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Abstract

At the end of the eighteen century solutions by radicals for the quadratic,
cubic and quartic equation were well known, but there was no formula for the
general quintic and higher degree equations. Thanks to the theory developed by
Èvariste Galois at the beginning of the nineteenth century, we know that it is not
possible to find a general solution by radicals for such equations. In this work
we will put our attention on the general polynomial equation of degree 5, which
since it cannot be solved in a general way by radicals, we will look for another
way to find its solutions. This is, by means of elliptic functions, especially the
℘(z)-Weierstrass elliptic function. In order to be possible to make this relationship
between complex analysis and algebra, we will first have to reduce the general
polynomial of degree 5 to its one-parameter Bring Jerrard form, through the use
of Tschirnhausen transformations and Newton’s identities. Once there, thanks to
the differential equation that ℘(z) satisfies, it is possible to identify the solutions of
a particular elliptic function with the solutions of the one-parameter Bring Jerrard.
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Chapter 1

Introduction

After speaking with Dr. Luis Victor Dieulefait, the idea of looking for analyti-
cal solutions to an equation that is known to have no solutions by radicals, seemed
very interesting to me.
We will put our attention on the general polynomial equation of degree five.
The project will be divided into 5 chapters:
In the 2nd chapter we will see how the radical solutions of the quadratic, cubic
and general quartic equations were found historically as well as some relevant
aspects in the history of algebraic equations.
The 3rd chapter will present the main ideas and theorems on why the general
quintic equation is not solvable by radicals, going through the ideas of Lagrange
until its formalization by Galois. All this will be seen very briefly because they are
known results of the mandatory course, Algebraic Equations.
In chapter 4 we will introduce elliptic functions, first seeing how they emerged
and then describing their main characteristics. We will focus on the construction
of the ℘(z)-Weierstrass elliptic function, as well as on some of its most important
properties, such as the differential equation that it satisfies and the relationship of
its invariants.
In chapter 5, Tschirnhausen transformations and Newton’s identities will be in-
troduced, through which it will be possible to reduce the general polynomial of
degree five to its one-parameter Bring Jerrard form with radical expressions. Dur-
ing the process, we will go through the principal quintic and the Bring Jerrard
normal form.
To finish, in chapter 6, the fusion between complex analysis and algebra will be
made, presenting an elliptic function whose solutions are directly related, through
the ℘(z) Weierstrass elliptic function, with the solutions of the one parameter
Bring Jerrard form. From here, a description is presented of how to reverse the
entire process to find the analytical solutions of the general quintic equation. How-
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2 Introduction

ever, a limitation is given in the fact of finding the solutions of the elliptic equation.
A comment on this is found at the end of the chapter.



Chapter 2

History of lower degree equations

The problem of finding the roots of a polynomial has accompanied mathe-
maticians for millennia. The search process suggested many questions, which
were answered with the development of new branches of mathematics.
The word "algebra" has its origin in Al-Khwarazmi’s book Al-jabr w’al muqabala
(Science of restoring and opposition) , published in 830 AD. However, its concept,
meant solving polynomial equations of degree four or less for more than three
millennia until the nineteenth century. In this chapter I am going to present the
solutions "by radicals" of the quadratic, cubic and quartic equation by chronological
order, as well as some details about their history.
But what does it mean to solve a polynomial equation by radicals?

Definition 2.1. A solution by radicals of a polynomial equation is a formula, which
only contains algebraic operations (addition, subtraction, multiplication and division),
raising to integer powers and extractions of nth roots (square roots, cube roots, ...), that
give you the value of the roots of the polynomial in terms of its coefficients.

2.1 Quadratic equation

The Babylonians (1700 AC), who were really good mathematicians of their
time, could solve systems of equations of the form:

x + y = a xy = b

which, in fact, is the same of solving the quadratic equation:

x2 + b = ax

3



4 History of lower degree equations

They find a prescriptive way to solve them, in which if you put everything together
it results in the following formula:

x =
a
2
+

√( a
2

)2
− b

This formula as such was not known, since to know the solution they went through
several steps. Furthermore, they worked numerically, hence, they directly went
through the steps with the value of the coefficients. Since they did not admit zero,
negative numbers and irrational numbers, they could only find a solution to some
complete quadratics.
Negative coefficients in the equation and negative roots, were introduced by Chi-
nese (c.200 BC) and Indians (c.600 BC).
The ancient Greeks were good geometers. In Euclid’s Elements (300 BC) it is pre-
sented a solution to the quadratic equation, in the case there is a positive root,
using geometry.
Al-Khwarazmi (c.780 - c.850) did the transition from geometry to algebra and pre-
sented geometrical solutions with squares and rectangles to the quadratic equation
that can be easily translated to algebra. He classified them into 5 types: ax2 = bx,
ax2 = b, ax2 + bx = c, ax2 = bx + c and ax2 + c = bx. This was because he didn’t
admit negative coefficients nor zero.
NOTE. Nowadays, with the complex numbers well established and due to the
Fundamental Theorem of Algebra, we know that the two roots of the general
quadratic equation x2 + ax + b = 0 are:

x = − a
2
±
√( a

2

)2
− b

2.2 Cubic and quartic equation

It took three thousand years to mathematicians to find a solution by radicals
to the cubic and quartic equation compared with the quadratic. This was thanks
to the Italian mathematicians of the early 16th century.
Cardano, in Ars Magna (1545) published a solution to the cubic by radicals. How-
ever, this solution was previously discovered by del Ferro and Tartaglia.
The solution of Cardano to the general cubic: x3 + ax2 + bx + c = 0, first involves
transforming it to the reduced cubic: y3 = py + q (see Example 5.1).
After imposing y = u + v:

y3 = (u + v)3 = u3 + 3u2v + 3uv2 + v3 = u3 + v3 + 3uv(u + v) = u3 + v3 + 3uvy

Hence, y3 = py + q implies:

3uv = p u3 + v3 = q



2.2 Cubic and quartic equation 5

After isolating v from the first equation and substituting it into the second one:

u3 +
( p

3u

)3
= q ⇔ u6 +

p3

27
= qu3 ⇔

(
u3)2

+
p3

27
= q

(
u3)

A quadratic formula for u3 is obtained. Applying the quadratic formula:

u3 =
q
2
±
√( q

2

)2
−
( p

3

)3

This process can be done symmetrically to find that the values for v3 are the same
as for u3. So, if u3 is fixed to be the one with the positive sign, then v3 is the one
with the negative sign. Hence, the root of the reduced cubic will be:

y = u + v =
3

√
q
2
+

√( q
2

)2
−
( p

3

)3
+

3

√
q
2
−
√( q

2

)2
−
( p

3

)3

Cardano was satisfied on finding one root and he applied the formula directly
with numerical coefficients. He also was skeptical with negative numbers, so he
only considered positive coefficients and positive roots. As it can be seen in the
formula it was needed that

( q
2

)2 −
( p

3

)3
> 0.

NOTE. [Again, thanks to complex numbers and due to the Fundamental Theorem
of Algebra we can complete Cardano’s formula and add the two other roots of the
reduced cubic y3 = py + q:

y = −u + v
2

± u − v
2

i
√

3

The roots to the general cubic x3 + ax2 + bx + c = 0 can be find by the following
relation: x = y + a

3 .]
Not long after, Cardano’s student Ferrari found the solution to the fourth degree
equation, which was also introduced in Cardano’s Ars Magna book:
The general quartic polynomial x4 + ax3 + bx2 + cx + d can always be transformed
to the form y4 + py2 + qy + r with the relation x = y − a

4 . Then, solving y4 + py2 +

qy + r = 0 is the same as solving:

y4 = −py2 − qy − r

Once here, Ferrari added 2zy2 + z2 to each side, so the left hand side becomes a
square again. After rearranging the equation:

(y2 + z)2 = (2z − p)y2 − qy + (z2 − r)

To have a perfect square both sides was the idea of Ferrari. Therefore, he looked
for which value of z makes this possible.



6 History of lower degree equations

After equalizing the right hand side to zero and after applying the quadratic for-
mula, it is derived that this will be possible when:

q2 − 4(2z − p)(z2 − r) = 0

So, after expanding and solving for z by the cubic equation, and after substituting
its value in the previous equation, he got a perfect square both sides. After taking
a square root both sides, then isolating y2 and taking another square root both
sides, he obtained the solution to the transformed quartic y4 + py2 + qy + r = 0.
After applying the relation x = y − a

4 he obtained a root of the general quartic.
NOTE. [When doing the two last square roots, if we take into account the sign, the
four solutions to the general quartic appear.]

Complex numbers have their origin in 1572, when Bombelli in his book Algebra,
computed the root of the equation x3 = 15x + 4 by Cardano’s formula:

x =
3
√

2 +
√
−121 +

3
√

2 −
√
−121

There, he found a paradox because the square root of a negative number was not
considered in the epoch, so he couldn’t get the solution. However, he realized that
x = 4 was a solution to the equation.
In 1591, in his book Introduction to the Analytic Art, Viète introduced the idea to ex-
press the polynomial equations with parameters, distinguishing the variables and
the coefficients. It was the first time that one could talk about general equations
instead of working with particular numerical coefficients. Viète also showed that
solving a cubic is the same as trisecting an arbitrary angle.
Descartes was one of the first to follow the idea of parameterizing and adopted a
notation very similar to that used today.
Theory of polynomial equations began to emerge and questions such as the exis-
tence, nature and number of roots of a polynomial arose.



Chapter 3

The unsolvability of the general
quintic by radicals

After solutions by radicals for the general quadratic, cubic and quartic equation
were found, mathematicians tried to find an expression by radicals for the roots
of the general quintic. However, all attempts were in vain.
Lagrange in 1770 was the first to suspect that this would not be possible. He
introduced what is known as "Lagrange resolvents". He saw that if x1 and x2 are the
roots to the quadratic polynomial x2 + ax + b, then:√

a2 − b = x1 − x2

Hence, the only non possible rational part of the solutions was expressible in a
beautiful way in terms of the roots.
The same happens with the reduced cubic polynomial x3 + px + q; if x1, x2 and x3

are its roots, then:√( q
2

)2
+
( q

3

)3
=

(x1 − x2)(x2 − x3)(x3 − x1)

6
√
−3

Since this roots can be permuted, this resulted into two different values. This
was the initial point in beginning to consider symmetries and permutations of the
roots.

Definition 3.1. A Lagrange resolvent for a polynomial of nth degree has the form:

x1 + x2ζ + x3ζ2 + x4ζ3 + ... + xn−1ζn−2 + xnζn−1

where xi for i ∈ {1, ..., n} are the roots of the polynomial and ζ is the nth root of the unity.

7



8 The unsolvability of the general quintic by radicals

For the case of the cubic, this two expressions are Lagrange resolvents:

s = x1 + x2ζ + x3ζ2 t = x1 + x3ζ + x2ζ2

Because of the permutations of the roots each of them can take 6 different values,
nevertheless, when they are cubed the expressions A = s3 + t3 and s3t3 = B are
invariant under the 6 permutations, which means that they must be rational ex-
pressions in terms of the coefficients of the cubic polynomial. In fact, s3 and t3

are the roots of the quadratic equation x2 + Ax + B = 0. This equation is called a
"resolvent equation".
So, Lagrange had the idea of finding resolvents which will transform the problem
of solving an nth degree equation into solving an equation of degree less than n.
He succeeded for the quartic equation but not for the quintic, in which 120 permu-
tations of the roots take place. This vast quantity of different permutations, made
Lagrange think about the impossibility of solving the quintic and higher degree
equations by radicals.
Around 1800 it was demonstrated that the general quintic equation, x5 + Ax4 +

Bx3 + Cx2 + Dx + E = 0, is not solvable by radicals.
Ruffini presented a proof in 1799 that resulted to be incomplete. After that, the
correct proof was presented by Abel in 1826. For more details, see J. Gray [2].
Nevertheless, the generalization of this theory and many more answers to ques-
tions, come from the hand of the mathematician Èvariste Galois.

3.1 The definite approach by Galois

In this section I am going to express the main ideas of Galois’s Theory and
state several theorems without proof. The intention is to clarify how to know if
a polynomial equation is solvable or not by radicals. For intermediate steps and
proofs, see F. Zaldívar [5].
NOTE. [Galois always worked on the field of the C numbers. So, he didn’t con-
sidered extensions of fields and he always considered polynomials f (x) ∈ C[X].
He put his attention on the properties of the permutation of the roots.]

Definition 3.2. Let L and K be two fields such that K ⊆ L. An extension of fields,
L/K, is Galois if it is finite, normal and separable. Its group of automorphisms Aut(L/K)
is called the Galois group of the extension and is denoted by Gal(L/K).

If αi for i ∈ {1, ...n} are the n roots of an irreducible separable polynomial
f (x), then L/K with L = K(α1, ..., αn) is a Galois extension. L/K is called to be the
splitting field of f (x) over the field K. In the case the field is in C the separability
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condition follows. An automorphism of its Galois group (σ ∈ Gal(L/K)) induces a
permutation of the roots αi. Different automorphisms give different permutations.
So, this result in an injective homeomorphism of the form: Gal(L/K) → Sn, where
Sn is the group of permutations of the roots αi. Hence, Gal(L/K) ⊆ Sn. The
elements of Gal(L/K) are determined by their action on the roots of f (x). It is
also known that their action is transitive.
Sometimes we will refer as Gal( f /K) to denote the Galois group Gal(L/K) of a
splitting field L over K.

Definition 3.3. Let G be a group. If there exists a finite chain of subgroups of the form:

{1} := G0 ⊆ G1 ⊆ G2 ⊆ ... ⊆ Gn =: G

where Gi−1 is a normal subgroup of Gi (Gi−1 ◁Gi) and Gi/Gi−1 is abelian for i ∈ {1, ..., n}
then, G is called to be solvable.

It is easy to see that S3 and S4 are solvable. For example, for the case of S3,
setting G1 = {(1), (1, 2, 3), (1, 3, 2)} it is obvious that G1 ⊆ S3 and for the fact that
|S3| = 3! and |G1| = 3, then |S3/G1| = 6/3 = 2 and it is known that every group
with order 2 is abelian. At the same time, clearly G1/{1} ≈ G1 and the quotient
between them will have order three. Since, every group of order three is abelian,
then S3 is solvable.

Definition 3.4. A finite extension L/K is called a radical extension if it is separable
and there exists a radical tower of the form:

K := K0 ⊆ K1 ⊆ K2 ⊆ ... ⊆ Kn =: L

where every Ki/Ki−1 belongs to one of the following classes: (1)it is obtained by adjoining
a root, αi of a polynomial of the form xni − ci with ci ∈ Ki and ni no divisible by the
characteristic of K, (2) it is obtained by adjoining a root, αi of a polynomial of the form
xp − x − ci with ci ∈ Ki and 0 ̸= p = characteristic of K, (3) by adjoining a root of the
unity.

Definition 3.5. A finite extension M/K is called solvable by radicals if there exists a
radical extension L/K such that M ⊆ L.

Theorem 3.6. Let K ⊆ L ⊆ M be a fields chain where L is Galois over K and M/K is
radical. Therefore, Gal(L/K) is a solvable group.
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Theorem 3.7. Let M/K be a finite, normal and radical extension. Then, Gal(M/K) is
solvable.

Corollary 3.8. If f (x) is solvable by radicals, then Gal( f /K) is a solvable group.

It is demonstrated that Sn, for n ≥ 5, is not a solvable group. Hence, as it is
known that over Q[X], for n ≥ 5, there exist polynomials with Galois group Sn,
then, by the last corollary, it is derived that it is impossible to solve by radicals a
general equation of degree bigger or equal to five.
NOTE. [However, there are particular cases of polynomials of degree greater than
or equal to five that are solvable by radicals. If they are irreducible separable, then
their Galois group is isomorphic to some transitive solvable subgroup of Sn.]

Theorem 3.9. Let M/K be a finite Galois extension with solvable Galois group. Then,
M/K is solvable by radicals.

It is known that an irreducible quintic can only have as transitive subgroups
the solvable Galois groups: C5, D5 and M5 and the unsolvable Galois groups: A5

and S5.
Therefore, only quintics having as Galois group C5, D5 or M5 will be solvable by
radicals.
C5 is the cyclic group with 5 different operations. D5 is the dihedral group with
10 different operations. M5 is called the metacyclic and involves 20 different oper-
ations. Finally A5 is the alternative group and S5 is the symmetric group with 60
and 120 different operations respectively.



Chapter 4

Elliptic functions

4.1 Historical introduction

One consequence of the solubility of the permutation groups of degree 2, 3
and 4 is the fact that radicals of the type n

√
a for n ∈ {2, 3} are enough to solve any

quadratic, cubic and quartic equation. Furthermore, we can express this radicals
by logarithms in the following way:

n
√

a ≡ a
1
n = ln−1

(
1
n

log a
)
= exp

(
1
n

log a
)

In analysis, the function ln x is defined by the following indefinite, transcendental
integral:

ln x =
∫ dx

x
=
∫ dx√

x2

Similarly,

arcsin x =
∫ dx√

1 − x2

Once on possession of this elementary integrals, mathematicians tried to reduce
as many problems as possible involving integrals to one of these already known.
Nevertheless they soon found that every endeavor to carry through such a reduc-
tion by means of a finite number of algebraic operations was in vain in many cases.
Especially with integrals of the general form:∫ F(x)√

R(x)
(4.1)

where F(x) is a polynomial in x and R(x) = Ax4 + Bx3 + Cx2 + Dx + E.
It was not by coincidence that mathematicians start manipulating this kind of in-
tegrals, in fact, the integrals which express the length of arc of an ellipse and of an

11



12 Elliptic functions

hyperbola fall under the general formula [4.1]. Because of that, some mathemati-
cians put their attention on them.
After all the efforts trying to reduce [4.1] had failed, mathematicians opted to
introduce new transcendental functions in analysis. Two roads were open for in-
vestigation. On one hand, they tried to solve the problem by reducing the number
of new transcendental functions to a minimum, where no important results were
obtained. However, in the attempt to reduce the integrals to the one that rep-
resents the length of the arc of the ellipse, the concept of elliptic integral was
nicknamed. On the other hand they tried to find the properties of these functions
and incorporate them to analysis.
One fact indicated the way to attack the problem. It was known, that the differen-
tial equation

f (x)dx = ± f (y)dy

had as an integral an algebraic function of x and y, when
∫

f (x)dx is a logarithm or
an inverse trigonometric function. However, it was impossible to find an algebraic
integral of the differential f (x)dx. The key vision was to realize that one can find
an algebraic integral of the sum or difference of two such differentials.
Because of that, Johannis Bernoulli asked whether this property might hold for
other transcendents than the logarithm and the inverse trigonometric functions.
Fagnano answered, and in 1715 proved the following theorem:

Theorem 4.1. Consider the expression:

xn−1(xn + p)h−1dx
[(xn + p)2 + q(xn + p) + r]h

where p,q and r are arbitrary constants and n and h are rational numbers. Then, if a new
variable, z, is introduced under the relation:

znxn + p(zn + xn) + p2 = r

and substitute z in the expression, it transforms into:

− zn−1(zn + p)h−1dz
[(zn + p)2 + q(zn + p) + r]h

After imposing n = 2, h = 1
2 and either p = 0 or p2 + pq + r = 0, an special

form of Fagnano’s theorem is obtained:

dx√
f + gx2 + hx4

+
dz√

f + gz2 + hz4
= 0
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Hence, a differential equation is satisfied by an algebraic function of x and z which
is symmetric of degree two in each of these variables. So, Fagnano answered
Bernoulli’s question. He also proved similar theorems, which served as Euler’s
starting point for his famous memoir: De integratione aequationis differentialis. He
tried to find an algebraic form for the complete integral of the differential equation

dx√
1 − x4

=
dy√

1 − y4

From Fagnano’s investigations it follows that:

x = −

√
1 − y2

1 + y2

satisfies the differential equation. Also the trivial:

x = y

Thus a complete form must reduce to both of them for special values of the con-
stant. By Euler’s addition and multiplication theorems he managed to find that
the complete integral is given by:

x =
y
√

1 − c4 + c
√

1 − y4

1 + c2y2

where c is an arbitrary constant.
So it is an algebraic function of the two variables x and y and c. After that, Euler
extended his result for a differential equation of the general form:

mdx√
Ax4 + 4Bx3 + 6Cx2 + 4Dx + E

=
ndy√

Ay4 + 4By3 + 6Cy2 + 4Dy + E
(4.2)

The connection with calculus was made by Lagrange in 1768. Setting m = 1 and
n = 1 in [4.2] and after the substitutions:

x + y = p x − y = q

he found that the differential equation:(
1
q

dp
dt

)2

= Ap2 + 4Bp + G

is a complete integral. After trying to generalize this calculations, Abel published
his general addition theorem and it was about what Abel and Jacobi erected the
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theory of elliptic functions in the September 1827. They worked with the elliptic
integral: ∫ dx√

(1 − x2)(1 − k2x2)

where R(x) = (1 − x2)(1 − k2x2) was chosen because of its resemblance to the
second degree polynomial P(x) = 1 − x2 appearing as the R(x) in the elliptic
integral for arcsin x. With this, one can see that because of the simple periodicity
of the trigonometric functions, then elliptic functions become to be double periodic
functions with k being the ratio between the two periods.
The first elliptic function was defined by Jacobi as the inverse function of the
following definite integral:

u =
∫ x= f (u)

x=0

dx√
(1 − x2)(1 − k2x2)

NOTE. Legendre also work in developing the theory of elliptic functions, and he
managed to reduce all elliptic integrals to three fixed canonical forms which in
trigonometric form can be written as follows:∫ x

0
dx√

1−k2sin2x

∫ x
0

dx
(1+nsin2x)

√
1−k2sin2x

∫ x
0

√
1 − k2sin2xdx

As a curiosity, it is demonstrated that Gauss was in possession of the elliptic
functions and their chief properties from the end of the eighteen century.
For more details on this historical introduction, see G. Mittag-Leffler [6].

4.2 Formal definition and properties

Definition 4.2. An elliptic function is a double-periodic, meromorphic function.

So, let’s define what a meromorphic and a double-periodic function is.

Definition 4.3. A meromorphic function evaluated on an open set Ω of the com-
plex plane, is an holomorphic function for all Ω except for a finite set of isolated points
{z1, z2, ...}, which are poles of the function.

From now on, let w1, w2 be any two real or complex numbers whose ratio
w1
w2

∈ C \ R. (The why of this condition will be explained later, because more

information is needed). Conventionally, they are chosen s.t. Im
(

w1
w2

)
> 0. (Notice

that if Im
(

w1
w2

)
< 0 then you correct that by changing one for the other).

Definition 4.4. A function which satisfies the equations:
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f (z + 2w1) = f (z), f (z + 2w2) = f (z)

∀z, s.t. f(z) is analytic, is called a double-periodic function. 2w1 and 2w2 are periods of
the function.

Definition 4.5. If 2w1 and 2w2 are the closest periods to 0 satisfying w1
w2

̸= 0, then they
are the primitive periods of the double-periodic function.

Corollary 4.6. Every point w belonging to the set {m2w1 + n2w2}, for m, n ∈ Z, is a
period of an elliptic function f (z) whose primitive periods are 2w1 and 2w2.

Proof: Because of 2w1 and 2w2 are primitive periods, then:

f (z + 2w1) = f (z) f (z + 2w2) = f (z)

So, we have the following identities:

f (z+m2w1 +n2w2) = f ((z+ 2w1)+ (m− 1)2w1 +n2w2) = f (z+(m− 1)2w1 +n2w2)

It is important to also notice that:

f (z) = f (z + 2w1) ⇔ f (z − 2w1) = f (z)

And the same for 2w2. Hence, one can split z + m2w1 + n2w2 by summing or
subtracting, it depends on the sign, m 2w1 and n 2w2, and get:

f (z + m2w1 + n2w2) = f (z) QED

From now on we will be using 2w1 and 2w2 as the primitive periods of the elliptic
function.

Definition 4.7. If we join the consecutive points: 0, 2w1, 2w1 + 2w2 and 2w2, one gets
a parallelogram. Since 2w1 and 2w2 are primitive periods, it is called the fundamental
period parallelogram.

As one can imagine, the z-plane will be fully covered by a network of parallel-
ograms. Each one with vertex on 2mw1 + 2nw2. They are called in general form,
period-parallelograms or meshes.

For purposes of integration, we don’t want that our fundamental period par-
allelogram has singularities (poles in our case) on its boundary. So, to avoid that,
if it’s the case, one can translate the parallelogram, without rotation. That is by
moving the node 0 to some other point t ∈ C, such that the new parallelogram
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Figure 4.1: Network of period parallelograms

with vertices t, t + 2w1, t + 2w1 + 2w2 and t + 2w2 hasn’t got poles on its bound-
ary. Now the network of meshes will have vertex on t + 2mw1 + 2nw2. A period
parallelogram with this characteristics is called a cell.

By the double periodicity of elliptic functions and the fact that the Argand
plane is covered by a network of meshes, it is derived that the value that the
elliptic function takes on a point it is a mere repetition of its value in another
mesh. It is for this reason that we can talk about congruences between points in
different meshes.

Two points, z and z’, are said to be congruent when

z′ ≡ z (mod 2w1, 2w2) (4.3)

Remark 4.8. Now we can explain why we ask for w1
w2

to not be real. If it was, then
the fundamental period parallelogram would collapse to a line and the function
would reduce to a single periodic one or to a constant, depending in if w1

w2
is

rational or irrational, respectively.

Remark 4.9. Because of [4.3] all of the poles (or zeros) of the elliptic function are
congruent to a pole (or zero) of the fundamental period parallelogram. The set of
poles and zeros in a given cell is called an irreducible set

Now I’m going to prove some basic theorems involving elliptic functions:

Theorem 4.10. An elliptic function has a finite number of poles in any cell.



4.2 Formal definition and properties 17

Proof: If there were infinite poles, then there would be a pole acting as an
accumulation point. This contradicts the definition of an elliptic function: there
are only isolated singularities. QED

Theorem 4.11. An elliptic function has a finite number of zeros in any cell.

Proof: By properties of meromorphic functions, if f (z) is meromorphic, then
1/ f (z) is meromorphic too. Clearly, if f (z) is doubly periodic, 1/ f (z) will be
doubly periodic as well. Hence, joining both facts, we have that if f (z) is elliptic,
then 1/ f (z) will be elliptic. So, if an elliptic function has an infinite number of
zeros, then its multiplicative inverse, which is elliptic too, would have an infinite
number of pols. And by Theorem [4.10] we see that this is impossible. QED

Theorem 4.12. In a given cell, at the poles of an elliptic function f (z), the sum of the
residues is zero.

Proof: Let ∆ be the contour of the fundamental cell, whose vertices lie on the
following points: t, t+ 2w1, t+ 2w2 and t+ 2w1 + 2w2. After applying the Residue
Theorem:

1
2πi

∮
∆

f (z) dz =
1

2πi

(∫ t+2w1

t
+
∫ t+2w1+2w2

t+2w1

+
∫ t+2w2

t+2w1+2w2

+
∫ t

t+2w2

)
f (z) dz

Now, if we do the change z = z − 2w2 on the third integral and the change z =

z − 2w1 on the fourth and we combine the first with the third and the second with
the fourth, we get:

1
2πi

∫ t+2w1

t
[ f (z)− f (z + 2w2)] dz +

∫ t+2w2

t
[( f (z)− f (z + 2w1))] dz

Because of the double periodicity both integrands vanish. QED

Remark 4.13. There cannot be elliptic functions with a single pole. Looking at
the proof we just did it follows that the residue would have to be zero, so the
singularity would be removable and not a pole.

Theorem 4.14. If an elliptic function f (z) has no poles in a given cell, then it is such a
constant.

Proof: If f(z) has no poles, then it is analytical everywhere in the cell and
for the fact that the cell is compact, then f(z) must be bounded in the cell. From
periodicity it derives that it is bounded and analytical everywhere. So, from Liou-
villes’s Theorem must be constant. QED

Let’s introduce now to concept of order of an elliptic function:
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Definition 4.15. The order of an elliptic function is its number of poles in a given cell.

Theorem 4.16. Let k be any constant. I f (z) is an elliptic function, then the number of
roots of the equation:

f (z)− k = 0

coincides with its order.

Proof: by the argument principle we know that the difference between the
number of zeros (Z) and the number of poles (P) of f (z)− k in a given cell with
contour ∆ will be:

1
2πi

∫
∆

f ′(z)
f (z)− k

dz = Z − P

It is easy to prove that the derivative of an elliptic function is elliptic itself having
the same periods. So, by double periodicity of f ′(z), when dividing ∆ in four
parts as we did in Proof of Theorem [4.12] it can be seen that the integral turn to
be zero. Hence, the number of zeros of f (z)− k is equal to its number of poles.
But, realize that if zi is a pole of f (z)− k then it must be also a pole of f (z). This
means that f (z)− k and f (z) have the same number of poles. So, transitively, the
number of poles of f (z) is equal to the number of roots of f (z)− k. Notice that k
has been undetermined all time. QED.

Remark 4.17. By Remark [4.13] and Theorem [4.14] we know that an elliptic func-
tion must have order higher or equal than 2. In fact, the simplest elliptic functions
are the ones with order 2, which can be divided into two classes, depending if
they have a double pole or two simple poles in a given cell.

The function we are going to construct now it’s an example of an elliptic func-
tion of order 2 with a double pole in a given cell.

4.3 Construction of the ℘(z) of Weierstrass

Definition 4.18. The abelian group:

Λ := {2mw1 + 2nw2} (4.4)

for n ∈ Z and m ∈ Z is called the lattice of the elliptic function.
Excluding zero we can define: Λ1 = Λ ∖ {0}.

Let’s now consider the series:

S := ∑
w∈Λ1

1
|w|α = ∑

{m,n}̸=0

1
|2mw1 + 2nw2|α

for α ∈ R.
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Theorem 4.19. The series S converges for α > 2 and diverges for α ⩽ 2.

Proof: We can define a partial sum of S as:

Sk = ∑
0 ̸={m,n}⩽k

1
|2mw1 + 2nw2|α

for k ∈ N.
Now, let’s set Tk = Sk − Sk−1 with S0 ≡ 0.
Since all terms in S and Ti are positive one can realize that:

S =
∞

∑
k=1

(Sk − Sk−1) =
∞

∑
k=1

Tk

So, that means that S converges if and only if
∞
∑

k=1
Tk converges.

Let’s ask one question: how many terms do Tk have? Looking into the equation
Tk = Sk − Sk−1 one can realize that the terms appearing in Tk belong to the set:

{|2mw1 ± 2kw2|−α, | ± 2kw1 + 2nw2|−α} (4.5)

for {m, n} ∈ {−k,−k + 1, ..., k − 1, k} \ {0}.
This translates into (2k)4 = 8k terms.
Moreover, these terms belong to the boundary of a period-parallelogram with
vertices at −2kw1 + 2kw2, 2kw1 − 2kw2, −2kw1 − 2kw2 and 2kw1 + 2kw2. Trivially,
0 belongs to the inside of this parallelogram. So, you can find two constants,
C1 > 0 and C2 > 0, independent of k s.t.:

C1k < |w| and C2k > |w| ∀w ∈ [4.5]

Note that we can rewrite this inequalities as:

1
(C1k)α >

1
|w|α and

1
(C2k)α <

1
|w|α ∀w ∈ [4.5]

Hence, after summing the 8k terms in [3.4] it is obtained that:

8k
(C2k)α < Tk <

8k
(C1k)α

This means that
∞
∑

i=1
Tk will converge if and only if

∞
∑

i=1
k1−α converges. And as it is

seen in basic Calculus, this will happen if and only if (1 − α) < −1, which is the
same as α > 2. QED
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Corollary 4.20. For every r > 0, the series:

∑
w∈Λ1,|w|>2r

(
1

(z − w)2 − 1
w2

)
(4.6)

converges absolutely and uniformly for |z| ⩽ r.

Proof: Because of |w| > 2r and |z| ⩽ r, then |z|
|w| <

r
2r = 1

2 .
Now, you can write: 1

(z − w)2 − 1
w2

 =

 z(2w − z)
w2(z − w)2

 =

 z(2 − z/w)w
w4(z/w − 1)2

 =
|z||2 − z/w||w|
|w|4|z/w − 1|2 (4.7)

Notice now the following inequalities:2 − z
w

 ⩽ |2|+
 z

w

 < 2 +
1
2
=

5
2 z

w
− 1
2

=
1 − z

w

2
⩾
(
|1| −

 z
w

)2
>

(
1 − 1

2

)2

=
1
4

So, after implementing these inequalities and the fact that we are considering
|z| ⩽ r in [4.7], it is obtained that: 1

(z − w)2 − 1
w2

 =
|z||2 − z/w||w|
|w|4|z/w − 1|2 ⩽

5/2r
1/4|w|3 =

10r
|w|3 (4.8)

Hence, after applying Weierstrass M-test and Theorem [4.19] in inequality [4.8] we
can say that [4.6] converges absolutely and uniformly for |z| ⩽ r. QED

Remark 4.21. Doing r → ∞, Corollary [4.20] tells us that:

∑
w∈Λ1

(
1

(z − w)2 − 1
w2

)
will converge absolutely and uniformly for z ∈ {C \ Λ1}.

Theorem 4.22. Given a cell with contour ∆, if
∞
∑

i=0
fi(z) converges uniformly on ∆ and

its interior to a function χ(z) and fi(z) is analytical on ∆ and its interior, then χ(z) is an
analytic function inside ∆.

Proof: By definition of analytical we need to prove that:

lim
h→0

χ(t + h)− χ(t)
h
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exists and it is unique ∀t, (t + h) inside the contour ∆.
By the integral formula of Cauchy, we can express:

χ(t) =
1

2πi

∫
∆

χ(z)
z − t

dz

So,
χ(t + h)− χ(t)

h
=

1
2πih

(∫
∆

χ(z)
(z − t − h)

dz −
∫

∆

χ(z)
(z − t)

dz
)
=

=
1

2πih

∫
∆

hχ(z)
(z − t − h)(z − t)

dz =
1

2πi

∫
∆

χ(z)
(z − t − h)(z − t)

dz =

=
1

2πi

∫
∆

χ(z)
(z − t − h)(z − t)

(z − t − h) + h
(z − t)

dz =

1
2πi

∫
∆

χ(z)
(z − t)2 dz +

h
2πi

∫
∆

χ(z)
(z − t − h)(z − t)2 dz

Because of the uniform convergence, χ(z) will be continuous inside the contour ∆
and, consequently bounded. Of course |(z − t)| and |(z − t − h)| will be bounded
too. Then,

 χ(z)
(z−t−h)(z−t)2

 will be bounded. Let’s say by M. The integral
∫

∆ |dz| =
L. So, after taking limits in above expression:

lim
h→0

χ(t + h)− χ(t)
h

=
1

2πi

∫
∆

χ(z)
(z − t)2 dz + lim

h→0

h
2πi

∫
∆

χ(z)
(z − t − h)(z − t)2 dz ⩽

⩽
1

2πi

∫
∆

χ(z)
(z − t)2 dz + lim

h→0

|h|
2π

∫
∆

 χ(z)
(z − t − h)(z − t)2

 |dz| =

=
1

2πi

∫
∆

χ(z)
(z − t)2 dz

Hence,

χ′(t) =
1

2πi

∫
∆

χ(z)
(z − t)2 dz (4.9)

and χ(z) is analytical inside the contour ∆. QED.

Remark 4.23. Substituting χ(z) =
∞
∑

i=0
fi(z) inside the equation [4.9] one can see

that in fact,

χ′(z) =
∞

∑
i=0

f ′i (z)

∀z inside ∆.
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Remark 4.24. Due to Theorem [4.22] and Remark [4.21], now by taking different
contours it is derived that

∑
w∈Λ1

(
1

(z − w)2 − 1
w2

)
will be analytical for z ∈ {C \ Λ1}.

Definition 4.25. It is time to define the function ℘(z) :

℘(z) =
1
z2 + ∑

{m,n}̸=0

(
1

(z − 2mw1 − 2nw2)2 − 1
(2mw1 + 2nw2)2

)
At the same time, simplified:

℘(z) = z−2 + ∑
w∈Λ1

(
(z − w)−2 − w−2) (4.10)

Because of Remarks [4.21 and 4.24] we can notice that this function will be ab-
solutely and uniformly convergent and analytical in all the Argand plane, except
for z ∈ Λ. This points, in fact, will be double poles of the function, so ℘(z) results
to be a meromorphic function.
As it is seen in Remark [4.23], ℘(z) can be differentiated term by term and we get:

℘′(z) = (−2)z−3 + ∑
w∈Λ1

(−2)(z − w)−3 (4.11)

So, ℘′(−z) will gives us:

℘′(−z) = (2)z−3 + ∑
w∈Λ1

(2)(z + w)−3

At the same time, after realizing that w ∈ Λ1 and −w ∈ Λ1 both go throughout
the same numbers, then we end up with the relation:

℘′(z) = −℘′(−z) (4.12)

So ℘′(z) is an odd function.
With the same argument one realizes that ℘(z) is an even function:

℘(z) = ℘(−z) (4.13)

Let’s now have a look again on [4.11]:

℘′(z + 2w1) = ∑
{m,n}∈Z

(−2)(z + 2w1 − 2mw1 − 2nw1)
−3
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Doing the change m = m′ + 1:

℘′(z + 2w1) = ∑
{m′,n}∈Z

(−2)(z − 2m′w1 − 2nw1)
−3

And since m′ will run over the Z as m, then the expression on the right side equals
to the one in [4.11]. Consequently:

℘′(z + 2w1) = ℘′(z) (4.14)

Then, 2w1 is a period of the function ℘′(z). The same argument can be done with
2w2 and we find that it is also a period. So, ℘′(z) turns out to be an odd, double
periodic function.
At the same time, one can extend Remark [4.23] with Theorem [4.22] to the deriva-
tive of nth order, and it follows that ℘′(z) is analytical everywhere excepts for
when z is a points of the lattice Λ. These points of the lattice will be double poles.
Hence, ℘′(z) is an elliptic function.
Now it is possible to integrate [4.14] both sides and get:

℘(z + 2w1) = ℘(z) + G (4.15)

with G as a constant. The fact that G must be zero comes from evaluating [4.15]
at z = −w1 and using that ℘(z) is an even function.
This results to be:

℘(z + 2w1) = ℘(z)

Note that symmetrically we can obtain the same equation for 2w2. Hence, we have
found that 2w1 and 2w2 are periods of ℘(z). In fact, by construction, they are the
primitive periods.
So, because of the fact that the only singularities of ℘(z) are the points of Λ (which
are poles), ℘(z) is analytical everywhere unless at this poles, and is a doubly pe-
riodic function, then we can finally say that ℘(z) is an elliptic function whose
double poles belong to Λ and has as primitive periods 2w1 ad 2w2.

4.4 The differential equation for ℘(z)

Theorem 4.26. ℘(z) satisfies the differential equation:

℘′2(z) = 4℘3(z)− g2℘(z)− g3

where g2 = 60 ∑
w∈Λ1

1
w4 and g3 = 140 ∑

w∈Λ1

1
w6 (called the invariants of ℘(z)).



24 Elliptic functions

Proof: Looking into [4.10] one can rearrange the equation to get:

℘(z)− z−2 = ∑
w∈Λ1

(
(z − w)−2 − w−2) (4.16)

where the right hand side as we saw in Remark [4.21] and [4.24] converges ab-
solutely and uniformly and is analytical for z ∈ C \ Λ1. So, in particular, it is
analytical at 0. Hence, one can use Taylor’s formula on the right hand side for
values close enough to zero (there must be no points belonging to Λ1). As we saw
before, ℘(z)− z−2 is an even function. Therefore, only even terms must appear in
the expansion:

℘(z)− z−2 = 3z2 ∑
w∈Λ1

w−4 + 5z4 ∑
w∈Λ1

w−6 + O(z6) = g2
z2

20
+ g3

z4

28
+ O(z6) (4.17)

Squaring [4.17]:
℘2(z)− 2℘(z)z−2 + z−4 = O(z2)

Cubing [4.17]:

℘3(z)− 3℘2(z)z−2 + 3℘(z)z−4 − z−6 = O(z2)

After implementing ℘(z) and ℘2(z) in this equation it is derived that:

℘3(z)− z−6 − 3
20

g2z−2 − 3
28

g3 = O(z2)

Also, one can compute the derivative at both sides of [4.17]:

℘′(z) + 2z−3 = g2
z

10
+ g3

z3

7
++O(z5) (4.18)

Now, after squaring [4.18]:

℘′2(z) + 4℘′(z)z−3 + 4z−6 = O(z2)

and after substituting ℘′(z), the equation becomes:

℘′2(z)− 4z−6 +
2
5

g2z−2 +
4
7

g3 = O(z2)

So, we have found:

℘3(z) = z−6 +
3
20

g2z−2 +
3
28

g3 + O(z2) (4.19)

℘′2(z) = 4z−6 − 2
5

g2z−2 − 4
7

g3 + O(z2) (4.20)



4.4 The differential equation for ℘(z) 25

Now we can compute ℘′2(z)− 4℘3(z):

℘′2(z)− 4℘3(z) = −g2z−2 − g3 + O(z2)

So, because of in ℘(z) there is only one term with degree less than two and this
term is z−2, we can write:

℘′2(z)− 4℘3(z) + g2℘(z) + g3 = O(z2)

The left hand side of this equation is an arithmetic sum of powers of two elliptic
functions, which turns to be an elliptic function itself. As we considered before,
the formula is valid for values close enough to zero, in fact, it is valid for 0. Since
the left hand side is an elliptic function analytic at 0, then it must be analytic in
its congruent points. And since the congruent points of 0 are the ones belonging
to Λ1 then the left hand side expression turns to be analytical in all the Complex
plane. Then, by Theorem [4.14] its just a constant.
Doing z → 0, it follows that:

℘′2(z)− 4℘3(z) + g2℘(z) + g3 = 0 QED

Notation: The ℘(z) satisfying the differential equation [4.26] is also called:

℘(z) = ℘(z|g2, g3)

Theorem 4.27. The invariants g2 and g3 of ℘(z) satisfy: g3
2 − 27g2

3 ̸= 0.

Proof: as we have seen in [4.18], ℘′(z) is an elliptic function of order 3. So, by
setting k = 0 in Theorem [4.16] it is derived that it has three zeros in a given cell.
Let’s consider the cell with vertex on: 0, 2w1, 2w2 and 2w1 + 2w2. Then, clearly w1,
w2 and w1 + w2 belong to the inside of this cell. Because ℘′(z) is odd, we can find:

℘′(w1) = −℘′(−w1) = −℘′(−w1 + 2w1) = −℘′(w1) ⇒ ℘′(w1) = 0

Similarly:
℘′(w2) = 0 ℘′(w1 + w2) = 0

So, w1, w2 and w1 + w2 are the zeros of ℘′(z) inside the cell.
Now, by taking a look on the differential equation for ℘(z) (Theorem [4.26]) and
setting ℘(z)′2 = 0, we find that the roots for 4℘3(z)− g2℘(z)− g3 = 0 will be the
same as for ℘′(z).
Let’s define the values:

e1 = ℘(w1) e2 = ℘(w2) e3 = ℘(w1 + w2)
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The equation ℘(z)− e1 = 0 will clearly have w1 as a double root, since ℘′(w1) =

0. We know that ℘(z) only has a double pole in every cell, so due to Theo-
rem [4.16] it is derived that the other roots of ℘(z)− e1 = 0 will be congruent to
w1 mod(2w1, 2w2). The same for ℘(z)− e2 = 0 and ℘(z)− e3 = 0 but for w2 and
w1 + w2, respectively.
Hence, if e1 = e2, then ℘(z) − e1 would have z = w2 as a zero, but as we saw
before, this is not possible because w2 ̸≡ w1 mod(2w1, 2w2). The same argument
can be used to derive that e2 ̸= e3 and e1 ̸= e3.
So, e1, e2 and e3 are different values and they are the three roots of the cubic
equation:

4x3 − g2x − g3 = 0 (4.21)

To follow with the proof we need the following definition:

Definition 4.28. Let f (z) be the general polynomial of nth degree, whose coefficients
belong to a field K. Let a1 be the coefficient of the zn term and let L be an extension of the
field K where f (z) splits. If zi, i ∈ {1, ..., n} are the roots taken with multiplicities of f (z)
in L, then the discriminant (D) of f (z) is:

D := a2n−2
1 ∏

1⩽i<j⩽n
(zi − zj)

2 (4.22)

So, using Definition [4.28] we can compute the discriminant of [4.21] and we
get:

D = 44(e1 − e2)
2(e2 − e3)

2(e1 − e3)
2

Since e1, e2 and e3 are different we obtain that D ̸= 0.
By Newton identities it is derived that:

3

∑
i=1

ei = 0

Also, by Cardano-Viète formulas:

e1e2 + e1e3 + e2e3 = − g2

4
e1e2e3 =

g3

4

So, after combining these expressions with the one we found for our discriminant,
is it found that:

0 ̸= 44(e1 − e2)
2(e2 − e3)

2(e1 − e3)
2 = 16

(
g2

3 −
g3

2
27

)
which tells us that the cubic equation [4.21] will have three distinct roots (which

are e1, e2 and e3) if and only if g2
3 −

g3
2

27 ̸= 0. QED



Chapter 5

Simplifying the general quintic

In this chapter, we are going to develop a method to simplify the general
quintic to its one-parameter Bring Jerrard form, using only radical expressions
in terms of the coefficients. To do it, we need to introduce the Tschirnhausen
transformations and Newton’s identities.

5.1 Tschirnhausen transformations

Ehrenfried Walther von Tschirnhaus introduced them in 1683. A Tschrinhausen
transformation is a process that transform a polynomial into another by means of
an arithmetical change of variable. Of course, the roots of the first polynomial will
be related to the roots of the second one by the same change of variable.
So, let’s consider the general monic polynomial of degree n in C[X]:

xn + a1xn−1 + ... + an−1x + an

We want to transform it into another one of the form:

yn + c1yn−1 + ... + cn−1y + cn

This can be done by means of the change:

y = b1xn−1 + b2xn−2 + ... + bn−1x + bn

NOTE. [Sometimes, as an abuse of notation, we will refer to this change as the
Tschirnhausen transformation itself.]
Of course this process has some benefits when the transformed polynomial can
easier be solved than the first one.
To do that, you can impose some conditions on the {c1, ..., cn} coefficients and
from here try to find the coefficients {b1, ..., bn} of the change of variable that

27
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make the transformation possible. Newton’s identities are super useful to do such
transformations.

Example 5.1. Let’s now show an easy example of how it works.
By Cardano we know a method to find the solutions of the reduced cubic:

y3 + c2y + c3

So, if we want to solve the general cubic:

x3 + a1x2 + a2x + a3

by Cardano, we first need to transform it into the reduced cubic. Looking into its
form one can notice that the coefficient c1 = 0. So we want to find a change of the
form:

y = b1x2 + b2x + b3

which make the term c1 vanish. This change is:

y = x − a1

3

Substituting it into the general cubic one obtains:

x3 + a1x2 + a2x + a3 → y3 + c2y + c3

where

c2 = a2 −
a2

1
3

c3 =
2a3

1
27

− a1a2

3
+ a3

Once we know the coefficients of the reduced cubic, we can find its roots by Car-
dano’s formula (see 2.2). After that, we undo the change:

x = y +
a1

3

and we would have obtain the roots of the general cubic.

5.2 Newton’s identities

Considering to be xi the n roots of a general monic polynomial of degree n (xn

+ a1xn−1 + ... + an−1x + an) in C[X], where ak are its complex coefficients, then the
following equation holds for every root:

xn
i + a1xn−1

i + a2xn−2
i + ... + an−2x2

i + an−1xi + an = 0



5.3 General quintic to principal quintic 29

Summing the n equations one obtains:

n

∑
i=1

xn
i + a1

n

∑
i=1

xn−1
i + a2

n

∑
i=1

xn−2
i + ... + an−2

n

∑
i=1

x2
i + an−1

n

∑
i=1

xi + nan = 0 (5.1)

It is well known that a general monic polynomial, P(x), of degree n can be ex-
pressed as a product of linear factors:

n

∏
i=1

(x − xi)

Expanding this product it’s found that the coefficient ak is the product of (−1)k

and the elementary symmetric polynomial of degree k in n variables in terms of
the roots xi. That is the sum of all distinct products of k different roots.
So, directly we find that:

n

∑
i=1

xi = −a1

This leads one to think if all the different sums appearing in [5.1] have a represen-
tation in terms of the polynomial’s coefficients. The answer is affirmative and this
identities are what is known as Newton identities, with a general formula:

pk = (−1)(kak +
k−1

∑
i=1

ak−i pi) ∀k ≥ 1 (5.2)

where pk =
n
∑

i=1
xk

i and for convention we make coefficients ak equal to zero when

k is greater than n. Note that it is not necessary to know the values of the roots.

5.3 General quintic to principal quintic

Our objective recalls on the transformation of the general quintic polynomial
into its principal form.

x5 + Ax4 + Bx3 + Cx2 + Dx + E →→→ y5 + ay2 + by + c (5.3)

To do that we will use the following Tschirnhausen transformation:

y = x2 − ux + v (5.4)

This is the general form of the transformation. Now we need to find a way to know
the optimal value of u and v, in terms of A, B, C, D and E (the known parameters),
that brings us to the desired result.
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Let’s define xi as the 5 roots of the general quintic and yi as the 5 roots of its
principal form. By the definition of [5.4], this roots will be related by:

yi = x2
i − uxi + v (5.5)

Looking back to [5.2] we manage to compute the following identities:

5

∑
i=1

xi = −A (5.6)

5

∑
i=1

x2
i = A2 − 2B (5.7)

5

∑
i=1

x3
i = −A3 + 3AB − 3C (5.8)

5

∑
i=1

x4
i = A4 − 4A2B + 4AC + 2B2 − 4D (5.9)

In [5.3] it is seen that in the principal form there is no y4 nor y3 term. Conse-
quently:

0 =
5

∑
i=1

yi =
5

∑
i=1

x2
i − u

5

∑
i=1

xi + 5v (5.10)

0 =
5

∑
i=1

y2
i =

5

∑
i=1

(x2
i − uxi + v)2 (5.11)

where Newton identities are applied in the first equality and the Tschirnhausen
transformation in the second one.
Substituting in [5.10] what we obtained in [5.6] and [5.7]:

v =
−Au − A2 + 2B

5
(5.12)

Expanding [5.11] and substituting for what we obtained in [5.6-9] and [5.12]:

0 =
5

∑
i=1

x4
i − 2u

5

∑
i=1

x3
i + (2v + u2)

5

∑
i=1

x2
i − 2uv

5

∑
i=1

xi + 5v2 =

(2A2 − 5B)u2 + (4A3 − 13AB + 15C)u + (2A4 − 8A2B + 10AC + 3B2 − 10D)

(5.13)

So, we have a quadratic equation for u which can be solved by the quadratic for-
mula.
Ergo, knowing who u and v are in [5.4], now it’s only left to compute the coeffi-
cients a, b and c from [5.3]. Because we want to find an algorithm for the general
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quintic, obviously we need to find them in terms of A, B, C, D, E, u and v, which
are our known values for the moment.
Because we need to find three different coefficients what is intuitive is to look for
a system of three independent equations concerning a, b and c.
Looking into the principal form we are looking for: y5 + ay2 + by + c one can ob-
serve that the first derivative: 5y4 + 2ay + b only uses the terms a and b and the
second derivative: 20y3 + 2a only uses the term a. This leads one to think that it
should be possible to construct a determinate system with this three polynomials.
Because y is a undetermined variable it is necessary to substitute it for one of the
known parameters.
Now it’s moment to look into [5.4]. The terms v and y appear in them simple form
and alone in the equation, so it comes to the mind to express the principal form
and its derivatives in terms of v instead of y:

y5 + ay2 + by + c →→→ v5 + av2 + bv + c (5.14)

Of course the roots are preserved, because the coefficients have not been modified.
Hence, when writing it in terms of linear factors we can use the roots yi:

v5 + av2 + bv + c =
5

∏
i=1

(v − yi) (5.15)

Rearranging equation [5.5]: v − yi = −(x2
i − uxi) and substituting in [5.15]:

v5 + av2 + bv + c =
5

∏
i=1

−(x2
i − uxi) = −

5

∏
i=1

xi

5

∏
i=1

(xi − u) (5.16)

where in the second equality we split the product.
It is well know that the product of the roots of a monic polynomial is, in fact, its in-

dependent term. Thus,
5

∏
i=1

xi = E and
5

∏
i=1

(xi − u) will be equal to the independent

term of the modified polynomial with roots xi − u:

x5 + Ax4 + Bx3 + Cx2 + Dx + E →→→ x5 + A
′
x4 + B

′
x3 + C

′
x2 + D

′
x + E

′
=

= (x + u)5 + A(x + u)4 + B(x + u)3 + C(x + u)2 + D(x + u) + E = 0 (5.17)

Expanding the last polynomial and grouping in terms of the x powers on can find
the following formulas for A

′
, B

′
, C

′
, D

′
and E

′
:

A
′
= 5u + A (5.18)

B
′
= 10u2 + 4Au + B (5.19)

C
′
= 10u3 + 6Au2 + 3Bu + C (5.20)

D
′
= 5u4 + 4Au3 + 3Bu2 + 2Cu + D (5.21)

E
′
= u5 + Au4 + Bu3 + Cu2 + Du + E (5.22)
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Looking back into equation [5.16] and joining it with [5.22]:

v5 + av2 + bv + c = −EE
′
= −E(u5 + Au4 + Bu3 + Cu2 + Du + E)

Now one can solve for c and get:

c = −E(u5 + Au4 + Bu3 + Cu2 + Du + E)− (v5 + av2 + bv) (5.23)

Note that this expression depends on a and b and the rest of the parameters are
already known. So, we need to find now two more independent expression like
this one to be able to solve the system.
As we said before we will look on the derivatives of the principal form. Differen-
tiating [5.15] on v:

5v4 + 2av + b =
5

∑
j=1

(∏
i ̸=j

(v − yi))

Doing the same change as in [5.16] it can be transformed to:

5v4 + 2av + b =
5

∑
j=1

(∏
i ̸=j

xi(xi − u)) =
5

∏
i=1

xi

5

∏
i=1

(xi − u)
5

∑
i=1

(
1

xi(xi − u)

)
(5.24)

We know from before that
5

∏
i=1

xi
5

∏
i=1

(xi − u) = EE
′
. Also the term u

xi(xi−u) can be

split to the form u
xi(xi−u) =

1
xi−u − 1

xi
. Thus, it is possible to rewrite [5.24] as:

5v4 + 2av + b = EE
′

5

∑
i=1

(
1

xi − u
− 1

xi

)
1
u

(5.25)

To determine the value of the sum in [5.25] let’s take a look to the general quintic
equation again. A root xi satisfy:

x5
i + Ax4

i + Bx3
i + Cx2

i + Dxi + E = 0 ⇔

⇔ xi(x4
i + Ax3

i + Bx2
i + Cxi + D) = −E ⇔

⇔ 1
xi

=
(x4

i + Ax3
i + Bx2

i + Cxi + D)

−E
⇔

⇔
5

∑
i=1

1
xi

=
∑ x4

i + A ∑ x3
i + B ∑ x2

i + C ∑ xi + 5D
−E

(5.26)

After substituting by the Newton identities from [5.6-9] in [5.26] and cancelling
some terms we obtain that:

5

∑
i=1

1
xi

=
D
−E

(5.27)
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Symmetrically it is obtained that:

5

∑
i=1

1
xi − u

=
D

′

−E′ (5.28)

Now, substituting [5.27-28] in [5.25], left us with:

5v4 + 2av + b = −EE
′

(
D

′

E′ −
D
E

)
1
u
=

E
′
D

u
− ED

′

u

Finally, after isolating b, substituting D
′

and E
′

for its expressions in [5.21-22] and
cancelling some terms, we get the following equation:

b = D(u4 + Au3 + Bu2 + Cu + D)− E(5u3 + 4Au2 + 3Bu + 2C)− (5v4 + 2av)
(5.29)

Realize that we know the value of every parameter in the right hand side of the
equation but a.
For the third equation we will differentiate twice [5.15] on v:

20v3 + 2a =
5

∑
k=1

∑
j ̸=k

(∏
i ̸=j,k

(v − yi))

In the right hand side of the equation all terms are duplicate, so it can be rewrite
as:

10v3 + a =
5

∑
k=2

∑
j<k

(∏
i ̸=j,k

(v − yi))

Again, doing the same change as in [5.16], the previous equation will become:

10v3 + a = −
5

∑
k=2

∑
j<k

(∏
i ̸=j,k

xi(xi − u)) =

= −
5

∏
i=1

xi

5

∏
i=1

(xi − u)
5

∑
k=2

∑
j<k

(
1

xj(xj − u)xk(xk − u)
) (5.30)

where in the last equality we have multiplied and divided by xj(xj − u)xk(xk − u)
every summand.
From before, we know that we can do the transformation: u

xi(xi−u) =
1

xi−u − 1
xi

. So,

the product u2

xj(xj−u)xk(xk−u) will transform to:

u2

xj(xj − u)xk(xk − u)
=

(
1

xj − u
− 1

xj

)(
1

xk − u
− 1

xk

)
=
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=
1

(xj − u)(xk − u)
− 1

(xj − u)xk
− 1

(xk − u)xj
+

1
xjxk

(5.31)

Substituting [5.31] and the fact that
5

∏
i=1

xi
5

∏
i=1

(xi − u) = EE
′

into [5.30] give us:

10v3 + a =
−EE

′

u2

(
5

∑
k=2

∑
j<k

(
1

(xj − u)(xk − u)
+

1
xjxk

)
−

5

∑
k=2

∑
j ̸=k

1
(xj − u)xk

)
(5.32)

The next step, will be to know what are the values of the sums in [5.32].
First of all, note that if we do the following product and substitute for [5.27]:(

5

∑
j=1

1
xj

)(
5

∑
k=1

1
xk

)
=

(
D
−E

)(
D
−E

)
=

D2

E2 (5.33)

At the same time:(
5

∑
j=1

1
xj

)(
5

∑
k=1

1
xk

)
= 2

(
5

∑
k=2

∑
j<k

1
xjxk

)
+

5

∑
i=1

1
x2

i
(5.34)

So, after joining [5.33] and [5.34] and rearranging we end up with the expression:

5

∑
k=2

∑
j<k

1
xjxk

=
1
2

(
D2

E2 −
5

∑
i=1

1
x2

i

)
(5.35)

Therefore, in the right hand side it’s only left to know the value of
5
∑

i=1

1
x2

i
. As we

did in [5.26] let’s have a look to the general quintic equation. With xi as a root we
can do the following transformations:

x5
i + Ax4

i + Bx3
i + Cx2

i + Dxi + E = 0 ⇔

⇔ xi(x4
i + Ax3

i + Bx2
i + Cxi + D) = −E ⇔

⇔ 1
xi

=
(x4

i + Ax3
i + Bx2

i + Cxi + D)

−E
⇔

⇔ 1
x2

i
=

(x3
i + Ax2

i + Bxi + C + D
xi
)

−E
⇔

⇔
5

∑
i=1

1
x2

i
=

1
−E

(
∑ x3

i + A ∑ x2
i + B ∑ xi + 5C + D ∑

(
1
xi

))
(5.36)

Thus, after substituting [5.6-8] and [5.27] into [5.36] and canceling some terms we
obtain:

5

∑
i=1

1
x2

i
=

2C
−E

+
D2

E2 (5.37)
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Fitting now [5.37] into [5.35]:

5

∑
k=2

∑
j<k

1
xjxk

=
1
2

(
D2

E2 +
2C
E

− D2

E2

)
=

C
E

(5.38)

By symmetry it’s also obtained that:

5

∑
k=2

∑
j<k

1
(xj − u)(xk − u)

=
C

′

E′ (5.39)

knowing the value of the sums [5.38] and [5.39] there is only one sum left in [5.32]
to be computed. This one, can be expressed in the following form:

5

∑
k=2

∑
j ̸=k

1
(xj − u)xk

=
5

∑
k=1

5

∑
j=1

1
(xk − u)xj

−
5

∑
j=1

1
(xj − u)xj

(5.40)

Now, let’s compute the two summands of the right hand side of the equation [5.40]
separately. The first one:

5

∑
k=1

5

∑
j=1

1
(xk − u)xj

=

(
5

∑
k=1

1
xk − u

)(
5

∑
j=1

1
xj

)
=

(
D

′

−E′

)(
D
−E

)
=

D
′
D

E′E
(5.41)

where we used [5.27] and [5.28].
The second summand was part of the equation [5.24] and already computed in
[5.25-28]. So copying the result:

5

∑
j=1

1
(xj − u)xj

=
5

∑
j=1

(
1

xj − u
− 1

xj

)
1
u
=

(
D
E
− D

′

E′

)
1
u

(5.42)

Therefore, substituting [5.41] and [5.42] into [5.40] we get:

5

∑
k=2

∑
j ̸=k

1
(xj − u)xk

=
D

′
D

E′E
−
(

D
E
− D

′

E′

)
1
u

(5.43)

With all the summands ([5.38], [5.39] and [5.43]) of [5.32] computed it is time to
replace them and get:

10v3 + a =
−EE

′

u2

(
C
E
+

C
′

E′ −
D

′
D

E′E
+

1
u

(
D
E
− D

′

E′

))
=

=
1
u2

(
D

′
D +

1
u

(
D

′
E − DE

′
)
− CE

′ − C
′
E
)

(5.44)
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Finally it is time to substitute C
′
, D

′
and E

′
in [5.44] for its identities in [5.20-

22]. I am not going to show explicitly these arithmetic operations, but after the
substitutions, subtracting some terms and isolating a, one gets the last equation of
our system:

a = −C(u3 + Au2 + Bu + C) + D(4u2 + 3Au + 2B)− E(5u + 2A)− 10v3 (5.45)

Note that this last equation only depend on parameters we already know, so we
have here an explicitly determined value of a. Since [5.29] only depends in the
known parameters and a, then now is also determined. With the same argument
and now involving b the value for c in [5.23] is given explicitly.

5.4 Principal quintic to its Bring Jerrard normal form

Once we know everything about the principal form of the general quintic, then
it is easier to transform it into its Bring Jerrard normal form:

y5 + ay2 + by + c →→→ z5 + αz + β (5.46)

To make it possible we will use a quartic Tschirnhausen transformation:

z = y4 + py3 + qy2 + ry + s (5.47)

The method used is quite similar to the one before, however, in this part longer
equations and two more parameters in [5.47] appear. This is why some expres-
sions will not be written explicitly but will be indicated and explained.
As before, let’s start by computing the optimal values for the Tschirnhausen pa-
rameters in order to find an expression for α and β, which is our final goal.
As before, Newton identities ([5.2]) will help us in this procedure. This table show
the ones that will be used in terms of the roots yi:

5

∑
i=1

yi = 0
5

∑
i=1

y5
i = −5c

5

∑
i=1

y9
i = 9bc − 3a2

5

∑
i=1

y2
i = 0

5

∑
i=1

y6
i = 3a2

5

∑
i=1

y10
i = 5c2 − 10a2b

5

∑
i=1

y3
i = −3a

5

∑
i=1

y7
i = 7ab

5

∑
i=1

y11
i = −11a2c − 4b2a − 7a2b

5

∑
i=1

y4
i = −4b

5

∑
i=1

y8
i = 8ac + 4b2

5

∑
i=1

y12
i = 3a3 − 4b3 − 24abc

(5.48)
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Now, let’s be zi a root of the Bring Jerrard normal form. Again with [5.2] one can
compute the following identites:

5

∑
i=1

zi = 0
5

∑
i=1

z2
i = 0

5

∑
i=1

z3
i = 0

5

∑
i=1

z4
i = −4α

5

∑
i=1

z5
i = −5β (5.49)

Due to [5.47], zi will satisfy:

zi = y4
i + py3

i + qy2
i + ryi + s (5.50)

So, taking sums:

5

∑
i=1

zi =
5

∑
i=1

y4
i + p

5

∑
i=1

y3
i + q

5

∑
i=1

y2
i + r

5

∑
i=1

yi + 5s (5.51)

Consequently, after substituting in [5.51] the sums for its identities in [5.48] and
[5.49] and solving for s, it is obtained that:

s =
4b + 3pa

5
(5.52)

We already have found the value for the parameter s. To find the others we will
have to square and cube the equation [5.50]. Let’s start by squaring it. After taking
sums one obtains:

5

∑
i=1

z2
i =

5

∑
i=1

y8
i + 2p

5

∑
i=1

y7
i + (p2 + 2q)

5

∑
i=1

y6
i + (2r + 2pq)

5

∑
i=1

y5
i

+ (2s + 2pr + q2)
5

∑
i=1

y4
i + (2ps + 2qr)

5

∑
i=1

y3
i + (2qs + r2)

5

∑
i=1

y2
i + 2rs

5

∑
i=1

yi + 5s2

(5.53)

After substituting the sums in [5.53] for its identities in [5.48] and [5.49] we have
left:

0 = 4b2 + 8ac + 2p(7ab) + (p2 + 2q)3a2 + (2r + 2pq)(−5c)

+ (2s + 2pr + q2)(−4b) + (2ps + 2qr)(−3a) + 5s2 (5.54)

From before we know s ([5.52]). Hence, after changing s for its identity and after
some arithmetical operations one gets:

0 =
4
5

b2 + 8ac +
46
5

abp +
6
5

a2 p2 + 6a2q − 10cr − 10cpq − 8bpr − 4bq2 − 6aqr (5.55)

Note that in this expression we have got three unknown parameters: p, q and r.
Therefore, to continue we must take one of them as a free parameter. This will
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allow us to find a relation between the two others in order to find an expression
for them.
The only one that is not squared in [5.55] is r, so let’s take it as common factor:

0 =
4
5

b2 + 8ac +
46
5

abp +
6
5

a2 p2 + 6a2q − 10cpq − 4bq2 − 2r(3aq + 5c + 4bp) (5.56)

If we make what’s inside the parenthesis equal to zero, then r will disappear from
the equation. This is going to happen if:

q =
−(5c + 4bp)

3a
(5.57)

Finally, after introducing [5.57] in [5.56] and after doing some arithmetical opera-
tions and grouping by powers of p, we obtain the following quadratic equation:

0 = (27a4 − 160b3 + 300abc)p2 + (27a3b + 375ac2 − 400b2c)p

+ 18a2b2 − 45a3c − 250bc2 (5.58)

As we know every parameter in this equation unless p, applying the quadratic
formula we obtain its value. Once known, then q follows immediately after sub-
stituting p in [5.57].
At this point, there is only one left parameter from the Tschirnhausen transforma-
tion whose value is still undetermined (r). As said before, we will need to cube
[5.50].
I am not going to show the intermediate steps to calculate r, because they result
in very long expressions and the method is a repetition of what we just did. How-
ever, I leave it indicated and show the final result.
After cubing and summing the five equations for the five different roots you
should substitute the sums for the values in [5.48] and [5.49]. Then, after doing
some arithmetical operations and grouping the equation in terms of the powers of
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r, a cubic equation is obtained:

0 = (3a)r3 + (15cp + 12bq − 9a2)r2

+ (9a2 + 30cs + 15cq2 + 24bps + 18aqs − 27bc

− 48acp − 24b2 p − 21abp2 − 42abq − 18a2 pq)r

+ (4b3 + 24abc + 33a2cp + 12ab2 p

+ 21a2bp + 30a2bp2 + 30a2bq + 3a2 p3

+ 18a2 pq + 30cpqs + 12bs2 + 12bq2s

+ 9aps2 − 3a3 − 15c2 p2 − 15c2q

− 9bcp3 − 54bcpq − 24acs − 12b2s

− 24acp2q − 12b2 p2q − 24acq2

− 12b2q2 − 42abps − 21abpq2

− 9a2 p2s − 18a2qs − 3a2q3 − 5s3) (5.59)

We already know every parameter in this equation, so by Cardano we will be able
to find a value for r.
So, to sum up, we have found an expression for all the parameters in our Tschirn-
hausen transformation ([5.47]). Now it’s time to find α and β in [5.46]. For this we
will continue doing what we have done until now.
To find α we will raise [5.47] to the fourth power, and after summing all the fourth
power roots we will substitute the sums for the expressions in [5.48] and [5.49]

(note that
5
∑

i=1
y13

i ,
5
∑

i=1
y14

i ,
5
∑

i=1
y15

i and
5
∑

i=1
y16

i need to be computed). The right hand

side of the equation will be in terms of a, b, c, p, q, r and s, and since we know all
of them will be a determined value. On the left hand side we will have a −4α so,
after dividing both sides by -4 we will have isolated α.
The same process to find β but raising [5.47] to the fifth power. After taking sums

and substituting them (note that
5
∑

i=1
y17

i ,
5
∑

i=1
y18

i ,
5
∑

i=1
y19

i and
5
∑

i=1
y20

i need to be com-

puted), the right hand side of the equation will be a known value. The left hand
side, will be −5β so, after dividing both sides by -5 we will also have isolated β.

Remark 5.2. Note that the method used to find α and β can also be used to find
a, b, and c in Section 5.3. However, the method described in that section prevents
you from raising a quadratic to degree 5 and is more enjoyable when doing the
calculations, as well as more original.
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5.5 Bring Jerrard normal form to its one-parameter version

Finally, we have found the coefficients for our Bring Jerrard normal form. Once
here, we must do one last Tschirnhausen transformation, however this is much
simpler than the previous ones. We are looking for the one-parameter Bring Jer-
rard form.
So, to sum up we are looking for:

z5 + αz + β →→→ t5 + δt + δ (5.60)

The Tschirnhausen transformation that makes [5.60] possible is:

t = (
α

β
)z (5.61)

After isolating z in [5.61] and substituting it in the Bring Jerrard normal form, one
gets: (

β5

α5

)
t5 + βt + β (5.62)

So, after dividing [5.62] by β5

α5 in order to make the polynomial monic (it preserve
roots) it is obtained:

t5 +

(
α5

β4

)
t +
(

α5

β4

)
(5.63)

Easily we have found that:

δ =
α5

β4 (5.64)



Chapter 6

Solving the quintic by means of
℘(z)-Weierstrass elliptic function

Once we have the one-parameter Bring Jerrard form of the general quintic,
there is a way to compute analytically its zeros. To do that we will us the ℘(z)-
Weierstrass elliptic function.
First of all it is important to notice that f (t) = t5 + δt + δ (assuming δ ̸= 0) will
have five simple roots unless δ = − 55

44 . To check that remember that if a polynomial
has a double root, then this root also cancels its derivative. So, let’s say t1 is a root
of f (t). Computing its derivative, f ′(t) = 5t4 + δ, we see that if t1 is a root, then
t4
1 = − δ

5 . Hence,

0 = t1(t4
1) + δt1 + δ = t1

(
δ − δ

5

)
+ δ ⇔ t1 = −5

4

So, by the relation t4
1 = − δ

5 it is derived that f (t) will have a double root, which
is t1 = − 5

4 , only when δ = − 55

44 . In this case, you can factorize the polynomial,

f (t) =
(
t + 5

4

)2
(t3 − 5

2 t2 + 75
16 t − 125

16 ) and find the rest of the roots with the cubic
formula.
From now on, we will consider the case δ ̸= − 55

44 .
Let’s define the function:

gδ(z) = ℘(z)℘′(z) + i
√

δ℘(z) + 2i
√

δ (6.1)

where ℘(z) = ℘(z|0, δ) and i is the imaginary unit.
We know that ℘(z) is an elliptic function of order 2 and ℘′(z) is an elliptic function
of order 3, so, since gδ(z) is an arithmetical combination of this two functions and
we have the product ℘(z)℘′(z), then gδ(z) results to be an elliptic function of order
5. Hence, by Theorem 4.16 it is derived that gδ(z) will have five zeros (counted

41
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with multiplicities) in a given cell. Let’s call them zk, k ∈ {1, ..., 5}.
Also, it is important to notice that if ℘(z) = ℘(z|0, δ) then the particular form of
the differential equation (Theorem 4.26) is satisfied:

℘′2(z) = 4℘3(z)− δ (6.2)

It is possible to relate the five roots (counted with multiplicities) of gδ(z) with the
ones of t5 + δt + δ. In fact,

Theorem 6.1. If zk , k ∈ {1, ..., 5} are the five simple roots of gδ(z) in a given cell, for
δ ̸= {− 55

44 , 0}, then ℘(zk|0, δ) result to be the five simple roots of t5 + δt + δ.

To prove this theorem we will need to look prove some lemmas before.

Lemma 6.2. If zk is a zero of gδ(z), then ℘(zk) = ℘(zk|0, δ)) will be a zero of t5 + δt+ δ.

Proof: If zk is a zero of gδ(z), then:

0 = ℘(zk)℘
′(zk) + i

√
δ℘(zk) + 2i

√
δ ⇔

⇔ ℘(zk)℘
′(zk) = −i

√
δ(℘(zk) + 2)

After squaring both sides and taking common factor on ℘2(zk):

℘2(zk)℘
′2(zk) = −δ(℘2(zk) + 4℘(zk) + 4) ⇔

⇔ ℘2(zk)(℘
′2(zk) + δ) = −δ(4℘(zk) + 4)

By the differential equation [6.2] we know that ℘′2(z) + δ = 4℘3(z). Hence, after
substituting this identity we get:

4℘5(zk) = −δ(4℘(zk) + 4) ⇔

⇔ ℘5(zk) + δ℘(zk) + δ = 0

As it can be seen ℘(zk) = ℘(zk|0, δ)) will be a zero of t5 + δt + δ. QED.
Now, we need to prove that:

Lemma 6.3. gδ(z) has five simple roots in a given cell.

Proof: We will prove that by Reductio ad absurdum.
Let’s suppose that there is a double root z1 satisfying that gδ(z1) = 0 and g′δ(z) = 0.
This means:

gδ(z1) = ℘(z1)℘
′(z1) + i

√
δ℘(z1) + 2i

√
δ = 0
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g′δ(z1) = ℘′2(z1) + ℘(z1)℘
′′(z1) + i

√
δ℘′(z1) = 0

Differentiating equation [6.2] we obtain: ℘′′(z|0, δ) = 6℘2(z|0, δ), so, after substi-
tuting this result and equation [6.2] itself in g′δ(z1), we get:

g′δ(z1) = 10℘3(z1) + i
√

δ℘′(z1)− δ = 0

From the first equation we can isolate ℘′(z1) and it is obtained:

℘′(z1) =
(10℘3(z1)− δ)i√

δ

After substituting in g′δ(z1):

10℘4(z1)i√
δ

− ℘(z1)
√

δi + ℘(z1)
√

δi + 2
√

δi = 0 ⇔

⇔ 10℘4(z1)√
δ

= −2
√

δ ⇔ ℘4(z1) = − δ

5

By lemma 6.2 we know that if z1 is a root of gδ(z) then ℘(z1|0, δ) will be a root of
t5 + δt + δ. Therefore, we will have the following identities:(

4

√
− δ

5

)5

+ δ
4

√
− δ

5
+ δ = 0 ⇔ − δ

5
4

√
− δ

5
+ δ

4

√
− δ

5
+ δ = 0 ⇔

⇔ 4

√
− δ

5

(
δ − δ

5

)
= −δ ⇔ 4

√
− δ

5
= −5

4
⇔ δ = −55

44

However, as we are in the case δ ̸= − 55

44 , we get a contradiction and therefore gδ(z)
won’t have any root with multiplicity equal or greater than two. QED
So, to sum up, we have seen that gδ(z) has five simple roots (zk, k ∈ 1, ..., 5) and
that ℘(zk|0, δ) is a root of t5 + δt + δ. To finish proving the theorem we need to see
that the mapping zk → ℘(zk|0, δ) is injective.

Lemma 6.4. If z1 and z2 are to different roots of gδ(z), then ℘(z1|0, δ) ̸= ℘(z2|0, δ)

To prove that lemma we need an extra property of elliptic functions which I
am going to reduce to the particular case of the ℘(z).
Let ∆ be the contour of a cell with no zeros of ℘(z) on it. We know from The-
orem 4.16 that ℘(z) will have two zeros inside this cell. Let’s call them a and b.
Also, we know that there will be a double pole inside ∆. Without loss of general-
ity, because of the double periodicity of ℘(z), let’s suppose that our cell is the one
containing 0 as a double pole.



44 Solving the quintic by means of ℘(z)-Weierstrass elliptic function

We know that the function h(z) = z is analytical in C. Let’s now define the func-
tion f (z) = z℘′(z)

℘(z) . It will be elliptic for the fact that is a product of an analytical
function and a quotient of two elliptic functions. Moreover, its poles can only
be a, b and 0 (The zeros and poles of ℘(z) inside ∆). Hence, one can compute
the residues of f (z) = z℘′(z)

℘(z) at z = {a, b, 0}. They are a, b, and 0, respectively.
Therefore, by the Residue Theorem it is derived that:

1
2πi

∫
∆

z
℘′(z)
℘(z)

dz = a + b (6.3)

Let be t, t + 2w1, t + 2w2 and t + 2w1 + 2w2 the vertices of our cell with contour ∆.
At the same time:

1
2πi

∫
∆

z
℘′(z)
℘(z)

dz =
1

2πi

(∫ t+2w1

t
+
∫ t+2w1+2w2

t+2w1

+
∫ t+2w2

t+2w1+2w2

+
∫ t

t+2w2

)
z
℘′(z)
℘(z)

dz

After doing the changes of variable: z = z − 2w2 in the third integral and z =

z − 2w1 in the forth integral and after applying the double periodicity of ℘(z) and
℘′(z), we obtain:

1
2πi

∫
∆

z
℘′(z)
℘(z)

dz =
1

2πi

(
−2w2

∫ t+2w1

t
+2w1

∫ t+2w2

t

)
℘′(z)
℘(z)

dz =

=
1

2πi
(−2w2(ln℘(t + 2w1)− ln℘(t)) + 2w1(ln℘(t + 2w2)− ln℘(t))

Now, since ℘(t + 2w1) = ℘(t) and ℘(t + 2w2) = ℘(t) by the double periodicity,
then ln℘(t + 2w1) and ln℘(t) can only differ by integer multiples of 2πi (the same
with ln℘(t + 2w2) and ln℘(t)). Finally we get:

1
2πi

∫
∆

z
℘′(z)
℘(z)

dz = 2mw1 + 2nw2 (6.4)

where m and n are determined integers.
Hence, after joining equation [6.3] and equation [6.4] we obtain:

a + b = 2mw1 + 2nw2 (6.5)

NOTE. This result can easily be extended to any elliptic function, resulting in the
following Theorem: Let f (z) be an elliptic function. Then, the sum of the product of its
zeros with its multiplicities less the sum of the product of its poles with its multiplicities is
a period.
Proof of Lemma 6.4 Again we will prove it by Reductio ad absurdum.
Let’s suppose that ℘(z1) = ℘(z1|0, δ) = ℘(z2|0, δ) = ℘(z2).
By combining Theorem 4.16 and equation [6.5] it derived that:

z1 = 2mw1 + 2nw2 − z2
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where m and n are determined integers.
Hence, from the fact that ℘′(z) is an odd and double periodic function (with
primitive periods 2w1 and 2w2) we obtain that:

℘′(z1) = −℘′(−z1) = −℘′(z2 − 2mw1 − 2nw2) = −℘′(z2)

Combining this relation, the supposition that ℘(z1) = ℘(z2) and the assumption
that z1 and z2 are different roots of gδ(z) one can see that:

0 = gδ(z1) = ℘(z1)℘
′(z1) + i

√
δ℘(z1) + 2i

√
δ

0 = gδ(z2) = ℘(z2)℘
′(z2) + i

√
δ℘(z2) + 2i

√
δ =

= −℘(z1)℘
′(z1) + i

√
δ℘(z1) + 2i

√
δ

Hence, after subtracting the second from the first we obtain that 2℘(z1)℘
′(z1) = 0

and, since ℘(z1) ̸= 0 because we are assuming δ ̸= 0, then it follows that ℘′(z1) =

0. Therefore, z1 is a double zero of the function ℘(z)− ℘(z1). At the same time,
by the supposition ℘(z1) = ℘(z2) it is derived that ℘(z2) will be another zero of
℘(z)− ℘(z1). So, to sum up, the equation ℘(z)− ℘(z1) will have a double zero
on z1 and another zero on z2 (at least three zeros). Nevertheless, this is impossible
because ℘(z) has order 2 and by Theorem 4.16 it is derived that ℘(z)− ℘(z1) will
have just two zeros in a given cell. So, we’ve got a contradiction and therefore the
injectivity of the map zk → ℘(zk|0, δ) follows. QED

Now, combining Lemma 6.2, Lemma 6.3 and Lemma 6.4, Proof of Theorem 6.1
follows immediately.

6.1 Solutions of the general quintic

Once we get here we see that finding the roots of our general quintic polyno-
mial ([5.3]) involves finding the solutions of gδ(z) = 0 in a given cell. One possible
way to do it will be commented in the next section, however, to keep going, we will
assume that we know the values of this solutions. Let’s call them sk, k ∈ {1, ..., 5}.
Then, by Theorem 6.1 we know that the roots of the one-parameter Bring Jerrard
form t5 + δt + t will be:

tk = ℘(sk|0, δ) k ∈ {1, .., 5}

Once you have them, by undoing the Tschirnhausen transformation [5.61], you
find that:

zk =
β

α
tk k ∈ {1, .., 5}
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will be the five roots of the Bring Jerrard normal form z5 + αz + β.
Now, to find the roots of the principal quintic (y5 + ay2 + by + c), you have the
Tschirnhausen transformation [5.47]:

zk = y4
k + py3

k + qy2
k + ryk + s k ∈ {1, .., 5}

Because it’s difficult to isolate yk from this equation, the easiest way is to rearrange
the equation to the form:

y4
k + py3

k + qy2
k + ryk + (s − zk) = 0

and solve by the quartic formula.
As one can imagine, for every zk there will be four possible values of yk. Let’s call
them yk j , k ∈ {1, .., 5}, j ∈ {1, ..., 4}, So, you end up with 20 possible roots yk j .
To finally obtain the roots to the general quintic (x5 + Ax4 + Bx3 + Cx2 + Dx + E)
we must reverse the Tschirnhausen transformation [5.4]:

yk j = x2
k j
− uxk j + v k ∈ {1, .., 5}j ∈ {1, ..., 4}

We could rearrange this equation to the form:

x2
k j
− uxk j + (v − yk j) = 0

And solve by the quadratic formula. Nevertheless, as happened before, we would
obtain two possible values of xk j for every yk j , which will result in forty possible
roots for the general quintic.
However, there is a more original way (see R. Bruce King [7]) to find the xk j that
corresponds to every yk j , which results in:

xk j = −
E + (yk j − v)(u3 + Au2 + Bu + C) + (yk j − v)2(2u + A)

u4 + Au3 + Bu2 + Cu + D + (yk j − v)(3u2 + 2Au + B) + (yk j − v)2 (6.6)

To derive this formula, the Tschirnhausen transformation [5.4] should be written
in the following form:

(x − u)2 = (z − v)− u(x − u)

After multiplying both sides by (x − u)i for i ∈ {1, 2, 3} and rearranging the left
hand side, it is obtained:

(x − u)m = Pm(u, z − v) + Qm(u, z − v)(x − u)

for 3 ⩽ m ⩽ 5 and Pm, Qm polynomials. Hence, after substituting these expressions
into the equation [5.17] the result is a linear equation in (x − u). After isolating x
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and simplifying the equation, the formula [6.6] is obtained.
So, to sum up, after supposing that sk, k ∈ {1, ..., 5} are the five solution to the
equation gδ(z) = 0 we have found that xk j , k ∈ {1, .., 5}, j ∈ {1, .., 4} will be
twenty possible solutions to the general quintic. Only one value of the form xk j

for j ∈ {1, .., 4} is in fact, a solution to the general quintic. To check what the true
solutions are the only way is to do numerical testing.

6.2 Comments

In the end, it may seem that this work is incomplete because a way to know
the solutions of the equation gδ(z) = 0 is not presented.
One possible way to find the solutions could be to approximate them by numer-
ical testing. Of course, the domain of this testing will depend on the value of
δ = 140 ∑

w∈Λ1

1
w6 by definition. The primitive periods 2w1, 2w2 that satisfy this

equality would form the vertices for our domain in the numerical testing: 0, 2w1,
2w2 and 2w1 + 2w2.
Once here, we have the problem that the functions ℘(z) are not the fastest in
terms of convergence (this is commented in page 58 of [9]). Nevertheless, there
is a class of functions, related to the ℘(z)-Weierstrass elliptic function, called the
theta-functions, θ(z, τ), that have a rapidly convergent expansion in infinite series.
These functions along with ζ(z) and σ(z), will be defined in a general way and
without demonstrations, just to make the comment. For more details, see K. Chan-
drasekharan [9].
Let τ = w1

w2
with Im

(
w1
w2

)
> 0 an let z be a complex number, then the θ-function is

defined by the following infinite series:

θ(z, τ) =
1
i

∞

∑
n=−∞

(−1)nq(n+ 1
2 )

2

e(2n+1)πiz q = eπiτ

For τ fixed, this function is entire for all z ∈ C.
To give the explicit relation with ℘(z), two more functions have to be defined:

ζ(z) =
1
z
+ ∑

w∈Λ1

(
1

z − w
+

1
w

+
z

w2

)

σ(z) = z ∏
w∈Λ1

(
1 − z

w

) z
ew + z2

2w2

where ζ(z) is called the zeta-function of Weierstrass and is analytical for all C,
except for the points belonging to Λ1, which are simple poles of residue 1 and
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σ(z) is called the Weierstrass’s σ-function and is an entire function on the C-plane.
Also it can be checked that:

ζ ′(z) = −℘(z) ζ(z) =
d
dz

(log σ(z)) =
σ′(z)
σ(z)

Therefore, the relation between the θ(z, τ) function and the ℘(z) of Weierstrass
elliptic function comes from this two identities:

℘(z′)− ℘(z′′) = −σ(z′ + z′′)σ(z′ − z′′)
σ2(z′)σ2(z′′)

σ(z) = θ

(
z

2w1
, τ

)
2w1

θ′(0, τ)
eζ(w1)

z2
2w1 (6.7)

where in the first one z′ and z′′ are complex points belonging to our domain, and
in the last one θ′(0, τ) is the derivative of θ(z, τ) with respect to z at z = 0.
Hence, after taking any point in our domain, let’s say we take the point c, and
fixing z′′ = c in the first equation, we can compute the value of ℘(c) and then the
first equation becomes:

℘(z) = −σ(z + c)σ(z − c)
σ2(z)σ2(c)

+ ℘(c)

Finally substituting equation [6.7] inside the last one we obtain our desired rela-
tion.
So, to sum up, we have an expression for ℘(z) in terms of θ(z, τ) which is better in
terms of convergence. And since the domain generated by the primitive periods
2w1 and 2w2 is a compact set, it seems that it could be possible to find the roots
of gδ(z) = 0 by numerical testing. Nevertheless, this will not be carried out in this
work.
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