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Abstract

Fourier Analysis is a theory of pivotal relevance in many fields, as it allows
any periodic function in a finite interval to be represented as a sum of sines and
cosines. The Fourier Transform extends this concept to non-periodic functions by
decomposing them into their frequency components. This paper aims to present
the fundamentals of Fourier Analysis, covering the key properties and results of
the Fourier Series and the Fourier Transform. Subsequently, the discrete version
of the Fourier Transform, known as the Discrete Fourier Transform (DFT), will
be discussed. Additionally, we will examine the correct methods for sampling
continuous signals, addressing issues of sampling and aliasing. The paper will
then introduce the groundbreaking work of Cooley and Tukey (1965) on the Fast
Fourier Transform (FFT), an algorithm that reduces the computational cost of the
DFT from O(N2) to O(N log N). Finally, the application of Fourier Analysis in the
field of image processing will be explored, demonstrating its practical significance
and versatility.
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Introduction

Fourier Analysis has its roots in the early 19th century. The concept was
pioneered by the French mathematician and physicist Joseph Fourier. Fourier’s
groundbreaking work was published in 1822, in a book titled "Théorie Analytique
de la Chaleur". His work, however, had been complete since 1807 but was not
published due to a harsh reception. He proposed that any periodic function could
be expressed as a sum of sines and cosines, now known as the Fourier series. That
is,

f (θ) =
∞

∑
−∞

cneinθ .

Fourier’s ideas were motivated by the search for a solution to the heat equa-
tion, a partial differential equation. Before Fourier’s work, a general solution to
this equation was not known. The particular solution for when the heat source
behaved sinusoidally was understood, but Fourier’s innovation was to model a
complex heat source as a superposition of sine and cosine waves. This superpo-
sition is now known as the Fourier series. Fourier’s discussion on this topic was
rather unrigorous by today’s standards. However, later mathematicians Dirichlet
and Riemann reformulated Fourier’s results with greater precision and formality.
Despite the initial skepticism surrounding Fourier’s ideas, his theory gradually
gained acceptance and has since become a cornerstone of mathematical analysis.

The Fourier series is a powerful tool for solving problems related to heat con-
duction, vibration, and acoustics. Over time, the theory expanded to include the
Fourier transform, which enables the decomposition of non-periodic functions
into their frequency components. This generalization has profound applications
in various fields, such as signal processing, quantum mechanics, and image pro-
cessing.

The significance of Fourier’s work is immense, as it laid the foundation for
modern harmonic analysis. His methods continue to influence contemporary
mathematics, physics, and engineering disciplines. Fourier’s work exemplifies
how innovative thinking can drive remarkable advancements in science and tech-
nology.

iii



iv Introduction

This work aims to cover the fundamentals of Fourier analysis and provide the
reader with an in-depth understanding of its applications in the field of image
processing.

In the first chapter, we will explore the construction of the Fourier series and
the conditions under which it converges to the target function. We will demon-
strate that this extension is possible because the set {eint}n∈Z is dense in L2[−π, π].
While some results in this chapter may have been covered in previous coursework,
this work offers new insights into the Fourier series. We will then introduce the
Fourier transform of a function

f̂ (t) =
∫ ∞

−∞
f (x)e−ixt dx,

initially defined for functions in L1. We will discuss its relationship with convolu-
tion, the inversion theorem, and its extension to L2 and multivariable spaces. This
section primarily follows the structure of the works of Folland [3] and Rudin [4],
[5].

The second chapter focuses on Discrete Fourier Analysis. It will begin by pre-
senting the Nyquist-Shannon Sampling Theorem [11], a crucial result that explains
how to sample continuous signals using a discrete set of samples. Following this,
we will introduce the Discrete Fourier Transform (DFT) and its properties, draw-
ing parallels to the continuous Fourier Transform. Much of this chapter is based
on the works of Cheney [7], Bredies [12], and Brunton [13].

A significant limitation of the DFT is its high computational cost when com-
puted directly, with a complexity of O(N2). In the final part of the second chapter,
we will present the Fast Fourier Transform (FFT) algorithm. This method for effi-
ciently calculating the DFT was first published by James Cooley and John Tukey
[8] in 1965 and reduces the computation cost to O(N log N).

"The most important Algorithm of our Lifetime."

– Gilbert Strang, 1994, on the FFT

However, it was originally used by Gauss in an unpublished work from 1805,
where he aimed to interpolate the orbits of the asteroids Pallas and Juno from a
sample of observations. Remarkably, this work predates Fourier’s breakthrough
by almost 20 years!

The last chapter is dedicated to presenting an application of the concepts of
Fourier analysis in the field of image processing. We will begin by explaining
how an image is defined and exploring its representation in the frequency do-
main. Following this, we will discuss various filtering methods in the frequency



Introduction v

domain. All the code used to generate the images and the filters is self-made and
is provided along with this document.

2020 Mathematics Subject Classification. 42A16, 42A20, 42A38, 65T50, 94A08
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Chapter 1

Fourier Analysis Fundamentals

1.1 Basic definitions and properties

Definition 1.1. Let X be an arbitrary interval of R. If 1 ≤ p < ∞ and f be a
complex measurable function on X, we define

∥ f ∥p =

{∫
X
| f (t)|p dt

}1/p

.

Let Lp(X) consist of all f such that

∥ f ∥p < ∞.

We call ∥ f ∥p the Lp-norm of f . If X = (−∞, ∞), we will write Lp instead of
Lp(−∞, ∞).

Theorem 1.2. Let p ∈ (1, ∞). Let X be an interval of R. Let f and g be measurable,
non-negative functions in X. Then,{∫

X
( f (p) + g(p))pdt

}1/p

≤
{∫

X
f pdt

}1/p

+

{∫
X

gpdt
}1/p

. (1.1)

This is known as Minkowski’s inequality.

Proof. The proof can be found in [4].

Theorem 1.3. Let X be an arbitrary interval of R. If 1 ≤ p < ∞ , and f , g ∈ Lp(X)

then f + g ∈ Lp(X), and
∥ f + g∥p ≤ ∥ f ∥p + ∥g∥p.

1



2 Fourier Analysis

Proof. Let p ∈ (1, ∞). We have that,

∥ f + g∥p =

{ ∫
X
| f (t) + g(t)|p dt

}1/p

≤
{ ∫

X
(| f (t)|+ |g(t)|)p dt

}1/p

≤
{ ∫

X
| f (t)|p dt

}1/p

+

{ ∫
X
|g(t)|p dt

}1/p

= ∥ f ∥p + ∥g∥p.

The first inequality is obvious and in the second inequality, we have used Minkowski’s
inequality. For p = 1, it is trivial since | f + g| ≤ | f |+ |g|.

Since we have a norm in Lp, it is natural to assume that we will get a metric
space with the distance defined as d( f , g) = ∥ f − g∥p. This is, however, not en-
tirely true since d( f , g) = 0 does not imply that f = g, but that f (t) = g(t) for
almost all t, i.e., for all t except for a set of Lebesgue measure zero (see Theorem
2.22 of [4]).

Let us write f ∼ g ⇔ d( f , g) = 0. This defines an equivalence relation in Lp.
When Lp is regarded as a metric space, the space that is really under considera-
tion is not the space whose elements are functions, but a space whose elements
are equivalence classes of functions. For the sake of simplicity, although this dis-
tinction we will speak of Lp as a space of functions.

Definition 1.4. We say that a metric space X is complete if every Cauchy sequence
in X converges to an element of X.

Theorem 1.5. Lp is a complete metric space for every 1 ≤ p < ∞.

Proof. The proof of this result can be found in Theorem 3.11. of [4].

1.2 The Fourier Series

1.2.1 Definition

Definition 1.6. Suppose f is 2π-periodic and integrable over [−π, π]. The num-
bers cn defined by

cn =
1

2π

∫ π

−π
f (θ)e−inθ dθ (1.2)

are called the Fourier coefficients of f , and the corresponding formal series

S f =
∞

∑
−∞

cneinθ (1.3)
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is called the Fourier series of f .

Remark 1.7. If f is a real function, then clearly f (θ) = f (θ). We have then that

cn =
1

2π

∫ π

−π
f (θ)e−inθ =

1
2π

∫ π

−π
f (θ)e−inθ =

1
2π

∫ π

−π
f (θ)e−inθ = c−n

Remark 1.8. By using Euler’s formula

eiθ = cos(θ) + isin(θ)

we obtain an analogous expression for the Fourier series and the Fourier coeffi-
cients:

S f =
1
2

a0 +
∞

∑
1
(ancos(nθ) + bnsin(bθ)),

an =
1
π

∫ π

−π
f (θ)cos(nθ)dθ, bn =

1
π

∫ π

−π
f (θ)sin(nθ)dθ.

The real and complex coefficients are related by:

cn =
1
2
(an − ibn)

c−n =
1
2
(an + ibn)

with n ∈N.

Remark 1.9. All the definitions in this section could be extended to integrable
functions over an arbitrary interval [a, b]. If L = |b− a| then

cn =
1
L

∫ b

a
f (θ)e

−2inθ
L dθ, (1.4)

S f =
∞

∑
−∞

cne
2inθ

L .

We will, however, treat the case where [a, b] = [−π, π] for simplicity in the notation
and for the fact that it is a widely accepted convention in the field of Fourier
Analysis.

1.2.2 A basis for 2π-periodic functions

Definition 1.10. We say that a complex vector space H is an inner product space
if for each pair of vector x, y ∈ H there is an associated complex number (x, y)
which we call the inner product of x and y, such that the following rules hold:

1. (y, x) = (x, y).
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2. (x + y, z) = (x, z) + (y, z), with x, y, z ∈ H.

3. (αx, y) = α(x, y) where α is scalar.

4. (x, x) ≥ 0, ∀x ∈ H

5. (x, x) = 0⇔ x = 0

It is generally known that every inner product space H is also a normed space
with the norm of a given vector u ∈ H defined as

∥u∥ =
√
(u, u).

Definition 1.11. A system {φj}∞
j=1 with φj ∈ H, ∀j, is said to be complete in H if,

for every, u ∈ H and every ε > 0, there is a linear combination ∑N
j=1 aj φj such that∥∥∥∥u−

N

∑
j=1

aj φj

∥∥∥∥ < ε.

Definition 1.12. If an inner product space H is complete, it is called a Hilbert Space.

Remark 1.13. Consider L2 with the inner product

( f , g) =
∫ ∞

−∞
f (t) g(t) dt. (1.5)

This inner product is well defined as shown in theorem 3.8. of [4] and the com-
pleteness of L2 is proven in theorem 3.11. of [4]. Thus L2 is a Hilbert space. Note
also that,

∥ f ∥ = ( f , f )
1
2 = (

∫ ∞

−∞
| f |2 dx)

1
2 = ∥ f ∥2.

Definition 1.14. Given a Hilbert Space H and a set of vectors of this space {ui}i∈I

is said to be orthonormal if we have

(ui, uj) =

{
1, i = j

0, otherwise
∀ i, j ∈ I.

If an orthonormal set is complete, we call it an orthonormal basis.

Theorem 1.15. Let {ui}i∈I be an orthonormal set in H. The following are equivalent

1. The set S of all finite linear combinations of members of {ui}i∈I is dense in H.

2. For every x ∈ H, we have ∥x∥2 = ∑i∈I |(x, ui)|2.
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3. If x ∈ H and y ∈ H, then (x, y) = ∑i∈I(x, ui)(y, ui).

Proof. The proof can be found in Rudin [4] 4.18.

Definition 1.16. We define the Fourier System as the set {eint}n∈Z .

Proposition 1.17. The Fourier system is an orthonormal set on the interval [−π, π].

Proof. Obviously, the exponential function is on L2[−π, π]. We then can consider
the inner product 1.5 with integration limits −π and π and multiplied by a factor
of 1/2π:

( f , g) =
1

2π

∫ π

−π
f (t)g(t) dt

If uk = eikt for all k, we see that

(un, um) =
1

2π

∫ π

−π
einte−imt dt =

1
2π

∫ π

−π
ei(n−m)t dt =

{
1, n = m

0, n ̸= m
.

Theorem 1.18. The Fourier system is complete in L2[−π, π].

Proof. The proof can be found in theorem 5.8. of Vretbald [2].

We have shown that the Fourier system is orthonormal and complete in L2[−π, π],
therefore, by Theorem 1.15 we determine that it is dense in this space. We get the
idea now that the Fourier coefficients of a function f ∈ L2[−π, π] are in a way the
"coordinates" of f in the base {eint}n∈Z. The Fourier series is the expansion of f
with respect to the Fourier system.

1.2.3 Convergence of Fourier Series

We want to study the convergence of the Fourier series to our function f . We
denote the Nth partial sum of the Fourier series by

S f
N =

N

∑
−N

cneinθ .

We want to study under what conditions the succession of partial sums converge
S f

N −→N→∞
f (pointwise or uniformly).
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Pointwise convergence

Theorem 1.19. (Bessel’s Inequality) If f is 2π-periodic and Lebesgue integrable on
[−π, π], and the Fourier coefficients cn are defined like in 1.2 then

∞

∑
n=−∞

|cn|2 ≤
1

2π

∫ π

−π
| f (θ)|2 dθ.

Proof. Since |z|2 = zz for any complex number z,

∣∣∣∣∣ f (θ)− N

∑
n=−N

cneinθ

∣∣∣∣∣
2

=

(
f (θ)−

N

∑
n=−N

cneinθ

)(
f (θ)−

N

∑
n=−N

cne−inθ

)

= | f (θ)|2 −
N

∑
n=−N

[
cn f (θ)einθ + cn f (θ)e−inθ

]
+

N

∑
m,n=−N

cmcnei(m−n)θ .

If we divide both sides of the equality by 2π and integrate from −π to π we
obtain

1
2π

∫ π

−π

∣∣∣∣∣ f (θ)− N

∑
n=−N

cneinθ

∣∣∣∣∣
2

dθ

=
1

2π

∫ π

−π
| f (θ)|2dθ −

N

∑
n=−N

[cn

∫ π

−π
f (θ)einθ dθ + cn

∫ π

−π
f (θ)e−inθ dθ] +

N

∑
n=−N

cncn

∫ π

−π
ei(m−n)θ dθ

Trivially, if m = n then 1
2π

∫ π
−π ei(m−n)θdθ = 1

2π

∫ π
−π 1 dθ = 1. Because of the

2π-periodicity of the complex exponential function, we have that if m ̸= n then
1

2π

∫ π
−π ei(m−n)θdθ = 0. We have the formula

1
2π

∫ π

−π
ei(m−n)θdθ =

{
0, m ̸= n

1, m = n
. (1)

Now if we recall,

cn =
∫ π

−π
f (θ)e−inθ dθ, (2)
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we obtain

1
2π

∫ π

−π

∣∣∣∣∣ f (θ)− N

∑
n=−N

cneinθ

∣∣∣∣∣
2

dθ

=
1

2π

∫ π

−π
| f (θ)|2dθ −

N

∑
n=−N

[cncn + cncn] +
N

∑
n=−N

cncn

=
1

2π

∫ π

−π
| f (θ)|2dθ −

N

∑
n=−N

|cn|2.

But the integral on the left cannot be negative, therefore

0 ≤ 1
2π

∫ π

−π
| f (θ)|2 dθ −

N

∑
n=−N

|cn|2.

If we let N → ∞, we obtain the desired result.

Remark 1.20. Bessel’s inequality can also be deducted from Theorem1.15. It can
be proved that Bessel’s Inequality is, in fact, an equality. However, our main goal
with this demonstration was to see that the Fourier coefficients an, bn, and cn tend
to zero as n → ∞. This is because |a2

n|, |b2
n|, and |c2

n| are all terms of a convergent
series, and therefore tend to zero as n → ∞. Hence so do an, bn, and cn. This is a
special case of Theorem 1.37.

Definition 1.21. A function f defined over a closed interval [a, b] is said to be
piecewise continuous if f is continuous except for a finite number of jump disconti-
nuities.
We say a function f is piecewise smooth if f and its first derivative f ′ are both
piecewise continuous on [a, b].

Lemma 1.22. Given a continuous, derivable, and P-periodic function f , then
∫ a+P

a f (x) dx
is independent of a.

Proof. Let

g(a) =
∫ a+P

a
f (x) dx =

∫ a+P

0
f (x) dx−

∫ a

0
f (x) dx.

By the fundamental theorem of calculus, g′(a) = f (a + P)− f (a), and given the
periodicity of f we see that g is constant.

Definition 1.23. We call the function

Dn(θ) =
1

2π

N

∑
−N

einθ (1.6)

the Nth Dirichlet Kernel.
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Lemma 1.24. Consider the Nth Dirichlet kernel defined as in 1.6. For any N we have,

∫ 0

−π
DN(θ) dθ =

∫ π

0
DN(θ) dθ =

1
2

.

Proof. We have that

Dn(θ) =
1

2π

N

∑
n=−N

einθ =
1

2π

(
1 +

N

∑
n=1

(einθ + e−inθ)

)

=
1

2π

(
1 +

N

∑
n=1

2 cos(nθ)

)
=

1
2π

+
1
π

N

∑
n=1

cos(nθ)

Where we have used that einθ = cos(nθ) + isin(nθ) and e−inθ = cos(nθ)− i sin(nθ).
We have then, ∫ π

0
DN(θ) dθ =

[
θ

2π
+

1
π

N

∑
n=1

sin nθ

n

]π

0

=
1
2

.

The case where the integral goes from −π to 0 is analogous.

Remark 1.25. We have that

Dn(θ) =
1

2π

N

∑
n=−N

einθ =
1

2π
e−iNθ

2N

∑
n=0

einθ .

Applying the geometric series formula ∑N
n=0 rn = rN+1−1

r−1 we have that

Dn(θ) =
1

2π
e−iNθ ei(2N+1)θ − 1

eiθ − 1
=

1
2π

ei(N+1)θ − 1
eiθ − 1

.

Finally, if we multiply the top and bottom by e−iθ/2, we obtain the expression

Dn(θ) =
1

2π

ei(N+ 1
2 )θ − e−i(N+ 1

2 )θ

ei 1
2 θ − e−i 1

2 θ
=

1
2π

sin(N + 1
2 )θ

sin( 1
2 θ)

(1.7)

Theorem 1.26. (Pointwise convergence). If f is a 2π-periodic function piecewise
smooth on R, and S f

N is defined as above, then

lim
N→∞

S f
N(θ) =

1
2
[ f (θ−) + f (θ+)]

for every θ. In particular, limN→∞ S f
N(θ) = f (θ) for all θ where f is continuous.
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Proof. We have that

S f
N(θ) =

1
2π

N

∑
−N

cneinθ =
1

2π

∫ π

−π
f (ψ)ein(θ−ψ) dψ =

1
2π

∫ π

−π
f (ψ)ein(ψ−θ) dψ

where we have plugged the formula of cn into the formula of S f
N and replaced n

with −n in the last equality (it doesn’t affect the result since the sum goes from
−N to N). Now if we make the change of variable τ = ψ− θ and use the Lemma
1.22 we get

S f
N(θ) =

1
2π

N

∑
−N

∫ π+θ

−π+θ
f (θ + τ)einτ dτ =

1
2π

N

∑
−N

∫ π

−π
f (θ + τ)einτ dτ

In short,

S f
n(θ) =

∫ π

−π
f (θ + τ)DN(τ)dτ (1)

By Lemma 1.24, we have

1
2

f (θ−) = f (θ−)
∫ 0

−π
DN(τ) dτ,

1
2

f (θ+) = f (θ+)
∫ π

0
DN(τ) dτ, (2)

therefore by (1) and (2) we have that

S f
N(θ)−

1
2
[ f (θ−) + f (θ+)] =∫ 0

−π
[ f (θ + τ)− f (θ−)] DN(τ) dτ +

∫ π

0
[ f (θ + τ)− f (θ+)] DN(τ) dτ.

We wish to show that for each fixed θ, this quantity approaches zero as N → ∞.
By the formula 1.7, we can write it as

1
2π

∫ π

−π
g(θ)(ei(N+1)θ − e−iNθ) dθ (3)

where g is defined as

g(θ) =


f (θ−τ)− f (θ−)

eiτ−1 if − π < τ < 0,
f (θ−τ)− f (θ+)

eiτ−1 if 0 < τ < π.

g behaves well on the interval [−π, π] except near τ = 0. However, it is easy to
check that by l’Hôpital rule that limτ→0+ g(τ) = f ′(θ+)

i . Similarly, g(τ) approaches
the limit f ′(θ−)/i as τ approaches zero from the left. Therefore g is piecewise
continuous on [−π, π], and its Fourier coefficients

Cn =
1

2π

∫ π

−π
g(τ)e−unτ dτ

tend to zero as n → ±∞ (as shown by Bessel’s inequality). But expression (3)
is nothing but C−(N+1) − CN , thus it vanishes at N → ∞. This is all we need to
show.
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Uniform convergence

Theorem 1.27. Suppose f is 2π-periodic, continuous, and piecewise smooth. Let an, bn,
and cn be the Fourier coefficients of f , and let a′n, b′n and c′n be the corresponding Fourier
coefficients of f ′. Then

a′n = nbn, b′n = −nan, c′n = incn.

Proof. We have that a′n = 1
π

∫ π
−π f ′(x)cos(nx)dx. If we integrate by parts taking

u = cos(nx) and dv = f ′(x), then du = −nsin(nx)dx and v = f (x). We have then,

1
π

∫ π

−π
f ′(x) cos(nx)dx =

1
π

[
f (x) cos(nx)

∣∣∣∣π
−π

−
∫ π

−π
f (x)(−n sin(nx)) dx

]
.

Since f is 2π-periodic and so is cos(nπ) we have that the first term cancels out and
then

a′n =
n
π

∫ π

−π
f (x) sin(nx) dx = nbn.

The second equality is analogous if we choose u = sin(nx) and dv = f ′(x). For
the third equality,

c′n =
1

2π

∫ π

−π
f ′(x)e−inx dx

=
1

2π

[
f (x)e−inx

∣∣∣∣π
−π

−
∫ π

−π
f (x)(−ineinx) dx

]
=

1
2π

∫ π

−π
f ′(x)e−inx dx =

in
2π

∫ π

−π
f (x)e−inx dx = incn.

Theorem 1.28. If f is 2π-periodic, continuous, and piecewise smooth, then the Fourier
series converges to f absolutely and uniformly in R.

Proof. By theorem 1.26, we only have to show that ∑∞
−∞ |cn| converges. Let c′n

denote the Fourier coefficients of f ′. In theorem 1.27 we have shown that cn =

(in)−1c′n for n ̸= 0, and applying Bessel’s inequality to f ′,

∞

∑
n=−∞

|c′n|2 ≤
1

2π

∫ π

−π
| f ′(θ)|2dθ < ∞.

We see then that ∑∞
n=−∞ |c′n|2 is a convergent series; in other words, the sequence

{c′n}n is square-summable.
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Consider the Euclidean space R2N+1. A sequence can be written as a vector:

x = (x−N , x−N+1, . . . , x0, . . . , xN−1, xN)

and the inner product can be defined as

x · y =
N

∑
k=−N

xkyk.

Given that R2N+1 is an inner product space, the Cauchy-Schwartz inequality holds
i.e. |x · y| ≤ ∥x∥1/2∥y∥1/2. This argument can be extended to the case of square
summable series. Suppose that x = {xn}n∈Z and y = {yn}n∈Z are both infinite
sequences such that ∑n∈Z x2

n < ∞ and ∑n∈Z y2
n < ∞. Then we have that

N

∑
n=−N

|xnyn| ≤
(

N

∑
n=−N

x2
n

)1/2( N

∑
n=−N

y2
n

)1/2

≤
(

∞

∑
−∞

x2
n

)1/2( ∞

∑
−∞

y2
n

)1/2

< ∞

Then if we make n→ ∞, we see that ∑∞
−∞ |xnyn| < ∞.

Consider now the sum ∑∞
−∞ |cn|. We have that

∞

∑
−∞
|cn| = |c0|+ ∑

n ̸=0

∣∣∣∣ c′nn
∣∣∣∣ ≤ |c0|+

(
∑
n ̸=0

1
n2

)1/2(
∑
n ̸=0
|c′n|2

)1/2

< ∞.

We have used the fact that {c′n} and { 1
n}n ̸=0 are both square summable series.

Remark 1.29. Fourier series have some intrinsic limitations when dealing with dis-
continuous functions. Consider a periodic function f that exhibits a discontinuous
jump at a point x0. In such cases, the Fourier series for f cannot achieve uniform
convergence across any interval containing x0. The lack of uniformity manifests
itself in a dramatic way known as the Gibbs phenomenon which is characterized
by the oscillatory nature of the series near the point of discontinuity. As one adds
terms to the series, the partial sums overshoot and undershoot f near the discon-
tinuity, and thus develop ’spikes’ that tend to zero in width but not in length. For
more detailed information on the Gibbs phenomenon see Plonka [6].

1.3 The Fourier Transform

We will begin this section by introducing the concept of convolution between
two functions. This operation is deeply intertwined with the Fourier transform, as
the Fourier transform of a convolution of two functions is the pointwise product
of their Fourier transforms. This powerful relationship underlies many important
results and applications in Fourier analysis.
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Definition 1.30. If f and g are functions on R, their convolution is the function
f ∗ g defined by

f ∗ g(x) =
∫ ∞

−∞
f (x− y)g(y) dy (1.8)

provided that this integral exists.

Theorem 1.31. Consider f , g ∈ L1. The convolution of these two functions, assuming
that it exists, obeys the same algebraic laws as ordinary multiplication:

1. f ∗ (ag + bh) = a( f ∗ g) + b( f ∗ h) for any a, b ∈ R

2. f ∗ g = g ∗ f

3. f ∗ (g ∗ h) = ( f ∗ g) ∗ h

Proof. If f and g are both in L1, then the convolution f ∗ g(x) exists for almost
every x as shown in section 7.1. of Folland [3].
(1) is obvious given that integration is a linear operation. For (2) if we make the
change of variable z = x− y:

f ∗ g(x) =
∫

R
f (x− y)g(y) dy =

∫
R

f (z)g(x− z) dz

For (3) we use (2) and interchange the order of integration:

( f ∗ g) ∗ h(x) =
∫

R
f ∗ g(x− y)h(y) dy =

∫
R

∫
R

f (z)g(x− y− z)h(y) dz dy

=
∫

R

∫
R

f (z)g(x− z− y)h(y) dy dz =
∫

R
f (z)g ∗ h(x− z) dz = f ∗ (g ∗ h)(x).

Theorem 1.32. Suppose that f is differentiable and the convolutions f ∗ g and f ′ ∗ g
are well-defined. Then f ∗ g is differentiable and ( f ∗ g)′ = f ′ ∗ g. Likewise, if g is
differentiable, then ( f ∗ g)′ = f ∗ g′.

Proof. We can think of f ′ as a limit of functions { fn}n and apply the dominated
convergence theorem to differentiate under the integral sign (see Rudin [4], [5] or
Folland [3]):

( f ∗ g)′(x) =
d

dx

∫
R

f (x− y)g(y) dy =
∫

R

d
dx

f (x− y)g(y) dy = f ′ ∗ g(x).

Since f ∗ g = g ∗ f , the same argument works with f and g interchanged.
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Definition 1.33. Given f ∈ L1, the function

f̂ (t) =
∫ ∞

−∞
f (x)e−ixt dx

is well defined ∀t ∈ R. We call f̂ the Fourier transform of f .

Remark 1.34. Sometimes we will refer to the Fourier transform with the notation

F ( f ) = f̂ .

Remark 1.35. Since e−itx has module value 1, the integral converges absolutely for
all t and defines a bounded function of t:

| f̂ (t)| ≤
∫

R
| f (x)| dx

Moreover, since |e−iηx f (x)− e−itx f (x)| ≤ 2| f (x)|, the dominated convergence the-
orem implies that f̂ (η)− f̂ (t)→ 0 as η → t, therefore f̂ is continuous.

Theorem 1.36. Suppose f ∈ L1 and α and λ are real numbers.

1. If g(x) = f (x)eiαx, then ĝ(t) = f̂ (t− α).

2. If g(x) = f (x− α), then ĝ(t) = f̂ (t)e−iαt.

3. If g ∈ L1 and h = f ∗ g, then ĥ(t) = f̂ (t)ĝ(t) (Convolution Theorem).

4. If f is continuous and piecewise smooth and f ′ ∈ L1 then F ( f ′)(x) = ix f̂ (x). On
the other hand, if x f (x) is integrable then x̂ f (x) = i f̂ ′(x).

Proof. For 1. we have that,

ĝ(t) =
∫ ∞

−∞
f (x)eiαxe−ixt dx =

∫ ∞

−∞
f (x)eix(α−t) dx = f̂ (t− α).

Regarding 2., if we consider the change of variable y = x− α we have,

ĝ(t) =
∫ ∞

−∞
f (x− α)e−ixtdx =

∫ ∞

−∞
f (y)e−i(y−α)t dy = e−iαt

∫ ∞

−∞
f (y)e−iyt dy = f̂ (t)e−iαt.

Now for the proof of 3., if we consider the change of variable z = x− y then:

ĥ(t) =
∫ ∞

−∞

∫ ∞

−∞
e−itx f (x− y)g(y)dydx

=
∫ ∞

−∞

∫ ∞

−∞
e−it(x−y) f (x− y)e−ityg(y)dxdy

=
∫ ∞

−∞

∫ ∞

−∞
e−itz f (z)e−ityg(y)dzdy

= ĝ(t) f̂ (t).
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Where in the last equality we have separated the two integrals (this move is legiti-
mate. In Rudin, [4] theorem 7.14 it is shown that if f and g are functions of L1, we
can apply Fubini’s theorem. Furthermore, theorem 7.8 in Rudin [4] provides the
proof of a rather general version of Fubini’s theorem).
In regards to 4., since f is derivable in R, by the Fundamental Theorem of cal-
culus we have that f (x) − f (0) =

∫ x
0 f ′(y) dy. If we make x → ∞ we obtain

limx→∞ f (x)− f (0) =
∫ ∞

0 f ′(x) dx. Thus we have that

lim
x→∞

f (x) = f (0) +
∫ ∞

0
f ′(x) dx

Since f ′ ∈ L1 this limit exists. And since f ∈ L1 (and therefore vanishes at infinity)
the limit must be zero. Likewise, limx→−∞ f (x) = 0. Hence we can integrate by
parts, and the boundary terms vanish:

F ( f ′)(t) =
∫ ∞

−∞
e−ixt f ′(x) dx = −

∫ ∞

−∞
(−it)eixt f (x) dx = it f̂ (t).

On the other hand, if x f (x) is integrable, since xeixt = i(d/dt)eit we have

x̂ f (x) =
∫ ∞

−∞
e−ixtx f (x) dx = i

d
dt

∫ ∞

−∞
e−ixt f (x) dx = i f̂ ′(x).

Lemma 1.37. (Riemann-Lebesgue Lemma). If f ∈ L1, then f̂ (x)→ 0 as x→ ±∞ .

Proof. First, consider the simple function

ϕ[a,b](x) =

{
1 if x ∈ [a, b]

0 otherwise
.

We compute its Fourier transform

ϕ̂[a,b](t) =
∫ b

a
e−ixt dx =

−e−iat + eibt

−it
, (1.9)

and see that ∣∣∣∣−e−iat + e−ibt

−it

∣∣∣∣ ≤ |e−itb|+ e−ita

t
=

2
|t|

|t|→∞−−−→ 0.

Now, suppose that f is the linear combination of step functions, i.e. f = ∑M
N=1 cNϕAN

with AN = [aN , bN ]. Thus, by the linearity of the Fourier transform, we have that

f̂ (t) =
M

∑
N=1

cN ϕ̂AN (t)
|t|→∞−−−→ 0.
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Let ϵ > 0. Then since f ∈ L1 and simple functions are dense in L1 (see Chapter 11
in Rudin [5]), there exists a simple function g such that ∥ f − g∥ < ϵ/2, or what is
the same, ∫ ∞

−∞
| f (x)− g(x)|dx <

ϵ

2
.

Since g is a step function, we have already determined that ĝ(t) → 0 as |t| → ∞,
meaning that there exists M such that if |t| > M then |ĝ(t)| < ϵ/2. With the same
M, if |t| > M then

| f̂ (t)| = | f̂ (t) + ĝ(t)− ĝ(t)| ≤ | f̂ (t)− ĝ(t)|+ |ĝ(t)| < | f̂ (t)− ĝ(t)|+ ϵ

2
.

But we have

| f̂ (t)− ĝ(t)| =
∣∣∣∣∫ ∞

−∞
f (x)e−itx − g(x)e−itx dx

∣∣∣∣ ≤ ∫ ∞

−∞
| f (x)− g(x)||e−itx| dx

=
∫ ∞

−∞
| f (x)− g(x)| dx = ∥ f − g∥ < ϵ

2
.

Putting all this together, we conclude that

| f̂ (t)| < | f̂ (t)− ĝ(t)|+ ϵ

2
<

ϵ

2
+

ϵ

2
= ϵ.

Theorem 1.38. (Fourier Inversion Theorem). Suppose that f is integrable and piecewise
continuous on R, defined at its points of discontinuity to satisfy f (x) = 1

2 [ f (x−) +
f (x+)] for all x. Then

f (x) = lim
ϵ→0

1
2π

∫ ∞

−∞
eitxe−ϵ2t2/2 f̂ (t) dt, x ∈ R. (1.10)

Moreover, if f̂ ∈ L1, then f is continuous and

f (x) =
1

2π

∫ ∞

−∞
eitx f̂ (t) dt, x ∈ R. (1.11)

The first difficulty that we encounter while proving the theorem is that f̂ is not
necessarily in L1, and we, therefore, can’t establish 1.11 by simply substituting it
in the defining formula for f̂ ,∫ ∞

−∞
eitx f̂ (t) dt =

∫ ∞

−∞

∫ ∞

−∞
eit(x−y) f (y) dy dt

and interchanging the order of integration, because the integral
∫ ∞
−∞ eit(x−y) dt is

divergent. We solve this by multiplying f̂ by a cutoff function e−ϵ2t2/2 and we
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remove it by letting ϵ → 0. This leads to a more general version of the inversion
formula shown in equation 1.10. A detailed proof of the Inversion Theorem can
be found in section 7.2 of Folland [3].

Corollary 1.39. If f̂ = ĝ, then f = g.

Proof. If f̂ = ĝ, then ̂( f − g) = 0, so f − g = 0 by the inversion equation 1.11.

Remark 1.40. There are many functions for which both the function f and its
Fourier transform f̂ are in L1. For instance, if f is twice differentiable and f ′

and f ′′ are also integrable, then F ( f ′′)(t) = −t2 f̂ (t) is bounded, so | f̂ (t)| ≤ C
1+t2 ,

whence f̂ ∈ L1. Such functions have the property that f and f̂ are bounded and
continuous as well as integrable, and hence f and f̂ are also in L2.

1.3.1 L2-Theory

Let’s discuss Fourier theory in the L2 space. It is generally known that L2 is
not a subset of L1, and therefore the definition of the Fourier transform 1.33 is not
directly applicable to every f ∈ L2.

Theorem 1.41. (The Plancharel Theorem). The Fourier transform, defined originally
on L1 ∩ L2, extends uniquely to a map from L2 to itself that satisfies

( f̂ , ĝ) = 2π( f , g) and ∥ f̂ ∥2 = 2π∥ f ∥2 for all f , g ∈ L2. (1.12)

Moreover, the formulas of theorem1.38 still hold for L2 functions.

Proof. Suppose that f and g are L1 functions such that f̂ and ĝ are also in L1. Then
by the formula 1.11 we have that

2π( f , g) = 2π
∫ ∞

−∞
f (x)g(x) dx =

∫ ∞

−∞

∫ ∞

−∞
f (x)eitx ĝ(t) dt dx

=
∫ ∞

−∞

∫ ∞

−∞
f (x)e−itx ĝ(t) dx dt =

∫ ∞

−∞
f̂ (t)ĝ(t) dt = ( f̂ , ĝ).

We see then that the Fourier transform preserves inner products up to a factor of
2π. In particular, if we take f = g, we obtain

∥ f̂ ∥2 = 2π∥ f ∥2.

Now, if f is an arbitrary L2 function, we can find a sequence { fn} such that fn and
f̂n are in L1 and fn → f in the L2 norm (see chapter 2 of [3]). Then

∥ f̂n − f̂m∥2 = 2π∥ fn − fm∥2 → 0 as m, n→ ∞
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Hence { f̂n} is a Cauchy sequence in L2, and since this is a complete space, it has a
limit. We can see that this limit depends only on f and not on the approximating
sequence { fn}. We define this limit to be f̂ . Thus, we have extended the domain
of the Fourier transform to all L2, and a simple limiting argument shows that this
extended Fourier transform still preserves the norm and inner product up to a
factor of 2π and that it still satisfies the properties stated in theorem 1.36.

Remark 1.42. The Plancharel Theorem shows that the Fourier transform operator
defines an isometry in L2, which implies that if f ∈ L2 then we also have that
f̂ ∈ L2. Not only this but also that f̂ has the same "amount of energy" as f , scaled
by a constant factor of 2π. This isometry of L1 ∩ L2 into L2 extends to an isometry
of L2 into L2, and this extension defines the Fourier transform of every f ∈ L2. As
a result, L2-theory has much more symmetry than L1 because f and f̂ play exactly
the same role.

Theorem 1.43. If f ∈ L2 and f̂ ∈ L1, then

f (x) =
∫ ∞

−∞
f̂ (t)eixt dt a.e.

Remark 1.44. In 1.43 lies the essential difference between the theory of the Fourier
transforms in L1 and L2. In L1, f̂ (t) is defined unambiguously for all t. However,
in L2, f̂ (t) is defined almost everywhere. For the proof, see chapter 9 of Rudin [4].

1.3.2 Multidimensional Fourier transform

In this section, we consider functions in Rn. We will denote by x · y and |x| the
usual dot product and norm on Rn:

x · y = x1y1 + · · ·+ xnyn , |x| = (x · x)1/2.

Definition 1.45. The convolution between two functions f and g on the space Rn is
defined as:

f ∗ g(x) =
∫

Rn
f (x− y)g(y) dy.

Remark 1.46. The basic algebraic properties of convolution stated in Theorem 1.31
remain true in the n-variable case, with the same proofs.

Definition 1.47. Given f ∈ L1(Rn), the function

f̂ (t) =
∫

Rn
f (x)e−it·x dx

is well defined for all t ∈ Rn. We call f̂ the Fourier transform of f .
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Theorem 1.48. Suppose f ∈ L1(Rn), and α ∈ Rn .

1. If g(x) = f (x)eiαx, then ĝ(t) = f̂ (t− α).

2. If g(x) = f (x− α), then ĝ(t) = f̂ (t)e−iαt.

3. If g ∈ L1 and h = f ∗ g, then ĥ(t) = f̂ (t)ĝ(t).

4. If ∂ f /∂xj exists and is in L1, then

F (∂ f /∂xj)(t) = itj f̂ (t)

whereas if xj f (x) is integrable, then

F
[
xj f (x)

]
= i∂ f̂ /∂tj.

5. The Fourier transform commutes with rotations: If R is a rotation of Rn, then

F ( f (Rx)) = f̂ (Rt).

Proof. The proofs of 1 to 4 are done as in the one-variable case. For 5, we need
the fact that rotations preserve the dot products and volumes (for the rotation
properties see section 6 of [1]). In other words, t · x = Rt · Rx and d(Rx) = dx:

f̂ (Rx) =
∫

Rn
e−it·x f (Rx) dx =

∫
Rn

e−iRt·x f (Rx) d(Rx)

=
∫

Rn
e−iRt·y f (Ry) d(Ry) = f̂ (Rt).

The formulas of the Fourier Inversion theorem 1.10 and 1.11 have the n-dimensional
analogous:

Theorem 1.49. If f is integrable and continuous in R, then

f (x) = lim
ϵ→0

1
(2π)n

∫ ∞

−∞
eitxe−ϵ2t2/2 f̂ (t) dt, x ∈ Rn.

And if f̂ is integrable, then

f (x) =
1

(2π)n

∫ ∞

−∞
eitx f̂ (t) dt, x ∈ Rn.

The Plancharel theorem also remains true in n dimensions, except that the
factor 2π is replaced by (2π)n:

∥ f̂ ∥2 = (2π)n∥ f ∥2.



Chapter 2

The Discrete Fourier Transform

2.1 Sampling periodic functions

We now raise the natural question of whether it is possible to reconstruct a
periodic function f : R→ C with a set of sample points of this function. Usually,
periodic functions are sampled with a constant sampling rate T > 0. Thus, we
are trying to recover a continuous function given that we have the set of points
{(nT, f (nT))}n∈Z.

For that purpose, let us consider the Fourier transform of f

f̂ (ω) =
∫ ∞

−∞
f (t)e−iωt dt.

As discussed earlier, this exhibits f as the superposition of simple periodic waves
eiωt as ω ranges over all possible frequencies. We ask what is the best sampling rate
that allows us to recover f with the minimum number of sample points possible.
Common sense tells us that if we choose a large number of points (oversample),
we will be able to reconstruct the function. However, we could recover another
function if we chose fewer points than necessary. This phenomenon is called
aliasing and is shown in 2.1.

Definition 2.1. A function f is called band limited if its Fourier transform f̂ is 0
outside of a finite interval [−Ω, Ω]. This Ω is called the bandwidth of f .

Theorem 2.2. (The Sampling Theorem). Suppose that f ∈ L2 is a band limited function
with bandwidth Ω. Then f is completely determined by its values a t the points {tn}n∈Z

with tn = nπ/Ω. We also have that,

f (t) =
∞

∑
−∞

f (
nπ

Ω
)

sin(Ωt− nπ)

Ωt− nπ
=

∞

∑
−∞

f (
nπ

Ω
) sinc (Ωt− nπ) . (2.1)

19
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Figure 2.1: Undersampling of the function f (x) = sin 5x. While the sampling rate
T = 0.1 (crosses) works correctly, the sampling rate T = 1.2 (dots) gives a bad
interpretation. This example is borrowed from [12] chapter 4.

Proof. First, we expand f̂ in a Fourier series on the interval [−Ω, Ω], writing −n
in place of n because it will be convenient later:

f̂ (ω) =
∞

∑
−∞

c−ne−inπω/Ω , |ω| ≤ Ω.

By the formula 1.4 the Fourier coefficients are given by

c−n =
1

2Ω

∫ Ω

−Ω
f̂ (ω)einπω/Ωdω =

1
2Ω

∫ ∞

−∞
f̂ (ω)einπω/Ωdω =

π

Ω
f
(nπ

Ω

)
.

Here we have used that f̂ vanishes outside the interval [−Ω, Ω] and the Fourier
inversion formula 1.11. Using these two results, we have that

f (t) =
1

2π

∫ Ω

−Ω
f̂ (ω)eiωt dω =

1
2π

∫ Ω

−Ω

∞

∑
−∞

c−ne−inπω/Ωeiωt dω

=
1

2π

∫ Ω

−Ω

∞

∑
−∞

π

Ω
f
(nπ

Ω

)
e−inπω/Ωeiωt dω =

1
2Ω

∫ Ω

−Ω

∞

∑
−∞

f
(nπ

Ω

)
ei(Ωt−nπ)ω/Ω dω

=
1

2Ω

∞

∑
−∞

f
(nπ

Ω

) ei(Ωt−nπ)ω/Ω

i(Ωt− nπ)ω/Ω

∣∣∣∣Ω
−Ω

=
∞

∑
−∞

f
(nπ

Ω

) sin (Ωt− nπ)

Ωt− nπ
. (1)

Where in the last equality we have used the fact that eiω = cos ω + i sin ω. Given
that, by the Plancharel theorem 1.41, f̂ ∈ L2, we have that by applied Bessel’s
inequality

∞

∑
n=−∞

|c−n|2 ≤
1

2Ω

∫ Ω

−Ω
| f̂ (ω)|2 dω < ∞,

or in other words, the Fourier series of f̂ converges in L2(−Ω, Ω) in norm. There-
fore the termwise integration that we have done in (1) is valid. since we are
essentially taking the inner product of this series with eiωt.
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This theorem is also known as the Nyquist-Shannon Sampling Theorem or the
Shannon-Whittaker Sampling Theorem (see Shannon [11]). Both results are essen-
tially the same, but there are subtle differences: the Nyquist-Shannon theorem
is slightly more general, while the Shannon-Whittaker theorem also provides a
specific formula for reconstructing the sampled function.

The theorem states that "a signal with bandwidth Ω must be sampled at a rate
of at least π

Ω to capture all the information in the signal." In other words, "we must
sample a periodic function at a rate of at least twice its highest frequency". This
minimum sampling rate is known as the Nyquist sampling rate.

Remark 2.3. It is worth noting that the functions

sinc (Ωt− nπ) =
sin (Ωt− nπ)

Ωt− nπ
n ∈ Z

form an orthogonal basis for the space of L2 functions with bandwidth Ω. The
sampling formula 2.1 is just the expansion of f with respect to this basis. Indeed,
we can check that sinc (Ωt− nπ) is the inverse Fourier transform of the function

sn(ω) =

{
(π/Ω)e−inπω/Ω |ω| < Ω,

0 otherwise.

The assertion, therefore, follows from the Plancharel theorem and the fact that the
functions e−inπω/Ω is an orthogonal basis for L2(−Ω, Ω).

We have shown that aliasing cannot occur if we sample a function at a suf-
ficiently high rate. We want to understand how aliasing appears and how to
eliminate it.

Lemma 2.4. (Poisson Formula) Let f ∈ L2(R) and Ω > 0 be such that either the func-
tion ∑k∈Z f (·+ 2Ωk) ∈ L2([−Ω, Ω]) or the series ∑k∈Z | f

(
kπ
Ω

)
|2 converges. Then, for

almost all t ∈ R,

∑
k∈Z

f̂ (t + 2Ωk) =
π

Ω ∑
k∈Z

f
(

kπ

Ω

)
e−i kπ

Ω t. (2.2)

Proof. See Bredies [12] Lemma 4.37.

Remark 2.5. For the special case in the Possion formula where t = 0 we obtain the
interesting expression

∑
k∈Z

f̂ (2Ωk) =
π

Ω ∑
k∈Z

f
(π

Ω
k
)

that relates the values of f and its Fourier transform.
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We can represent our function, sampled discretely with a sample rate π/Ω as

fd = ∑
k∈Z

f
(

kπ

Ω

)
δk π

Ω
. (2.3)

Remark 2.6. Let’s comment now that the delta defined above is the Dirac measure
in x and is defined as

δx(A) =

{
1 , x ∈ A

0 , otherwise

where A ⊂ R. The distribution induced by the Dirac measure is the delta distribu-
tion, denoted also as δx:

δx(ϕ) =
∫ ∞

−∞
ϕ dδx = ϕ(x).

Its Fourier transform is given by

δ̂x(ϕ) = δx(ϕ̂) = ϕ̂(x) =
∫ ∞

−∞
e−ixyϕ(y) dy.

Therefore, its Fourier transform is represented by the function y 7→ e−ixy. It is
worth noting, thus, that fd is not a function, but rather a distribution, however, its
Fourier transform is a function. This is an informal explanation of this subject, for
references in distributions and the Fourier transform of distributions see Folland
[3], Plonka [6], or Bredies [12].

What we want to express in 2.3 is that we are discretizing the continuous signal
f in a sampling rate of kπ/Ω. It is worth noting that this notation is somewhat
an abuse of formalism because the Dirac delta is technically a measure, not a
function.

The following lemma establishes a connection via the Fourier transform:

Lemma 2.7. For almost all t ∈ R,

f̂d(t) =
Ω
π ∑

k∈Z

f̂ (t + 2Ωk).

Proof. As exposed in remark 2.6, the Fourier transform of δk π
Ω

is given by

F (δk π
Ω
)(t) = e−i kπ

Ω t.

If we now take the Fourier transform of fd, we obtain:

f̂d(t) = ∑
k∈Z

f
(

kπ

Ω

)
e−i kπ

Ω t =
Ω
π ∑

k∈Z

f̂ (t + 2Ωk),

where in the last equality we used the formula of lemma 2.4.
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Expressed in words, this lemma says that the Fourier transform of the sampled
signal corresponds to a periodization of the Fourier transform of the original signal
with a period of 2Ω. In this way of speaking, we can interpret the reconstruction
formula 2.1 as a convolution as well:

f (x) =
∞

∑
−∞

f (
nπ

Ω
)

sin(Ωx− nπ)

Ωt− nπ
= fd(x) ∗ sinc (Ωx− nπ) .

In the Fourier realm, this means that

f̂ (t) = (π/Ω) f̂d(t)e−inπt/Ωϕ[−Ω,Ω] =

{
(π/Ω) f̂d(t)e−inπt/Ω |ω| < Ω,

0 otherwise.

Where ϕ[−Ω,Ω] is the characteristic function of the simple [−Ω, Ω], and we have
used the convolution property of the Fourier transform (Theorem 1.36) and the
Fourier transform of sinc (Ωx− nπ) which we have already seen in 2.3.

If the support of f̂ is contained within the interval [−Ω, Ω], then no overlap
occurs during periodization. In this case, the function (π/Ω) f̂d(t)e−inπt/Ωϕ[−Ω,Ω]

corresponds exactly to f̂ .
However, if f̂ has larger support, then the support of f̂ (· + 2Ωk) intersects

with [−Ω, Ω] for multiple values of k. This "folding" in the frequency domain is
responsible for aliasing.

Remark 2.8. We can obtain an analog of the Sampling theorem for two dimensions
using the tensor product. Let f : R2 → C be such that its Fourier transform has
its support in the rectangle [−Ω1, Ω1]× [−Ω2, Ω2]. In this case, f is determined
by the values f (k1π/Ω1, k2π/Ω2), and

f (x1, x2) = ∑
k∈Z2

f
(

k1π

Ω1
,

k2π

Ω2

)
sinc

(
Ω1

π
(x1 −

k1π

Ω1
)

)
sinc

(
Ω2

π
(x2 −

k2π

Ω2
)

)
Where sinc(πω) = sin πω

πω . We denote by

fd = ∑
k∈Z2

u(k1T1, k2T2)δ(k1T1, k2T2)

an image that is discretely sampled on a rectangular grid with sampling rates T1

and T2. Using the Fourier transform the connection to the continuous image f can
be expressed as

f̂d(t) = ∑
k∈Z2

f̂ (t1 + 2Ω1k1, t2 + 2Ω2k2).

Notice that the condition of the function f being band-limited is quite restric-
tive as it implies that the function’s frequency spectrum has a finite support. How-
ever, in practical scenarios, band-limited functions are prevalent, given that natural
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signals originate from physical processes that cannot produce infinite sequences.
Walker [10] provides an extensive discussion on how to sample and how aliasing
appears in non-band-limited functions.

2.2 Discrete Fourier Transform (DFT)

Consider the problem of representing a finite set of data points using sinu-
soidal functions. In other words, given a set XN = {xk | k ∈ {0, 1, ..., N − 1}}.
and a function

f : XN → C

xk 7→ fk := f (xk)

we aim to express this data in the frequency domain. It is important to note
that the term "Discrete Fourier Transform" can be somewhat misleading, as we
are computing the discrete analog of the Fourier series rather than the Fourier
transform.

From now on, we will denote

XN = {xk : k = 0, 1, . . . , N − 1} = {2πk
N

: k = 0, 1, . . . , N − 1}.

Let us define the set lN = l2(XN) of functions f : XN → C. The set lN is a complex
vector space of dimension N. Consider the inner product:

⟨ f , g⟩ = 1
N

N−1

∑
k=0

f (xk)g(xk). (2.4)

Note that this is not an inner product in the continuous case, because ⟨ f , f ⟩ = 0
does not imply that f = 0. However, this is valid since we are only in a discrete
set of points. The rest of the inner product properties follow easily. With this, we
see that lN is a Hilbert space.

Definition 2.9. An exponential polynomial of degree at most N − 1 is any function
of the form

P(x) =
N−1

∑
k=0

ckeikx.

Theorem 2.10. Let us define the functions φn

φn(x) = einx. (2.5)

The set Φ = {φ0, ..., φN−1}, is an orthonormal basis with respect to the inner product 2.4.
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Proof. Given that the number of vectors is N, the only thing left to see is that they
are orthogonal. Let ω = ωN = e−2πi/N . We have

⟨φn, φm⟩ =
1
N

N−1

∑
k=0

ω−nkωmk =
1
N

N−1

∑
k=0

ω(m−n)k.

If n = m, all the terms in the sum are equal to 1. Which gives ⟨ωn, ωn⟩ = 1. If
n ̸= m, we have a finite geometric sum with the ratio ωm−n. By the formula of the
geometric sum we have that

⟨φn, φm⟩ =
1−ω(m−n)N

1−ωm−n .

But given that n ̸= m we have that ω(m−n)N = e(−2πi(m−n)/N)·N = e−2πi(m−m) = 1,
which implies that ⟨φn, φm⟩ = 0.

Corollary 2.11. The exponential polynomial that interpolates a prescribed function f at
nodes xn ∈ XN is given by the equations

P =
N−1

∑
k=0

ck φk with ck = ⟨ f , φk⟩.

Proof. Using the given formula of ck, let us compute the value of the exponential
polynomial at an arbitrary xm ∈ XN . We obtain:

N−1

∑
k=0

ck φk(xm) =
N−1

∑
k=0
⟨ f , φk⟩φk(xm)

=
N−1

∑
k=0

1
N

N−1

∑
j=0

f (xj)φk(xj)φk(xm)

=
N−1

∑
j=0

f (xj)
1
N

N−1

∑
k=0

φk(xj)φm(xm)

=
N−1

∑
j=0

f (xj)⟨φm, φj⟩

= f (xm).

Corollary 2.12. The polynomial described in corollary 2.11 is the only exponential poly-
nomial of degree at most N − 1 that interpolates the nodes described.
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Proof. Suppose ∑N−1
k=0 ak φk is an exponential polynomial that interpolates f at x0, x1, . . . , xN−1.

Then
N−1

∑
k=0

ak φk(xj) = f (xj) , 0 ≤ j ≤ N − 1.

Multiplying both sides of the equation by φn(−xj) and sum with respect to j we
obtain

N−1

∑
k=0

ak

N−1

∑
j=0

φk(xj)φn(−xj) =
N−1

∑
j=0

f (xj)φn(−xj).

But using the definition of the inner product 2.4 we get

N−1

∑
k=0

ak⟨φk, φn⟩ = ⟨ f , φn⟩.

Since ⟨φk, φn⟩ = 1 only if k = n then we conclude that

an = ⟨ f , φn⟩ = cn.

Definition 2.13. The one-dimensional discrete Fourier transform of the vector f ∈ Cn

is defined by

f̂n =
1
N

N−1

∑
k=0

fke−2πink/N =
1
N

N−1

∑
k=0

fkωnk.

By corollary 2.11, we see that the discrete Fourier transform of a vector f ∈ CN

is the unique exponential polynomial that passes through the N points {(xj, f (xj)) :
xj ∈ XN}. f can be regarded as N samples of a continuous function f that we wish
to interpolate.

Remark 2.14. Let us denote

bn = (e−2πikn/N)k=0,...,N−1 = (wnk)k=0,...,N−1 and f = ( fk)k=0,..,N−1.

Note that for each n, the nth term of the DFT can be expressed as f̂n = 1
N bn · f .

This leads us to the next definition.

Definition 2.15. The N-by-N Fourier matrix is defined by

FN =
1
N


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...
1 ωN−1 ω2(N−1) · · · ω(N−1)2

 (2.6)
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It is clear that f̂ = FN f , or what is the same:
f̂0

f̂1

f̂2
...

f̂N−1

 =
1
N


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...
1 ωN−1 ω2(N−1) · · · ω(N−1)2




f0

f1

f2
...

fN−1



Theorem 2.16. The Fourier transform is inverted by

fk =
N−1

∑
k=0

f̂ke2πink/N

Proof. The Fourier matrix 2.6 can be written as

FN =
1
N
[φ0(xk), φ1(xk), ..., φN−1(xk)]k∈{0,1,··· ,N−1},

where the φ functions are defined as in 2.5 and xj = −2π j
N (we interpret φj(xk)

as a column vector). Given that, as shown in theorem 2.10, these functions are
orthonormal, we have that FN F∗N = 1

N Id, where Id is the N × N identity matrix,
and F∗N is the Hermitian adjoint of FN . We see then F−1

N = NF∗N . Then we have

f = F−1
N f̂ = NF∗N f̂ .

By definition of the Hermitian adjoint, we have

(F∗N)k,l = e2πikl/N .

In particular, we obtain

F∗N = [φ0(xk), .., φN−1(xk)]k∈{0,··· ,N−1}.

Remark 2.17. In other words, the discrete Fourier transform expresses a vector
f̂ in terms of the orthogonal basis Φ = {φ0, ..., φN−1}. We have that for all j ∈
{0, ..., N − 1}, φj is a N-periodic function

φj(xk+N) = e2πij(k+N)/N = e2πijk/N = φj(xk).

Given that f̂ is a linear combination of N-periodic functions, it also has period
N. Hence, the information in it is completely contained in the finite sequence
f̂0, ..., f̂N−1.
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Definition 2.18. The two-dimensional Fourier transform f ∈ CN×M of f ∈ CN×M is
defined by

f̂k,l =
1

MN

M−1

∑
m=0

N−1

∑
n=0

fn,me−2πink/Ne−2πiml/M.

Remark 2.19. The two-dimensional Fourier transform is inverted by the expres-
sion

fn,m =
N−1

∑
k=0

M−1

∑
l=0

f̂k,le2πink/Ne2πiml/M.

The proof is similar to the one in theorem 2.16.

Definition 2.20. Let f , g ∈ CN . The discrete periodic convolution of f and g is defined
by

( f ∗ g)n =
N−1

∑
k=0

gk f(n−k)mod N .

Theorem 2.21. For f , g ∈ CN ,

(̂ f ∗ g)n = N f̂ ĝ.

Proof. Using the periodicity of the complex exponential function,

(̂ f ∗ g)n =
1
N

N−1

∑
k=0

N−1

∑
l=0

gl f(k−l)mod Ne−2πink/N

=
1
N

N−1

∑
l=0

gle−2πinl/N
N−1

∑
k=0

u(k−l)mod Ne−2πin(k−l)/N

= Nĝn f̂n.

2.3 The Fast Fourier Transform (FFT)

The Sampling Theorem states that a continuous signal with limited bandwidth
can be completely reconstructed from its samples if the sampling rate meets the
Nyquist criterion, namely, it is at least twice the maximum frequency present in
the signal. Building on this principle, the DFT is used to transform these sampled
signals from the time domain to the frequency domain, providing a powerful tool
for signal analysis. Nonetheless, DFT’s computational cost is a significant limita-
tion, since it carries a complexity of O(N2), where N is the number of samples.
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Developed initially by James Cooley and John Tukey in 1965, the FFT addresses
this issue by recursively breaking down the DFT of an N-point sequence into
smaller operations, reducing its computational complexity to O(N log N).

We will first expose Cooley and Tukey’s [?] idea of breaking down the com-
putation of the DFT into smaller computations, only to see that if the number of
samples is a power of 2 then it is feasible to use this method. The algorithm,
however, has been derived from the works of Walker [10] and Cheney [7].

Let f be a signal sampled N − 1 times, and let f j denote the jth sampling of f .
Consider the problem of computing the DFT,

f̂ j =
1
N

N−1

∑
k=0

fkω jk. (1)

As stated before, a straightforward computation of f̂ would take N2 operations.
By operation we mean a complex multiplication followed by a complex addition.

To derive the algorithm, suppose that N is composite i.e., N = n1 · n2. We can
express the indices in (1) as

j = j1n1 + j0, j0 = 0, 1, . . . , n1 − 1, j1 = 0, 1, . . . , n2 − 1

k = k1n2 + k0, k0 = 0, 1, . . . , n2 − 1, k1 = 0, 1, . . . , n1 − 1.

Then if we put f̂ j1,j0 = f̂ j and fk1,k0 = fk, we can write

f̂ j1,j0 =
1
N ∑

k0

∑
k1

fk1,k0 ·ω
jk1n2 ω jk0 . (2)

Since
ω jk1n2 = ω(j1n1+j0)k1n2 = ωNj1k1 ω j0knn2 = ω j0k1n2 , (3)

the inner sum, over k1 depends only on j0 and k0 and we can define a new array
f 1 as,

f 1
j0,k0

=
1
N ∑

k1

fk1,k0 ω j0k1n2 .

We can write the result as

f̂ j1,j0 =
1
N ∑

k0

f 1
j0,k0

ω(j1n1+j0)k0 .

Clearly, the array f 1 has N elements, each requiring n1 operations, thus it takes a
total of Nn1 operations to calculate f̂ from f 1. Similarly, it takes Nn2 operations to
calculate f from f 1. We conclude that this two-step algorithm defined by (2) and
(3) takes a total amount of

T = N(n1 + n2).
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It is easy to see that if N = n1 · n2 · . . . · nm then we have a m-step algorithm
requiring

T = N(n1 + n2 + . . . + nm). (4)

If some nj = sjtj with sj, tj > 2, then sj + tj < nj (if sj = tj = 2 then clearly
sj + tj = nj). We can see then that a high number of factors provides a minimum
of (4). If we choose N to be highly composite, we would really reduce the number
of operations.

If all nj were equal to n then we would have

m = logn N

and the total number of operations would be

T(n) = nN logn N.

If N = rmsntp . . . , then from (4) we find that

T
N

= m · r + s · n + t · p · · ·

if we combine this with the fact that

log2 N = m · log2 r + n · log2 s + p · log2 t + · · · ,

we obtain that
T

N log2 N

is a weighted mean of the quantities

r
log2 r

,
s

log2 s
,

t
log2 t

, · · ·

whose values run as follows

r r
log2 r

2 2.00
3 1.88
4 2.00
5 2.15
6 2.31
7 2.49
8 2.67
9 2.82

10 3.01
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We see that if the number of points is a power of 3 the decomposition is the
most efficient. Still, we only reduce 6% of the operations computed using 2 or 4
which have important computing advantages with binary arithmetic. We could
even use, if necessary, rj = 10 and increase the number of operations not over
50%. However, whenever possible, we use N = 2m (this is known as the Radix-
2 FFT and it is the most common application). We will develop the algorithm
considering that N is a power of 2. For further information on other types of FFT
see Plonka [6], Brigham [9] or Walker [10].

Theorem 2.22. Let p and q be exponential polynomials of degree ≤ n− 1 such that for
the points xj = π j/n, we have

p(x2j) = f (x2j) q(x2j) = f (x2j+1) 0 ≤ j ≤ n− 1.

Then the exponential polynomial of degree ≤ 2n − 1 that interpolates f at the points
x0, x1, . . . x2n−1 is given by

P(x) =
1
2
(1 + einx)p(x) +

1
2
(1− einx)q(x− π/n) (2.7)

Proof. It is clear that P has degree ≤ 2n− 1 since p and q both have degree ≤ n− 1
and einx has degree n. Let us see that P interpolates f at all its nodes. We have, for
0 ≤ j ≤ 2n− 1,

P(xj) =
1
2
(1 + eπinj/n)p(xj) +

1
2
(1− eπinj/n)q(xj − π/n)

Notice that

eπinj/n = eπij =

{
+1 j even

−1 j odd

Thus for even j, we see that P(xj) = p(xj) = f (xj), while for odd j, we have

P(xj) = q(xj − π/n) = q(xj−1) = f (xj).

Theorem 2.23. Let the coefficients of the polynomials described in Theorem 2.22 be as
follows

p(x) =
n−1

∑
j=0

αjeijx q(x) =
n−1

∑
j=0

β jeijx P(x) =
2n−1

∑
j=0

γjeijx

Then, for 0 ≤ j ≤ n− 1 we have

γj =
1
2

αj +
1
2

eijπ/nβ jγj+n =
1
2

αj −
1
2

eijπ/nβ j
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Proof. Notice first that

q
(

x− π

n

)
=

n−1

∑
j=0

β jeij(x−π/n) =
n−1

∑
j=0

β jeiπ j/neijx

Now, from equation 2.7 we have

P(x) =
1
2
(1 + einx)p(x) +

1
2
(1− einx)q(x− π/n)

=
1
2

n−1

∑
j=0

{
(1 + einx)αjeijx + (1− einx)β je−iπ j/neijx

}
=

1
2

n−1

∑
j=0

{
(αj + β je−iπ j/n)eijx + (αj + β je−iπ j/n)ei(n+j)x

}
The formulas for γj and γj+n can be read from this equation.

From now on, let R(N) denote the minimum number of multiplications needed
to compute the coefficients of an interpolating polynomial on the set of points
XN = {2π j/N : 0 ≤ j ≤ N − 1}.

Theorem 2.24. R(2m) ≤ m2m.

Proof. By theorem 2.23 we have that the coefficients γj of P can be obtained from
the coefficients in p and in q at the cost of 2n multiplications. Indeed, we need n
multiplications to compute every 1

2 αj, and another n multiplications to compute
( 1

2 e−ijπ/n)β j (assuming that we already have 1
2 e−ijπ/n ). Since by the definition of

R(n), the coefficients α0, . . . , αn−1 cost R(n) multiplications, and the same is true
for the coefficients β0, . . . , βn−1, we obtain that the total cost of computing the
coefficients of P is at most 2R(n) + 2n multiplications. We have then that

R(2n) ≤ 2R(n) + 2n. (2.8)

We shall prove the inequality of the theorem by induction. Consider the case
where m = 0. We wish to interpolate the point x0 = 0 by an exponential poly-
nomial of degree zero. The solution is the constant f (0); no multiplications are
required. Thus, the assertion of the theorem is true for m = 0. Using inequality
2.8, the calculation for the inductive step from m to m + 1 is

R(2m+1) = R(2 · 2m) ≤ 2R(2m) + 2 · 2m

≤ 2(m2m) + 2m+1 = (m + 1)2m+1.
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As a result of Theorem 2.24, we can deduce that if N is a power of 2, say 2m,
then the computational cost of finding the interpolating exponential polynomial
adheres to the inequality R(N) ≤ N log2 N. The algorithm that implements the
procedure described in Theorem 2.7 is the Fast Fourier Transform.

The content of Theorem 2.22 can be understood in terms of two linear opera-
tors, En and Th. For any function f , let En f represent the exponential polynomial
of degree n− 1 that interpolates f at the nodes 2π j

n for 0 ≤ j ≤ n− 1. Let Th be a
translation operator defined by

(Th f )(x) = f (x + h).

We know from Corollary 2.11 that

En f =
n−1

∑
k=0
⟨ f , φk⟩φk,

where the φ functions are defined in the DFT section. Moreover, from Theorem
2.22 we infer that

P = E2n f p = En f q = EnTπ/n f

The conclusion of Theorems 2.22 and 2.23 is that E2n f can be obtained efficiently
from En f and EnTπ/n f . This holds for n = 1, 2, . . .
Note that 2.22 can be expressed as

E2n f (x) =
1
2
(1 + einx)En f (x) +

1
2
(1− einx)T−π/nEnTπn f (x).

We want now to establish one version of the fast Fourier transform that allows us
to compute EN f where N = 2m.

We define the exponential polynomials P(n)
k as the one of degree 2n − 1 that inter-

polates f in the following way

P(n)
k

(
2π j
2n

)
= f

(
2πk
N

+
2π j
2n

)
, 0 ≤ j ≤ 2n − 1

We could check that the set of nodes 2πk
N + 2π j

2n corresponding to one value of k
is disjoint from the same set with a different k. A straightforward application of
Theorem 2.22 shows that

P(n+1)
k (x) =

1
2
(1 + ei2nx)P(n)

k (x) +
1
2
(1− ei2nx)Pn

k+2m−n−1

(
x− π

2n

)
.

We can illustrate how the exponential polynomials P(n)
k are related. Suppose we

want to compute P(4)
0 . The tree of the relations with the polynomials of lower

order is depicted in the following tree diagram:
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Figure 2.2: Polynomial separation of P(4)
0 .

2.3.1 Algorithm

We denote the Pk(n) coefficients by A(n)
kj . Here 0 ≤ n ≤ m, 0 ≤ k ≤ 2m−n − 1,

and 0 ≤ j ≤ 2n − 1. We have that

P(n)
k (x) =

2n−1

∑
j=0

A(n)
kj eijx,

and by Theorem 2.23, the following equalities hold:

A(n+1)
k,j =

1
2

[
A(n)

k,j + e−ijπ/2n
A(n)

k+2m−n−1,j

]

A(n+1)
k,j+2n =

1
2

[
A(n)

k,j − e−ijπ/2n
A(n)

k+2m−n−1,j

]
Given that 0 ≤ k ≤ 2m−n− 1 and 0 ≤ j ≤ 2n− 1, the array A(n) requires 2m−n · 2n =

2m = N storage locations. One way to carry out the computations is to use two
linear arrays of size N to hold successive A(n) computations. We call these two
arrays C and D. If C stores A(n), D will store A(n+1). In the next iteration, C will
store A(n+1) and D will store An+2.
A(n) is stored in C by the rule

C(2nk + j)← A(n)
kj , 0 ≤ k ≤ 2m−n − 1 , 0 ≤ j ≤ 2n − 1.

Similarly, A(n+1) is stored in D by the rule

D(2n+1k + j)← A(n+1)
kj , 0 ≤ k ≤ 2m−n−1 − 1 , 0 ≤ j ≤ 2n+1 − 1.
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A(n)
0,0 A(n)

0,1 · · · A(n)
0,2n−1 A(n)

1,0 A(n)
1,1 · · · A(n)

2m−n−1,0 · · · A(n)
2m−n−1,2n−1

Figure 2.3: Example of the array C storing A(n).

The factors Z(j) = e−2πij/N = ω j are computed at the beginning and stored.
We use also the fact that e−ijπ/2n

= Z(j2m−n−1). Finally, here is the fast Fourier
transform algorithm:

input m
N ← 2m

ω ← e−2πi/N

for k = 0, 1, 2, . . . , N − 1 do
Z(k)← ωk

C(k)← f (2πk/N)

end for
for n = 0, 1, 2, . . . , m− 1 do

for k = 0, 1, 2, . . . , 2m−n−1 − 1 do
for j = 0, 1, 2, . . . , 2n − 1 do

u← C(2nk + j)
v← Z(j2m−n−1)C(2nk + 2m−1 + j)
D(2n+1k + j)← (u + v)/2
D(2n+1k + j + 2n)← (u− v)/2

end for
end for
for j = 0, 1, 2, . . . , N − 1 do

C(j)← D(j)
end for

end for
output C(0), C(1), . . . , C(N)

Let’s analyze the number of operations needed:

• The innermost loop runs 2n times and involves:

– 2 assignments to u and v.

– 1 complex multiplication.

– 2 complex subtractions and additions.
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• The next loop runs 2m−n−1 times.

• The outside loop runs m times.

• Computing ω and Z(k): involves N multiplications and N assignments.

• Computing C(k) involves N function evaluations (assuming f to be an O(1)
operation).

• Copying D(j) to C(j) takes N assignments.

We have a total of
m−1

∑
n=0

2m−n−1

∑
k=0

2n−1

∑
j=0

5 = 5 ·m · 2m−n−1 · 2n = 5 · 2m−1.

Since m = log2 N, the expression simplifies to

5 log2 N · N
2

=
5
2

N log2 N.

Combining the results adds a total of N operations. The number of operations is
therefore dominated by the N log N of the main loop. Hence, the algorithm has a
complexity of

O(N log2 N).

Remark 2.25. We have an algorithm that reverts the FFT, the Inverse Fast Fourier
Transform (IFFT). Like the FFT, the IFFT has a time complexity of O(N log2 N),
and its steps are exactly the same, except now we want to compute the inverse
DFT

fk =
N−1

∑
k=0

f̂ke2πink/N

It is used when we want to recover the original function once we have computed
its DFT.

Remark 2.26. We also have an analog of the FFT in multiple dimensions. For an
N-dimensional signal, the multidimensional FFT can be computed by applying
the one-dimensional FFT sequentially along each dimension. For example, a 2D
FFT is computed by performing a 1D FFT on each row of the matrix, followed by
a 1D FFT in each column of the resulting matrix. If the original signal f is of size
M× N, the resulting matrix is of the form

fu,v =
1

MN

M−1

∑
x=0

N−1

∑
y=0

f(x,y)e
−2iπ( ux

M + vy
N ),

and its computation yields a complexity of O(MN log N + MN log M), compared
to the complexity O(M2N2) of the naive computation. For more information on
the two-dimensional FFT see chapter 12 of Brigham [9].



Chapter 3

Applications in Image Processing

3.1 Image processing fundamentals

Mathematical representation of images

Mathematically, an image is a function that maps every point in some domain
of definition to a certain color value. In other words, an image u is a map from an
image domain Ω to a color space F:

u : Ω→ F.

We distinguish between discrete and continuous image domains, in continuous
image domains usually Ω ⊂ Rd, and in the case of discrete domains the image is
a discrete grid of pixels and the color space can be discrete (e.g., grayscale values
from 0 to 255).
We also have different color spaces:

• Binary images, where F = {0, 1}.

• Grayscale images, where F = [0, 1] in the continuous case, and F = {0, 1, . . . , 255}
in the discrete case.

• Color images, where F = [0, 1]N if continuous, and F = {0, 1, · · · , 255}N

with N number of color channels.

Image processing often deals with discrete color sets, which is reasonable given
that images are generated in discrete form or need to be transformed to a dis-
crete domain before further processing. However, most methods used in discrete
images are motivated by continuous considerations. We will deal mostly with
grayscale images.

37
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A continuous image u takes x and y coordinates of the image domain Ω and
maps them into the color space. We call the value u(x, y) ∈ F as the amplitude
of the image at this point. Converting a continuous image into a discrete one is
based on two processes known as sampling and quantification. Sampling refers to
the process of digitizing (or discretizing) the coordinates of the image domain,
and quantifying to digitize the values of the color space F.

Figure 3.1: Process of converting a continuous into a discrete image. This example
is borrowed from Gonzalez [14].

The sampling process may be viewed as partitioning the continuous xy-plane
into a grid of coordinates, with each cell of the grid (a pixel) being an element of
Z2. Quantification often divides F into 2k intervals because of hardware consider-
ations. This process is illustrated in 3.1.
A usual way to represent discrete images is with a matrix. Where each element
represents the amplitude of the image at that point:

u(x, y) =


u(0, 0) u(0, 1) · · · u(0, N − 1)
u(1, 0) u(1, 1) · · · u(1, N − 1)

...
...

. . .
...

u(M− 1, 0) u(M− 1, 1) · · · u(M− 1, N − 1)
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Image Transforms

The spatial domain of an image refers to the representation of the image that we
have already introduced: coordinates and amplitude. However, when we want to
perform some image processing tasks, it is better to formulate the problem we are
tackling in a transform domain. The idea is that we take the spatial domain of an
image, and apply a transform, once we have the image in the transform domain,
we do the specific task, and then, use the inverse transform to return to the spatial
domain.

Definition 3.1. Consider the 2-D linear transform of the form

T(k, l) =
M−1

∑
x=0

N−1

∑
y=0

u(x, y)r(x, y, k, l)

where u is the input image, r is called a forward transformation kernel, and M and
N are the row and column dimensions of u. The function T is called a forward
transform of u.

Definition 3.2. Given a forward transform T, we can recover u using the inverse trans-
form of T:

u(x, y) =
M−1

∑
k=0

N−1

∑
l=0

T(k, l)s(x, y, k, l),

where s is called the inverse transformation kernel.

The nature of a transform is determined by its kernel. The transform we will
be looking at is the Fourier transform of an image, which is basically computing
the DFT of the image. If we want to be more precise, we can define the Fourier
transform of an image as the transform with the forward and inverse kernels given
by

r(x, y, k, l) =
1

MN
e−2πi( kx

M + ly
N ) , s(x, y, k, l) = e2πi( kx

M + ly
N )

It is important to note that we can’t directly represent images in the frequency
domain because complex numbers now represent the pixels. What we see is the
logarithm of the module of the complex number. We use the logarithm because
it covers a wider range of numbers. The phase of these complex numbers also
plays an important role, and if we get rid of it, applying the IDFT would result in
an illegible image. However, representing the phase graphically does not give us
much insight into the image’s composition.

In addition to the Fourier transform, there are a number of other important
transforms, including the Walsh, Hadamard, discrete cosine, Haar and slant trans-
forms.
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Filtering images

"Filtering" refers to passing, modifying, or rejecting specified components of
an image. We can filter an image in the spatial domain or its transform domain.
In the spatial domain, we typically use convolution with a kernel, while in the
transform domain, we use frequency filters.

When filtering an image in the Fourier domain, we focus on frequency filters.
These filters modify the frequency content of an image, allowing us to enhance or
suppress specific frequency components. If the operation performed on the pixels
of the image is linear, we refer to them as linear filters. Conversely, operations that
are not linear are termed nonlinear filters.

A kernel is an array whose size defines the neighborhood of operation, and
whose coefficients determine the nature of the filter. Examples of kernels include
those used for smoothing (e.g., Gaussian kernel) and edge detection (e.g., Sobel
kernel).

Definition 3.3. The convolution of a kernel w of size m × n with an image u is
defined as

(w ∗ f )(x, y) =
a

∑
s=−a

b

∑
r=−b

w(s, t) f (x− s, y− t),

where m = 2a + 1 and n = 2b + 1.

When we use the term linear spatial filtering, we mean convolving a kernel with
an image.

The link between spatial and frequency image processing is the Fourier trans-
form. We use the Fourier transform to go from the spatial domain to the frequency
domain and to return to the spatial domain we use the inverse Fourier transform.
The key property is that convolution in the spatial domain is equivalent to mul-
tiplication in the frequency domain, as seen in Theorem 2.21. Linear filtering
involves finding suitable ways to modify the frequency content of an image. In
the spatial domain, we achieve this through convolution filtering, while in the fre-
quency domain, we use multiplicative filters.

When performing convolution, especially at the borders of an image, we often
use padding. Padding involves adding a border of pixels around the original image
to ensure that the convolution operation can be applied uniformly across the entire
image. There are several padding strategies:

• Zero Padding: Adding a border of zero-valued pixels.

• Replicate Padding: Extending the border pixels of the image.

• Reflect Padding: Mirroring the border pixels of the image.
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Figure 3.2: Image in the spatial domain (left) and the same image in the frequency
domain (right)

Padding helps prevent the reduction in image size and avoids artifacts that can
occur at the edges of the image during convolution.

Here are some types of filters in the frequency domain:

• Low-Pass Filters: Allow low-frequency components to pass through while
attenuating high-frequency components, typically used for smoothing and
noise reduction.

• High-Pass Filters: Allow high-frequency components to pass through while
attenuating low-frequency components, used for edge detection and sharp-
ening.

• Band-Pass Filters: Allow a specific range of frequencies to pass through, used
for specific feature extraction.

3.2 Smoothing and Denoising Images

Smoothing in the spatial domain is used to reduce sharp transitions in intensity.
Edges and other sharp-intensity transitions (such as noise) in an image contribute
significantly to the high-frequency content of its Fourier transform.
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Definition 3.4. Consider a filter that passes without attenuation all frequencies
within a circle of radius from the origin, and cuts off all frequencies outside. This
circle is called an ideal lowpass filter (ILPF). It is specified by the transfer function

H(k, l) =

{
1 if D(k, k) ≤ D0

0 if D(k, k) > D0

where D0 is a positive constant. And D(k, l) is the distance between a point (k, l)
in the frequency domain and the center of the P× Q frequency rectangle, where
P = ⌊M

2 ⌋ and Q = ⌊N
2 ⌋. That is

D(k, l) =
[
(k− P/2)2 + (l −Q/2)2]1/2

. (3.1)

Figure 3.3: Applying ILPF with different cutoff frequencies.

In Figure 3.3, we observe the effect of an ideal lowpass filter. The top-left image
is the original, and directly below it is its Fourier transform. The center column
shows the result of applying an ideal lowpass filter with a cutoff frequency of
100. On the right, we see the outcome with a cutoff frequency of 25. Notice how
reducing the number of high frequencies results in a progressively smoother (and
blurrier) image.

Definition 3.5. The Gaussian lowpass filters (GLPF) are the transfer functions that
have the form

H(k, l) = e−D2(k,l)/2D2
0

where D0 is the cutoff frequency and D is the distance defined as in definition 3.4.
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We can see the differences between the ILPF and the GLPF in Figure 3.4. We
observe in the bottom right corner of 3.3 that a noticeable ringing effect appears.
This is caused because the IDFT of the ILPF transfer function is a sinc-like function,
and by the convolution theorem, we are convolving the spatial domain by an
oscillatory function, and therefore it is natural for some kind of ringing pattern
to appear. This makes the ILPFs quite useless for practical purposes, but they
give us much insight into how lowpass filtering smoothing works. The IDFT of a
Gaussian function, however, is also Gaussian. This means that a spatial Gaussian
filter kernel computed using the IDFT, will not have this ringing effect.

Figure 3.4: Comparison of ILPF and GLPF, both with D0 = 50. Top row: 2D
representations. Bottom row: 3D models.

Definition 3.6. The transfer function of a Butterworth lowpass filter (BLPF) of order
n, with a cutoff frequency at a distance D0 from the center of the frequency rectangle, is
defined as

H(k, l) =
1

1 + [D(k, l)/D0]2n

where D is defined as in 3.1.

BLPFs are used when we want to have more control over how we want to treat
high frequencies. When n is high, the BLPF approaches an ILPF. When n has a
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low value, it is similar to a GLPF.

Sometimes, texts have low resolution as shown in the left side of Figure 3.5. We
humans can fill the gaps without any difficulties, however, machine recognition
systems and machine learning models have real problems reading these broken
characters. One approach to solve this is to fill the gaps blurring the image as we
see on the right side of Figure 3.5. These characters have been repaired with a
GLPF with D0 = 50.

Figure 3.5: In the top row the same text before and after applying a GLPF with
D0 = 50. In the bottom row a comparison of the same word before and after the
filter.

Lowpass filtering is also widely used in the printing and publishing industry
to produce smoother, softer-looking images rather than the sharp original. For
human faces, the typical use is to reduce the sharpness of face wrinkles and small
blemishes. We see an application of this in Figure 3.6, where we see a reduction
of Federer’s skin lines and spots noticeably.

Figure 3.6: Before (left) and after (right) of applying a GLPF with D0 = 130. In the
bottom left corner of the images there is a detail of Federer’s eye.
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3.3 Image sharpening

Because edges and other changes in intensities are associated with high-frequency
components of images, image sharpening can be achieved by filtering the fre-
quency domain with highpass filters.

We can easily define the analog highpass filters from the lowpass ones. The
ideal highpass filter transform function (IHPF) is given by

H(k, l) =

{
0 if D(k, l) ≤ D0

1 if D(k, l) > D0
.

Similarly, it follows that the transfer function of a Gaussian highpass filter (GHPF)
transfer function is given by

H(k, l) = 1− e−D2(k,l)/2D2
0

and the transfer function of a Butterworth highpass filter is

H(k, l) =
1

1 + [D0/D(k, l)]2n

Figure 3.7: Fingerprint image and the same image Filtered using a BHPF with
D0 = 30 and n = 4. A threshold filter has also been used to convert the grayscale
image to a binary one.

In 3.7 we can see the image of the fingerprint with smudges. For automated
fingerprint recognition systems to work properly, it is necessary to enhance the
ridges and reduce the smudges. We can use highpass filters to minimize this
smudging. Enhancement of these ridges is accomplished by the fact that high
frequencies characterize their boundaries. On the other hand, the filter reduces
low-frequency components, which correspond to slowly varying intensities in the
image.
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Remember that the Laplacian of a function f (x, y) of two variables is defined as

∇2 f =
∂2 f
∂2x

+
∂2 f
∂2y

.

As a derivative operator, the Laplacian accentuates sharp intensity changes in an
image while reducing the emphasis on regions with gradually varying intensities.
To retain the background details and enhance the sharpening effect of the Lapla-
cian, we can add the Laplacian image back to the original image. However, for
optimal sharpening results, we subtract the Laplacian from the original image:

g(x, y) = f (x, y)− [∇2 f (x, y)] (3.2)

where f (x, y) and g(x, y) are the input and the sharpened images, respectively.
It can be shown that the Laplacian can be implemented in the frequency do-

main using the filter transfer function (see Gonzalez [14])

H(k, l) = −4π2D2(k, l).

Using this transfer function, we see that the Laplacian of an image u(x, y), is
obtained with the expression

∇2u(x, y) = F−1[H(k, l)U(k, l)]

where F−1 denotes the IDFT and U is the DFT of u. Using these facts, we can
write equation 3.2 in the frequency domain

v(x, y) = F−1{U(k, l)− H(k, l)U(k, l)}
= F−1 {[1− H(k, l)]U(k, l)}
= F−1 {[1 + 4π2D2(k, l)

]
U(k, l)

}
.

Figure 3.8 demonstrates the effect of applying the Laplacian filter to an image of
Jupiter. In the filtered image on the right, the round shape of Jupiter is more
clearly defined, and the details of the inner lines are more pronounced. This
enhancement gives the impression of improved image quality, though the image
has simply been sharpened.

3.4 Selective filtering

The filters we’ve discussed so far operate across the entire frequency spectrum.
However, there are situations where we might want to process only specific fre-
quency bands or small regions within the frequency spectrum. Filters that target



3.4 Selective filtering 47

Figure 3.8: Telescope image of Jupiter (left) and the same image with a Laplacian
sharpening (right).

particular frequency bands are known as band filters. If these filters allow certain
frequencies to pass through, they are called bandpass filters. Conversely, they are
referred to as bandreject filters if they block specific frequencies. When filters
are designed to affect particular regions within the frequency spectrum, they are
known as notch filters. Depending on their function, these can be further classified
as notch reject filters or notch pass filters.

Bandpass and bandreject functions can be constructed by combining lowpass
and highpass filter transfer functions. Let us see the analog expressions of the
lowpass and highpass filter transfer functions that we have already seen. Here C0

is the center of the band, W is the width of the band and D(k, l) is the distance
from the center of the transfer function to a point (k, l) in the frequency rectangle.
The ideal bandreject filter (IBRF) is

H(k, l) =

{
0 if C0 − W

2 ≤ D(k, l) ≤ C0 +
W
2

1 otherwise

The Gaussian bandreject filer (GBRF) is

H(k, l) = 1− e
−
[

D2(k,l)−C2
0

D(k,l)W

]2

The Butterworth bandreject filter (BBRF) is

H(k, l) =
1

1 +
[

D(k,l)W
D2(k,l)−C2

0

]2n
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Figure 3.9: Comparison of Bandreject Filters. IBRF (left), GBRF (center), BBRF
(right) with C0 = 250, W = 40, and n = 1 in the BBRF.

Notch filters are among the most effective selective filters. These filters allow or
block frequencies within a predefined neighborhood of the frequency domain. A
notch filter transfer function centered at (k0, l0) must have a corresponding notch
at the location (−k0, l0). Notch reject transfer functions are created by multiplying
highpass filter transfer functions whose centers have been shifted to the locations
of the notches. The general form is

HNR(k, l) =
Q

∏
j=0

Hj(k, l)H−j(k, l)

where Hj(k, l) and H−j(k, l) are highpass filter transfer functions centered at (k j, lj)

and (k−j, l−j) respectively. These centers are specified relative to the center of the
frequency rectangle. The distance calculations for each filter transfer function are
expressed as:

D±j(k, l) =
[
(u− M

2
∓ k j)

2 + (v− N
2
∓ lj)

2
]

.

To derive a notch pass filter transfer function from a notch reject filter, we use the
following relationship:

HNP(k, l) = 1− HNR(u, v).

A primary use of notch filtering is to selectively adjust specific regions within the
Discrete Fourier Transform (DFT). This technique is frequently applied interac-
tively.

Figure 3.10 shows an example of the application of notch filtering. The top-
right image shows a newspaper image of a soldier that exhibits a moiré pattern.
The top left image is its spectrum. We observe that this transform exhibits some
"energy bursts" that are the result of the periodicity of the moiré pattern. We
attenuate this bursts by using notch filtering. The bottom-left image shows the
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result of multiplying the DFT by a Gaussian notch reject function with D0 = 20.
The location of the notches and the radius have been selected by interacting with
the spectrum. The bottom-right image shows the result of applying these filters,
observing a significant improvement.

Figure 3.10: Process of filtering an image with a moiré pattern with a notch filter.

Figure 3.11 shows us another application of notch filtering. In the top-left of
the figure, we see a picture presenting periodic noise. Its DFT (top-right) presents
some energy bursts in the center vertical axis. We "cover" them with a notch filter
using a Gaussian reject transfer function with D0 = 20. We observe in the bottom
right that this noise has been clearly mitigated.
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Figure 3.11: Process of filtering an image with periodic noise.
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