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A B S T R A C T

Fresnel rhombs are the most achromatic form of retarders available and they are suitable compensating
elements for spectroscopic Mueller matrix ellipsometers. However, the small stress in the rhomb caused by
the mount or produced during the fabrication can affect the ellipsometry measurements with non-negligible
systematic errors, due to the relatively long path length of light inside the rhomb. This work describes a
calibration method that considers the non-ideal response of the Fresnel rhomb, and that it is especially well
suited for calibrating Mueller matrix ellipsometers. The method describes each rhomb as the most general form
of an elliptical retarder with a small ellipticity, instead of simply assuming that they behave as linear retarders.
After this calibration, we show that the systematic errors of measurements are significantly decreased.
1. Introduction

The Fresnel rhomb is an optical prism that produces phase dif-
ferences between two perpendicular components of polarization by
means of total internal reflections. It was pioneered by Fresnel during
1820’s [1] and it was essential for his complete understanding of
the polarization of light. Fresnel rhombs provide the most achromatic
retardation response and they have been utilized in the fields of in-
terferometry [2], 3D printing [3], ellipsometry [4] etc. They are made
from optical isotropic materials such as glass BK7, CaF2, fused silica,
ZnSe that do not change light polarization state when light propagates
through the medium, as opposed to what happens to plates based on
birefringent effects. The achromatic retardance is attributed to several
total internal reflections where the light is incident at a sufficiently
oblique angle on the interface and then phase shifts between orthogonal
electric field components (s and p components of the light beam) [5].
The value of retardance can be precisely controlled by the design of
the number and incident angle of total internal reflection inside Fresnel
rhombs.

For applications that use light beams with a diameter of one or
several mm, Fresnel rhombs usually require prisms with an overall
length of several centimeters, and to avoid lateral beam displacements
it is common to use a ‘‘V’’ shaped design, that uses two equal prisms
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optically contacted. As a result, light travels a long path inside the
prism and this makes them more vulnerable to extra stress-induced
birefringence arising either from fabrication or from mounting [6]. The
retardance arising from stress-induced birefringence is

𝛿𝑡 = 2𝜋𝑑𝛥∕𝜆 (1)

where, 𝛿𝑡 represents the value of the accumulated stress-induced re-
tardance, d represents the length of the beam path, 𝛥 is relative to
the stress and stress-optic coefficients of the medium [7], 𝜆 is the
wavelength of the light in vacuum. According to Eq. (1), even if very
weak stress occurs inside the Fresnel rhomb (very small 𝛥), it may
have a significant effect on 𝛿𝑡 because the overall beam path, 𝑑, is
much larger than the wavelength. Accordingly, in addition to the ac-
cumulated retardance coming from total internal reflections, it is often
necessary to consider also the retardance coming from propagation in
the slightly stressed optical material.

The change in polarization induced by a Fresnel rhomb can be
expressed in terms of the Mueller matrix. This 4 × 4 real matrix is
the most general description of linear optical phenomenons that in-
volve polarization transformations. A non-depolarizing Mueller matrix
also called Mueller–Jones Matrix can be described in terms of eight
parameters, which can be derived from Jones differential calculus [8].
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Recently, the stress-induced linear birefringence generated in a
‘‘K’’ shaped Fresnel rhomb was analyzed by means of a model based
on a cascaded multiplication of Mueller matrix [9]. The rhomb was
effectively decomposed into interfaces and bulk propagation regions
and each part was modeled by its own independent Mueller matrix.

In our previous work [10], we employed ‘‘V’’-shaped Fresnel rhombs
as compensators in our home-built Mueller matrix ellipsometer, which
provide retardance values close to the optimal 132◦ making measure-
ments with an optimal robustness level. However, in that work, the
Fresnel rhombs were treated with a linear retarder model, which essen-
tially neglects stress-induced birefringence effects. The measurement of
this system included some small systematic errors that emerged from
stress-induced birefringence effects in the rhomb, as they essentially
depended on the pressure applied to hold the prisms in place in their
holder.

In this work, a Fresnel rhomb is described as the most general form
of an elliptical retarder with a small ellipticity, instead of simply as-
suming they behave as a linear retarder in the spectroscopic calibration
process of a Mueller matrix ellipsometer. The advantage of this method
is that despite it uses one single Mueller matrix to describe the rhomb,
it takes into consideration all optical properties (even those that result
from non-idealities) the most significant ones being the values of linear
retardance, optical rotation, and azimuthal angle. In this work, we also
evaluate how small interface-induced linear and circular diattenuation
effects can further improve the calibration of an ellipsometer based on
dual rotating Fresnel rhomb compensators.

2. Theory description

The Mueller matrix ellipsometer is composed of a train of optical
elements that can be described by the Stokes–Mueller calculus. The
measurement process is described by a matrix product representing
the sequence of optical elements in the instrument. Light with Stokes
vector 𝐒𝐢𝐧, passes first through a polarizer, 𝐏0, and then goes through
the first rotating compensator, 𝐌𝐶0. After being transmitted through
or reflected from the sample, 𝐌𝑆 , it goes through the second rotating
ompensator, 𝐌𝐶1, and the other polarizer, 𝐏1. Finally, the Stokes
ector at the detector, 𝐒𝐨𝐮𝐭 is given as [10]

out = 𝐏1𝐌𝐶1𝐌𝑆𝐌𝐶0𝐏0𝐒in. (2)

.1. Ideal Fresnel rhomb

When Fresnel rhombs perform as an ideal linear retarder, which
eans that retardance is only contributed from several total internal

eflections, the Mueller matrix of a rotating Fresnel rhomb is given as

𝐶𝑟
= 𝐑(−𝜃)𝐌𝐿(𝛿𝑟)𝐑(𝜃) (3)

here 𝐑(𝜃) and 𝐌𝐿 represent rotation matrix and linear retarder given
s

(𝜃) =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 cos 2𝜃 sin 2𝜃 0
0 − sin 2𝜃 cos 2𝜃 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, (4)

nd

𝐋 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 cos 𝛿r − sin 𝛿r
0 0 sin 𝛿r cos 𝛿r

⎤

⎥

⎥

⎥

⎥

⎦

, (5)

here 𝛿r represents the accumulated retardance arising from total in-
ernal reflections, which most generally is a function of the wavelength
nd 𝜃 represents the azimuth angle of Fresnel rhomb with respect to a
2

eference system. For a rotating compensator system, a Fresnel rhomb L
cting as compensator will be mounted in a motor so that this angle
hanges dynamically with time, and it can be written as:

= 𝜃𝑟 + 𝜙 (6)

where 𝜃𝑟 represents rotation angle of the motor, 𝜙 must be understood
as an offset angle that indicates the orientation of the compensator
with respect to the instrument’s coordinate system when 𝜃𝑟 = 0. These
equations are analog to those used to describe a compensator based on
a single waveplate with linear birefringence.

2.2. A stressed Fresnel rhomb

The stress-induced birefringence in the otherwise isotropic Fresnel
rhomb will give rise to a refractive index ellipsoid whose principal axes
align with the principal stress axes [9], and these axes may not coincide
with those defined by the total internal reflections.

One possibility to describe a stressed rotating Fresnel rhomb is to
use the multiplication, in a cascade, of the Mueller matrices correspond-
ing to two or more retarders. For example, in the simplest case where
we considered only the succession of a stress region followed by a total
internal reflection we may write:

𝐌𝐶𝑡
= 𝐑(−𝜃)𝐌𝐿(𝛿r )𝐑(−𝜃t )𝐌𝐿(𝛿t )𝐑(𝜃t )𝐑(𝜃) (7)

where 𝜃t represents the azimuth angle of stress-induced birefringence
with respect to the coordinate of total internal reflection; 𝛿t represents
the retardance from the stress along the path that light goes through.

According to Jones equivalence theorem [11], any succession of
retarders can be also equivalently written as a product of a linear
retarder followed by a circular retarder.

𝐌𝐶𝑡
= 𝐑(�̄�)𝐑(−�̄�)𝐌𝐿(𝛿)𝐑(�̄�) (8)

where 𝛿 and �̄� respectively represent the equivalent linear retardance
and equivalent optical rotation angle and �̄� is the equivalent azimuth
angle of the compensator. This formalism was recently employed to
describe compound waveplates serving as compensators [12–15]. How-
ever, it should be noted that both Eqs. (7) and (8) are order-depending,
meaning that for a correct description we need a realistic assumption
about the order in which the stress region and total internal reflection
take place inside the rhomb which, as it is discussed in [9], can be fairly
complicated.

Another possibility is to describe the stressed rotating Fresnel rhomb
by a single polarization matrix, without trying to discretize the po-
larization transformations occurring at each region of the rhomb. Ac-
cording to Jones differential theory [16], any non-depolarizing optical
system can be described by a general 2 × 2 Jones matrix incorporat-
ing eight polarization effects with respect to the reference coordinate
system, which consists of isotropic phase retardation 𝜂, isotropic ampli-
tude absorption 𝑘, horizontal linear birefringence LB, horizontal linear
dichroism LD, 45◦ linear birefringence LB′, 45◦ linear dichroism LD′,
circular birefringence CB, circular dichroism CD [17]. The most general
Jones matrix is given as

𝐉 = 𝑒
−𝑖𝜒
2

[

cos T2 − 𝑖L
T sin T

2
(C−𝑖L′)

T sin 𝑇
2

− (C+𝑖L′)
T sin T

2 cos T2 + 𝑖L
T sin T

2

]

(9)

where T =
√

L2 + L′2 + C2, 𝜒 ≡ 2(𝜂 − 𝑖𝑘), L ≡ LB− 𝑖LD, L′ ≡ LB′ − 𝑖LD′

nd C ≡ CB− 𝑖CD. LB, LB′ and CB are related to the retardance, 𝛿, the
zimuth angle, 𝜃, and the optical rotation angle, 𝜌, by

B = 𝛿cos2𝜃 (10a)

B′ = 𝛿sin2𝜃 (10b)

B = 2𝜌 (10c)

D,LD′,CD are related to the linear diattenuation, 𝛹 , and the circular
iattenuation, 𝛷, effects that may be generated at the interfaces of the
homb. We can express them as
D = 𝛹cos2𝜃 (11a)
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Fig. 1. (a) A fused silica Fresnel rhomb serving as a sample was installed in a holder giving slight stress and two measurements were performed for two beam positions giving
slightly different paths. (b) Spectroscopically measured Mueller matrices of the Fresnel rhomb at these two different positions (blue and red circles).
LD′ = 𝛹sin2𝜃 (11b)

CD = 𝛷 (11c)

In principle, the angle, 𝜃 appearing in Eq. (11) could be not necessarily
equal to the one appearing in Eq. (10), but as the main contribution
to both retardation and diattenuation effects are the reflections at the
interfaces of the prism it is reasonable to assume that their axes will
coincide.

If the Jones matrix in Eq. (9) is directly transformed into the
Mueller matrix, that formalism will be rather complex to present [18].
Fortunately, a simplification of the formalism can be easily realized by
assuming vanishing or small values for the diattenuation effects.

If LD, LD′ and CD are equal to 0 (a system without diattenuation),
the Mueller matrix corresponding to Eq. (9) is given as

𝐌𝐶 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 cos(T𝑅) + L𝐵2𝛼 LBLB′𝛼 + CB𝛽 −LBCB𝛼 + LB′𝛽
0 LBLB′𝛼 − CB𝛽 cos(T𝑅) + LB′2𝛼 −LB′2CB𝛼 − LB𝛽
0 −LBCB𝛼 − LB′2𝛽 −LB′2CB𝛼 + LB𝛽 cos(T𝑅) + CB2𝛼

⎤

⎥

⎥

⎥

⎥

⎦

(12)

with 𝛼 = (1 − cos(T𝑅))∕T2
𝑅, 𝛽 = sin(T𝑅)∕𝑇 2

𝑅, T𝑅 =
√

𝐿𝐵2 + 𝐿𝐵′2 + 𝐶𝐵2.
Eq. (12) is functionally similar to Eq. (8) but in a single expression, that
is not order-depending. If the value of CB is set to be 0, Eq. (12) will
be completely equal to Eq. (3).

If diattenuation effects are nonzero but take small values, which is
the expected situation in Fresnel rhombs made of transparent mate-
rials [9], Eq. (9) can be approximately transformed into the Mueller
matrix

𝐌𝐂 ≈

⎡

⎢

⎢

⎢

⎢

⎣

1 −LD −LD′ CD
−LD cos(𝑇𝑅) + LB2𝛼 LBLB′𝛼 + CB𝛽 −LBCB𝛼 + LB′𝛽
−LD′ LBLB′𝛼 − CB𝛽 cos(T𝑅) + LB′2𝛼 −LB′2CB𝛼 − LB𝛽
CD −LBCB𝛼 − LB′2𝛽 −LB′2CB𝛼 + LB𝛽 cos(T𝑅) + CB2𝛼

⎤

⎥

⎥

⎥

⎥

⎦

.

(13)
3

Compared to the Mueller matrix in Eq. (12), the elements of the first
column and the first row in Eq. (13) are substituted by −LD, −LD′

and CD respectively. We consider Eq. (13) as the most general Mueller
matrix providing the description of the retardance, optical rotation
angle, and weak diattenuation of a non-depolarizing medium. In a
following section, we will discuss how this matrix can be used for the
calibration of a Mueller matrix ellipsometer based on rotating Fresnel
rhombs.

3. Experimental Mueller matrix of a Fresnel rhomb

To evaluate experimentally the polarization transformations intro-
duced by the Fresnel rhomb, we used the Mueller matrix polarimeter
based on 4 photoelastic modulators described in [19] to measure in the
straight-through configuration the complete normalized Mueller matrix
of our fused silica Fresnel rhombs over a spectral range from 230 nm
to 800 nm.

The measurements shown in Fig. 1 illustrate the two slightly differ-
ent results obtained when changing the position of the incident beam by
around 0.5 cm in the rhomb. Our Fresnel rhomb prisms have a diameter
of about 1 cm and the light beam in this instrument is about 0.15 cm
in diameter, therefore by changing the position by around 0.5 cm we
ensured that the trajectories of light inside the rhomb that we compared
were different and did not overlap. In both measurements, the rhomb
was kept in the same orientation, approximately at 90◦ azimuth angle
with respect to the instrument’s reference coordinate system.

According to Eq. (3), the description of the ideal linear retarder,
the elements of the first column and the first row should completely
be zero. However, 𝑚01 and 𝑚10 slightly deviate from 0 in the UV
region, which has been attributed to weak diattenuation coming from
total internal reflections [9]. Meanwhile, the rest elements show some
differences over the whole wavelength between the two positions. This
mainly happens because the small stress inside the rhomb is highly
dependent on the position of the beam traveling inside the prism
instead of being homogeneously distributed. Employing Eq. (13), it is
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Table 1
Correlation matrix of the retardance, the offset and optical rotation angles at the
wavelength of 522 nm in transmission calibration of Mueller matrix ellipsometer. 𝛿0,
𝜙0 and 𝜌0 are the parameters of the first compensator and 𝛿1, 𝜙1 and 𝜌1 are those of
the second compensator.

Paras. 𝛿0 𝛿1 𝜙0 𝜙1 𝜌0 𝜌1
𝛿0 1 −0.8865 0.4217 0.4220 0.4412 −0.4198
𝛿1 −0.8865 1 −0.4162 −0.4167 −0.4359 0.4230
𝜙0 0.4217 −0.4162 1 −0.9977 0.9987 0.9923
𝜙1 0.4220 −0.4167 −0.9977 1 0.9987 0.9910
𝜌0 0.4412 −0.4359 0.9987 0.9987 1 −0.9969
𝜌1 −0.4198 0.4230 0.9923 0.9910 −0.9969 1

possible to calculate the polarization properties for both trajectories.
For example, at the wavelength of 500 nm LD and CD are almost 0
for both paths; however, the CB of the path in red is −0.55◦ while
that of the blue is 0.13◦. The retardance 𝛿 also has a slight deviation
from 130.98◦ (blue) to 129.89◦ (red) and the azimuth angles 𝜃 are,
respectively, 87.81◦ (blue) and 87.72◦ (red). Thus, when the rhomb
serves as a compensator in the Mueller matrix ellipsometer it needs
to be calibrated in situ to ensure that light beam follows the same
trajectory that during a measurement, and it is necessary to re-calibrate
the system if there is some substantial deviation in the alignment of the
instrument.

4. Calibration of Fresnel rhombs in Mueller matrix ellipsometers

The parameters in Eq. (13), the linear retardance 𝛿, the offset
angle 𝜙, the optical rotation angle 𝜌, the linear diattenuation 𝛹 and
the circular diattenuation 𝛷 are obtained by performing a regres-
sion calibration procedure (a least squares fit) using standard samples
with well-known optical response [20]. Since most parameters can be
strongly wavelength-dependent due to the dispersion effect of the fused
silica (the exception is the offset angle that is expected to have almost
no variation with wavelength), the regression calibration procedure is
performed wavelength-by-wavelength. The calibration procedure that
we will describe can be executed in situ, with both rhombs mounted as
rotating compensator elements when they are well aligned (so that the
optical path of light inside the rhombs does not change in a substantial
way as they rotate).

In our previous work [10], the calibration of PSG and PSA rhombs
was fully executed using a transmission measurement with an ‘‘air’’
sample whose Mueller matrix is the well-known 4 × 4 identity matrix.
However, in that work, only the retardance, 𝛿0 and 𝛿1, were considered
in the calibration process. When the optical rotation angles and the
offset angles are also taken into consideration in the calibration, there
is a strong risk of parameter coupling if both rhombs are calibrated
together from a single transmission measurement. For instance, Table 1
shows that the offset angle 𝜙0 and the optical rotation angle 𝜌0 of the
compensator in the PSG are strongly coupled together with maximum
correlation coefficients, and at the same time, they are also coupled
with the parameters 𝜙1 and 𝜌1 of the second compensator. This indi-
cates that the transmission configuration cannot be used to calibrate
𝜙0, 𝜌0, 𝜙1 and 𝜌1.

Here we propose a new calibration procedure where 𝛿0 and 𝛿1 are
first calibrated in transmission over the whole range of wavelengths,
while setting all the other parameters to constant. Then, 𝜙0, 𝜙1, 𝜌0 and
𝜌1 were calibrated in reflection, at the incident angle of 65◦ and using a
< 100 > silicon wafer as a sample. This reflection calibration fully relies
on matrix symmetries (for this isotropic material the off-block diagonal
must be zero and the remaining elements must show the well-known
‘‘Psi-Delta’’ symmetries), so it is not necessary to make use of the optical
functions of silicon. Thus, the calibration can be done for any isotropic
material that shows good reflectivity. The correlation matrix obtained
from this reflection calibration, shown in Table 2, indicates that 𝜙 and
𝜌 parameters are much less correlated than in the transmission case.
4

Table 2
Correlation matrix of the offset and optical rotation angles at the wavelength of 522 nm
for the reflection calibration of Mueller matrix ellipsometer.

Parameters 𝜙0 𝜙1 𝜌0 𝜌1
𝜙0 1 −0.8362 0.6628 −0.7842
𝜙1 −0.8362 1 −0.7590 0.7535
𝜌0 0.6628 −0.7590 1 −0.4691
𝜌1 −0.7842 0.7535 −0.4691 1

Fig. 2. Retardance, optical rotation angles, and offset angles of the two Fresnel rhombs
are determined from calibration and they are fitted by Cauchy model.

Fig. 3. Linear diattenuations (𝛹0 and 𝛹1) and circular diattenuations (𝛷0 and 𝛷1) of the
two Fresnel rhomb compensators as determined from calibration. Experimental values
are fitted by a Cauchy model.

Fig. 2 shows the spectroscopic values of 𝛿, 𝜙 and 𝜌 after the
wavelength-by-wavelength calibration. In the final step, all of these are
fitted by a Cauchy dispersion function. The linear retardance of the two
Fresnel rhombs is close to the designed optimal value 132◦. The optical
rotation angles are much smaller, showing that the Fresnel rhombs
behave as an elliptical retarder with very small ellipticity. The offset
angles show less dispersion with wavelength than the other parameters,
but still, there is some measurable change.

The calibration method for Fresnel rhombs that we have proposed
can be most likely also applied to other types of compensators often
used in Mueller matrix ellipsometry, such as achromatic retarders based
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Fig. 4. Measured Mueller matrix of < 100 > plane silicon wafer when using different calibration processes. The black line corresponds to a situation where only 𝛿 parameters
have been calibrated and all the other parameters are set to zero. The blue line corresponds to a calibration that adds 𝜌 and 𝜙. The red line corresponds to calibration which also
considers 𝛹 and 𝛷. Off-block-diagonal elements are magnified by 100 times.
on compound waveplates. Such retarders can be also designed so that
they have retardances close to the optimal one, but typically they do
not reach the level of achromaticity of a Fresnel rhomb. Moreover,
as the dependence of the retardance with wavelength is far more
complex than for a Fresnel rhomb, their spectroscopic response cannot
be modeled with a smooth curve such a Cauchy dispersion.

Finally, we also took into consideration 𝛹 and 𝛷 parameters in the
calibration. As these parameters were expected to have a very small
value, their initial values for the fit were set to zero in the reflection
calibration. Fig. 3 shows the results of the calibration and the best
spectroscopic fits for these parameters. Both 𝛹 and 𝛷 have a very slight
deviation from zero so their overall role in the calibration process is
relatively small.

Fig. 4 shows the experimental measurements of <100> plane silicon
wafer after calibration where the scale of off-block-diagonal elements
is magnified 100 times for a clear comparison. As expected, when
only the linear retardance 𝛿 was calibrated (results shown in the black
curve) obvious systematic errors occur producing the deviation of
the off-block-diagonal from zero. After the 𝜌 and 𝜙 parameters were
incorporated into calibration, systematic errors significantly decreased,
as it shown by the blue curve. When 𝛷 and 𝛹 were also added to the
calibration, systematic error is further improved and it reaches the best
level, here shown by the red curve. After the calibration process, the
accuracy of our Mueller matrix ellipsometer is better than 0.002 for all
the available spectral range, while precision stays around 0.0005 in all
Mueller matrix elements.

5. Conclusion

We have presented a calibration method for Mueller matrix ellip-
someter based on Fresnel rhombs where the most general form of an
elliptical retarder with small diattenuation is employed to describe
the Fresnel rhombs. The advantage of this formalism is that both the
stress-induced retardance and the small diattenuation coming from
the interfaces are taken into account in the calibration, at the same
time that the ‘‘intrinsic’’ linear retardance of the rhomb arising from
total internal reflection is precisely determined. The results show that
our Fresnel rhombs act as elliptical retarders with small ellipticity,
which substantially depends on the stress on the prism applied by the
holder. After our spectroscopic calibration of linear retardance, optical
5

rotation, and azimuth angle the systematic errors of our Mueller matrix
measurements have been significantly improved.
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