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Abstract

In recent years, rough path theory, which models the interactions between
highly oscillatory and non linear systems, has emerged as a prominent topic in
mathematical finance. The study builds upon the concept of the signature of a
path, a mathematical object introduced by Terry Lyons in his foundational works
on rough path theory ([14] and [13]).

In this work, we bring this theory to a particular model called Expected Signa-
ture (ES) model, presented in [3], which utilizes the signature of a path to perform
regression between stochastic paths, treating them as input and output variables,
to identify the functional that relates this variables. It involves defining the expec-
ted signature as an element within a probability space to establish the conditional
distribution of the dependent response, facilitating regression-based forecasting.

Key theoretical foundations behind the construction of the ES model are esta-
blished during the thesis, including the critical theorem that linear functionals can
approximate continuous functions over compact sets of bounded variation paths.
This means the ES model can effectively transform intricate relationships within
the data into linear ones. As a result, the model can make more reliable and ac-
curate predictions. A case study validates the ES model’s practical application by
showing its potential to outperform traditional time series models like ARIMA in
certain scenarios.

Resum

En els darrers anys, la teoria dels camins accidentats (rough paths), que modela
les interaccions entre sistemes altament oscil·latoris i no lineals, ha sorgit com
un tema destacat en investigació i recerca a l’àmbit de la matemàtica financera.
L’estudi es basa en el concepte de la signatura d’un camí, un objecte matemàtic
introduït per Terry Lyons en les seves petjades inicials al voltant d’aquesta teoria
([14] i [13]).

En aquest treball, portem aquesta teoria a un model particular anomenat mo-
del de la Signatura Esperada (model ES), presentat a [3], que utilitza la signatura
d’un camí per fer regressió entre camins estocàstics, tractant-los com a variables
d’entrada i sortida, per identificar el funcional que relaciona aquestes variables. Es
tracta de definir la signatura esperada com a un element dins d’un espai de pro-
babilitat per establir la distribució condicional de la resposta dependent, facilitant
la previsió de futures dades a partir d’un model de regressió.

Durant la tesi s’estableixen els fonaments teòrics clau subjacents a la construc-
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ció del model ES, inclòs el crí teorema que estableix que els funcionals lineals
poden aproximar funcions contínues sobre conjunts compactes de trajectòries de
variació acotades. Fet que significa que el model ES pot transformar eficaÃ§ment
les relacions intrínseques de les dades en relacions lineals i, com a resultat, fer
prediccions més fiables i precises. Un estudi de cas final valida l’aplicació pràctica
del model ES mostrant-ne el potencial per superar, en determinades situacions,
models tradicionals de sèries temporals, com el model SARIMA.

2020 Mathematics Subject Classification. 60L10, 60L20, 62M10, 62M15
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Chapter 1

Preliminaries

In order to tackle the formalization of the signature of a path, it is important
to introduce some formalization and definitions. We will present the space where
the signature lie and the operations that will be present on its computation. These
basic concepts can also be found in [4] and [13].

1.1 Tensor product

Definition 1.1. (Tensor product) Given two vector spaces V and W, the tensor
product V ⊗W is a vector space to which is associated a bilinear map V ×W →
V ⊗W that maps a pair (v,w), v ∈ V and w ∈W, to an element v⊗ w ∈ V ⊗W.

Example 1.2. As a basic example, suppose u = [u1, u2] and v = [v1, v2, v3]. The
tensor product u⊗ v would result in a 2× 3 matrix:

u⊗ v =

(
u1 · v1 u1 · v2 u1 · v3

u2 · v1 u2 · v2 u2 · v3

)

Consider Bv and Bw the basis of V and W respectively, the set {v ⊗ w | v ∈
Bv, w ∈ Bw} is straightforwardly a basis of V ⊗W, which is called the tensor
product of the bases BV and BW .

Intuitively, the tensor product is a way to create a new space consisting of
combinations of vectors from V and W. Without delving into the specific formal
definition of the operation v⊗ w, we can state the following:

dim(V ⊗W) = (dimV)(dimW) (1.1)

We will firstly generalize our definition using a real Banach space with dimen-
sion d, Ed, the space in which the path is defined. Over this space, we can define

1



2 Preliminaries

the tensor product with itself as it follows.

Definition 1.3. (Tensor power) The n-th tensor power of Ed is defined as:

(Ed)⊗n := Ed ⊗Ed ⊗ · · · ⊗Ed︸ ︷︷ ︸
n times

(1.2)

For simplicity, we will simply use E when considering the d-dimensional space
Ed. Moreover, as our paths are defined in a finite dimensional space, its basis are
{e1, e2, . . . , ed}, so the tensor power E⊗n has the elements {ei1 ⊗ ei2 ⊗ ...⊗ eid} as
basis, where i1, ..., id ∈ {1, ..., d}.

Taking the previous definitions, we can trivially identify the n-th tensor power
with the space of non-commuting polynomials of degree n in d variables. So, E⊗n

is isomorphic to the space spanned by indexes of length n in the possible values
in the set {1, ..., d}.

Remark 1.4. E⊗0 is defined as the underlying scalar field of the vector space E. In
our case, we can state that E⊗0 = R.

We will now define the conditions in which the tensor powers is endowed with
an admissible norm in order to extend properties from the original space into its
tensor powers.

Definition 1.5. Considering E, the previously mentioned Banach space, its tensor
powers are endowed with an admissible norm |.|, if:

1. For each n ≥ 1, the symmetric group Sn acts by isometry on E⊗n, i.e.

|σv| = |v|, ∀v ∈ E⊗n, ∀σ ∈ Sn. (1.3)

2. ∀n, m ≥ 1,
|v⊗ w| ≤ |v||w|, ∀v ∈ E⊗n, w ∈ E⊗m. (1.4)

1.2 Tensor algebra

Definition 1.6. We define a formal E-tensor series as a sequence of tensors
(
ai ∈ E⊗i)

i∈N
,

denoted by a = (a0, a1, . . .). If we consider the space E as Rd, the formal tensor
series can be called as (non-commuting) formal power series and its elements are
of the form

∞

∑
k=0

∑
i1,...,ik∈{1,...d}

λi1,...,ik ei1 . . . eik , (1.5)

where the second summation runs over all multi-indexes (i1, . . . , ik) , i1, . . . , ik ∈
{1, . . . , d}, and λi1,...,ik are real numbers.
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In order to construct the algebra, the binary operations we can define on E-
tensor series are the addition + and product ⊗:

Definition 1.7. Consider the E-tensor series a = (a0, a1, . . .) and b = (b0, b1, . . .),
the addition is defined as

a + b = (a0 + b0, a1 + b1, . . .) (1.6)

and the product as
a⊗ b = (c0, c1, . . .) (1.7)

where each term of the resulting E-tensor series is the sum of all the possible
combinations of tensor products between the coordinates of both a and b. For
each i ≥ 0,

ci =
i

∑
k=0

ak ⊗ bi−k. (1.8)

We will use the notation 1 for the series (1, 0, . . .), and 0 for the series (0, 0, . . .).
Given a scalar λ ∈ R, then we define (λa0, λa1, . . .) as λa.

Following the previous notation when considering E = Rd, the addition can
be seen as(

∞

∑
k=0

∑
i1,...,ik∈{1,...d}

λi1,...,ik ei1 . . . eik

)
+

(
∞

∑
k=0

∑
i1,...,ik∈{1,...d}

µi1,...,ik ei1 . . . eik

)

=
∞

∑
k=0

∑
i1,...,ik∈{1,...d}

(λi1,...,ik + µi1,...,ik) ei1 . . . eik

(1.9)

and the first terms of the product as(
∞

∑
k=0

∑
i1,...,ik∈{1,...d}

λi1,...,ik ei1 . . . eik

)
⊗
(

∞

∑
k=0

∑
i1,...,ik∈{1,...d}

µi1,...,ik ei1 . . . eik

)

= λ0µ0 +
d

∑
i=1

(λ0µi + λiµ0) ei +
d

∑
i,j=1

(
λ0µi,j + λiµj + λi,jµ0

)
eiej + · · ·

(1.10)

Definition 1.8. (Tensor algebra) We define T((E)) as the vector space of all formal
E-tensors series. T((E)) with the operations + and ⊗ and the action of R is
an associative and unital algebra over R, called the tensor algebra. An element
a = (a0, a1, . . .) of T((E)) is invertible if and only if a0 ̸= 0. In particular, the
subset {a ∈ T((E)) | a0 = 1} forms a group.

The group {a ∈ T((E)) | a0 = 1} will be useful when defining the signature of
a path, as it will be defined as an element of this group.
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Concretely, if E = Rd, it is called the non-commutative tensor algebra of R,
where the elements e1e2 are distinct than e2e1.

As we will see, it will be interesting to look only at finitely many terms of
T((E)). In order to define elements of this kind, we will use the space Bn =

{a = (a0, a1, . . .) | a0 = . . . = an = 0}, n ≥ 0, consisting of the formal series with
no monomials of degree less or equal to n. Using this we define the truncated
tensor algebra:

Definition 1.9. Let n ≥ 1 be an integer. The truncated tensor algebra of order n of
E is defined as the quotient algebra

T(n)(E) = T((E))/Bn. (1.11)

Definition 1.10. We define the canonical homomorphism T((E)) −→ T(n)(E) as
ρn. Remarking that T(n)(E) is embedded in T((E)) as a linear subspace, but not
as a sub-algebra.

We can trivially see that T(n)(E) is isomorphic to
⊕n

k=0 E⊗k equipped with the
product

(a0, . . . , an)⊗ (b0, . . . , bn) = (c0, . . . , cn) , (1.12)

where, for all k ∈ {0, . . . , n}, ck = a0 ⊗ bk + a1 ⊗ bk−1 + . . . + ak ⊗ b0. Which means
that the homomorphism ρn doesn’t take into consideration all the combinations
ai ⊗ bj with i + j > n (terms of degree greater than n).

1.3 Path Integrals

1.3.1 Paths

In order to move on with the theory of this work, it is important to present
the definition of the mathematical elements that will be studied, the paths. Basic
definitions of paths in Rd can be found in [5].

Definition 1.11. (Path) A path X in E is a continuous mapping from some time
interval [a, b] to Rd, written as X : [a, b] 7→ Rd.

For our discussion, we will focus on non-smooth paths that are piecewise dif-
ferentiable. By "non-smooth paths," we mean paths that do not have derivatives of
all orders, but if the path is divided into segments in a certain way, each segment
is itself differentiable. This property is what we mean by piecewise differentiable.

We now present a concept that is very useful in this theory as it ensures the
well-definedness of the signature, the p-variation of a path, which quantifies the
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roughness or variability of a path over a given interval. A more extended defini-
tion can be found in [13] and [3].

Definition 1.12. (p-variation of a path) Let p ≥ 1 be a real number and X : J →
E := Rd be a d-dimensional path where J is a compact interval. X is of finite
p-variation for certain p if

∥X∥p,J =

(
sup
DJ⊂J

∑
l

∥∥Xtl − Xtl−1

∥∥p

)1/p

< ∞, (1.13)

taking the supremum over all possible finite partitions of the interval J. Let
V p(J, Rd) denote the set of any continuous path X : J → Rd of finite p-variation.

Definition 1.13. (p-variation norm) The p-variation norm of a path X ∈ V p(J, Rd)

is defined as
∥X∥p−var = ∥X∥p,j + sup

t∈J
|Xt|

In order to further define properties of the signature for non-smooth piece-wise
differentiable paths, we need to define some algebraic properties of paths:

Definition 1.14. Given two continuous paths X : [0, s] −→ E and Y : [s, t] −→ E,
their concatenation is defined as the path

(X ∗Y)u =

{
Xu, if u ∈ [0, s];

Xs + Yu −Ys, if u ∈ [s, t].
(1.14)

Remark 1.15. This is an associative operation between continuous paths with do-
mains defined over consecutive intervals.

From this point forward, our discussion will be limited to paths that are el-
ements of the set V1(J, E), commonly referred to as 1-variation paths or paths of
bounded variation.

This kind of paths are exactly the set of functions whose first derivatives exist
almost everywhere. It is therefore not a particularly restrictive assumption, as it
contains, for example, all Lipschitz functions. In particular, if X is continuously
differentiable, and Ẋ is its first derivative with respect to t, then

∥X∥1−var =
∫ 1

0
∥Ẋ∥dt.

By these means, we observe that it is possible to define Riemann-Stieltjes integrals
along paths using the bounded variation property.



6 Preliminaries

1.3.2 Iterated Integrals

We now present the definition of path integral against a fixed function, for
simplicity we will set E := Rd as done in [5]. For a one-dimensional path X:
[a, b] 7→ R and f : R 7→ R, the path integral of X against f is defined as the usual
Riemann integral ∫ b

a
f (Xt) dXt =

∫ b

a
f (Xt) (dXt/dt)dt. (1.15)

Generally, we can integrate any path X1 : [a, b] 7→ R against another path
X2 : [a, b] 7→ R. Following this, we can define∫ b

a
X1

t dX2
t =

∫ b

a
X1

t (dX2
t /dt)dt (1.16)

An intuitive example that will be really useful in our work is the following:

Example 1.16. Consider the path Xt = {X1
t , X2

t } = {1, X2
t } for all t ∈ [a, b]. It

follows that dX1
t = 1 for all t ∈ [a, b], and so the path integral of X1 against X2 is

the increment of X2
t at the interval [a, b]:∫ b

a
X1

t dX2
t =

∫ b

a
(dX2

t /dt)dt = X2
b − X2

a (1.17)

Example 1.17. Consider a linear path X : [0, 1]→ Rd, i.e.,

Xt =
(

X1
t , . . . , Xd

t

)
= (a1 + b1t, . . . , ad + bdt) , 0 ≤ t ≤ 1, a1, . . . , ad, b1, . . . bd ∈ R.

Then, given t1, t2 ∈ [0, 1]

∫ t2

t1

dXu =
∫ t2

t1

Ẋudu =


∫ t2

t1
b1du
...∫ t2

t1
bddu

 =

 b1(t2 − t1)
...

bd(t2 − t1)


A simple calculation is now presented in order to understand the signature

definition, as done in [5]. If we consider a path X : [a, b] → Rd, where, at time
t, its components are written as (X1

t , ..., Xd
t ). Taking i ∈ {1, .., d} we define the

following:

S(X)
(i)
a,t =

∫
a<s<t

dXi
s = Xi

t − Xi
a, (1.18)

or, equivalently, the increment of the coordinate Xi of the path on the interval
[a, t].
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Now for any pair i, j ∈ {1, . . . , d}, we can define

S(X)
(i,j)
a,t =

∫
a<s<t

S(X)i
a,sdX j

s =
∫

a<r<s<t
dXi

rdX j
s, (1.19)

which correspond to integration over a simplex (i.e. triangle in dimension 2).

We can continue recursively and define it in by any collection of indexes.

Definition 1.18. Given k ≥ 1 integer and i1, . . . , ik ∈ {1, . . . , d}, the k-fold iterated
integral of X along the indexes i1, . . . , ik is defined as

S(X)
(i1,...,ik)
a,t =

∫
a<s<t

S(X)
(i1,...,ik−1)
a,s dXik

s =
∫

a<tk<t
. . .
∫

a<t1<t2

dXi1
t1

. . . dXik
tk

. (1.20)

The previous iterated integrals are all well defined because each S(X)
(i1,...,ik−1)
a,t

is itself a real valued path.

Example 1.19. Let’s see an example with the path Xt = {X1
t , X2

t } = {2t, 3 + t},
dXt = {2, 1}. Using basic integration rules we can compute some:

S(X)
(1)
0,3 =

∫
0<t<3

dX1
t = X1

3 − X1
0 = 6, (1.21)

S(X)
(1,1)
0,3 =

∫
0<s<t<3

dXi
sdX j

t =
∫ 3

0
[
∫ t

0
2ds]2dt = 18, (1.22)

S(X)
(2,1)
0,3 =

∫
0<s<t<3

dX2
s dX1

t =
∫ 3

0
[
∫ t

0
ds]2dt = 9, (1.23)
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Chapter 2

Signature of a path

2.1 Definition

After defining the fundamental concepts necessaries for the study of path sig-
natures, we will now turn our attention to the formal definition of the signature for
a path of bounded variation, along with its informal interpretation. This approach
aims to provide deeper insights into potential applications of the signature. It is
important to maintain the formalities when defining the signature in order to be
able to prove its properties later on. Following this, a similar definition as the one
given at [4] is presented.

Definition 2.1. (Signature of a path) Let I denote a time interval in R+. Let
X : I −→ Ed be a path of bounded variation or a rough path of finite p− variation
such that the prior integration makes sense. The signature S(X) (or X) of X is an
element of T((E)) defined as SI(X) =

⊕∞
n=0 Sn

I (X) where

S0
I (X) ≡ 1 and Sn

I (X) =
∫

a<t1<...<tn<t
· · ·

∫
t1

dXt1 ⊗ . . .⊗ dXtn for n ≥ 1

Where each element Sn
I (X) lies on (E)⊗n and consist of the iterated integrals con-

sidering the possible combinations of indexes of order n, i.e. if n = 2 and d = 3,
the combinations are (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3). If we
check all the coordinates of the signature, we have the following infinite vector

SI(X) = (1, SI(X)(1), ..., SI(X)(d), SI(X)(1,1), SI(X)(1,2), ...)

with its coordinates defined as before, but with the tensor product (more general)

SI(X)(i1,...,ik) =
∫

a<tk<t
. . .
∫

a<t1<t2

dXi1
t1
⊗ . . .⊗ dXik

tk
.

9



10 Signature of a path

which superscripts run along the set

W = {(i1, ..., ik) | k ≥ 1, i1, ..., ik ∈ {1, ..., d}}

and a, t are the limits of the interval I.

Definition 2.2. (Truncated signature) The truncated signature of X of order n is
denoted by ρn(S(X)) and defined as

ρn(S(X)) = (1, S1, S2, ..., Sn) = (1, S(1), ..., S(d), ..., S(i1,...,in)),

for every integer n ≥ 1. Basically, it means taking all coordinates of the signature
until the last possible combination of order n, i.e. until last (i1, ..., in) with i1, ..., in ∈
{1, ..., d}. The truncated algebra is an element of the truncated tensor algebra Tn(E)

2.2 Interpretation of the signature coordinates

The interpretation of the coordinates of the signature is something necessary
in order to generate a visual idea of this characteristic object. High order terms
of the signature are complex to understand, so we will focus only until order 3
terms. See [9] and [6].

As already mentioned, when considering the first order signature coordinate,
i.e. Si for i = 1, ..., d, we have

S(X)
(i)
s,t = Xi

t − Xi
s,

the first order increments of each component Xi. This component will be really
useful in our work, but it only provides limited information regarding the path.

Now, if we take the second order coordinates of the signature, its interpretation
is not straightforward. For the second order coordinates of the kind S(X)i,i

s,t , it can
be seen as

S(X)
(i,i)
s,t =

(Xi
t − Xi

s)
2

2
,

which comes from the definition of the iterated integrals of second order, and a
special case of the shuffle product 2.18 that we will present later on.

Nevertheless, when the superscripts are different, i.e. S(X)
(i,j)
s,t , this coordi-

nates are related to the Lévy area (shown in 2.1) Ai,j
s,t by

Ai,j
s,t :=

1
2

(∫
s<u1<u2<t

dXi
u1

dX j
u2 −

∫
s<u1<u2<t

dX j
u1 dXi

u2

)
=

1
2

(
S(X)

(i,j)
s,t − S(X)

(j,i)
s,t

)
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Figure 2.1: The Lévy area is the signed area of the path with respect to the chord
joining its endpoints

which determine the signed area between the curve u 7→ (Xi
u, X j

u) for i ∈ [s, t]
and the cord that connects the initial and final values of the coordinates (Xi

u, X j
u)

at the interval. We consider different possibilities regarding the sign of the area
depending on the direction in which we travel along the path and the trajectory
of the path in comparison with the cord we previously mentioned. We can see the
six general cases displayed in 2.2

Figure 2.2: The six possibilities of signed area

With the information that the Lévy area provides, we can easily realise that
paths similar than both in 2.3 have Lévy area equal to 0, so there is no possibility
of differentiation between each other. In order to be able to tell the difference
between these two paths using signature coordinates, one has to look into the
third order terms and the second order area appears.

Ai,(i,j)
s,t :=

1
2

(∫
s<u1<u2<t

dXi
u1

dAi,j
s,u2 −

∫
s<u1<u2<t

dAi,j
s,u2 dXi

u2

)
=

1
2

(
S(X)s, t(i,i,j) − S(X)s, t(i,j,i)

)
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Figure 2.3: Example of two paths with Lévy area = 0

Basically, it represents the signed area of the path u 7→ (Xi
u, Ai,j

s,u), the evolution
of the value of the Lévy area with respect to the coordinate Xi

u of the path, see

Figure 2.4: Second order area, considering the 2.3 paths

In brief, the signature of a path may be interpreted as the extraction of the
order and area of one coordinate with respect to some collection of other coordi-
nate paths. Similar recursive arguments using the shuffle product property (2.18)
prove that higher order areas are related to other linear combinations of iterated
integrals. For the formal and extended demonstration, the reader is refereed to
section 2.2.3 of [13].

2.3 Properties of the signature

Apparently, the signature of a path seems to contain relevant information of
the path, nevertheless, in order to state whether this stream of features (signature
coordinates) define the path itself, some properties need to be defined. These prop-
erties are the basic fundamentals where rough path theory has been constructed,
and it has been proven for all kind of p-variation paths, nevertheless, we will only
focus on bounded variation paths, which lie on the scope of this thesis.

The following fundamental Chen’s theorem [8] asserts that the signature is
indeed an homomorphism, taking the concatenation of paths as the multiplicative
operation between them.
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Theorem 2.3. (Chen) Let X : [0, s] −→ E and Y : [s, t] −→ E be two continuous paths
of V1(J, Rd) . Then

S(X ∗Y) = S(X)⊗ S(Y).

Proof. (Theorem 2.9. [13]).

Let’s see a practical application of this theorem, as done in [3], which will
be important in the study and computation of the signature when considering a
piece-wise linear path, relevant when studying time series. Firstly, we want to see
in a practical example what is the signature of a linear path.

Example 2.4. Let X : I → E be a linear path, i = [0, T]. It implies that for any
t ∈ [0, T], Xt = X0 +

XT−X0
T t. For any integer n ≥ 1 and any (i1, . . . , in)

S(i1,...,in)
[0,T] (X) =

∫
0<tn<T

· · ·
∫

0<t1<t2

d

(
(XT − X0)

(i1) t1

T

)
. . . d

(
(XT − X0)

(in) tn

T

)

=
n

∏
j=1

(
X(ij)

T − X(ij)
0

)
Tn

∫
0<tn<T

· · ·
∫

0<t1<t2

dt1 · · · dtn

And if we calculate the integrals∫
0<tn<T

· · ·
∫

0<t1<t2

dt1 · · · dtn =
Tn

n!
,

S(i1,...,in)
[0,T] (X) can be simplified to

1
n!

n

∏
j=1

(
X(ij)

T − X(ij)
0

)
the product of all ij-coordinate increments within the time interval, divided by
n! Now, if we consider all signature coordinates, the signature ends up with the
expression

S(X) = exp (XT − X0) ,

where
exp (XT − X0) = ∑

n≥0

1
n!
(XT − X0)

⊗n

For the curious reader, as a generalization of the example, note that the signa-
ture of a path it is indeed the solution of the differential equation

dS(x)a,t = Sa,t(x)⊗ dxt, Sa,a = (1, 0, ...) ∈ T((E)), (2.1)
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see [13] for more details.

Now that we have seen how the signature of a linear path can be understood,
we can try to apply Chen’s theorem for piece-wise linear paths. Let X be a piece-
wise linear path, X : [0, T] 7→ E := R, that connects the points x1, ..., xk ∈ R, we
can use the Chen’s identity considering

X = X1 ∗ X2 ∗ ... ∗ Xk−1,

where each Xi is a linear path connecting xi with xi+1, and the Example 2.5 to
obtain

S(X) =
k−1⊗
i=1

exp(Xi) (2.2)

The second important property of the signature is the invariance under time
reparametrizations of the path (Lemma 1.6 [13] and Lemma 2.12 [3]).

Lemma 2.5. Let X ∈ V1(J, Rd) and λ : [0, T] → [a, b] be a non-decreasing surjec-
tion (images maintain order and every element in the codomain has at least one
preimage in the domain) and define Xλ

t := Xλt for the reparametrization of X
under λ. Then, for every s, t ∈ [0, T],

S(X)λs,λt = S(Xλ)s,t

Proof. (For simplicity, we prove it only considering smooth reparametrizations,
although it is not strictly necessary) Given λ : [0, T] → [a, b], a continuous non-
decreasing surjection, a reparametrization, if we define the path coordinates reparametrized
X̃i

t = Xi
λt

and X̃ j
t = X j

λt
, observe that

dX̃i
t = dXi

λt
dλ(t),

and it follows that∫ b

a
X̃ j

t dX̃i
t =

∫ T

0
X j

λt
dXi

λt
dλ(t) dt =

∫ T

0
X j

u dXi
u

where u = λ(t). With that path integrals are invariant under time reparametriza-
tion, hence the signature is invariant under time reparametrizations, using this
result recursively.

The next proposition gives a notion of how the signature of a time reversed
path is related to the signature of the initial path, see [13] for more details.
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Proposition 2.6. Let X : [0, T] −→ E be a path of bounded-variation. Let
←−
X be the

path X run backwards, i.e. the path defined by
←−
X t = XT−t, t ∈ [0, T]. Then

S(
←−
X ) = S(X)−1

In particular, we can state that the range of S : V p([0, T], E) −→ T((E)) is a
group.

Proof. (Proposition 2.14. [13]).

Corollary 2.7. As a particularity of the fact that the range of the signature is a
group, we have that given X : [0, T] −→ E, S(X)⊗ S(

←−
X ) = 1.

We have already seen several reasons why S(X) = S(Y) does not imply X =

Y. For example, S(X) does not depend on the parametrization of X. Or, the
signature of the constant path is equal to 1 , but, S(X)⊗ S(

←−
X ) = S(X ∗←−X ) = 1.

Thus, the constant path and X ∗←−X have the same signature, but X ∗←−X cannot be
reparametrised to be constant.

In order to explore to what extent the signature of a path determine the path,
we first make some definitions.

Definition 2.8. (Tree-like paths) Given X : [0, T]→ E, we say X is a tree-like path
in E if there exists a positive real valued continuous function h defined on [0, T]
such that h(0) = h(T) = 0, and such that

∥Xt − Xs∥E ≤ h(s) + h(t)− 2 inf
u∈[s,t]

h(u). (2.3)

The function h is called a height function for X. We say X is a Lipschitz tree-like
path if h can be chosen to be of bounded variation.

Lemma 2.9. X : [0, T] → E is a tree like path if and only if it is a null path as a
control, i.e. the trajectories are completely canceled out by themselves.

Proof. See Appendix at [2] for the complete proof.

As an intuitive example, if X, Y, Z are non-constant paths, then X ∗Y ∗←−Y ∗ Z ∗←−
Z ∗ ←−X is a tree-like path. As explained in [13], "Tree-like paths are those which
can be reduced to a constant path by removing possibly infinitesimal pieces of the
form W ∗←−W ". With this example, we note that the tree-like paths X are not strictly
of the kind X = Y ∗←−Y



16 Signature of a path

Definition 2.10. Let X, Y ∈ BV(V). We say X ∼ Y if the concatenation of X and Y
’run backwards’ is a Lipschitz tree-like path.

We now focus on E = Rd and state some results that won’t be proved as they
are out of the scope of this work. See [2].

Theorem 2.11. Let X ∈ BV
(
Rd). The path X is tree-like if and only if the signature

of X is 0 = (1, 0, 0, . . .).

As we have seen, the map X → R is a homomorphism, and running a path
backwards gives the inverse for the signature in T(R), so an immediate conse-
quence of the previous theorem is

Corollary 2.12. If X, Y ∈ BV
(
Rd), then X = Y if and only if the concatenation of

X and ’ Y run backwards’ is a Lipschitz tree-like path.

Taking all of these together, we can state the following theorem.

Theorem 2.13. (Uniqueness of the signature) Let X ∈ BV
(
Rd), then S(X) deter-

mines X up to the tree-like equivalence.

As the signature determines the path up to sections on which the path ex-
actly retraces itself, if we have a path in which it has a monotone component, its
trajectories will never cancel out, so the following lemma holds.

Lemma 2.14. Let A be a set of continuous paths with bounded variation such that
all paths have the same initial value and have at least one monotone coordinate.
Then the signature of a path in A completely determines it in A.

At this point, we have seen which are the conditions to identify a path for
each signature. When doing our practical application, these conditions can not be
missed, as the results are strictly tied to these last lemma, before every computa-
tion of the signature of a path, we will apply the transformations:

1. Base-point augmentation (X∗): As a concatenation of the path Xt, t ∈ [0, T]
with the linear path defined between t = −1 and t = 0, between 0 and x0,
being x0 the value of X(0):

X∗t =

{
(t + 1)x0 t ∈ [−1, 0),

Xt t ∈ [0, T].
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2. Time-augmentation (X̂∗): Adding the time as an extra coordinate of the
path. X̂∗t = (t, X∗t ).

Proposition 2.15. (Lyons et al, [13], Proposition 2.2) Let X : [0, T] 7→ Rd be an
element of V1(J, Rd). For any k ∈N we have

|
∫

a<tk<t
. . .
∫

a<t1<t2

dXi1
t1
⊗ . . .⊗ dXik

tk
| ≤
∥X∥k

1,[0,T]

k!

with ∥X∥k
1,[0,T] being the p-variation norm previously presented (p = 1).

From this, we can deduce that taking the first elements of the signature until
a given level k is a good way to approximate the signature of a path, i.e. the
truncated signature of order k: ρk(S(X)).

Corollary 2.16. Let X ∈ V1([0, T], Rd), then for every ϵ > 0 there exists a N ∈ N

such that
∥S(X)− ρN(S(X))∥ ≤ ϵ.

Furthermore, if we restrict X to a compact set K ∈ V1([0, T], Rd), this convergence
is uniform.

Proof. Consider X ∈ V1([0, T], Rd). We know from Proposition 2.16 that each of
the elements of the signature of order k verify the following inequation

∥Si1,...,ik(X)∥ ≤
∥X∥k

1,[0,T]

k!
(2.4)

The difference between the signature of X and the truncated signature of order
k as ∆N = S(X)− ρN(X). So,

∥∆N∥ = ∥S(X)− ρN(X)∥

and 2.4,

∥∆N∥ ≤
(

∞

∑
k=N+1

∥X∥k,1−var

k!

)
Since ∥X∥k,1−var is bounded for all k, the series converges, and we can make the
second term as small as we want by choosing a sufficiently large N. Thus, for
every ϵ > 0 there exists an N ∈N such that ∥∆N∥ ≤ ϵ.

Consider K compact subset, and xn a sequence in K. By sequential compact-
ness, there exists a subsequence xnk such that xnk converge to some x as nk → ∞.
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To demonstrate the uniform convergence, we need to show that for any ϵ > 0
there exists an N such that for all Nk > N, ∥∆Nk∥ ≤ ϵ. We have seen that for all k,
∥∆Nk∥ ≤ ϵ/2Nk , so if we choose an N such that ϵ/2N < ϵ,

∥∆Nk∥ ≤ ϵ/2Nk < ϵ/2N < ϵ.

One of the fundamental properties of the signature, originally shown by Ree
at [10], is that the product of two terms S(X)(i1,...,ik) and S(X)(j1,...,jm) can always be
expressed as a sum of another collection of terms of S(X). Note that when doing
analysis, it is really important to find a core of real functions on the space we are
working on, and this core, ideally, should be an algebra. We will see in this section
that this real functions are induced by linear forms on T((E)).

We first introduce the definition of the dual basis of the tensor space as done
in [12]. Considering B = {ei}d

i=1 the d-dimensional basis of E, for every n ∈ N, B
determines the basis

B⊗n := {eK = ek1 ⊗ . . .⊗ ekn : K = (k1, . . . , kn) ∈ {1, . . . , d}n}

for E⊗n, and also determines the corresponding dual basis

(B∗)⊗n :=
{

e∗K = e∗k1
⊗ . . .⊗ e∗kn

: K = (k1, . . . , kn) ∈ {1, . . . , d}n}
for (E∗)⊗n, forming a basis of T(E∗), if we think of an element as a non commuting
power series in the letters e1, ..., ed, then e∗(i1,...,in)

picks up the coefficient of the
monomial ei1 ...ein . Considering this, we see that we have a linear action of (E∗)⊗n

on elements of (E)⊗n, which we can extend naturally to a linear map (E∗)⊗n →
T((E))∗ defined by

ϕ(A) := ϕ(an), when A = (a0, a1, a2, ...) ∈ T((E)) and an ∈ E⊗n (2.5)

By letting n vary between 0 and ∞, we get the linear mapping

T(E∗) =
∞⊗

n=0

(E∗)⊗n 7→ T((E))∗ (2.6)

So we can trivially see that T(E∗) ⊂ T(E)∗ by linearity. Basically, we have
extended a linear action over each of the elements of the basis of the tensor algebra
to a linear action over an element in T(E), as it is A. In particular, if ϕ =

⊕∞
n=0 ϕn ∈

T (E∗) and v =
⊕∞

n=0 vn ∈ T(E), then ϕ(v) = ∑∞
n=0 ϕn (vn).
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Now we define the inner product over the tensor algebra and relate it with the
action of the linear forms of the dual basis of T(E). This inner product comes from
the choice of the basis of B by

〈
ei, ej

〉
E

:= δij =

{
1 if i = j

0 if i ̸= j
(2.7)

extending to the whole of space E bilinearly.

The extension into E⊗n is done by defining

〈
ei1 ⊗ . . .⊗ ein , ej1 ⊗ . . .⊗ ejn

〉
E ⊗n :=

n

∏
k=1

〈
eik , ejk

〉
E
= δi1 j1 . . . δin jn (2.8)

and binearly extending it to the whole space. Finally, if we want to define the
inner product on the whole T((E)) space, we have to set

⟨x, y⟩T((E)) =
∞

∑
n=0
⟨ρn(x), ρn(y)⟩ (2.9)

for x, y ∈ T((E)), having (T((E)), ⟨·, ·⟩) as an inner product space. Hence, we can
define the completion of T((E)), T((E)), by adding all limit points, in order to
ensure that all Cauchy sequences converge within the space. T((E)) is a Hilbert
space with this inner product (allowing us to apply geometric interpretations and
rigorous analysis).

If we want to understand the elements of the dual basis (B∗)⊗n in terms of the
inner product, we have that for every n ∈N, they are given by

e∗K(·) = ⟨·, eK⟩, (2.10)

which means that the vectors of the dual basis that correspond to the tensor space
T((E)) are equivalent to computing the inner product with its corresponding vec-
tor of the base of T((E)), i.e. the projection.

With this theoretical framework, we are now totally able to define the coordi-
nate iterated integral (signature coordinate).

Definition 2.17. Following the notation provided at 2.10, given a word I = (i1, . . . in) ∈
{1, . . . , d}n, if eI = ei1 ⊗ . . . ⊗ ein ∈ E⊗n, we define the coordinate iterated integral
πI(Sa,b(X)) by

πI(Sa,b(X)) := ⟨Sa,b(X), eI⟩T(E) = e∗I
(
Sn

a,b(X)
)

.

Interpreting it as the projection of the component Sn
a,b(X) ∈ E⊗n into the basis

eI, which will lead to the coordinate of the signature in the tensor space that
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corresponds to the index I

πI(Sa,b(X)) =
∫

a≤tn≤tn≤b
· · ·

∫
0≤t1≤t2

⟨dxt1 , ei1⟩E · · · ⟨dxtn , ein⟩E .

and all the other coordinates (or iterated integrals) of the signature vanish due to
the inner product operator.

Having understood the coordinate iterated integral, or signature coordinate,
we want to understand how the product operation between two coordinate iter-
ated integrals is done. This product of linear forms is actually a quadratic form
(easy to proof), but we want to see that it also is a linear form on the range of
the signature. By this means we introduce the Shuffle product between two multi-
indexes.

First, a permutation of the set 1, ..., k + m is called a (k,m)-shuffle if σ−1(1) <

... < σ−1(k) and σ−1(k + 1) < ... < σ−1(k + m), and (σ(1), ..., σ(k + m)) is called
a shuffle of (1, ..., k) and (k + 1, ..., k + m). We will denote Shuffles(k,m) the set of
all (k,m)-shuffles, and interpret them as the list of all the ways that two words, of
length k and m respectively, can be combined into a single word, of length k + p,
while preserving the order in which the letters of each original word appear.

Definition 2.18. (Shuffle product). Consider two multi-indexes I = (i1, ..., ik) and
J = (j1, ..., jm) with i1, ..., ik, j1, ..., jm ∈ 1, ..., d. And define

(r1, ..., rk, rk+1, ..., rk+m) = (i1, ..., ik, j1, ..., jm).

The shuffle product of I and J, I ⊔⊔J, is defined as the following finite set

I ⊔⊔J := {(rσ(1), ..., rσ(k), rσ(k+1), ..., rσ(k+m)) | σ ∈ Shuffles(k, m)}

Returning to the coordinate iterated integrals, if we consider πI(Sa,b(X)) and
πJ(Sa,b(X)), their product is given by the following theorem (Theorem 2.15. in
[13]).

Theorem 2.19. (Shuffle product property). For any I1, I2 ∈ A∗, A∗ = {I =

(i1, ..., in) where ij ∈ {1, ..., d}, ∀j ∈ {1, ..., n}, ∀n ∈N}, it holds that for any path X
of bounded variation

π I1(S(X))π I2(S(X)) = (π I1 ⊔⊔π I1)(S(X)).
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Corollary 2.20. (Theorem 2.15 [13])The linear forms on T((E)) induced by T(E∗),
when restricted to the range S(V1([0, T], E)) of the signature, form an algebra of
real-valued functions.

Proof. It is a direct implication of the Shuffle product property for bounded varia-
tion paths. See [13] for the whole proof.

Example 2.21. To clarify it, we will introduce a simple example. Consider a two-
dimensional path X : [a, b] → R2. If we apply the shuffle product property we
have

π(1)(S(X))π(2)(S(X)) = π(1,2)(S(X)) + π(2,1)(S(X))

π(1)(S(X))π(2,1)(S(X)) = 2π(2,1,1)(S(X)) + π(1,2,1)(S(X))

Note that the shuffle product computes all the possible combinations without al-
tering the order of the indices of the initial words. The combination (1,1,2) is not
possible as 2 needs to be before 1, when considering the indices of the initial word
(2,1).

As we have seen, the signature of a path embodies a multitude of essential
properties crucial for path analysis. Firstly, Chen’s Identity serves as a pivotal tool
for concatenating paths, allowing for the seamless integration of path segments.
Remarkably, the signature is independent of how fast or slow a path is traversed,
ensuring that paths with the same shape retain the same signature regardless
of timing. This property, known as time−invariance, is crucial for robust analysis
across varying speeds. Furthermore, the signature demonstrates unique character-
istics under tree-like paths, guaranteeing distinct representations for different path
structures. Notably, the uniqueness property extends to paths featuring mono-
tone increasing components, which allows reconstruction of the entire path from
its signature if the starting point is known and there exists a monotone increas-
ing coordinate. The signature’s efficiency is another strength, achieved through a
property where higher order terms have a diminishing effect, making it computa-
tionally friendly and paves the way for its application in machine learning tasks.
To top it off, the product property simplifies the multiplication of complex path
interactions by expressing the product of signature terms as a sum based on their
multi−indexes. These properties collectively underscore the versatility and power
of the signature as a comprehensive tool for path analysis and processing.



22 Signature of a path



Chapter 3

The expected signature framework

3.1 Law on signatures

In our work, we aim to construct an expected signature model which forecast
the signature of stochastic paths. In order to do so, it is important to properly
define the expected signature as an element defined in a probability space and
measure, as done in [3]. Basic knowledge on measure theory and stochastic pro-
cesses is assumed for this definition. For simplicity, from this point on, we will
denote X := S(X).

Definition 3.1. Given a probability space (Ω, P,F ) and a Rd-valued stochastic
process X, for every w ∈ Ω, X(w) is well defined almost surely and its expectation
(E[X(w)]) is finite under the probability measure P. We call E[X(w)] the expected
signature of X.

Chevyrev and Lyons at [7] define the characteristic function of a random sig-
nature X and assert, as its main result, that ϕX determines X. By the following
theorem, we provide sufficient conditions to state that the expected signature de-
termines the law of the signature, under certain conditions (we will not deep into
these conditions).

Theorem 3.2. (Proposition 6.1 [7]). Let X and X̂ be two random paths of bounded
variation, X and X̂ their corresponding signatures as random variables. If E[X] =
E[X̂] and they both have infinite convergence radius, then X = X̂.

23
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3.2 The expected signature model

Basically, our expected signature model will consist in a regression framework
based on time series data. This data is discrete, so, in order to properly use this
framework, it is necessary to transform the discrete information of the time series
into a continuous path. In order to tackle this problem, there are many possible
approaches, which comparison is out of our scope, but we can, for example, think
about piece-wise linear interpolation between data-points.

Our goal is to formulate the effects of data streams as a dependent variable of
a regression problem with an explanatory and dependent variables being paths.
Imagine we have observations of the input and output paths {Xi, Yi}n−1

i=0 of the
theoretical regression, both Xi and Yi of bounded variation taking values in E =

Rd. This linear relation can be understood as

Yi = f (Xi) + ϵi ∀i = 0, ..., n− 1

Obviously, the functional form of the relationship is unknown or really complex,
so it is necessary to identify specific features of the observed data to linearize its
functional relationship. To achieve this, we will present a way to do it using the
signature of the path as features on the space where the path is defined.

We first present a very important theorem where this theory is sustained,
which states that it suffices to look for linear functions f .

Theorem 3.3. (Signature approximation). Let S (V p(J, E)) be the set of bounded
variation paths, and S1 ⊂ S (V p(J, E)) a compact subset. Then, given ε > 0 and a
continuous function f : S1 → R, there exists a linear functional L ∈ T((E))∗ such
that for every a ∈ S1

| f (a)− L(a)| ≤ ε.

In order to proof this result we present the following well-known theorem.

Theorem 3.4. (Stone-Weierstrass theorem). Given X, a compact Hausdorff space,
and A a subalgebra of C(X, R), which contains a non-zero constant function, then,
A is dense in C(X, R) if and only if it separates points.

Proof. (Signature approximation) Let L (S1) denote a family of all linear func-
tions in T((E))∗ restricted to S1, by the shuffle product property of signatures and
Corollary 2.20, L (S1) is an algebra. Since the 0th term of the signature is always
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1, this algebra contains constant functions. Moreover it separates the points (this
assumption comes from Corollary 2.16 in [13]). Now, using the Stone-Weierstrass
theorem, we can say that L (S1) is dense in the space of continuous functions on
S1.

Corollary 3.5. If S1 is the set of signatures of any finite number of sample paths,
Theorem 3.3 holds.

Proof. Trivial, as this finite set is a compact subset of S (V p(J, E)).

As we presented at the beginning of this section, we want to understand the
conditional distribution of Y given the information of X, and we now can state
that, in our framework, this is equivalent to saying that we are looking for E[Y|X]
due to the following results that we have already seen:

Given X a bounded variation path,

1. X uniquely determines X up to the tree-like equivalence.

2. According to 3.2, under certain conditions (will be assumed that are in our
work), the expected signature of stochastic process determines the measure
on the random signatures.

Finally, we are be able to present our model with the conclusion that, restricting
to the case where E[Y|X] is a continuous function of X, by Theorem 3.3, E[Y|X]
can be well approximated by a linear function on X locally, as each coordinate of
the signature can be itself well approximated by a linear functional, and we have
seen that these coordinates (πI(X)) form an algebra of real valued functions and
serve basis functions to represent any smooth function on signatures locally.

Definition 3.6. (Expected Signature Model [3]). Let X and Y be two stochastic
processes taking values in E and W respectively. Suppose that the X and Y are
well defined a.s.. We assume that

Y = L(X) + ε, (3.1)

considering E[ε|X] = 0, and L a linear functional mapping T((E)) to T((W)).

We will note µX the conditional expectation E[Y|X] and ∑2
X the conditional

covariance defined as

Σ2
X : A∗ × A∗ → R

(I, J) 7→ Cov
(

π I(Y), π J(Y)|X
)

.
(3.2)
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The following lemma from [3] won’t be explicitly used during this work, but it
is an interesting property that we wanted to highlight, as it is a direct implication
of the shuffle product property. It asserts that Σ2

X is determined by µX.

Lemma 3.7. Let µX and Σ2
X be defined as before. Then for every I, J ∈ A∗,

Σ2
X(I, J) =

(
π I ⊔⊔ π J

)
(µX)− π I (µX)π J (µX) .

Proof. For each I, J ∈ A∗, conditional variance states that

Σ2
X(I, J) = E

[
π I(Y)π J(Y)|X

]
−E

[
π I(Y)|X

]
E
[
π J(Y)|X

]
.

Using the shuffle product property of the signature,

E
[
π I(Y)π J(Y)|X

]
= E

[(
π I ⊔⊔π J

)
(Y)|X

]
=
(

π I ⊔⊔π J
)
(E[Y|X]),

and we obtain:

Σ2
X(I, J) =

(
π I ⊔⊔π J

)
(µX)− π I (µX)π J (µX) .

3.2.1 Model calibration and prediction

After understanding how the model is theoretically constructed, now, it is nec-
essary to explain how it will be implemented with real world data. First, note
that this approach is defined over the space where the signature of a path lies, an
infinite dimensional space, which is clearly impossible to handle in terms of com-
putational methods. Hence, we will make use of the Proposition 2.15 and we will
limit our problem to estimate the expected signature of Y given information of X
by estimating the truncated signature of the order m ρm(E[X|Y]), in other terms,
estimating ρm ◦ f . Given a large number of samples {Xi, Yi}N

i=1, this problem will
be reduced to a linear regression problem, where the coordinate iterated integrals
of ρm(Y) are estimated by the explanatory variables ρn(X). We will call this the ES
approach and will be used further in this work in a practical setup.



Chapter 4

The ES approach as a time series
model

When considering real-life time series, such as financial data, the data collected
is discrete (e.g., tick-by-tick or minute-by-minute). It might seem effective to ap-
proximate this data by sampling it at very fine intervals. However, interpreting
the information using discrete data or linear functionals like Fourier transforms
has proven inefficient. This approach generates a lot of redundant data and leads
to dimensionality issues when dealing with high sampling rates. In such cases,
non-linear feature sets, such as signature transformations, become important. The
signature of a path, computed from the embedded discrete time series, is not par-
ticularly sensitive to the number of time steps. This makes it a more effective
method for capturing the essential features of the data.

While financial data is typically visualized as univariate time series (a sequence
of data points over time for a single variable), computing informative features
from this data requires embedding it into a continuous path that preserves key
characteristics. We won’t delve into finding the optimal embedding method here,
but we’ll explore some theoretical options and discuss some of their pros and cons.

4.1 Time series embedding

Consider {(t,ri)}N
i=0 an univariate time series. Our goal is to transform it into

a continuous function (path). There are many possibilities, and here we present
some of them:

1. Piece-wise linear interpolation.

27
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2. Rectilinear interpolation.

3. Lead-lag transformation.

The first two are the most basic and can be seen at Figure 4.1, with red dots
being the discrete data and the blue lines its embedding. Piece-wise linear inter-
polation simply interpolate datapoints linearly and rectilinear interpolation lead
to a piece-wise linear path with each linear section parallel to an axis.

Figure 4.1: Different interpolations [5]. Piece-wise linear interpolation (left) and
Rectilinear interpolation (right).

The Lead-lag transformation is a more complex approach, as it augments
the dimension of the path that contains the data. In our case, it maps our one-
dimensional path into a two dimensional one. Let’s see with a practical example
how it is computed: Consider a one dimensional path with the following time-
indexed values:

{Xi}4
i=0 = {1, 4, 2, 6},

The corresponding LeadLag transformation is:

Xi = {1, 4, 2, 6} 7→
{

X Lead = {1, 4, 4, 2, 2, 6, 6}
X Lag = {1, 1, 4, 4, 2, 2, 6}

Constructing a 2-dimensional path with a leading component, and a lagged com-
ponent. Generally, the Lead Lag transformation with lag 1 is defined by

(Xlead, Xlag) = (Xt, lim
ϵ→0

Xt−ϵ)

and, then, a linear interpolation of the 2-dimensional points is made, as seen in
4.2.
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Figure 4.2: [5] Lead-lag transform of 1-dimensional data {Xi}i.

Let’s briefly state some properties of each different embedding. Regarding
piece-wise linear interpolation, when considering a 1-dimensional time-series, it is
a really straightforward computation, but the path will only encode information
related to increments, leading us to lose some essential information. Contrary,
lead-lag transformation provide enough information to read the volatility of the
path directly from the second term of the signature (see Equation 4.1), a very
important parameter when dealing with financial data. By Chen’s theorem, we
can straightforwardly see this assumption by computing the signature coordinates
of a of a lead-lag embedding:

S(1) = S(2) =
N−1

∑
i

(Xi+1 − Xi)

S(1,1) = S(2,2) =
1
2

(
N−1

∑
i

(Xi+1 − Xi)

)2

S(1,2) =
1
2

(N−1

∑
i

(Xi+1 − Xi)

)2

+
N−1

∑
i

(Xi+1 − Xi)


S(2,1) =

1
2

(N−1

∑
i

(Xi+1 − Xi)

)2

−
N−1

∑
i

(Xi+1 − Xi)



,

and the following holds

Mean(X) =
1
N

S(1) ; Var(X) = −N + 1
N2 S(1,2) +

N − 1
N2 S(2,1). (4.1)

Finally, regarding the rectilinear path, we can highlight that it has an structure
with an easy way to extract the path from its signature. As we are aiming to com-
pare the Expected Signature model with some traditional approaches for financial



30 The ES approach as a time series model

time series, we are going to consider a special case of the rectilinear interpolation
called the Time-joined transformation.

Remark 4.1. For the curious reader, if one is considering to deal with high fre-
quency data and wants to summarize the information ignoring time re-parameterizations,
one should consider piece-wise and lead-lag methods. They prevent over-fitting,
as they allow the signature to summarize and incorporate high frequency infor-
mation using only a few parameters.

4.1.1 Time joined embedding

Definition 4.2. (Time joined transformation [3]). Let {(ti, ri)}n
i=m be a uni-variate

time series. Let R : [2m, 2n + 1] 7→ R +×R be a 2-dimensional time-joining path
of {(ti, ri)}n

i=m, which is defined as :

R(s) =


tme1 + rm(s− 2m)e2, if s ∈ [2m, 2m + 1);

[ti + (ti+1 − ti) (s− 2i− 1)] e1 + rie2, if s ∈ [2i + 1, 2i + 2);

ti+1e1 + [ri + (ri+1 − ri) (s− 2i− 2)] e2, if s ∈ [2i + 2, 2i + 3)

(4.2)

with {e1, e2} an orthonormal basis of R2 and i = m, m + 1, . . . , n− 1.

R is an specific case of a rectilinear embedding. For a better understanding of
this procedure let’s see it in an example.

Example 4.3. Consider the following time series:

{(ti, ri)} = {(2, 3), (3, 4), (4, 7), (5, 5), (6, 9)}.

The 2-dimensional path R(s) is the piece-wise linear interpolation of the 2-dimensional
points

{(2, 0), (2, 3), (3, 3), (3, 4), (4, 4), (4, 7), (5, 7), (5, 5), (6, 5), (6, 9)}.

The transformed path is plotted as seen in figure 4.3.
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Figure 4.3: Time-joined transformation of example time series. The red points
refer to the initial values of the time series

4.2 The signature of a time series

As we have seen, to utilize the Expected Signature model for time series anal-
ysis, it is crucial to first embed the data points into a path. This path can be
constructed in various ways, depending on the requirements of the experiment
and the features that need to be analyzed. Before making further assumptions in
our time series model, we must describe the signature of a time series and un-
derstand its key properties. Let’s consider a time series {(ti, ri)}n

i=m and R(s) its
time-joined transformation (recall, that these results can be made for other type of
embeddings, but we focus on the previously presented).

Remark 4.4. The time-joined transformation of a time series is a two dimensional
path with an non-decreasing coordinate (time) and a fixed starting point (tm, 0).

Lemma 4.5. With properties described at Remark 4.4, we can state that the sig-
nature of the path constructed by the time-joined transformation (R(s)) of a time
series {(ti, ri)}n

i=m uniquely determines the time series {(ti, ri)}n
i=m.

Proof. Given {(ti, ri)}n
i=m the time series and R its time-joined embedding, by con-

struction, the first coordinate of R is non-decreasing. Hence, R is not possibly
tree-like. Moreover, all paths R contain the same base-point (tm, 0), so we are
under the conditions of Lemma 2.14 to state that there is a correspondence be-
tween the signatures of the paths R generated by {(ti, ri)}n

i=m and time series
{(ti, ri)}n

i=m.
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Definition 4.6. We use the expression "the signature of a time series" when con-
sidering the signature of its time-joined transformed path R, and denote it by
S({(ti, ri)}n

i=m).

At this point, the reader must be wondering if it is possible to find the values
{ri} of a time series {(ti, ri)}n

i=m given its signature. The answer is that, if time
series is embedded using the time-joined transformation, it is possible. Lemma
4.9 is presented at [3] and provides the concrete procedure.

First, we present Vandermonde matrices and characterize its determinant, as
they are necessary for the proof of the Lemma proof.

Definition 4.7. A square matrix of size n, A, is a Vandermonde matrix if there are scalars,
x1, x2, x3, ..., xn such that [Ai,j] = xj−1

i , 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Theorem 4.8. Suppose we have A a square Vandermonde matix of size n, constructed by
the coefficients x1, x2, ..., xn, then the determinant of A can be expressed as

det(A) = ∏
1≤i≤j≤n

(xj − xi)

Lemma 4.9. Let X denote the signature of a time series {(ti, ri)}n
i=1 for a known

{ti}n
i=1. Then,

∆R = T−1S,

where

S :=


0!π2(X)
1!π12(X)

...
(n− 1)!π1...12(X)

 , T :=


1 1 . . . 1
t1 t2 . . . tn
...

...
. . .

...
tn−1
1 tn−1

2 . . . tn−1
n

 ,

∆R :=


r1

r2 − r1
...

rn − rn−1

 .

Thus, {ri} can be represented as a linear functional on the signature of the time
series.
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Proof. To understand how the equation of the Lemma is constructed and proof
it, is important to analyse the coordinate iterated integrals of of the path R. The
information we have at this point is the values of the signature coordinates and the
time steps that the time series took values. As we want to get the equation to find
the values {ri}i, we need to find which coordinates of the signature are directly
related with them. Actually, if we compute the following signature coordinate,
considering the coordinates of R given by R(1)

s and R(2)
s , time and r(t) respectively,

π(1,2)(X) =
∫ 2n−1

0

1
2
(π(1)(Xs))

2dR(2)
s .

And, as R(s) is constructed over an orthonormal basis of R2, we can simplify the
calculations and note that in the time intervals of the kind (2i + 1, 2(i + 1)), the
differential of the coordinate R(2) is null, so we have the expression

π(1,2)(X) =
n−1

∑
i=0

∫ 2i+1

2i

1
2

t2
i d
((

rti+1 − rti

)
s
)
=

n−1

∑
i=1

1
2

t2
i
(
rti+1 − rti

)
. (4.3)

With r0 = 0, as seen in the time-joined transformation. Note that it is clearly a
linear combination of the {ri}i values. In order to get the other equations to solve
the system, we consider the general expression, obtained similarly than equation
4.3,

π(1,...,1,2)(X) =
∫ 1

0

1
k!

tk
1d (rt1 s) +

n−1

∑
i=1

∫ 2i+1

2i

1
k!

tk
i d
((

rti+1 − rti

)
s
)

=
1
k!

tk
1rt1 +

n−1

∑
i=1

1
k!

tk
i
(
rti+1 − rti

)
.

In consequence, if we put all the equations in a matrix form, given n ≥ 2, we get:

S = T∆R,

with the previous notation

S :=


0!π2(X)
1!π12(X)

...
(n− 1)!π1...12(X)

 , T :=


1 1 . . . 1
t1 t2 . . . tn
...

...
. . .

...
tn−1
1 tn−1

2 . . . tn−1
n

 ,

∆R :=


r1

r2 − r1
...

rn − rn−1

 .
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Now, continuing with the proof, since T is the transpose of a square Vander-
monde matrix with all xi = ti different from each other, T is also invertible. So,
we can state that

∆R = T−1S.

4.3 Expected Signature model for time series

When analyzing time series models, it is crucial to understand the conditions
under which the problem operates. One of the most common conditions is the
stationarity of the time series, or more generally, the stationarity of a stochastic
process. Let’s define this concept. Refeer to [11] for a deeper insight of time series
theory.

Definition 4.10. We say that a process {Xk, k ∈ Z} is strictly stationary if for any
k1, ..., kn and l the vectors

(Xk1 , ..., Xkn) and (Xk1+l , ..., Xkn+l)

have the same law. In particular, taking n = 1, all variables have the same law.

Definition 4.11. We say that a process {Xk, k ∈ Z} is weakly stationary if

1. E[Xk] = µ ∈ R, for any k ∈ Z,

2. C(Xk, Xk + l) = γ(l)∀k, l ∈ Z where γ is defined on N, due to symmetry of
covariance.

The primary assumption in defining the ES model is the stationarity of the time
series {ri}i. This means that the distribution of any (rk, ..., rk+n) remains consistent
throughout the entire time series. A clear conclusion on the previous definitions
is that strict stationarity implies weak stationarity.

Following this, let’s denote the present time as tk, and Fk the information we
have until tk. Also, denote Xk as the signature of the past steps, S({(ti, ri)}k

i=k−p+1),

and Yk as the signature of the future steps, S({(ti, ri)}
k+q
i=k ).

When applying the ES model to an univariate time series {(ti, ri)}N
i=1, we will

try to predict the signature of q-future values given the signature of the last p
values, given p, q ∈ N. By these means, there must exist a linear relation between
the signature of the past and the signature of the future.
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Definition 4.12. (Expected Signature model ES(p,q,n,m)). Given an stationary
time series {ri}N

i=1. We say that it satisfies the assumptions of the expected signa-
ture model with parameters p, q, n and m, ES(p, q, n, m), if the following holds.
There exists a linear function f : Tn(R2) 7→ Tm(R2) such that

ρm(Yk) = f (ρn(Xk)) + ϵk,

where E[ϵk|Fk] = 0 and N >= p + q + 1.

Now, we denote as µk the expectation of Yk conditional on the information up
to the time tk, i.e.

µk = E[Y|Fk] (4.4)

which means that µk is a function f on Xk, i.e.

f : T((R2)) 7→ T((R2))

Xk 7→ µk
(4.5)

And the conditional covariance function of Yk

Σ2 : A∗ × A∗ 7→ R

(I, J) 7→ Cov
(

π I(Yk), π J(Yk)|Fk

) (4.6)

Note that the ES model utilizes Corollary 2.15 and assumes that considering
the higher-order terms of the signature is sufficient for the linear regression to
hold. Therefore, the most important information is contained within these terms,
providing facilities to manipulate the model computationally. It also assumes
that the distribution of the future values on condition of the current information
Fk depends uniquely on the truncated signature of the last p+1 values of the
time series. The ES model does not assume that future values of the time series,
given the current information, follow a specific distribution. Instead, it describes
the likely distribution of future data points in a flexible, non-parametric manner,
enabling the description and prediction of future outcomes based on the present
information.

4.4 Classical time series models as ES-model special cases

In classical time series analysis, the foundational models that often come to
mind are AR (Autoregressive), ARMA (Autoregressive Moving Average), and
ARCH (Autoregressive Conditional Heteroskedasticity). They have been exten-
sively studied and widely applied, particularly in the financial sector, to explain
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and predict patterns in data such as logarithmic prices. They have been settled
as standard tools in the analysis of the dynamics and volatilities inherent in time-
dependent data. See complete definitions in the Appendix 6.1.

As prediction-based models, they aim to forecast two key parameters of future
values based on the information available up to time tk: the conditional expecta-
tion of the future value rk+1 and its variance. In this section, we will explore how
these models are specific instances of the ES model. To achieve this, we will derive
the same parameters that traditional time series models estimate using a specific
ES model, denoted as ES(p, q, n, m). Let’s denote this parameters as

mk := E[rk+1|Fk] and,

σ2
k := Var[rk+1|Fk].

(4.7)

In the previous section, we presented the ES model, and how the signature of
future values could be obtained from the signature of the p-lag values. This idea
is related to the traditional time series approach. Nevertheless, in this case, we
would like to uniquely predict the expectation of the future value given present
information at time tk, i.e. µk, how can this value be obtained from the signature
of the future q steps? In order to answer to this question, we will recall Lemma
4.9 at Lemma 4.13.

Lemma 4.13. Given a time series {(ti, ri)}n
i=1 and its signature X (as the signature

of the join-transformed path of the time series), then

rn = π(2)(X) (4.8)

Proof. It is straightforward by using Lemma 4.9.

Remark 4.14. When considering the ES(p,q,n,m) model to predict the immediate
future step on condition of Fk, we will assign q = 1. Concretely, the ES(p,1,n,m)
model provides the conditional expectation of the future time series {(tk+i, rk+i)

1
i=0},

on condition of the signature of the p-lagged values.

Corollary 4.15. The ES(p,1,n,m) model is used to forecast the next step of a time
series at a given the information at time tk by taking the coordinate π(2) of Yk, i.e.
mk = E[rk+1|Fk] = π(2)(Yk), we name µk as the truncated signature obtained by
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the ES(p,1,n,m) model. Hence, by Lemma 3.7 and the shuffle product property,
the following holds

mk = π(2)(µk),

σ2
k = 2π(2,2)(µk)− (π(2)(µk))

2.
(4.9)

Having explored how to use the ES model to forecast the immediate future
step in a time series, it is now time to demonstrate how traditional time series
models are special cases of the ES(p, q, n, m) model. To do this, we first need to
present a preliminary result. Let’s present a modification of Lemma 4.11. in [3].

Lemma 4.16. Suppose that a time series {rk}k satisfies ARMA(p,q) conditions.
Then,

µk = ϕ0 +
p

∑
i=1

ϕirk−i,

being ϕ a constant vector. Suppose ϵ = {ϵ0, ..., ϵq} is the white noise error term,
with mean 0 and variance σ2. Then, for n = {1, 2}, E[rn

k+1|Fk] is a polynomial of
lagged (p+q) values of {rk}.

Proof. Given n ∈ {1, 2},

E[rn
k |Fk−1] = E[(µk +

q

∑
j=1

θjϵk−j + ϵk)
n|Fk−1]

= E[(µk +
q

∑
j=1

θjϵk−j + ϵk)
n|Fk−1]

=
n

∑
l=0

E[C l
nµn−l

k (
q

∑
j=1

θjϵk−j + ϵk)
l |Fk−1]

=
n

∑
l=0
C l

nµn−l
k E[(

q

∑
j=1

θjϵk−j + ϵk)
l |Fk−1]

(4.10)

Then, by using the definition of the error term ϵk−j = rk−j − µk−j, we compute
E[(∑

q
j=1 θjϵk−j + ϵk)

l |Fk−1] taking l = 1,

E[
q

∑
j=1

θjϵk−j + ϵk|Fk−1] =
q

∑
j=1

θjϵk−j =
q

∑
j=1

θj(rk−j − µk−j), (4.11)

and l = 2,

E[(
q

∑
j=1

θjϵk−j + ϵk)
2|Fk−1] =

q

∑
j=1

θ2
j (rk−j − µk−j)

2 + σ2
k . (4.12)
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Finally, considering that

µk−j = ϕ0 +
p

∑
i=1

ϕirk−j−i, ∀j ∈ {1, ...q},

we can see that E[rn
k |Fk−1] is a polynomial of (p+q) lagged values of {rk}k for both

n = 1 and n = 2.

Theorem 4.17. Suppose that a time series {rk} satisfies ARMA(p,q) conditions,
and its mean equation is

µk = ϕ0 +
p

∑
i=1

ϕirk−i,

there exist an integer N such that the time series satisfies the assumptions of
ES(p + q, 1, N, 2), hence, ARMA(p,q) is a particular case of the ES model.

Proof. This result is equivalent to proof that the first and second moment, E[rk|Fk−1]

and E[r2
k |Fk−1], can be expressed as a linear functional on the signature of the

(p+q) lagged values of rk, which have been proven at Lemma 4.16 to be true.

We know that linear forms on the signature of (p+q)-lagged values of rk are
dense in the space of smooth functions on (p+q)-lagged values of rk, and that the
signature of a time series completely determines the time series. Hence, there
exists a linear functional f0 such that

E[rk|Fk−1] = f0(S({(tk−i, rk−i)}
p+q
i=1 )),

and a linear functional f1 such that

E[r2
k |Fk−1] = f1(S({(tk−i, rk−i)}

p+q
i=1 )).

And these two equations are enough to obtain a precise approximation of the
ARMA(p,q) model parameters, mean and variance.

This result can be proven for other different traditional time series models, as
the ARCH (see [3]), GARCH or AR (specific case of the last theorem, with q=0).
Considering these results, one can conclude that the ES approach provides at least
as good predictions of time series data as traditional time series models, if the
correct parameters p, q, n, m are chosen.



Chapter 5

Using the ES model for financial
time series prediction

This chapter will investigate the conditions under which AR and ARMA mod-
els are special cases of the ES model. Additionally, it will be demonstrated how
the ES model can enhance the results obtained from financial data traditionally
analyzed using AR or ARMA models. While the main focus of this thesis is es-
tablishing path signatures as a new approach to time series analysis, providing
computational examples strengthens the theoretical foundation. The code itself
will be included in the appendix for interested readers. This experiments will ex-
plore in the conditions that: AR and ARMA are special cases of the ES model, and
the ES model provides an improvement in the results that can be obtained from
financial data, when considering data that was traditionally studied using the AR
or ARMA. The full code is available in the (Github repository).

5.1 Unveiling Computational Insights: AR as a particular
case of the ES approach

As recently explained, traditional time series models can be seen as specific
instances of the expected signature model. To accomplish this, we will generate a
time series by using AR conditions. Subsequently, we will employ the ES model
in order to approximate them in optimal precision, and check that the information
that generates the AR time series is encapsulated within the ES model. Following
this, an analysis of accuracy statistics and computational outcomes will facilitate
our conclusions. Recall that the AR (AutoRegressive) model is an ARMA (Au-
toRegressive Moving Average) with q=0.

39
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We consider the time series {rt}t generated by an AR model with length n =

4000, verifying the equation:

rt = ϕ0 +
p

∑
i=1

ϕirt−i + ϵt, (5.1)

with ϕ = {0, 0.4,−0.5,−0.2} as constant parameters and ϵt a white noise with
variance σ2 = 2. The time series generated can be seen in figure 5.1.

Figure 5.1: AR series

Remark 5.1. An AR(p) time series with p > 1 is stationary if the polynomial
1 − ϕ1z − ϕ2z2 − ... − ϕpzp = 0 lie outside the unit circle in the complex plane.
Refer to [11] for more details. It can be checked that the generated AR(3) time
series with parameters ϕ = {0, 0.4,−0.5,−0.2} is stationary.

As our main goal is to check that the AR model is a special case of the ES
model, we aim to obtain the same expected future value and conditional variance
given information up to time Fk. It will be sufficient to obtain the same E[rk+1|Fk]

and E[r2
k+1|Fk] as the AR model. First, we need to determine the suitable p, q, n

and m parameters of the ES(p,q,n,m) model. As each step of the AR time series is
constructed by using a linear combination of the prior p = 3 values, we can use
Theorem 4.17 to state that p = 3 in our ES model. Then, in order to compute the
immediate expected future step of a time series, we noted in Corollary 4.15 that
q parameter must be set to 1, this allows us to use the second coordinate of the
expected signature obtained by the model, i.e. π(2)(E[Y|Fk]), to predict the future
step k+1.

The other two parameters to determine are n and m, the order of the truncated
signatures that will be used in the ES regression. We have seen how the factorial
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decay property of the signature is key to understand that the most important infor-
mation that the signature of a path contains is within its low order coordinates. As
we will use the coordinates of Xk as features in our regression model, its important
to use the minimum necessary to avoid non-informative noise and computational
complexity. As seen in Theorem 4.17, there exists a sufficiently large n = N which
approximates the ES(3,1,N,2) model to the AR in the most suitable manner. We
will begin with n = 4, and modify if results are unsuccessful. Ultimately, as we
have demonstrated, the most relevant information contained in the future steps
signature is found in the first and second order coordinates. Therefore, we will set
a truncation order q = 2.

Overall, f : T4(R2) 7→ T2(R2) is the linear functor that represents the regres-
sion in the ES(3,1,4,2) model as

ρ2(Yk) = f (ρ4(Xk)) + ϵk, (5.2)

and E[ϵk|Fk] = 0.

In order to learn the function f , we are going to use linear regression, con-
cretely, LASSO regression, a regression method suitable for a dataset which con-
tains a high number of features. Another benefit of LASSO regression is its ability
to prevent overfitting. By penalizing the use of many coefficients in the regression,
LASSO encourages simpler models that generalize better to new data.

After obtaining the AR series of length n = 4000, we train the regression
model using the signatures of the windows of the past p-values as independent
variables and the signatures of the future values as dependent variables. The data
processing that has been followed to construct the ES model has been:

1. Compute all the rolling windows of size p = 3 of the AR time series, as these
will be the windows used to compute S({(ti, ri)}k

i=k−p+1).

2. Compute all the rolling windows corresponding to the future steps of the
AR time series. These rolling windows will be of size 2, taking the present
value and the immediate future step (q = 1).

3. Calculate the Expected AR time series, which consists of calculating, for each
step of the AR time series, the next step expected value using the formula:

µk = ϕ0 +
p

∑
i=1

ϕirt−i

The Expected AR time series will be used to compare the expected future
value predicted by the ES model in comparison with the expected future
value underlying on the AR.
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4. For each of the windows, the following modifications are applied, in order
to meet the conditions of this theoretical model:

(i) Time augmentation: Transform the 1-dimensional windows {rt}t into
the 2-dimensional windows {(t, rt)}t.

(ii) Base-point augmentation: Add the base-point (−1, 0) at the beginning
of each window.

These two modifications lead to a unique correspondence between the win-
dows and their signatures, as seen in Lemma 2.14, providing meaningful
data for the regression.

5. Compute the signature of both past and future windows. To this mean, we
have used the esig python package developed by T.Lyons and his team. This
package provides functions to compute the signature of the transformed
path from given time series as data points.

6. Split the data into train/test and train the model: In the model, the sig-
natures of the past p-values are used as independent variables (X) and the
signatures of the future as dependent variables (Y). This data is split into
two sets, train and test (80% train and 20%test), obtaining X_train, X_test,
Y_train and Y_test. Next, LASSO regression is applied for training with a
regularization parameter (α) set to 0.01.

7. Test the model using X_test as input variables. The output data obtained
during testing consists of the expected signatures of future steps for each
input in the test data, as generated by the ES model.

8. For each output, take the signature coordinate π(2) as the expected future
step obtained by the ES(3,1,5,2) model during the test phase, and take 2
times the signature coordinate π(2,2), as we have proven in Lemma 3.7 that it
is equivalent to E[r2

k+1|Fk].

Once obtained the predictions of the ES model we check the accuracy using
two methods: first, overlapping the last 100 steps of the ES predictions with the
Expected AR time series, and second, by creating a regression line between the
expected values that the AR model computes in each step and our ES predictions
(Figure 5.2).
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Figure 5.2: (left) Overlap of the ES model predictions and Expected AR Time
Series. Last 100 values. (right) Regression line

In addition to the visual results, the model yields a coefficient of determination
of R2 = 0.99 and a mean squared error (MSE) of 0.0057, confirming that the
E[rk+1|Fk] obtained by the ES(3,1,4,2) is nearly identical to the E[rk+1|Fk] used
to generate the time series. Now, we do a similar procedure to show how the
E[r2

k+1|Fk] is also well predicted. We plot a regression line between the expected
conditional squared rk+1 generated by the AR and the ones obtained by our model.
The values corresponding to the AR model can be computed using Lemma 4.16,
specifically, E[r2

k+1|Fk] for the AR model is equal to µ2
k + σ2

k . The coefficient of
determination obtained is R2 = 0.994. See Figure 5.3.

Figure 5.3: Regression line between the expected squared future values for both
AR and ES
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Remark 5.2. For an AR time series, we have seen in 4.9 that the conditional vari-
ance can be directly derived from E[rk+1|Fk] and E[r2

k+1|Fk].

Given the accuracy with which the ES(3,1,4,2) model approximated the mean
and conditional variance of the AR time series, considering the expected error
from truncating the signatures and the inherent error in the LASSO regression, we
can conclude that our theoretical framework has been validated by these practical
results and the AR model is a specific case of the Expected Signature model. This
approach can be similarly reproduced for an ARMA time series with q > 0.

5.2 ES model for financial time series forecasting

During this thesis we have presented an alternative to the traditional time
series models. Actually, we have proven how traditional time series are special
cases of the ES model, highlighting the extensive information embedded within
this model. Nevertheless, it is clear that financial data is inherently complex and
influenced by many factors, making it really challenging to model and predict.
Many models, such as ARMA, ARIMA or GARCH time series models, aim to
capture underlying patterns and trends, but the battle against randomness is often
unsuccessful. By these means, we aim to explore whether the ES model improves
modelling and forecasting of real financial data in comparison to traditional time
series models.

When modelling financial data, it is important to understand which patterns
and features characterize the time series, in order to use the most suitable theoret-
ical approach. Nevertheless, time series data is the most of the time unprepared
for its analysis, some techniques must be applied before moving to forecasting.

5.2.1 Catfish sales and forecasting

We are going to analyze an open-source dataset which contains historical data
of catfish monthly sales (catfish sales 1986-2012). Concretely, we will study the
data within the dates "1992-1-1" and "2012-1-1". This study is an extension of [15].

Before comparing the Expected Signature (ES) model with traditional time se-
ries models, it is essential to comprehend key features of the data. This under-
standing aids in formulating assumptions about which models might be more
appropriate. The first interesting approach is to make a STL decomposition of the
data, which means, to decompose the time series into three components: season,
trend and residual. See figure 5.4.

https://www.kaggle.com/datasets/yekahaaagayeham/time-series-toy-data-set/data?select=catfish.csv
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Figure 5.4: Original and differentiated catfish monthly sales in 1000s of Pounds

It is appreciable that the sales time series has an upwards-downwards trend,
and a 12-month seasonal pattern. Then, in order to get information about how past
data influences future data, i.e. p-lag values, there are some methods to determine
them, for instance, the Autorrelation and Partial Autocorrelation function plots
(6.5 for the formal definitions). See the results in Figure 5.5. The shaded area
represents the confidence intervals for the autocorrelation values.

Figure 5.5: ACF and PACF plots

From the plots 5.5, we can note that there is a significant spike around 6 and
12 months lag, and a sinusoidal behaviour in PACF, which tell us that there might
be a seasonal effect in our data. Taking all this assumptions into consideration, we
can estimate which will be the best traditional time series model for to tackle this
problem. As the PACF plot exhibits a seasonal character, it suggests that the data
may be well modeled using the SARIMA model (refer to the Annex).
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There exists a useful function called auto_arima from package pmdarima, which
employs a stepwise approach to search through multiple combinations of ARIMA
(and SARIMA) and selects the model with the lowest AIC (Akaike Information
Criterion) score. In our code, the outcome of this function confirms our prior
assumptions by suggesting that the model SARIMAX(0,1,0)x(1,0,[1],12).

Now, we will split our data into train/test (80% train and 20% test), fit the
model to the training data, and then predict the future data and compare it with
the test. The results obtained will be analyzed by considering the time series
paths comparison and a regression line (and R2 coefficient) between actual and
predicted differentiated data (for a proper comparison with the ES model). The
actual test values vs the predicted values using the SARIMA model can be seen in
Figure 5.6. The explanation of the training data appears to be quite accurate and
improves at each iteration, but the testing fit is confusing and results in significant
errors in many of the steps. The corresponding linear regressions can be seen in
Figure 5.7, which yield a coefficient of determination R2 = 0.46 for the training
data and R2 = 0.26 for the test data.

Figure 5.6: (Top) Predicted vs. actual differentiated data using SARIMA model
(test data) - (Bottom) Predicted vs actual differentiated data using SARIMA

model (train data)

It is time to compare this results with the model we have been developing
throughout this thesis, the ES(p,q,n,m) model. To be under the conditions of the
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Figure 5.7: (Top) Linear regression on predicted vs. actual differentiated data
using SARIMA model (test data) - (Bottom) Linear regression on predicted vs

actual differentiated data using SARIMA model (train data)

ES model, the data that will be used will be the differentiated time series, as it
improves the stationary of the data. It seems quite obvious to define a p-lag of
12, as we encountered that there exists a seasonality of length 12. The parameter
will be set by choosing the best one fitting the training and test data. Finally,
as it is a model to predict immediate future step of a time series, we set q =

1 and m = 2. The results we are considering are the same that the previous
model, paths comparison and linear regression (coefficient of determination). In
Figure 5.8, the predicted vs actual paths are displayed, and it is appreciable a
better approximation of the predictions and a better understanding of the patterns
in the training data, these results are sustained by the linear regressions and its
corresponding R2, which can be seen in Figure 5.9.

The results obtained by the ES model are better, with coefficients of determina-
tion R2 = 0.34 for the test data and R2 = 0.61 for the training data. This indicates
that the model provides a superior explanation of the patterns underlying the
training data and offers more accurate predictions for new data.
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Figure 5.8: (Top) Predicted vs. actual differentiated data using the ES(12,1,4,2)
model (test data) - (Bottom) Predicted vs. actual differentiated data using the

ES(12,1,4,2) model (train data)

Figure 5.9: (Top) Linear regression on predicted vs. actual differentiated data
using the ES(12,1,4,2) model (test data) - (Bottom) Linear regression on predicted

vs. actual differentiated data using the ES(12,1,4,2) model (train data)



Chapter 6

Conclusions

After exploring the theoretical framework and practical applications of the ES
model conclusions can be drawn. Firstly, it has been demonstrated how the the
traditional time series models can be seen as a specific case of the ES model in
some defined conditions. This might lead to a misconception that traditional time
series are obsolete since they can be generalized within a broader model. However,
this is not the case, traditional time series models are still necessary in order to
obtain a proper explanation of how the data is modelled, as they offer concrete
equations underlying the time series.

The ES model is a non-parametric model that employs machine learning tech-
niques, leading to the phenomenon known as the "black box", where the relation
between the income and the outcome is uncertain. We have seen how the ES model
performed significantly better in both modelling the training data and predicting
unknown data. Contrary to the common criticism that ML models are very prone
to overfitting and often fail in real-world prediction scenarios, our model exhib-
ited strong performance in the prediction phase. This improvement in accuracy
comes from the ES model’s ability to capture data patterns similarly to traditional
time series while incorporating additional features in the different signature coor-
dinates, providing extra information beneficial for prediction.

Historically, traditional time series models have been seen as a good way to
model and display the equations and patterns within the data, but they have been
quite unsuccessful when referring to the prediction phase. Hence, this counterpart
can be obtained by the Expected Signature model, which doesn’t contain an equa-
tion that models each step of the data, but performs better in prediction. When
comparing and analyzing time series models, it is crucial to ensure that the data
satisfies the conditions of the models used; if noisy, uncleaned, or unprocessed
data is used as input, none of the models will yield satisfactory results.

49



50 Conclusions

I want to highlight that throughout the completion of this thesis, I thoroughly
enjoyed every specific phase I was involved in, from gathering information to
drawing conclusions and finalizing my writing. It has been a journey that sur-
passed my initial expectations. Contrary to what I had anticipated, this experi-
ence has opened the door to further research phases in my life, as it has been truly
satisfying.

Regarding further research in rough path theory, I am very excited to start my
master’s program to delve deeper into this complex field and gain a comprehen-
sive understanding of the theory. I am aware of its difficulty and the years of
study it might require, but I believe every step and contribution to this research
area will be insightful.
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[9] L. G. Gyurkó, T. Lyons, M. Kontkowski, and J. Field, Extracting information
from the signature of a financial data stream, arXiv:1307.7244v2 [q-fin.ST], 15 Jul
2014.

[10] R. Ree, Lie elements and an algebra associated with shuffles, Annals of Mathe-
matics, Second Series, Vol. 68, No. 2, pp. 210-220, Sep. 1958.

[11] R. H Shumway, D. S Stoffer, and D. S Stoffer, Time series analysis and its
applications, Springer, Vol.3, 2000.

51



52 BIBLIOGRAPHY

[12] T. Lyons, A.D. McLeod, Signature Methods in Machine Learning,
arXiv:2206.14674v5 [stat.ML] 26 Jan 2024.
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Appendix

6.1 Traditional time series models

Definition 6.1. (ARMA model). Let {rt}t be a time series. We note ARMA(p,q) as
an autoregressive moving average model of order p and q. This ARMA(p,q) model
with parameters ϕ = [ϕ0, ..., ϕp], θ = [θ1, ..., θq] and p, q ∈N is defined as

rt = ϕ0 +
p

∑
i=1

ϕirt−i +
q

∑
j=1

θjϵt−j + ϵt, (6.1)

where ϕ and θ are the autorregressive and moving average parameters, respec-
tively. Also, p and q are non-negative integers, and ϵt is a white noise with mean
0 and variance σ2

ϵ .

Definition 6.2. (ARCH model). Let {rt}t be a time series. We note ARCH(q) as
an autoregressive conditional heteroskedasticity model of order q. This ARCH(q)
model with parameters α = [α0, ..., αq] and q ∈N is defined as

ϵt = σtzt, (6.2)

where zt is a white noise process with mean 0 and variance 1, and

σ2
t = α0 +

q

∑
j=1

αjϵ
2
t−j, (6.3)

where αj ≥ 0 for all j and α0 > 0.

Definition 6.3. (ARIMA model). Let {rt}t be a time series. We note ARIMA(p,d,q)
as an autoregressive integrated moving average model of order p, d, and q. This
ARIMA(p,d,q) model with parameters ϕ = [ϕ1, ..., ϕp], θ = [θ1, ..., θq] and p, d, q ∈
N is defined as

∆drt = ϕ0 +
p

∑
i=1

ϕi∆drt−i +
q

∑
j=1

θjϵt−j + ϵt, (6.4)
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where ∆d is the differencing operator applied d times, and ϕ and θ are the au-
toregressive and moving average parameters, respectively. Also, p, d, and q are
non-negative integers, and ϵt is a white noise with mean 0 and variance σ2

ϵ .

Definition 6.4. (SARIMAX model). Let {rt}t be a time series. We note

SARIMAX(p, d, q)(P, D, Q)s

as a seasonal autoregressive integrated moving average model with exogenous
regressors, of order p, d, q, P, D, and Q with seasonality s. This model with
parameters ϕ = [ϕ1, ..., ϕp], θ = [θ1, ..., θq], Φ = [Φ1, ..., ΦP], Θ = [Θ1, ..., ΘQ] and
p, d, q, P, D, Q, s ∈N is defined as

Φ(Bs)ϕ(B)∆d∆D
s rt = Θ(Bs)θ(B)ϵt + Xtβ, (6.5)

where B is the backshift operator, ∆d is the non-seasonal differencing operator
applied d times, ∆D

s is the seasonal differencing operator applied D times, ϕ(B)
and θ(B) are the non-seasonal autoregressive and moving average polynomials of
orders p and q, respectively, Φ(Bs) and Θ(Bs) are the seasonal autoregressive and
moving average polynomials of orders P and Q, respectively, Xt represents the
exogenous regressors, and β represents their coefficients. Also, p, d, q, P, D, Q,
and s are non-negative integers, and ϵt is a white noise with mean 0 and variance
σ2

ϵ .

6.2 Time series autocorrelation

Definition 6.5. (Autocorrelation). Let {rt}t be a time series with mean µ and
variance σ2. The autocorrelation function (ACF) at lag k, denoted by ρk, is defined
as

ρk =
E[(rt − µ)(rt−k − µ)]

σ2 , (6.6)

where E[·] denotes the expected value operator. The autocorrelation ρk measures
the linear relationship between rt and rt−k.

Definition 6.6. (ACF Plot). The Autocorrelation Function (ACF) plot is a graphical
representation of the autocorrelations of a time series {rt}t at different lags k. The
ACF plot helps in identifying the extent of correlation between values of the time
series separated by different time lags.

Definition 6.7. (PACF Plot). The Partial Autocorrelation Function (PACF) plot
is a graphical representation of the partial autocorrelations of a time series {rt}t

at different lags k. The partial autocorrelation at lag k, denoted by ϕk, measures
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the correlation between rt and rt−k after removing the linear influence of all the
intervening lags. The PACF plot helps in identifying the number of significant
lags in an autoregressive model.
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