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Abstract 

Microfluidics represents a very promising technological solution for conducting massive 

biological experiments. However, the difficulty of managing the amount of information 

available often precludes the wide potential offered. Using machine learning, we aim to 

accelerate microfluidics uptake and lead to quantitative and reliable findings. In this work, 

we propose complementing microfluidics with machine learning (MLM) approaches to 

enhance the diagnostic capability of lab-on-chip devices. The introduction of data analysis 

methodologies within the deep learning framework corroborates the possibility of encoding 

cell morphology beyond the standard cell appearance. The proposed MLM platform is used 

in a diagnostic test for blood diseases in murine RBC samples in a dedicated microfluidics 

device in flow. The lack of plasticity of RBCs in Pyruvate Kinase Disease (PKD) is measured 

massively by recognizing the shape deformation in RBCs walking in a forest of pillars 

within the chip. Very high accuracy results, far over 85%, in recognizing PKD from control 

RBCs either in simulated and in real experiments demonstrate the effectiveness of the 

platform.  
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1. Introduction 

Today, one of the most challenging frontiers in system engineering is the possibility of 

recapitulating limited parts and activities of the human body in ex-vivo environments [1]. 

This is made possible by microfluidic devices. Microfluidic and Lab-on-a-chip (LOC) 

technologies [2-4] have attracted increasing interest in recent years. They deal with the 

fabrication of silicon/plastic microdevices with channels and chambers, and with control of 

the flow behavior of small volumes of fluids in microchannels and micro-chambers, with 

dimensions from tens to hundreds of micrometers. Microfluidic devices allow for the 

mimicking of some crucial biological events such as drug-related cell death (apoptotic 

events) [5], cell-cell interaction (cancer-immune crosstalk) [6], cell migration patterns [7] and 

lack of plasticity of the cell [8-10]. LOC systems naturally bring synergy with machine 

learning approaches, leading to a novel multidisciplinary discipline called machine learning 

microfluidics (MLM). The MLM branch comprises several aspects, including cell culture, 

LoC design, time-lapse microscopy, image analysis, and patient stratification [11-17].  

MLM platform relies on the possibility of using the same platform for very diverse 

experimental scenarios [18-22], leading to the extraction of a multitude of quantitative 

information related to the morpho-kinematics of the moving objects (cell, bacteria, inert 

compounds, etc.) [23]. On the other hand, MLM systems allow parallelization of 

experiments in multiple wells implemented on the same chip [24], opening the way to 

massive high-throughput analysis [25].  

To validate the MLM approach, a challenging scenario as the identification of blood diseases 

in murine red blood cells (RBCs) samples in a dedicated microfluidics device in-flow, has 

been considered. Actually, the biophysical properties of RBC provide potential biomarkers 

for the quality of donors or for patient health control as demonstrated in [26,35]. To increase 

the potential of investigating RBC deformability, sophisticated microfluidic platforms and 

optical components have been used [27, 36-40].  Some works [41, 42] deal with RBCs in 

adhesion and propose to analyze static morphological aspects by shape feature and DL. 

Bulk flow methods measure the deformability of thousands of cells in a bulk RBC sample, 

but cannot detect changes in deformability in a small fraction of abnormal cells in a sample 

containing primarily normal RBCs. Traditional single-cell technologies (e.g., micropipette 

aspiration, optical tweezers, atomic force microscopy, etc..), have similar sensitivities to the 



bulk flow techniques but suffer from greatly reduced throughputs, requiring specialized 

personnel. Microfluidic techniques combine the benefits of traditional bulk and single-cell 

techniques – providing higher throughput with equal or greater sensitivity, as well as 

single-cell measurements. Microfluidics outcomes may be performed through blending 

with imaging and machine learning (ML) techniques [28].  

The potential of using ML in combination with microfluidics is the possibility of enriching 

the robustness of the analysis and its repeatability. ML allows not only processing massive 

numbers of cells and, therefore, providing more statistically reliable results, but also, 

through dedicated preprocessing, to increase the robustness of the analysis to unpredictable 

variations and inter-experiment heterogeneity due to set-up changes.  Furthermore, ML 

allows to combine the results acquired at single-cell level in a cooperative logic, mimicking 

the ability of a panel of human experts to take decisions.  

More specifically, the main scope of our work is to design a general-purpose MLM system 

capable of dealing with the non-stationarity of the video sequences acquired and 

maintaining high diagnostic performance in biological case studies. In particular, with 

respect to the results shown in [9], here we introduced several modifications to the analysis 

to address the problems and limitations that occurred in previous work. Techniques such 

as background subtraction and image sequence equalization were implemented to increase 

the recognition performance, in addition to inpainting image analysis algorithm required to 

digitally remove structural parts of the chip, such as pillars, that may confound the cell 

localization. Furthermore, we proposed a novel learning paradigm based on a two-

threshold strategy, to combine the classification label assigned to each single cell in a whole 

label for each single experiment. Finally, to demonstrate the capability of the MLM platform 

to distinguish RBCs with lack of plasticity from healthy ones, we first ran artificial 

experiments with generated frames of moving RBCs applying rotation and deformation 

models from the literature and estimated the classification accuracies for the different levels 

of plasticity simulated.  

The proposed approach has been validated in an automatic diagnostic test for Pyruvate 

Kinase Disease (PKD),  a hereditary metabolic disorder caused by the lack of pyruvate 

kinase activity specifically in RBCs [29-32].  PKD constitutes a disease model in which 

microfluidics could constitute a valid tool to better understand the variability among 

https://en.wikipedia.org/wiki/Metabolic_disorder


patients as well as their response to splenectomy by helping on finding new mechanical 

biomarkers of the disease [33]. In this work, PKD RBCs have been analyzed versus Wild 

Type (WT) RBCs from murine samples [34].  

2. Methods 

The proposed MLM platform of analysis consists of several steps (see Fig. 1), from sample 

preparation to the final classification result for a given experiment. First, cells are cultured, 

and then they are injected into the LOC and put inflow. After cells are forced to deform to 

pass the slit barriers (dimensions in order of capillaries), they cross the forest of pillars that 

serve as soft obstacles for RBCs, introducing a less stressed source of deformation. We 

believe that such a minor source may preserve the plasticity study from bias due to the suck 

effect and related slipstream that appears when the barrier is completely plugged by a 

multitude of passing RBCs. The forest of pillars, designed to avoid microchannels collapsing 

when PDMS is bonded to glass, also mimics the reticular mesh of the spleen that anticipates 

the area of splits (the fence-like barrier).  

Through time-lapse microscopy, a video sequence of the moving cells through the 

compartment containing the pillars is then acquired and stored in a PC for offline analysis. 

The data processing step (right section of Fig. 1), based on image processing and machine 

learning algorithms, aims to provide a diagnostic result for RBCs from comparative 

biological conditions, healthy vs. unhealthy. Peripheral blood was collected from the tail 

vein of AcB55 recombinant (PKD) or C57BL/6 (Wild Type, WT) adult mice, and RBCs were 

obtained after centrifugation to separate them from plasma. Further details can be found in 

the Supplementary Material. The microfluidic device was fabricated using photo- and soft-

lithography. The master mold was obtained from a silicon wafer by patterning polymeric 

structures using photolithographic techniques. The LoC consisted of eight parallel 

microchannels containing each a row of funnel-shaped micro-constriction to mimic the 

filtering function of the red pulp’s spleen and a matrix of pillars all along to mimic the 

reticular mesh of the spleen. Additional information on the microfluidic devices used in this 

experiment can be found in the Supplementary Material and in ref [9]. 

A schematic view of the chip and a focus on the portion between the barrier and the pillars 

are shown in Fig. 2.  

 



2.1 RBCs perfusion 

The Precision Pressure Control System (P2CS, Biophysical Tools GMBH) was used to 

regulate the flow pressure in the microfluidic device. The pump and microfluidic chip were 

connected by a 1 mm flexible plastic tubing (Tygon) at the inlet hole. A constant pressure of 

150-200 mbar was applied at room temperature.  

 

2.2 Artificial video generation 

To verify the capability of the platform to detect the lack of plasticity in RBCs under 

rotations in the 3D environment, we generated simulated video sequences containing a 

deformed/rotated artificial RBC (see some examples in Fig. 3 panel A).  

1.3 Red Blood Cell Mathematical Description 

To generate the phantom images containing an RBC under deformation, we have first 

modelized an undeformed RBC as a surface in the 3D (x,y,z) Cartesian space, using the 

following formula:  
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where 𝐷! represents the mean diameter of the cell, 𝑎!, 𝑎#, and 𝑎" represent shape factors 

obtained during the 2D nonlinear fitting. In particular, the quantity 𝐷!𝑎!  represents the 

minimum thickness of the biconcave model at the center of the cell, whilst 𝑎#  and 𝑎" 

regulate the convexity and relate to the maximum thickness of the disc. Values 𝐷! =

7.82	𝜇𝑚 , 𝑎! = 0.052, 𝑎# = 2.003  and 𝑎" = −4.491  were set according to the literature 

[44,45,46]. 

1.3.1 Deformation model 

Let us denote with 𝑥  the direction along which the fluid drags the RBC and with 𝑦 the 

orthogonal direction (i.e., that of constriction). We also assume that the cell is not rotated 

when it passes through the constriction because of the short height of the channel and the 



imposed laminar flow condition. This hypothesis has been qualitatively verified in the real 

image analysis section. 

When the RBC passes through a constriction, it squeezes along the 𝑦-axis. Since the cell 

quickly goes beyond the obstacle, due to the local increase of fluid velocity, we can assume 

that the same amount of longitudinal strain 𝜀% = 𝜀& =
∆&
&

 is applied to every part of the cell. 

With this assumption, we can calculate 𝜀% by imposing that the RBC’s diameter (7.82	𝜇𝑚) is 

reduced to the minimum distance between the constrictions (1.5	𝜇𝑚) only along the 𝑦-axis. 

Under an assumption of incompressibility of RBC [47, 48], the Poisson ratio 𝑜𝑓	𝑅𝐵𝐶  is 

calculated to be equal to 0.5. Given the magnitude of 𝜈, we can calculate the transverse strain 

𝜀( = 𝜀) = 𝜀* by multiplying the longitudinal strain by the Poisson ratio.  

Once the strain is applied, the viscoelastic properties of the RBC avoid the cell restoring its 

initial state immediately. To describe this phenomenon, we have used the Kelvin-Voigt 

model [49, 50]. By applying that model to our case study, it resulted in an exponential strain 

relaxation model, characterized by a time constant 𝜏 , which depended on the health 

condition of the cell [44] as follows: 

𝜀(𝑡) = 𝜀!𝑒+((+(!)//																																																										(2) 

𝜀!  is the initial strain applied by the funnel in a given direction and 𝑡!  is the relaxation 

starting time. In our study, the latter is always set to zero. The values of 𝜏 are randomly 

generated from two distinct Gaussian populations with average values equal to 25 (s = 5) 

and 8 (s = 2) for unhealthy and healthy conditions, respectively (see Fig. 3 panel B). Mean 

and variance of the time constant 𝜏  are extrapolated by a first analysis of the acquired 

videos. As expected, we used a lower 𝜏 average value for healthy RBCs to simulate their 

ability to restore their original shape faster. On the contrary, a higher 𝜏  average value 

represented a slower restoring of the original shape, therefore lower plasticity. The higher 

the standard deviation simulated, the higher the morphology heterogeneity of the 

unhealthy cells. During its relaxation time, the cell could be subjected to external forces that 

could alter the initial orientation of the cell. The forces are essentially due to the non-

uniformity flux given by the numerous constrictions, to the interaction with the other cells, 

and, especially, to a slightly uneven application of stress by the constriction. However, 



under the quasi-planar assumption and the progressive levelling out of the flux velocity, 

the angle oscillations are bounded in a reduced range. 

To simulate this effect, we have rotated the deformed geometry at a certain time after the 

stress application using specific rotation matrices. Mathematical details of the rotation 

matrices can be found in the Supplementary Material.  

 

2.3   Real dataset  

2.3.1 Time-lapse Microscopy video acquisition 

Videos sequences were made up of around 1000 frames with a camera speed of 85 fps. 

Before recording the videos, RBCs were pumped for 1 minute to stabilize the microfluidic 

unit conditions. Optical measurements were performed using a microscope (Zeiss) and 

Zeiss Axiocam 503 mono camera. While RBCs were perfused through the chip, several 

videos were recorded for analysis. A total of 54 videos were collected (41 videos from 

healthy donors and 13 from PKD subjects). 

 

2.3.2  Data processing 

The data processing step is composed of several blocks (Fig. 1 B)-G)) aimed at preprocessing 

the video sequence, localizing and tracking objects of interest (RBCs), and extracting that 

information relevant for the automatic recognition of pathological cell behavior with respect 

to the source of deformation induced by pillars, i.e., the so-called lack of plasticity of cells.  

i) Video Processing 

Each frame is cropped in order to confine the analysis in the region between the barrier and 

pillars (Fig. 1 panel B). To eliminate pillars from the frame, we applied an inpainting 

procedure [51, 52] with the aim of restoring the targeted regions in a given image using 

neighboring information. Pillars are located by using the Circular Hough Transform (CHT) 

[53] with radius tolerance [10-20] px and a sensitivity parameter value equal to 0.90. The 

circular regions corresponding to the six pillars are then used as targeted regions for 

inpainting, as shown in the right picture in the video processing step (panel B Fig. 1), where 

pillars have been removed from the image. 



ii)  Cell localization and tracking 

Each frame is then processed again using the CHT with radius tolerance (4-10) px tuned 

according to a manual estimation of the diameter of the RBC. RBCs located at each frame 

are then processed using a modified version of proprietary cell-tracking software, i.e., Cell 

Hunter [6,7,54] (Fig. 1 panel C). The modifications introduced here are related to the flow 

direction constraint over the set of linkable cells in the assignment matrix. In this work, we 

limit the instantaneous turning angle [55] of the trajectory in the range [−𝜋/6, 𝜋/6]. Thanks 

to this, the method is robust to cell velocity variability or to cell density increasing that is 

slightly observed during the experiment. 

iii) ROI Sequence (ROI-S) extraction and equalization  

In order to finely characterize the morphology of each RBC during its motion in the chip, 

the algorithm extracts a Region Of Interest (ROI) around the located cells for each time point, 

therefore generating what we call ROI sequence (ROI-S). To avoid the introduction of 

heterogeneity in luminance from one frame and another, we applied an adaptive histogram 

equalization procedure [54] by improving the contrast in the first frame using histogram 

stretching techniques and using histogram matching procedures [56] to gradually adapt the 

contrast of the frames to the first one.  An example of equalized ROI-S is shown in Fig.1 

panel D, where an RBC slowly passes from a circular shape to an oblong shape while 

approaching the pillars. As it can be noted, the ROI-S still maintains the overall original 

appearance and the general contrast appears uniform along the sequence.  

 

iv) Filtered ROI-S extraction  

To account for the confounding effect of background illumination,  we extracted the 

derivative of each ROI-S along the two dimensions by progressively applying the Laplacian 

of Gaussian (LoG) [56] filter in each frame. In this way, only the shape of the cell is 

highlighted to characterize the changes in shape during the video sequence. An example of 

the LoG filtered ROI-S is shown in Fig.1, panel E. Mathematical details of the LoG filter used 

can be found in the Supplementary Material. As it can be seen, the differential sequence 

contains only the information related to parts of the cells, thus reducing the effect of 

background conditions. It is important to note that this step is relevant regardless of the fact 



that cells move, but is crucial for any TLM application involving morphological cell 

characterization.  

 

v)  Deep Learning differential ROI-S encoding  

Transfer-learning represents an alternative to solve the problem of insufficient labeled 

training data in deep learning architecture [57-60]. Among various transfer learning 

strategies [61], we focus our attention on the so-called deep network-based transfer learning, 

in which the front layers of the network can be treated as a feature extractor, and the 

extracted features are versatile. More specifically, in [60], the authors demonstrated that pre-

trained networks such as AlexNet [62] and ResNet-101 [63] are good choices in deep transfer 

learning based on networks. To expand the plethora of networks for transfer learning 

purposes, we also compared the recently added NASNetLarge [64] network. For each 

network, we resized the differential ROI-S frames to specific dimensions (see Table I) and 

selected a specific layer for feature extraction. To adapt the frame size to the requested 

dimension, we used a bilinear interpolation technique. From the observation of the 

network’s characteristics, it resulted that the number of features extracted may be very 

different for each network.  

vi) Cooperative classification 

The extracted features are subjected to a feature selection procedure based on the individual 

ability to discriminate PKD and healthy RBCs in a validation set extracted for the scope of 

the artificial and real datasets. A restricted number of features is then used in a standard 

classification task by means of Linear Discriminant Analysis (LDA) [53]. As indicated in Fig. 

1 (panels F and G), a label is generated for each frame along the trajectory of a single cell 

(see the sequence of green and red bars). In order to account for confounding phenomena, 

i.e., projection of 3D shape over a 2D domain, dis-uniformity of PKD cells that may not be 

affected in the same manner by the disease, and lastly, not less relevant, the path of each 

individual cell that may be not subjected to deformation, we designed a decision-making 

strategy based on cooperative learning. In particular, we applied two distinct decision 

strategies: at the track level and at the experiment level (used only for the real dataset). In a 

first step, the software evaluates the percentage of positive frames along the same track, and 

secondly, it evaluates the percentage of positive tracks in the same experiment. Such 



percentages are compared with the threshold. In this way, the platform may act in a more 

or a less conservative attitude by switching to higher sensitivity (we accepted false positives 

but not false negatives, high recall rate, low precision) or to higher specificity (we preferred 

false negatives to false positives, high precision, low recall rate). The two-threshold strategy 

was inspired by the standard protocol to assess a final diagnosis by using a pipeline of 

subtasks (e.g., if a given number of clinical tests resulted in positives, then the subject is 

assigned a certain diagnosis).  

 

vii) Statistical analysis 

With the aim to demonstrate the effectiveness of the proposed platform, we considered here 

54 experiments, 13 related to PKD and 41 to healthy RBCs (see Results section). A leave-one-

experiment-out cross-validation strategy was used for the scope of evaluating the 

classification accuracy. The results were summarized in terms of balanced classification 

accuracy (ACC), that is, the average value of sensitivity (true positive rate) and specificity 

(true negative rate). The effect of the selection of the threshold values th1 and th2 were also 

investigated by exhaustive analysis over a reasonable range of values.  

2.4 Detection of lack of deformability in artificial frames 

To apply the platform to the simulated experiments, we artificially generated 50K frames 

containing an artificially rotated/deformed RBC. A general idea of the simulated 

experiments is sketched in Fig. 3 (panels A-D).  The entire frame sequences generated and 

the source code to generate the sequences of tracks can be found at the following link: 

https://cloudstore.bee.uniroma2.it/index.php/s/8NnRRn2ZeFpDzG9, PW: RBC2_SAA  

2.4.1 Images generation 

Once the surface representing the RBC is described, deformed, and rotated by a triplet of 

angles, generated randomly by a normal distribution with zero mean and 30° variance (thus 

letting the surface be rotated mainly for small angles), a track of 50 images from the top view 

is generated.  By repeating the procedure, we generated approximately 500 tracks for each 

condition (healthy and unhealthy), thus leading to about 50K frames in total. Fig. 3 Panel A 

shows some examples of RBCs generated with different rotation angles and degrees of 

deformability. Fig. 3 Panel B shows the two distributions used for the two classes of RBC. 



2.4.2 Image sequence analysis 

The platform for the analysis described in Section 2 is applied with slight modifications to 

the artificial images. In particular, only steps (E)-(G) in Fig. 1 are applied due to the fact that 

cell localization and tracking are intrinsically already available after video sequence 

generation. Therefore, first, the differential ROI-S is calculated (step E Fig. 1) to make the 

system robust to general luminance conditions. Then, each ROI-S is passed in input to the 

deep learning algorithm and coded into deep features (step F Fig. 1). Provided a 

classification label at a single frame level for each ROI-S, a single-threshold strategy is here 

applied (only th1) since we did not simulate any inter-experiment heterogeneity to motivate 

the use of a second threshold value.  

2.4.3 Classification in artificial images 

Fig. 3 Panel C shows the distribution of the classification errors at frame level (false positives 

and false negatives, that is, healthy RBC assigned to unhealthy and unhealthy RBC assigned 

to the healthy class) with respect to the timing of the errors. As it can be noted, most of the 

false positive frames occur at the beginning of the track of healthy cells in the presence of 

very big rotation angles. On the contrary, most false negatives occur at the end of the path 

of unhealthy cells when a too-small value has been used for unhealthy RBCs.  Anywhere, 

Fig. 3 Panel D shows that the use of the majority voting procedure at the track level allows 

compensating such errors when the percentage of the positives frames exceeds a threshold 

value (the majority corresponds to using a threshold value equal to 0.5). 

Figure 4 shows the accuracy matrices obtained after the analysis of the artificial images. 

From left to right, results at the single frame level using a majority voting procedure 

(threshold value on the percentage of positive instances equal to 0.5), thresholding result 

with adaptive threshold optimized in a validation subset of frames.  

3. Results  

Hereby, we present numerical results from the real case study for the classification of PKD 

versus healthy RBC cells using the described platform.  

3.1 Cell frames and tracks analyzed 



Due to the long-time experiments and the fast camera, a very high number of cell tracks 

were analyzed. In particular, we acquired 54 experiments (13 from PKD and 41 from healthy 

donors) for a total number of 135631 single cell frames (55457 for PKD and 80174 for 

healthy). A total number of 3236 tracks were analyzed, out of which 1408 came from PKD 

and 1828 from healthy donors. The huge number of data analyzed is a further 

demonstration of the reliability of the proposed platform.  

3.2 ROI differentiation (LoG ROI-S) to improve deep-feature discrimination capability 

Deep-transfer learning has enormous potential to avoid retraining the network and the 

consequent need to acquire a large dataset for the retraining step. On the other hand, it is 

crucial that the features extracted in this way are totally robust to a change in luminance to 

avoid the introduction of a bias that may impair the classification results. In light of this, 

one of the key aspects of the proposed platform is the differentiation step of the ROI 

sequence by means of LoG filtering. To demonstrate the effectiveness of such a procedure 

over the discrimination capabilities of the deep features extracted for the task of 

classification, we performed a specific simulation. For all 3K tracks considered in the 

experiments, we applied a brightening/darkening procedure by randomly summing a 

luminance level in the uniform range [-0.5, 0.5] to the entire ROI-S (negative values indicate 

darkening and positive values indicate brightening) where 0 indicates no degradation. Such 

kind of setting is related to the fact that thanks to the sequence equalization procedure 

applied, we may always balance the luminance among frames in the same sequence. We 

then compare the discriminative capability of deep features extracted over the modified 

sequences of frames without differentiation (i.e., standard ROI-S) and with the application 

of LoG filtering (i.e., LoG ROI-S). To evaluate the discriminative power of the 30 most 

significant deep features extracted using the AlexNet network, we computed the so-called 

Discriminant Power (DP) index defined as 

𝐷𝑃 = max	(1 − 𝐴𝑈𝐶, 𝐴𝑈𝐶)          (5) 

 

where AUC is the Area Under the roC curve [62] of each individual feature. Being AUC 

in the range [0, 1], DP is in the range [0.5, 1], where 0.5 indicates no capability to discriminate 

and one denotes perfect capability. Figures 5 (A)-(B) illustrate for any level of degradation 

in the range [-0.5, 0.5] the maps of the corresponding DP for the 30 features. The colorbar is 



also indicated. It can be noted that the discrimination capabilities of deep features using the 

LoG filters operation (A) are remarkably higher than those obtained using the standard 

mode (B). Moreover, it can also be observed that, as expected, deep features are influenced 

by brightening/darkening, since the maximum performances are achieved when the level 

of degradation is zero. However, as also shown in the boxplot in panel C of Fig.5, the 

worsening of the DP values in relation to the degradation level is much more limited in the 

LoG ROI-S condition than in the standard mode.  

This simulation not only confirmed the high values of DP for the extracted features but 

also demonstrated the importance of performing the preprocessing of the ROI-S to limit the 

effect of unpredictable degradation processes occurring during the experimental session 

when using deep transfer learning in dynamical system investigation.  

 

3.3 Visual cue of deep features 

Deep features were extracted by the inner layer of a given pretrained CNN architecture. The 

nonlinear high complex network structure makes it so difficult to have a direct 

understanding of which image portion features represent. On the other hand, it could be 

very informative to have at least a visual cue of the feature maps selected for the task of 

classification. To do this, we extract for two different ROI-S the corresponding feature maps 

extracted at layer ‘pool5’ of AlexNet CNN for those features that exhibited higher 

discriminative capabilities in terms of DP (Eq. 5).  Figure 6 shows two examples of sequences 

of feature maps of two LoG ROI-S in which the RBC changes shape during motion.  

It is interesting to note that the most activated features in these maps correspond to the 

most deformed shapes. This evidence supported the assumptions that the selected features 

were sensitive to cell morphology and shape deformation and, therefore, were more suitable 

to discriminate pathological from physiological lack of plasticity.  

3.4 Best classification performance of comparative deep learning networks 

We compared the classification results obtained by exploiting three distinct deep learning 

neural networks for transfer learning. By optimizing the threshold values, th1 and th2, we 

obtained the best performance listed in Table II in terms of ACC values at a single frame 

level without thresholding (first column), using a single threshold setting computed over 

the percentage of positive frames over the entire video (second column), and using the two 



threshold strategy (third column), one for the positive frames in each track (th1) and one for 

the positive tracks in each video (th2). As it can be seen, the networks achieved almost very 

similar results demonstrating the robustness of the approach and the acceptable 

independence of the networks from the data.  

In addition, despite its old dating, it is also evident that AlexNet, as elsewhere 

demonstrated [65], is one of the top approaches for transfer learning, exhibiting a high 

capability of image encoding. The reduced number of layers and consequently the simpler 

network architecture of AlexNet make it the optimal solution for our approach, representing 

an acceptable trade-off between complexity and accuracy. 

3.5 Multi-threshold decision-making strategy results 

To demonstrate the effect of varying threshold values in the cooperative strategy of two 

thresholds, we computed the ACC metric for any combination of threshold values in a 

predetermined range [0.2, 0.6]. This range has been selected to avoid limited conditions 

occurring. Figure 7 shows the ACC results for different combinations of the threshold values 

for the three networks.  

As demonstrated by the three maps, accuracy values are very high for a large set of 

threshold combinations, especially for AlexNet and NasNetlarge architecture. This finding 

again proves the reliability of the approach as well as the robustness to different network 

architectures.  

 

4.  Discussion and further developments 

Techniques available for the study of plasticity force cell deformation of RBCs using strong 

stress, such as that provided by the barrier, and thus emulating the travel through 

capillaries. Traditional bulk flow, single-cell deformability measurements, and 

microfluidics devices-based platforms standardly present experimental scenarios based on 

the working principle of measuring the stress induced by some form of force in order to 

quantitatively evaluate the deformability capability of each cell [9,25].  However, this 

implies the use of a pump and inflow modalities that may alter the physiological movement 

of cells resulting in being invasive and costly. In this case, information extracted through 



quantitative assessment is at risk of being related to the overall experimental conditions 

rather than to the individual cell motility morphodynamic aspects. 

To reduce this variability and confer more stability and uniformity on the experiments 

carried out in this context, we proposed some solutions.  

To demonstrate the capability of the proposed platform to discriminate the lack of 

plasticity in PKD cells from healthy RBCs also under rotations in the environment, we 

preliminarily presented simulation results by generating artificial frames of 3D 

rotated/deformed RBCs with different degrees of plasticity, also with the aim of stressing 

the device working principle. 

In the real scenario, we focused the analysis on the deformation-induced under non-stress 

conditions, such as that provided by the forest of pillars zoomed in Fig. 2 panel C and the 

prepared carrier solution. In this case, cells physiologically moved towards pillars and 

deformed to overcome the obstacles.  

In addition, to reduce the influence of the environmental condition (optical properties of 

the medium and of the material used for the chip) on the video and ML analysis, we applied 

a specific preprocessing to the acquired video sequence. In particular, after trajectories were 

extracted, we reformulated the analysis on the differential sequence of ROIs, LoG ROI-S, 

extracted around the cell track in order to reduce the influence of change in illumination 

over the discrimination capability of the deep features extracted.   

Third, by exploiting ML cooperative decision strategies, inspired by a blind multi-expert 

clinical evaluation procedure, we implemented a two-level decision-making procedure:  a 

single track (namely a single ROI-S) was assigned a unique label by comparing the 

percentage of frames assigned to the positive class at single frame level with a given 

threshold, th1. The same procedure was then applied at the experiment level, using the 

threshold th2. In this way, the platform acted as a team supervisor who had the task of 

assigning a diagnosis to the patient after collecting the independent opinions of his/her 

collaborators. Such a paradigm allowed modulating the recall and the precision rate for a 

given task, moving from screening to diagnostic purposes (i.e., high sensitivity vs high 

specificity). 



The main assumption behind such a procedure is that the evidence of a single RBC disease 

may be obscured by its movement (rigid rotation instead of deformation) and by acquisition 

conditions (spatial resolution, frame rate). Moreover, it is expected that along with the 

movement, the cell presents an oblong shape only in some frames, passing from being round 

shaped to elongated and back to round shaped. On the other hand, if the percentage of 

frames in which the cell is visualized and assigned a positive label is sufficiently high, then 

we may conclude that the cell track is labeled as positive. The same reasoning is applied at 

the experiment level.  

The presented modifications go in the direction of improving the generalizability of the 

platform for the analysis of deformability, allowing the consideration of many different 

sources of influence that can be encountered in real applications [25]. The joint action of 

microfluidics, low-cost video analysis, and robust machine learning techniques gives the 

platform robustness to the calibration transfer problem and the possibility of readjustment 

to different diagnostic scenarios (other cell types, other diseases, presence of external 

stimuli). 

 

5. Conclusions 

We present here a novel platform for the biological investigation of ex-vivo experiments 

called machine learning microfluidics. Thanks to the fruitful cooperation of artificial 

intelligence and microfluidic devices, the platform is able to capture the cell 

morphodynamic aspects during its motion in a preconfigured environment. In this regard, 

to demonstrate the relevance of the proposed solutions designed, we simulated a scenario 

with generated RBCs framed under different 3D rotations/deformation conditions and 

verified the capability of the platform to discriminate RBCs with lack of plasticity from 

healthy RBCs in critical scenarios. Then, we validated the platform in the identification of 

RBCs Pyruvate Kinase Disease (PKD), highlighting very high classification results.  Future 

works will expand the present approach in new directions. First, cell morphology and 

related temporal variation could be studied using time-varying deep features and related 

cross-dependencies. Finally, and not less relevant, the same platform would also be used for 

drug testing in relation to the effect of treatment on cell phenotyping or to identify and/or 

diagnose different diseases that affect the membrane integrity of the RBC.   
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Figure 1:  

 

  

Fig 1. A sketch of the MLM platform proposed for the RBC plasticity analysis. Panel A. Sample preparation and 
equipment description. Panel B. Data processing steps for video analysis and machine learning classification. 
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Fig 2. A schematic layout of the chip used for the in-flow measurement. (A) top view. (B) A zoom of the 
microchannels and the barriers. (C) A zoom of the pillars (top-right) and barrier (bottom-left) in the channel.  
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Fig 3 A sketch of the RBC plasticity analysis in simulated experiments. (A) Some examples of rotated and deformed 
RBCs. (B) Distribution of the time constant t used to simulate the different level of plasticity (blue healthy, red 
unhealthy). (C) Timing distribution of the two kinds of classification errors (false positives, i.e., healthy classified as 
unhealthy, and false negatives, i.e., unhealthy classified as healthy). (D) Two examples of healthy (upper) and 
unhealthy (lower) simulated RBC sequences along with the assigned class (red, unhealthy, green healthy). To the 
right the final class assigned by the majority voting.   

 



Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single frame result Majority voting result Thresholding result

Fig 4. Accuracy matrices for the artificial experiments. From left to right. Results at single frame level, results 
after majority voting (equivalent to use a threshold value over the percentage of positive instances equal to 0.5), 
and adaptive thresholding with optimization performed over a validation subset of images.  
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Fig 5. Discriminant Power (DP) maps of the 30 highest performing AlexNet features computed for (A) LoG ROI-
S sequences and (B) standard ROI-S, by varying (y-axis) the level of degradation for brightening/darkening in 
the range [-0.5,0.5]. (C) Boxplot of the DPs obtained over the 30 features for the different levels of degradation 
using (left) the LoG ROI-S approach and (right) the standard mode. 
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Fig 6. Two visual examples of ROI-S for two distinct cells and related feature maps from ‘pool5’ of AlexNet CNN. 
It can be noted that the selected maps mostly activate when the cell changes shape, demonstrated  to be sensitive to 
cell deformation. False colours are used for the sake of better visualization. 
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Fig. 7  Maps of accuracy values for AlexNet, ResNet101, and NasNetLarge, for combinations of the two thresholds 
in the range [0.2 – 0.6]. Colors indicate the ACC values. 
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Tables: 

 

Table I. Deep learning neural networks selected for the transfer learning step: size of the input frames, and 

layers used for the image encoding and related number of features are also indicated 

 

Deep Learning 

Network Name 

Size of input 

frame 

Layer used for 

transfer learning 

N. of features 

transferred 

AlexNet 227 x 227           ‘pool5’ 9216 

ResNet-101 224 x 224           ‘pool5’ 2048 

NasNetLarge 331 x 331 ‘avg_pool5              4032 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ACC
Single-
frame 

Single-
threshold

Two-
threshold 

AlexNet 81% 85% 88%

ResNet101 81% 80% 82%

NasNetLarge 79% 84% 85%

Table II. Best performance accuracy values for single-frame classification, single-
threshold at frame level over the video, and two-thresholds strategy. 

 

 


