deep learning embeddings, the main focus of the project is a single
family of metrics, the Vendi Scores, while the rest of existing metrics for diversity
in machine learning are just mentioned with the objective of providing the actual
context for diversity in this field, which as we have seen, not much effort and re-
search has been put into [20][21].
The Vendi Scores are a powerful tool for evaluating diversity not only in embed-
dings as it is the case in this project, but also in any other applications where
measuring diversity is of interest, for example, in recommender systems [11].
Furthermore, the way the Vendi Score arises, taking ideas from ecology and quan-
tum mechanics, always using mathematics as the common language, is a clear
example of how interdisciplinary research can lead to the development of innova-
tive and fruit-bearing ideas.

Despite not being able to find a direct relationship between the diversity of the
embeddings generated by a neural network and the performance of the network
when carrying out any task from the experiments carried out in this project, we
can conclude that the diversity of the embeddings in a classifier neural network is
related to the number of classes in which the network classifies the data. This is
concluded from the fact that the Vendi Score of the embeddings stabilizes around
the number of metaclasses of the dataset in the experiments carried out in this
project, which is a clear indicator that the embeddings are more diverse when the
network classifies the data into more classes.
Coming back to our initial objective for the project and from what we have dis-
cussed throughout Chapter 4 we can conclude that the possibility of using a neu-
ral network for a different task than the one it was trained for is not possible in
practice. This is concluded from the fact that despite having two of the simplest
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datasets available (MNIST and FASHION MNIST) and proposing basic classifi-
cation tasks (classifying into 2 metaclasses and 10 fine classes) in our setting for
the experiments, we were not able to achieve a satisfactory performance of the
network when classifying into the fine classes of the dataset after training it for
classifying into the metaclasses of the dataset.
Meaning that in a real case scenario, where the datasets are more complex and the
tasks are more demanding, the performance of a model when carrying out a task
it was not trained for would likely be even worse.

Besides the already mentioned current drawbacks of the Vendi Scores, future
work on this project could involve using a sophisticated technique for enforcing
diversity in the embeddings in order to favor the preservation of the diversity of
the training samples and hopefully allowing the model to keep classifying the
samples into the metaclasses with high accuracy without collapsing them into a
type of embedding corresponding to the metaclass. If this were to be achieved, we
hypothesize that the model would be able to generate embeddings as diverse as
the samples in the training set, and would thus facilitate the task of classifying the
samples into the fine classes with relatively high accuracy and no need for specific
and thorough training.
As a matter of fact,[22] proposed Vendi Sampling, an algorithm for increasing the
efficiency and efficacy of the exploration of molecules. In Vendi sampling, replicas
are simulated in parallel and coupled via the Vendi Score, to enhance diversity.
Therefore a similar approach could be used in our context to enforce diversity in
the embeddings.

As an extra, it would be worth mentioning the main difficulties encountered
during the development of the project. One was finding sources about deep learn-
ing embeddings which did not refer to word embeddings in natural language
processing, which is the most common topic nowadays and as a consequence all
search engines seem to prioritize this topic over everything else.
Besides this anecdotal problem, the main burden for the development of the
project was the extraction of the results from the experiments, since the train-
ing of the neural networks was computationally expensive and time-consuming,
and the results were not always as expected, which led to the need of repeating
the experiments with different parameters and settings.
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Appendix

Description of the Used Datasets

Description of MNIST dataset

The MNIST dataset is a dataset of 28x28 gray-scale images of handwritten dig-
its (0-9), which make up the 10 fine classes. For the metaclasses, we will consider
the even and odd digits as two metaclasses.

It contains 60,000 training images and 10,000 testing images, with each class
having 6,000 training images and 1,000 testing images.

Description of Fashion MNIST dataset

The Fashion MNIST dataset is a dataset of 28x28 gray-scale images of clothing
items, including 10 different classes: T-shirt/top, Trouser, Pullover, Dress, Coat,
Sandal, Shirt, Sneaker, Bag, Ankle boot. For the metaclasses, we will consider the
items of clothing that are worn on the upper body as one metaclass (this includes
T-shirt/top, Pullover, Coat, Shirt, Bag) and the items of clothing that are worn on
the lower body as another metaclass (this includes Trouser, Dress, Sandal, Sneaker,
Ankle boot).

It contains 60,000 training images and 10,000 testing images, with each class
having 6,000 training images and 1,000 testing images.

Description of CIFAR-100 Dataset

The CIFAR-100 dataset is a dataset of 32x32 color images of 100 different fine
classes and 20 coarse classes or metaclasses.

It contains 50,000 training images and 10,000 testing images, with each fine
class having 500 training images and 100 testing images and thus each metaclass
having 2,500 training images and 500 testing images.

Some examples of the metaclasses are: large carnivores, large omnivores and
herbivores, medium-sized mammals, trees, vehicles 1, vehicles 2, etc.
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Some examples of the fine classes are: beaver, dolphin, otter, seal, whale, aquar-
ium fish, flatfish, ray, shark, trout, orchids, poppies, roses, sunflowers, tulips, bot-
tles, bowls, cans, cups, plates, apples, mushrooms, oranges, pears, sweet peppers,
clocks, computers, keyboards, telephones, televisions, etc.

Additional plots

Here we present the plots obtained from the experiments that were not in-
cluded in the main body of the document for them being redundant or not adding
any new information to the discussion. Nevertheless, these plots are all summa-
rized among others in Table 1 of Chapter 4.

Figure 9: Accuracy Scores and Vendi Score over training epochs on MNIST
with batch size 1024 and validation loss as the monitor for the learning rate

scheduler.

Figure 10: Accuracy Scores and Vendi Score over training epochs on MNIST
with batch size 1024 and training loss as the monitor for the learning rate

scheduler.
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Figure 11: Accuracy Scores and Vendi Score over training epochs on FASHION
MNIST with batch size 1024 and validation loss as the monitor for the learning

rate scheduler.

Figure 12: Accuracy Scores and Vendi Score over training epochs on FASHION
MNIST with batch size 1024 and training loss as the monitor for the learning

rate scheduler.


