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Abstract 

 

Cardiovascular diseases remain the leading cause of death worldwide. This global burden 

continues to rise due to aging populations, unhealthy diets, sedentary lifestyles, and 

increasing rates of obesity and diabetes. This work explores the implementation of a 

Mediterranean diet intervention strategy on cardiovascular and metabolic health, focusing 

on elderly adults at high cardiovascular risk. Studying data from three subsamples of two 

randomized controlled studies, PREDIMED and PREDIMED-Plus, the work investigates 

the mid- and long-term outcomes of a hypocaloric Mediterranean diet (PREDIMED-Plus) 

promoted with physical activity, versus a traditional Mediterranean diet, on key metabolic 

markers, inflammatory processes, and gene expression. The first study demonstrates 

significant improvements in lipid profile, glucose metabolism, leptin levels, and pro-

inflammatory markers. These results support the Mediterranean diet’s role combined with 

moderate physical activity as a viable strategy for weight loss, low-grade inflammation 

and metabolic health improvement in populations with metabolic syndrome. 

 

The second study, framed within the PREDIMED and PREDIMED-Plus trials, 

investigates gene expression linked to cholesterol efflux process, the first step of reverse 

cholesterol transport. The focus of the study lies on cholesterol transporters and the 

cholesterol efflux regulatory molecules involved. Mild upregulation was found in 

cholesterol-related genes after long-term adherence to an ad libitum Mediterranean diet 

enriched with extra-virgin olive oil or mixed nuts. 

The third study also conducted within the PREDIMED trial, examines the relationship 

between Mediterranean diet supplementation (particularly with extra-virgin olive oil) and 

the modulation of gene expression related to both cardiovascular and neurodegenerative 

diseases. Significant gene expression changes were observed in pathways linked to 

neuroinflammation, suggesting that a cardioprotective diet like the Mediterranean diet 

may offer neuroprotective benefits. This modulation of inflammation-related genes may 

underlie the diet’s protective effects against cognitive decline and neurodegenerative 

diseases, such as Alzheimer’s disease, particularly in high-risk elderly populations. 

 

In summary, these studies provide strong evidence for the Mediterranean diet’s efficacy 

in improving cardiovascular health and regulating gene expression associated with 

reverse cholesterol transport and neuroinflammation. However, limitations include the 

specific focus on high-risk populations, limiting the generalizability of findings to broader 

populations. Future research should aim to explore these effects in more diverse cohorts 

and investigate the long-term neuroprotective effects of such dietary interventions. 
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EPIDEMIOLOGY OF CARDIOVASCULAR DISEASE 
 

Global burden of cardiovascular diseases (CVDs) still represents a significant number of deaths 

worldwide. Recent report providing updated data across the five continents, illustrated that 

ischemic heart disease remains the leading cause of global CVD mortality (Figure 1) (1). CVDs 

continue to be the leading cause of mortality in European countries (3.9 million per year), with 

rates strongly influenced by socioeconomic status (2). In Spain, according to National Statistics 

Institute, in 2022 diseases of the circulatory system ranked first as the leading cause of mortality 

(3). For the first time, in 2023, oncology diseases were the leading cause of mortality (4). 

 

According to the World Health Organization (WHO), CVDs are defined as a group of disorders 

affecting heart and blood vessels, including: 1) coronary heart disease (CHD) – affecting the blood 

vessels supplying the heart muscle; 2) cerebrovascular disease – a disease involving the blood 

vessels supplying the brain; 3) peripheral arterial disease – a disease of blood vessels supplying 

the arms and legs; 4) congenital heart disease – birth defects that affect the normal development 

and functioning of the heart caused by malformations of the heart structure present from birth; 

and 5) deep vein thrombosis and pulmonary embolism – blood clots in the leg veins, which can 

dislodge and move to the heart and lungs (5). 

 

 

Figure 1 - Estimated death rate from cardiovascular diseases per 100,000 people in world population, 2019 (6) 

 

Stronger preventive measures and investment in early diagnosis and treatment are essential. 

Population-level policies, including fiscal and regulatory measures targeting food policy, alcohol 

intake, physical activity (physical activity), and smoking, can yield significant health and 

economic benefits by reducing CVD mortality. Cost-effective policies that can quickly impact 

and alleviate pressures on the healthcare system are necessary. Reducing social inequalities in 

CVD requires targeted policies in deprived communities, along with broader structural policies 

to improve diets, increase physical activity, and reduce smoking and alcohol intake (7,8). 
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NON-COMMUNICABLE DISEASES  
 

Noncommunicable diseases (NCDs) are non-transmissible diseases responsible for 41 million 

deaths annually, equivalent to 74% of all deaths globally. Of all NCD deaths, in 2021 77% were 

in low- and middle-income countries (Figure 2). CVDs account for most NCD deaths, around 

17.9 million people annually (9). European data from 2016 estimated around two thirds of all 

deaths in the European region resulted from diabetes (E10-E14), cardiovascular diseases (ICD-

10: I00-I99), chronic respiratory diseases (J40-J47), and cancers (C00-C97), the so-called NCDs 

(10).  

 

There are significant disparities in life expectancy among different socioeconomic groups 

particularly concerning CVD, with low- and middle-income countries experiencing much higher 

premature mortality rates than others (2,9). 

 

 

Figure 2 - Square pie chart of global mortality causes (11) 

 

The four key behavioral factors affecting mortality are tobacco use, alcohol consumption, lack of 

physical activity and unhealthy diet. In this regard, overweight and obesity constitute the leading 

risk factor causing disability, even though morbidity rates may be underestimated. Multiple 

determinants have an influence on the environment contributing to the creation of the coined term 

“obesogenic environment”. Some of them are visible (diet or physical activity) however, others 

remain less tangible (urbanism, business or education) (12).  
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ATHEROSCLEROSIS 
 

Atherosclerosis is a chronic, progressive, and lipid-driven inflammatory disease located in the 

arterial wall, characterized by the formation of fibrofatty plaques. As advanced plaques form, the 

artery wall becomes stiff, and its inner space narrows. Sometimes, these plaques can rupture or 

erode, leading to serious clinical outcomes (13,14).  

 

The vessel wall is composed of three layers; tunica intima (inner layer), tunica media (middle 

layer), and tunica adventitia (outer layer). The tunica intima is a single layer of endothelial cells 

combined with collagen and elastic fibers facing the blood flow, directly exposed to the blood and 

shear forces (15). The initial step of atherosclerosis primarily begins with the accumulation of 

certain plasma lipoproteins, such as low-density lipoproteins (LDLs) and triglyceride-rich 

lipoprotein remnants, in the intimal region. This event tends to occur in arterial bifurcations, 

where blood flow is turbulent, increasing the permeability of endothelial cells, leading to the 

trapping of lipoproteins (Figure 3) (15–17). Activation of endothelial cells occurs by the mere 

flow disturbance (17,18), subsequently augmented by the oxidation of lipids and lipoproteins plus 

stacked debris in the nascent lesion. Endothelial dysfunction is also triggered by various factors, 

including age, diabetes, obesity, and hypertension (age, diabetes, obesity, hypertension), and is a 

key regulator of vascular tone, cellular adhesion, proliferation of smooth muscle cells, 

inflammation, and thrombosis (18–21). The inflammatory landscape enhances expression of 

chemotactic, chemoattractant and adhesion molecules, which facilitates monocytes recruitment 

to the atherosclerotic core (16,21). Once located in the lesion, monocytes enter the intima and 

differentiate into macrophages, highly-active tissue cells (13).  

 

 

Figure 3 – Stages in the development of atherosclerotic lesions (14) 

 

Once the initial stage of the lesion is established, T lymphocyte cells also infiltrate into the area 

and vascular smooth muscle cells transform and migrate into the intima (16). Advanced lesions 

undergo a transition from fatty streak to a fibrous state, characterized by a connective tissue matrix 

composition and lipid-free inner core loaded with apoptotic cells. This is partially caused by 

defective efferocytosis, which is the ability to remove apoptotic cells from injured location. In 

addition, cholesterol crystal deposition and calcification of the plaque stimulate enlarge the 

necrotic core (21–23). 
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The rupture of the atheroma plaque depends on the composition of the plaque more than the size 

itself: a thinner fibrous cap with larger lipid/necrotic core characterize the unstable plaques (24). 

Plaque rupture manifests in macrovascular complications, such as acute myocardial infarction or 

stroke (25). It usually occurs unpredictably, though inflammation has been associated with plaque 

instability. Foam cells tend to concentrate in the thinnest segment, which is regarded as the 

weakest point and the most likely to break. The thrombotic response occurs spontaneously after 

the rupture and is still not fully understood, including both the onset of the ischemia and the 

thrombogenic potential of the plaque material. However, it is well-established that different 

factors significantly increase the risk and severity of thrombosis (26).  

 

It is speculated that differences in the composition of atheromatous plaques across European 

populations may contribute to the mortality rate gap from ischemic heart disease between 

southern and northern Europe. Research on the field suggests that plaques in northern European 

countries have a higher lipid content compared to those in southern countries (27). 
 

CARDIOVASCULAR RISK FACTORS: TRADITIONAL AND 

EMERGENT 
 

The Framingham Heart Study (FHS) was instrumental in identifying the "traditional 

cardiovascular risk factors" and has significantly influenced the estimation of developing CVD. 

The first significant findings included the association between hypertension, obesity, and 

hypercholesterolemia, with greater incidence of atherosclerotic heart disease. Later, age, male 

sex, diabetes, and left ventricular hypertrophy were also recognized as valuable variables for risk 

stratification (28,29). Over the years the FHS has collected multiple CVD phenotypes, such as 

blood biomarkers (including genetics, and 'omics'), urine biomarkers, imaging tests, vascular 

function tests, and adverse clinical outcomes (29). The “traditional” risk factors historically used 

in equations to predict cardiovascular events usually comprise overweight, diabetes, 

dyslipidemia, hypertension, and lifestyle habits (sedentarism/physical activity and tobacco 

consumption). These factors do not account for variability in CVD across all the populations (30). 

Emerging risk factors contribute to established paradigm from various aspects of 

physiopathology: inflammation, thrombosis, myocardial injury, HDL functionality, oxidative 

stress, adipogenesis, metabolic processes and lipoprotein metabolism such as LDL atherogenicity, 

HDL functionality, or Lp(a) levels (29,31,32). Besides the traditional and emergent factors, 

environmental factors evidence is growing due to the impact that gradually is being uncovered. 

These factors include extreme temperatures caused by climate change, air pollution, noise or 

urban environment (33–37). 

 

Risk factors can also be classified as modifiable or non-modifiable, depending on their 

reversibility and whether they can be mitigated through lifestyle changes or drug therapy (38). 

Ongoing research for new markers in CVD pursues an accurate stratification of CVD risk in the 

new era of precision medicine. The FDA defines a biomarker as “a defined characteristic that is 

measured as an indicator of normal biological processes, pathogenic processes, or biological 

responses to an exposure or intervention, including therapeutic interventions.” Several categories 

have been outlined to classify a biomarker’s usefulness, including diagnostic, prognostic, safety, 

or predictive (39).  

 

Age 

 

Age is a non-modifiable risk factor involved in the development of pathologies strongly 

associated with mortality rates (Figure 4). Age-associated physiological changes manifest in 

different organs and tissues. Vascular remodeling, such as increased vascular intima thickness or 

stiffness, usually precedes preclinical states, and can predict future cardiovascular events, in fact, 

these alterations are thought to occur before blood pressure increases and the development of 

hypertension (40). Cardiac structure is also affected by aging, thickness of left ventricular wall, 
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or increase the atrial size, are frequently observed transformations (41). The endothelium 

constitutes a highly heterogeneous monolayer (42) coating the luminal face of blood vessels. 

Numerous and complex functions has been attributed to endothelium, related to blood fluidity 

and coagulation, fluid filtration, promoting vascular tone, growth and integrity maintenance (19). 

In this regard, age-related changes has been observed, including the loss of competence, 

progression to a stiffer vascular tree, along with an impaired angiogenic and repairing processes, 

and a natural inclination to proinflammatory or prothrombotic status (19,21,40,43,44). Although 

multiple factors are known to damage the endothelium, dysfunction has been observed over the 

years even in healthy, normotensive individuals (40).  

 

 

Figure 4 - Death rate from cardiovascular diseases by age group, Spain, 2021 (45) 

 

The molecular mechanisms explaining aging are complex, and not completely elucidated; 

however, increasing evidence sheds light on the intricate hallmarks of aging: telomere attrition, 

genomic instability, stem cell exhaustion, epigenetic alterations, reactive oxygen species 

accumulation (ROS) or deregulated nutrient sensing among others (20,46). In particular, CVD 

development is characterized by a decline in the production of angiogenic cytokines, a drastic 

reduction in stem cells responsible for vascular homeostasis, and an unavoidable impairment of 

the endothelium; processes that cumulatively increase  the overall risk of developing 

atherosclerotic disease (47,48). Even though aging is inevitable, biological processes can be 

tackled to decelerate the ongoing deleterious effects of time. Factors associated with lifestyle 

habits like physical activity, smoking habit or dietary patterns play a crucial role.  

 

The homeostasis of cholesterol metabolism is regulated by multiple factors, including cholesterol 

synthesis, intestinal cholesterol absorption, hepatic cholesterol uptake, cholesterol excretion, bile 

acid production, and deconjugation by intestinal microflora and subsequent excretion (49,50). 

The disturbance of these factors can explain the dysregulation of cholesterol metabolism linked 

to aging (51). High-density lipoprotein cholesterol (HDL-c) and low-density lipoprotein 

cholesterol (LDL-c) levels worsen with age, respectively decreasing and increasing. Several 

mechanisms have been proposed to explain these phenomena, such as the impairment of LDL 

particles removal, the increased catabolism of HDL, and aside from strict circulating levels, the 

HDL become inefficient transporting cholesterol over time (51,52).  

 

Among the facts contributing to CVD advancement, loss of HDL functionalities is notably 

detrimental. Aging is characterized by alterations in high-density lipoprotein (HDL) composition 

and function (53), leading to decreased cholesterol efflux capacity (CEC) (54,55), accompanied 
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by a reduction of antioxidant activity (56) and an increased susceptibility to oxidation (57). These 

changes negatively affect cholesterol removal, favoring the accumulation of LDL-c. 

Susceptibility of LDL to oxidation is also affected in the elderly (58,59). This process has been 

partially attributed to Paraoxonase-1 activity effects over time (56,60,61).  

 

Sex and gender 

 

It's important to recognize the difference between sex and gender, as they carry distinct 

implications for an individual's experiences and identity. According to the WHO, sex refers to the 

biological and physiological characteristics that classify someone as female, male, or intersex, 

including chromosomes, hormones, and reproductive organs. Gender, on the other hand, refers to 

the socially constructed characteristics associated with being a woman, man, girl, or boy, such as 

behaviors, roles, expectations, and norms that vary across cultures and change over time (Figure 

5) (62,63). Sex represents an inherent risk factor for CVD, with varying clinical manifestations 

between sexes, being cerebrovascular disease more prevalent in females (64) while ischemic heart 

disease is more prevalent among males (65).  

 

 

Figure 5 - Sex-related and gender-related disparities in CVD risk and outcomes (66) 

 

Physiological sex disparities have been widely reported through years. Women experience unique 

situations related to menopause and pregnancy-related disorders (67,68). Both have been already 

demonstrated to involve particular cardiovascular complications that need to be accounted for 

(69). Data collected showed a lower incidence of  coronary artery diseases (CAD) in women 

during the reproductive age (70), which increases during menopause (71). Overall, the onset of 

CAD disease tends to appear 6 to 8 years later in men (62), just as the development of 

atherosclerosis (70). Another differential biological factor is the role of hormones in lipid 

metabolism, with men showing higher pro-atherogenic lipid profile (72). Positive association 

between androgen levels and proatherogenic lipid profile has been previously reported (71). 

Blood pressure values are also highly influenced by sex. Blood pressure begins to rise earlier in 

men, however, analyzing trajectory courses by sex, the pattern displayed showed a faster increase 

in blood pressure in women (73).  

 

Among gender-related disparities, psychosocial factors impact mortality and morbidity rates of 

cardiovascular diseases (74). Women more frequently experience disadvantages such as 

unemployment or lack of social support, which in turn result in higher levels of anxiety and 

depression. Women, especially belonging to minority ethnicities, also have unequal access to 

wealth and income, with poorer cardiovascular health and wellbeing status. In addition, women 

continue to be at a disadvantage because they remain severely under-represented in CVD clinical 

trials (75–77). The death rates per 100,000 population from 2000 to 2020 in Spain consistently 

show higher mortality rates from CVD in females compared to males (Figure 6). 
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Figure 6 - Death rate sex stratified per 100,000 population caused per CVD (ICD-10 codes: I00-I99) in Spain (2000-

2020). Adapted from https://platform.who.int/mortality/themes/theme-details/topics/topic-

details/MDB/cardiovascular-diseases 

 

Race and ethnicity 

 

“The terms used for race, ethnicity, culture, and similar constructs often spark controversy due 

to issues with clear definitions and overlapping content” (78). Based on American Psychological 

Association race is a social construction and categorization of people based on perceived shared 

physical traits that result in the maintenance of a sociopolitical hierarchy. Ethnicity is defined as 

a characterization of people based on having a shared culture (e.g., language, food, music, dress, 

values, and beliefs) related to common ancestry and shared history. The meaning of these terms 

is continually under review and strong critical analysis (78).  

 

The biological aspect of the socially defined concept of race is being abandoned by academics 

(biologists, anthropologists, and geneticists), claiming it is not a discrete variable that allows us 

to distinguish by physical characteristics. Racial groups are no longer considered to comprise 

biological variation as a whole (79,80). From an epidemiological standpoint data show that 

racially and ethnically minoritized patients experience higher rates of morbidity and mortality 

from CVD (81), probably due to the significant influence of factors such as socioeconomic status, 

income, education, neighborhood conditions, perceived racism, environmental exposures, 

healthcare access, and other social determinants of health (82,83). However, there is ongoing 

controversy regarding whether race or racism should be considered the risk factor, reflecting 

broader debates about the definition and interpretation of risk factors (84,85).  

 

However, historical risk factors have been described in self-reported ethnic groups, therefore, 

evidence collected so far has been gathered in this manner. In this regard, different 

epidemiological studies have studied the prevalence of cardiovascular risk factors. Twenty-year 

trends in the United States population showed BMI, systolic blood pressure and Glycated 

Hemoglobin A1c (HbA1c) to be increased in the black population compared to white population. 

Adjustments for income, home ownership, employment, health insurance, and access to health 

care were considered. Obesity, hypertension, and diabetes were more prevalent among Black 

participants compared to White participants, while hypercholesterolemia was less prevalent 

(86,87). Diabetes is also more present among Hispanics (88). Regarding hypertension, Black 

people have shown higher blood pressure values than White population (88). Mortality rates from 

all CVDs were significantly higher in African Americans compared to the White population (87). 
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The vast majority of research has been performed on White population, although some efforts 

towards validating prediction algorithms on different ethnic groups have been made (89). In this 

line, calibration of FHS risk models for specific racial/ethnic cohorts (non-Hispanic White 

(NHW), non-Hispanic black (NHB), and Mexican American (MA)) have yielded optimal results 

predicting mortality rates. However, risk factors displayed varying degrees of association with 

CVD mortality, and the prevalence of the risk factors varied among different racial and ethnic 

groups (90). Further investigations have demonstrated in different cohorts that the FHS prediction 

functions perform reasonably well for both White and Black men and women. However, when 

applied to Japanese American and Hispanic men, as well as Native American women, 

recalibration was necessary (91). 

 

Hypertension 

 

Hypertension is a well-recognized risk factor for CVD. Adult population presenting with systolic 

blood pressure (SBP) ≥ 130 mmHg or diastolic blood pressure (DBP) ≥ 80 mmHg is the cutoff 

values presented by the American College of Cardiology (ACC)/American Heart Association 

(AHA). For elevated blood pressure (SBP between 120-129 mmHg and DBP < 80 mmHg) or 

stage 1 hypertension (blood pressure 130-139/80-89 mmHg) nonpharmacological 

recommendations are proven to be beneficial for prevention and treatment of hypertension, 

including weight loss, healthy diet, reduced sodium intake, physical activity and moderated 

alcohol intake. Guidelines uniformly recommend pharmacological therapy when blood pressure 

≥ 140/90 mmHg (92), although threshold for hypertension varies between ACC/AHA (>130/80 

mm Hg) and the European Society of Cardiology (ESC)/European Society of Hypertension (ESH) 

(93). Mediterranean diet (MedDiet) has consistently shown an improvement in blood pressure 

associating higher adherence with lower blood pressure (94–96). 

 

Smoking 

 

Certain chemicals in cigarette smoke induce oxidative stress, which activates endothelial cells, 

macrophages, and platelets. This activation prompts the release of proinflammatory cytokines, C-

reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), leading to 

endothelial dysfunction. Cigarette smoking also impairs the vasodilatory function of the 

endothelium, largely due to a reduction in nitric oxide (NO) availability. NO, produced by 

endothelial cells, is crucial for vasodilation and regulation of vascular tone. In addition, tobacco 

consumption introduces a large number of free radicals, particularly from its gas and tar phases.  

These radicals initiate oxidative stress, a key factor in the progression of atherosclerosis because 

LDL, which are highly susceptible to oxidation, accumulate in the arterial wall, and are more 

easily absorbed by macrophages (97,98).  

 

Epidemiological studies have demonstrated that smoking significantly impacts long-term 

cardiovascular health by increasing the risk of various CVD subtypes (99). Smokers experience 

an earlier onset of CVD and a greater risk of fatal CVD events as their first presentation of the 

disease. Additionally, smoking is associated with a higher long-term risk of heart failure, 

particularly pronounced in younger men and older women. Overall, smoking accelerates the onset 

of CVD, reduces overall survival, and contributes to a higher burden of CVD across all age and 

sex groups (100). Not only active smoking is harmful for health, but secondhand smoking has 

also been observed in epidemiological studies to increase CHD, with the estimated detrimental 

effects being much larger than expected (101). 

 

From an economic standpoint, reducing smoking prevalence yields substantial short-term 

benefits, particularly in terms of reducing hospitalizations for acute myocardial infarctions 

(AMIs) and strokes, as well as saving significant amounts of money in direct medical costs (102). 

Overweight and obesity 
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Defined as accumulation of excessive fat deposits, overweight is the pre-stage of obesity. Obesity 

is defined as a chronic relapsing disease caused by the excess of adipose tissue, with a detrimental 

impact in the development or prognosis of different conditions (Figure 7) (62). Currently regarded 

as a pandemic, different transformations in Western societies have driven to favor this 

“obesogenic” landscape: economic growth, industrialization, mechanized transportation or 

urbanization. From the behavioral standpoint, the dietary pattern has shifted towards a higher 

consumption of sweetened, high-density and nutrient-poor food than recommended. This is 

probably caused by accessibility and inexpensiveness that characterize ultra-processed food. To 

complete the picture, sedentary lifestyle has become a widespread reality that adds up to the 

current scenario (62,103,104). 

 

 

 

 

 

 

 
 

Figure 7 - Main and additional conditions of the MetS as the consequences of obesity (105) 
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The most accessible approach to measure is body mass index (BMI), which is calculated as weight 

(kg)divided by height squared (m2). BMI is usually categorized by establishing thresholds: 

 

 

Table 1 Adapted from (103) – Classification of overweight/obesity grades based on BMI values 

Abdominal adiposity has been strongly correlated with total body fat. Waist circumference, a 

measure of abdominal adiposity, is widely recognized as an indicator of cardiovascular risk 

worldwide (106,107). 

 

Table 2 (Adapted from (106)) - Current Recommended Waist Circumference Thresholds for Abdominal Obesity 

 

Differences can also be encountered in the fat type proportion, with a higher risk for individuals 

who have greater visceral adipose tissue compared to subcutaneous adipose tissue (62,107). 

Visceral adipocytes are metabolically more active and exhibit a pro-inflammatory profile. They 

usually comprise the highest proportion of adipose tissue in the abdominal cavity (108). The 

expansion of adipose tissue resulting from a positive energy balance consists of an increase in the 

number of adipocytes, referred to as hyperplasia, and the enlargement of adipocyte size, a process 

known as hypertrophy (109). 

 

 Age Indicator 
Normal 

weight 
Overweight Obese 

Adults > 20 years BMI (kg/m2) 
18.50 to 

24.99 
25 to 29.99 

≥30.00 

Class1: 30 to 34.99 

Class2: 35 to 39.99 

Class3: ≥ 40.00 

Population Organization 

Normal Waist Circumference Threshold 

for Abdominal Obesity 

Men Women 

Europid IDF ≥ 94 cm ≥ 80 cm 

Caucasian WHO* 
≥ 94 cm 

≥ 102 cm 

≥ 80 cm 

≥ 88 cm 

United States 
AHA/NHLBI (ATP 

III)* 
≥ 102 cm ≥ 88 cm 

Canada Health Canada ≥ 102 cm ≥ 88 cm 

European 

European 

Cardiovascular 

Societies 

≥ 102 cm ≥ 88 cm 

Asian (including 

Japanese) 
IDF ≥ 90 cm ≥ 80 cm 

Asian WHO ≥ 90 cm ≥ 80 cm 

Japanese 
Japanese Obesity 

Society 
≥ 85 cm ≥ 90 cm 

China Cooperative Task Force ≥ 85 cm ≥ 80 cm 

Middle East, 

Mediterranean 
IDF ≥ 94 cm ≥ 80 cm 

Sub-Saharan African IDF ≥ 94 cm ≥ 80 cm 

Ethnic Central and 

South American 
IDF ≥ 90 cm ≥ 80 cm 
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The endocrine role of adipose tissue has recently been established within the scientific 

community. Currently, the paradigm of adipose tissue is now considered a potent organ with 

capacity to secrete hormones, cytokines and adipokines, which contributes to an increased 

inflammatory status (110–114). In this regard, research on MedDiet has revealed an attenuating 

effect on the inflammatory biomarkers (115–117). One of the most frequent comorbidities of 

obesity is type 2 diabetes mellitus (T2DM), where fat mass proportion and distribution correlate 

with glucose metabolism impairment (impaired insulin sensitivity and β-cell secretion, 

hyperinsulinemia, elevated fasting glucose levels) (107,118,119). In this line, adipokines, 

cytokines produced by adipose tissue, are elevated in T2DM patients with impaired glucose-

related metabolic tests (120).  

 

Diabetes 

 

Diabetes mellitus (DM) constitutes a chronic metabolic condition characterized by the presence 

of hyperglycemia in the absence of treatment. It affects an estimated 537 million individuals 

around the world, with a prevalence rate of 10.5 %, based on data from 2021 (121). The diagnosis 

is mainly established from biochemical tests assessing plasma glucose levels; either the fasting 

concentration, 2-hour levels during the glucose tolerance test, random glucose, and HbA1c 

concentrations (Table 3) (121,122). HbA1c has shown strong evidence associating circulating 

levels with clinical outcomes. In fact, clinical trials have elucidated that improvements in HbA1c 

levels reduce the risk of microvascular complications (123). 

 

  

Table 3 (adapted from ESC (European Society of Cardiology) and ADA (American Diabetes Association) guidelines 

(121,122)) - Diagnostic Criteria for Diabetes: Comparison Between ESC and ADA Guidelines 

 

DM is usually classified according to the etiology causing the hyperglycemic state. Type 1 

diabetes mellitus (T1DM) is caused by destruction of pancreatic islets due to an autoimmune 

process, leading to deficiency in insulin synthesis. This type accounts for 5 - 10 % of all cases of 

diabetes and is most commonly diagnosed in individuals under the age of 35 presenting with 

diabetes symptoms. T2DM encompasses 90 – 95% of all-type diabetes, and is defined by insulin 

resistance and, a relative inadequacy of insulin secretion. In absolute terms, plasma insulin levels 

(both fasting and after food intake) are typically elevated; however, they are insufficient to 

maintain normal glucose homeostasis. Concerning this matter, the Homeostasis Model 

Assessment (HOMA) is a parameter that estimates insulin resistance (HOMA-IR) and β-cell 

function (HOMA-B) from fasting glucose and insulin levels. It correlates well with established 

techniques like the euglycemic clamp and hyperglycemic clamp (124). Despite moderate 

precision, HOMA effectively quantifies insulin resistance and β-cell dysfunction, supporting the 

role of a feedback loop in glucose-insulin regulation (125), although some caveats have been 

reported regarding reproducibility and statistical distribution, requiring careful application (126).  

 

In the field of carbohydrate metabolism, GLP-1 (glucagon-like peptide-1) has become a 

significant biomarker. This peptide hormone, which is released from the intestines in response to 

Glycemic biochemical 

criteria 
ADA ESC 

FPG FPG ≥126 mg/dL (≥7.0 mmol/L) 

2-hours PG during 

OGTT* 
≥200 mg/dL (≥11.1 mmol/L) 

HbA1c HbA1c ≥ 6.5% ( ≥ 48 mmol/mol) 

RPG ≥200 mg/dL (≥11.1 mmol/L) 

* FPG: fasting plasma glucose, OGTT: oral glucose tolerance test, HbA1c: glycated 

hemoglobin, RPG: random plasma glucose 
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food intake, plays a crucial role in regulating blood glucose levels by enhancing insulin secretion 

and inhibiting glucagon release (127). Additionally, GLP-1 slows gastric emptying and 

contributes to satiety, promoting fullness and reducing food intake, thereby further supporting 

glucose control and weight management (Figure 8) (128). Monitoring GLP-1 levels provides 

valuable insights into an individual's metabolic status and the effectiveness of therapeutic 

interventions for managing conditions such as T2DM (129), and also for lowering the risk of 

cardiovascular death, heart attack, and stroke in adults who have cardiovascular disease and either 

obesity or overweight (130). 

 

 

Figure 8 - Proposed routes of action of GLP-1 in the central regulation of feeding and glucose metabolism (128) 

 

There are other entities of DM, also known as hybrid forms: the slowly evolving immune-

mediated diabetes and ketosis-prone diabetes. Additionally, gestational diabetes mellitus is a 

diabetes subtype, which constitutes one of the most frequent medical complications during 

pregnancy, which can cause problems at delivery and postpartum, and may lead to an increase in 

cardiovascular risk in the future. Lastly, genetic advances in the last decades have encouraged the 

unraveling of molecular mechanisms behind diseases (defects in β-cells or insulin receptors) 

(121,122,131–133). 

 

Among the already mentioned NCDs, T2DM has an enormous negative impact in both health 

indicators (morbidity and premature mortality), and economic costs (at individual and collective 

level), especially in developing countries (134,135). However, Western countries have also been 

experiencing a disproportionate increase of T2DM, probably driven by the sedentary lifestyles, 

and consumption of ultra-processed and high-calorie foods (2,136). In this regard, European 

countries have committed to collaborate in reducing DM burden, working on priority points such 

as prevention, or care and management of T2DM (137,138).  The effect of emerging dietary 

patterns in Western societies contributes to the early development of prediabetic states or the onset 
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of T2DM. On this subject, Mediterranean dietary pattern consisting of several pieces of fruit, 

minimally processed wholegrains, complex carbohydrates and vegetables has proven to reduce 

the risk of diabetes (139–143).  

 

Structural microvascular damage precedes the development of cardiovascular events in patients 

with T2DM, whereas changes in microvascular function occur before microangiopathy. 

Mechanisms through which hyperglycemia causes vascular damage include activation of nuclear 

factor κ-B (NFκB), which increases gene expression in endothelial cells, monocyte activation, 

and vascular smooth muscle cell proliferation. T2DM patients often present abnormalities in 

lipoprotein particles, reduction in HDL-c levels, and an increase in triglyceride-rich lipoproteins, 

along with an elevated oxidative and inflammatory status that accelerate atherosclerosis (144). At 

the genetic and epigenetic level, both T2DM and CVD have been found to share common traits 

that predispose individuals to either condition, which may lead to potentially useful biomarkers 

in the future (145). 

 

Dyslipidemia 

 

Dyslipidemia is a condition characterized by abnormal lipid and/or lipoprotein levels, grouping 

elevated triglycerides (hypertriglyceridemia) and LDL cholesterol (LDL-c), along with reduced 

HDL-c levels (146). Different classifications have been proposed over time for dyslipidemia. In 

2001, the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in 

Adults (Adult Treatment Panel III, or ATP III) established the following classification (in mg/dL): 

 

Variable Level (mg/dL) Classification 

LDL-c <100 Optimal 

 100-129 Near or above optimal 

 130-159 Borderline high 

 160-189 High 

 ≥190 Very high 

Total cholesterol <200 Desirable 

 200-239 Borderline high 

 ≥240 High 

HDL-c <40 Low 

 ≥60 High 

Triglycerides <150 Normal 

 150-199 Borderline high 

 200-499 High 

 ≥500 Very high 

 

Table 4 - ATP III Dyslipidemia Classification Criteria (mg/dL) 

 

Dyslipidemia is generally described as the total cholesterol, LDL-c, triglycerides, apo B or 

lipoprotein (a) levels above the 90th percentile or HDL and apo A levels below the 10th percentile 

of the general adult population (147).  Optimal lipid levels differ based on a person's age, sex, and 

various risk factors . Primary dyslipidemia is caused by genetic mutations affecting specific points 

in pathways of lipid metabolism. Secondary dyslipidemia results from various causes related to 

lifestyle habits (lack of physical activity, unhealthy nutrition patterns, alcohol abuse) or 

concomitant comorbidities (diabetes mellitus, kidney disease, hypothyroidism). 

Epidemiologically, Western countries have seen a marked decrease, while developing countries 
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have experienced a general increase (148). The impact of both the quantity and type of dietary fat 

has been extensively researched over recent decades, yet further controlled studies are needed to 

address unsolved questions (149). 

 

Hypertriglyceridemia 

 

Hypertriglyceridemia is defined as plasma triglyceride levels > 150 mg/dL and constitutes a 

criterion of metabolic syndrome (MetS). The causal relationship between triglycerides levels and 

the future of CVD events has been controversial due to different methodological grounds (quality 

of the studies, sample size or distribution of the variable across populations) (150,151). It has 

even failed to demonstrate an overall improvement in CVD events with triglyceride-lowering 

therapy (152). Additionally, Mendelian randomization studies support plasma triglycerides 

constitutes an independent risk factor for CVD (151,153–155), although this statement must be 

taken cautiously, because most variants associated with triglycerides are also associated with 

HDL-c, LDL-c or Lp(a) (156,157). Weight reduction has led to an overall improvement in 

triglyceride levels (158), which is usually achieved through diet intervention and physical activity 

(159–161). In this regard, MedDiet has demonstrated consistent effect in reducing triglycerides 

levels (62,162,163). 

 

Hypercholesterolemia  
 

Hypercholesterolemia is defined as total cholesterol plasma concentrations above 200 mg/dL. 

Traditionally, the atherogenic LDL fraction is represented by the LDL-c, which is a primary risk 

factor for atherosclerosis. Different estimation formulas to calculate LDL-c have been published 

over the years with varying degrees of accuracy (165). The most popular is the Friedewald 

formula, which need to meet certain conditions (triglycerides ≤ 400 mg/dL) along with the 

assumption of 1:5 ratio of VLDL to triglycerides (62). However, updated evidence has 

demonstrated undertreatment due to unreliable results when LDL-c < 70 mg/dL, especially if 

triglycerides exceeds 150 mg/dL (164). Alternative estimation methods have already been 

proposed to address limitations of the Friedewald formula, and direct methods to quantify have 

been developed, although they have certain limitations (166–169).  

 

Risk assessment for atherosclerotic cardiovascular disease (ASCVD) has been addressed by the 

American Heart Association, whose guidelines provide multiple recommendations classified by 

the strength of the evidence. Healthy lifestyle habits are still emphasized as the primary choice 

for maintaining optimal LDL-c values, including healthy dietary options (Table 5). Depending on 

the ASCVD risk, pharmacological therapy should be started at different intensities (170). New 

cholesterol-lowering agents have been introduced (PCSK9 inhibitors and ezetimibe) and tested in 

randomized controlled trials (RCT) for prescription in treating various indications (164). In this 

regard, MedDiet is known to improve lipid metabolism, reducing total cholesterol and LDL-c 

circulating levels (94,117). 

 

Recent findings have pointed out remnant cholesterol contributes to atherosclerosis, and therefore 

cardiovascular risk stratification (171). Multiple definitions have recently emerged, but remnant 

cholesterol is mostly characterized by cholesterol contained in triglyceride-rich lipoproteins: 

chylomicron residues in the non-fasting state, intermediate-density lipoprotein (IDL) in the 

fasting state, and very low-density lipoprotein (VLDL) (172). Adverse cardiovascular events and 

cardiovascular mortality have been found to be negatively influenced by remnant cholesterol 

concentration (171,173).  
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 To be preferred To be used in moderation 
To be chosen occasionally in 

limited amounts 

Cereals Wholegrains 
Refined bread, rice, and pasta, 

biscuits, corn flakes 
Pastries, muffins, pies, croissants 

Vegetables 
Raw and cooked 

vegetables 
Potatoes 

Vegetables prepared in butter or 

cream 

Legumes 

Lentils, beans, fava 

beans, peas, 

chickpeas, soybean 

  

Fruit Fresh or frozen fruit 

Dried fruit, jelly, jam, canned 

fruit, sorbets, ice lollies/popsicles, 

fruit juice 

 

Sweets and 

sweeteners 

Non-caloric 

sweeteners 

Sucrose, honey, chocolate, 

sweets/candies 

Cakes, ice creams, fructose, soft 

drinks 

Meat and fish 
Lean and oily fish, 

poultry without skin 

Lean cuts of beef, lamb, pork, and 

veal, seafood, shellfish 

Sausages, salami, bacon, spare 

ribs, hot dogs, organ meats 

Dairy food 

and eggs 

Skimmed milk and 

yoghurt 

Low-fat milk, low-fat cheese and 

other milk products, eggs 

Regular cheese, cream, whole 

milk and yoghurt 

Cooking fat 

and dressings 

Vinegar, mustard, fat-

free dressings 

Olive oil, non-tropical vegetable 

oils, soft margarines, salad 

dressing, mayonnaise, ketchup 

Trans fats and hard margarines 

(better to avoid them), palm and 

coconut oils, butter, lard, bacon 

fat 

Nuts/seeds  All, unsalted (except coconut) Coconut 

Cooking 

procedures 

Grilling, boiling, 

steaming 
Stir-frying, roasting Frying 

 

Table 5 - Food choices to lower low-density lipoprotein cholesterol and improve the overall lipoprotein profile. 

Adapted from (156) 

 

Metabolic syndrome 

 

MetS is a condition characterized by the presence of a cluster of risk factors for CVD and T2DM 

(174). There is controversy about whether MetS is a distinct syndrome or just a collection of 

unrelated phenotypes. The harmonization of MetS has yielded the following conditions to meet 

(106,175): 

• Elevated waist circumference: Population- and country-specific definitions are defined in 

Table 2 

• Elevated triglycerides (drug treatment for elevated triglycerides is an alternate indicator): 

≥ 150 mg/dL (1.7 mmol/L) 

• Reduced HDL-c (drug treatment for reduced HDL-c is an alternate indicator): ˂  40 mg/dL 

(1.0 mmol/L) in males; ˂ 50 mg/dL (1.3 mmol/L) in females 

• Elevated blood pressure (antihypertensive drug treatment in a patient with a history of 

hypertension is an alternate indicator): Systolic ≥ 130 mm Hg and/or diastolic ≥ 85 mm 

Hg 

• Elevated fasting glucose (drug treatment of elevated glucose is an alternate indicator): ≥ 

100 mg/dL 

 

The key risk factors for the syndrome are abdominal obesity and insulin resistance. Research 

suggests that excess visceral fat is more closely linked to insulin resistance than other types of 

adipose tissue. In general, abdominal (or upper-body) obesity is more strongly associated with 

insulin resistance and MetS compared to lower-body obesity (174). Other relevant characteristics 

include a proinflammatory and prothrombotic state which aggravate the atherosclerotic process 
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leading to cardiovascular events. Several biomarkers have been postulated as useful tools to assess 

the status of individuals (176,177). 

 

HDL functions and cholesterol efflux capacity  

 

A wide range of functionalities are attributed to HDL lipoproteins, and CEC is possibly one of the 

most extensively studied. CEC is defined as the output of cholesterol removal from different 

donors to the subsequent acceptors, mainly composed by HDL lipoproteins (Figure 9) (178,179). 

On the other hand, from an epidemiological standpoint HDL-c negatively correlates with CVD 

events (180,181), although accumulated evidence has questioned whether HDL-c levels constitute 

a causal factor for CVD event. Mendelian randomization studies have challenged the assertion of 

HDL-c levels as a predictive variable of CVD events (62,182). The intersection of both scientific 

statements has led to explore HDL functionalities as a plausible scientific bridge to explain the 

CVD events reduction and HDL particles (179,180,183,184). 

 

 

Figure 9 - HDL metabolism and reverse cholesterol transport pathway (185) 

 

Cholesterol efflux has been observed as an adjustable functional activity, which inversely 

correlates with overweight and BMI (186). Diverse metabolic conditions impair HDL 

functionality, including obesity, hyperglycemia, and inflammation (187,188). However, certain 

factors have a positive influence, such as adherence to MedDiet pattern which has been shown to 

improve HDL functionalities (189), including CEC (32,190). Based on our previous experience 

and functional studies with PREDIMED participants, we have demonstrated that the MedDiet 

enhances CEC. Using in vitro techniques with cell cultures, we observed that isolated HDL from 

MedDiet intervention participants extracted cholesterol from macrophage THP-1 more effectively 

than HDL from the control group (32). To fully understand the underlying regulation of 

cholesterol efflux processes, the study of transcriptomic signature may be a prolific approach to 

picture a mechanistic profile. Prior PREDIMED substudies examined MedDiet transcriptomic 

response modulation, proving MedDiet enriched with extra-virgin olive oil (EVOO) pro-
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inflammatory genes attenuation at midterm(191,192). On the contrary, 3-year follow-up did not 

observe transcriptomic amelioration in MedDiet groups; however enhancement in systemic 

inflammatory biomarkers was reported (193). The hydroxytyrosol a phenolic compound 

characteristic of olive oil intake has been proven to interact with regulatory pathways involved in 

the expression of the transporters in cholesterol efflux. In vitro experiments described stimulation 

of the PPAR-γ/LXR-α/ABCA1 pathway, where PPAR-γ (peroxisome proliferator activated 

receptor gamma) and LXR-α (liver X receptor alpha) act as enhancers of cholesterol efflux, 

upregulating ABCA1 (ATP binding cassette subfamily A member 1) (194). In this regard, human 

studies have also described modulation of key players (ABCA1, SR-B1, PPARA, PPARG, PPARD 

and CD36) after 2 weeks of high-phenolic olive oil intake (195). Cholesterol efflux is a complex 

process with plenty of molecules interacting with each other. ABCA1 and ABCG1 (ATP binding 

cassette subfamily A or G member 1) are transporters, pumping cholesterol to different acceptors 

(nascent lipid-free HDL or more mature HDL already containing cholesterol, respectively). Both 

membrane proteins are expressed in peripheral blood cells, macrophages and foam cells shuttling 

cholesterol in the first step of reverse cholesterol transport (179). There is also an alternative ATP-

free mechanism by passive diffusion performed by SR-B1 (Scavenger Receptor Class B Type 1), 

interplaying with mature HDL. SR-B1 seems to particularly be present and promote cholesterol 

uptake in steroidogenesis (196). 

 

Regulation is executed by various nuclear receptors, acting as cholesterol sensors, and also 

working as signal transducers involved in a wide range of activities. First, the liver X receptors 

(LXR-α and LXR-β), encoded by NR1H2 and NR1H3 respectively, form obligatory 

heterodimerization with different receptors, such as the retinoid X receptors (RXRs) or PPAR-γ. 

Among lipid-related functions, nuts play a crucial role in reverse cholesterol (Figure 10) transport 

by enhancing cholesterol efflux, which is achieved through the upregulation of ABCA1 and 

ABCG1 gene expression. The regulatory control is primarily exerted at transcriptional level 

(179,197,198).  

 

 

Figure 10 - Role of LXRs in reverse cholesterol transport from macrophages (199) 

 

The RXRs are versatile receptors that can form obligate heterodimers to control cholesterol efflux 

transcription (200). RXR form obligate heterodimers with LXR, creating LXR-RXR, which can 

be activated by different ligands that can potentially upregulate ABCA1 (201). They can also form 

permissive partnerships with PPARs (peroxisome proliferator-activated receptors), being 

susceptible of activation for ligands of both receptors. PPARs are nuclear receptors highly 

expressed in active metabolic tissues, known as fatty acid sensors (202). The PPAR-γ isoform, 

encoded by the PPARG gene, plays a role in glucose metabolism as an insulin-sensitizing agent, 
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increases adipogenesis, and activates cholesterol efflux primarily through the PPAR-γ/LXR-

α/ABCA1 pathway (202,203).  

 

The natural ligands of these nuclear receptors include cholesterol intermediate metabolites, 

unsaturated fatty acids and synthetic molecules with varying degrees of therapeutic potential 

(203,204). In this regard, the hypothesis is that nuts, due to their high content of monounsaturated 

fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), influence gene expression involved 

in lipid metabolism. PUFAs, in particular, mediate the expression of PPARG and NR1H2 (190). 

Nuts are known for their ability to enhance CEC (32,205), among other antiatherogenic actions 

related to shifting lipoprotein composition towards a less atherogenic profile (size, density and 

number) (206). In this line, MedDiet food consumption (virgin olive oil, nuts, legumes, whole 

grains and fish) improves HDL CEC but also paraoxonase-1 activity (PON1) antioxidant activity 

and cholesteryl ester transfer protein (CETP) function (207).  

 

The purported health benefits of EVOO, which also include CEC, are attributed to its high MUFA, 

polyphenols and several antioxidants constituents (208,209). The MUFA content in EVOO can 

induce physicochemical changes in the lipid composition of HDL particles favoring the efflux of 

cholesterol from macrophages to HDL (210–212). In addition, phenolic compounds especially 

abundant in EVOO, can induce cholesterol efflux (211,213–215). Certain constituents of EVOO 

have been found to indirectly enhance cholesterol efflux. Olive oil, specially EVOO, contains 

phenolic compounds could induce the gene expression of cholesterol efflux-related processes 

(211,213–215). These compounds protect against oxidative damage, which can otherwise impair 

the cholesterol efflux process. (213,216–218). 

 

Physical activity 

 

Physical activity constitutes a preventive measure in the reduction of CVD. A minimum 

recommendation of 150 minutes per week of moderate intensity physical activity, or 75 minutes 

per week of vigorous-intensity physical activity, plus two strength training sessions per week 

(219,220). One-third of the adult population in Europe accomplish the minimum recommended 

(2). Certain recommendations have been specified for adults older than 65 years, combining 

different types of training, intensity-varying activities, meeting a minimum of time and frequency 

(221). 

 

A combination of caloric restriction and increased energy expenditure through physical activity 

is crucial for weight control, with the health benefits of physical activity being well-established 

(222,223). Both diet-induced weight loss and aerobic and resistance exercises improve 

cardiometabolic risk factors. Physical activity enhances cardiometabolic processes such as blood 

pressure, lipid profile, carbohydrate metabolism, and inflammation, while sedentarism is closely 

linked to obesity (224). Several RCTs have demonstrated exercise-induced weight loss generally 

achieve lower results than combined with caloric restriction. Conversely, following a diet 

combined with physical activity can achieve almost a 20% greater reduction than a diet-only 

program (225). Strong evidence (category A) states physical activity plays an influential role in 

weight maintenance, especially when the amount of time devoted to physical activity reach 

approximately 200 minutes per week (226).  

 

Regardless of weight loss, physical activity has been shown to provide significant health benefits 

for risk factors including visceral fat, glucose and insulin metabolism, cardiorespiratory fitness or 

improvements associated with HDL cholesterol (227–229). Besides, older adults benefit by 

mitigating age-related impairments such as cognitive decline or frailty (230,231), plus the benefits 

of regular physical activity extend to psychological (satisfaction), physical, and social aspects. 

 

The role of exercise influence on HDL functionality has been observed to improve cellular CEC 

promoted by HDL, reduction in endothelial vascular cell adhesion molecule expression, and the 

overall anti-inflammatory activity (232,233). Physical activity has demonstrated a synergistic 
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effect in CEC, the habit of moderate- or high-intensity exercise has been associated with an 

improvement in cholesterol efflux (234,235). Additionally, upregulation of key regulatory 

receptors and the cholesterol transporters ABCA1 and ABCG1 genes (236,237). 

 

Mediterranean dietary pattern 

 

The MedDiet composition has long been recognized as a healthy nutritional pattern (238,239), 

associated improved all-cause mortality rates, less incidence of cardiovascular outcomes, and a 

reduction in metabolic disorders (139,240,241). MedDiet is characterized by abundant intake of 

plant foods, including fruits, vegetables, but also includes frequent consumption of legumes and 

nuts (Figure 11). MedDiet typically consists of a high content of vegetal fat where the main source 

of lipids is based on MUFA, with olive oil as the primary source of lipids, added to vegetables 

and legumes to make them palatable. Additionally, traditional MedDiet is also characterized by a 

high intake of raw nuts. Substitution of saturated fatty acids (SFA) by PUFA is recommended by 

consumption of nuts, walnuts or peanuts. The sources of carbohydrate are typically low-glycemic 

index forms, rich in fiber and cereals as whole-grain. Moderate consumption of fish, poultry and 

dairy products, and a significantly reduced amount of red meat are another of the MedDiet 

features. Low to none consumption of ultra-processed and high-density foods, sweetened 

beverages (238,242–244).  

 

 
 

Figure 11 - Mediterranean diet pyramid: a lifestyle for today (245) 

 

Olive oil, abundant in oleic acid, is acknowledged as the main fat in MedDiet pattern (238,246–

248). Mediterranean inhabitants consume around 25-50 mL of olive oil per day, either raw for 

dressing salads and vegetables, or for culinary purposes as cooking oil. The chemical composition 

of olive oil differs according to olive variety, environmental conditions, ripening, and processing 

methods. Based on production methods, olive oil is classified into four types: EVOO, virgin olive 

oil, common olive oil, and refined olive oil (ROO). Extra-virgin olive oil criteria are: 1) maximum 

0.8 % oleic acidity; 2) mechanical extraction methods without chemicals and hot water; 3) first 

cold pressing; and 4) adequate taste. Virgin olive oil has a maximum free acidity of 2%. Those 

with acidity >3.3 % are submitted to a refining process in which mainly phenolic compounds and, 
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to a lesser extent squalene, are lost (EU Regulation). Ordinary or common olive oil is produced 

by mixing virgin and ROO, which undergoes chemical extraction that removes most of its minor 

components (248,249). Olive oil is known to exert a wide range of protective actions (209), 

related to vascular integrity, LDL antioxidation (250) , blood pressure (251), cardioprotection 

(248,252), age-related cognitive decline or neurodegeneration (209,253,254). 

 

Nuts are typically energy-dense food, enriched with unsaturated fats, vitamins, phytosterols, 

minerals, and fiber. A substantial body of evidence has associated nut consumption with numerous 

health benefits, particularly addressing cardiometabolic disorders (190). Lipid profile ameliorates, 

with a decrease in total cholesterol, triglycerides and LDL-c, while raising HDL-c concentration. 

Extensive research has examined the connection between nut consumption and cardiovascular 

health. Nuts are nutrient-dense foods rich in MUFA (linoleic acid) and PUFA (α-linolenic acid), 

with low SFA content, but also plant-based protein, fiber, and essential vitamins. They also 

contain antioxidants, such as polyphenols, which are fundamental to the cardioprotective actions 

attributed to them (255). 

 

Clinical trials and long-term studies have clarified the protective role of nuts, decreasing the risk 

of T2DM, obesity and therefore MetS  (256,257). The primary endpoint of PREDIMED was to 

determine if following a MedDiet may reduce the incidence of CHD and stroke, which was 

successfully demonstrated (258). In this line, several cohorts have assessed different types of nut 

supplementation, and its association with incidence and mortality. The high degree of 

heterogeneity among studies hinders comparability, however it can be stated that nuts perform a 

protective effect against CVD outcomes (259).  

 

To answer these questions, RCTs with sufficient sample size, multicentric design and long-term 

follow-up are essential to draw robust conclusions. The PREDIMED study aimed to determine 

whether two traditional MedDiets, one enriched with virgin olive oil and another enriched with 

nuts, would exert superior beneficial effects on combined cardiovascular endpoints (myocardial 

infarction, stroke, and cardiovascular mortality) compared to a low-fat control diet. PREDIMED 

Study was a large-scale observational and multicentric RCT with adult elderly participants at 

high-cardiovascular risk. The PREDIMED trial provided with strong evidence and for the first 

time that the traditional MedDiet provides protection against CVD in individuals at high 

cardiovascular risk (260). 

 

The available evidence suggests a general improvement in MetS, although the published evidence 

remains limited (261). The PREDIMED study confirmed MedDiet is a potential alternative for 

managing MetS (243,262). The PREDIMED-Plus study, encouraged by previous results dealing 

with weight loss following a restricted-calorie MedDiet (263,264), was conceived to design an 

optimal approach for body weight reduction, cardiovascular prevention and MetS amelioration in 

patients suffering from overweight/obesity (265). Results from one-year effect showed a median 

weight loss of 3.4% of baseline value, improvement in metabolic profile (fasting glucose, HbA1c, 

insulin, and HOMA of insulin resistance, HDL-c or triglycerides) and blood pressure 

measurements, along with reduction in several inflammatory markers (CRP, IL-1, IL-6, tumor 

necrosis factor-α, MCP-1) (266). Also, a substudy in PREDIMED-Plus has described how MetS 

severity correlates with higher inflammatory profile, depression risk or lower adherence to 

MedDiet (267). An interim substudy observed the evolution at 1 and 3-year follow-ups of several 

anthropometric measurements, including body fat distribution and composition. They found a 

significant fat mass reduction (visceral fat and total fat mass) in the first year, that is partially 

regained at 3-year follow-up, but still below baseline levels (268). 

 

Neuroinflammation 

 

Neuroinflammation is an inflammatory response within the brain primarily mediated by the 

secretion of cytokines (interleukin-1b (IL-1b), interferon gamma (IFN-γ), and TNF-α, 

chemokines and other proinflammatory molecules. This response can be triggered by different 
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types of insults, including metabolic disorders, traumatic injuries or infectious agents (269). 

Systemic inflammation triggers neuroinflammatory responses, potentially compromising the 

integrity of the blood-brain barrier (BBB), which increases its permeability, and allows cytokines 

to enter the brain. Subsequent reaction to cytokines primes resident glia cells which in turn 

amplifies the inflammatory reaction and indirectly promotes the recruitment of leukocytes. Long-

term exposure drives neuronal damage, disrupting synaptic connections and causing neuronal 

death. The aforementioned pathological processes constitute a primary force in the development 

of neurodegenerative diseases (NDDs) (270).  

 

The common comorbidities shared by NDDs, and CVD suggest that causes behind both types of 

conditions may be driven similarly. Individuals with overweight, diabetes or dyslipidemia are 

conditions more prevalent in individuals with NDDs and CVD. These conditions are known to 

induce chronic low-grade inflammation. Obesity effects on BBB inflammation are largely 

mediated by upregulation of adhesion molecules and pro-inflammatory cytokines, astrocytic 

response and extravasation of macrophages. Similarly, T2DM cause effects related to cytokine 

increase, but also deleterious mechanisms characterized by generation of advanced glycated end 

products and abnormal angiogenesis process (271).  

 

Dietary composition also plays a significant role influencing chronic low-grade inflammation. In 

this regard, high-fat diet consumption has demonstrated to increase circulating levels of cytokines 

and proinflammatory molecules. Various molecules can serve as surrogate markers for 

neuroinflammation, which are linked to cardiometabolic diseases, cerebrovascular disorders, 

arteriosclerosis, and dementia.  

 

On the other hand, Mediterranean diet research have shown an inverse correlation between 

adherence to the MedDiet and inflammatory markers levels (266,272). Polyphenols, a large 

family of naturally occurring compounds found in the Mediterranean diet, have been studied for 

their neuroprotective effects (which may reduce oxidative stress, neuroinflammation, and 

improve synaptic plasticity, Figure 12). Preclinical studies have shown promising results 

attenuating neuroinflammation, but human studies have produced inconsistent results regarding 

memory and cognitive function, indicating that further investigation is needed (273). 

 

 
 

Figure 12 - Multimodal mechanism of action of phenolic acids in exerting neuroprotection (273) 
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Cardiometabolic risk, omic biomarkers and mechanisms 

 

Lately, there have been advancements in the discovery of markers in the healthcare field. New 

parameters have arisen to challenge the well-established paradigm providing new insights and, 

hopefully, more accurate diagnosis and prognosis processes.  

 

The recent incorporated molecules comprise metabolites, genotype and epigenetic markers that 

play a role in processes related to atherosclerosis, cardiac ischemia and fibrosis, thrombosis, 

nutrition, tissue repair, hemodynamics, inflammation, lipid- and glucose-related metabolism. Pro-

inflammatory markers have been broadly used to follow inflammatory processes regardless of the 

cause (tumoral, metabolic, infectious or autoimmune). The production of certain cytokines may 

contribute to the low-grade acute-phase response, linking obesity and its related comorbidities. 

Obesity is characterized by chronic low-grade inflammation, due to secretion of adipokines that 

increase this dysfunctional state. C-reactive protein (CRP), primarily produced in hepatocytes, 

constitutes an independent risk factor for cardiovascular events (274–276). CRP concentrations 

in the blood increase in response to circulating cytokines, reflecting downstream inflammation 

though no direct causative role has been associated with CVD (31). CRP circulating levels 

function as a proxy of chronic low-grade inflammation (277) frequently observed in patients with 

overweight ,T2DM (278,279) but also in NDDs and dementia-related diseases (277). 

 

PAI-1 is a prothrombotic factor produced by multiple cell types, including endothelial cells, 

mononuclear cells, and adipocytes. Biologically related to thrombosis, the plasminogen activator 

inhibitor 1 (PAI-1) restrain fibrinolytic process, facilitating a prothrombotic environment. Pro-

thrombotic state enhances the chronic low-grade inflammation that progressively increases 

atherosclerosis. In fact, PAI-1 expression has been shown to be upregulated in atherothrombotic 

lesions (38,280).  

 

PAI-1 contributes to insulin resistance in the development and progression of T2DM (281) , which 

can be partially explained by the modifiers that influence PAI-1: obesity, high-fat diet or alcohol 

(38), while a Mediterranean dietary pattern can be instrumental to maintain low circulating levels 

(282). In this context, PAI-1 has been shown to individually correlate with several components of 

MetS, including BMI, HDL-c, triglycerides, and glucose, highlighting its strong association with 

CVD (283). Epidemiological studies have supported the solid connection between PAI-1 and 

CVD, partially explained by the role exerted in hemostasis, where PAI-1 inhibits the fibrinolytic 

system causing a prothrombotic state (284–286). It is commonly accepted that PAI-1 is an 

enhancing factor for atherosclerosis, however, some controversy remains (287).  

 

MetS is a composite of different disorders, being overweight and obesity an influential risk factor 

among the meeting criteria. Adipokines could serve as a valuable biomarker for assessing the 

impact of cardiometabolic disorders in patients. On this matter, visfatin an adipokine principally 

secreted by visceral adipose tissue, with both intracellular and extracellular activity, along with 

pro-inflammatory effects (288–290). The carbohydrate-related metabolic role is not well 

elucidated, some report insulin-mimetic effects while others have not found out correlation (291–

293). Visfatin has been reported to correlate with subclinical atherosclerosis showing an 

association with carotid intima-media thickness (290). Published evidence suggests that dietary 

patterns, along with other lifestyle factors such as physical activity, can influence visfatin levels 

(111). 

 

Another adipokine of interest is resistin, which is ubiquitously expressed but particularly high in 

adipose tissue whose attributed functions are proinflammatory actions, lipid accumulation, foam 

cell formation, and  a contradictory relationship with insulin functions (120,280,294–296). 

Resistin is an adipocyte-secreted hormone known for impairing insulin sensitivity. It can be the 

bridge between obesity and diabetes due to the correlation between serum resistin and, both BMI 

and insulin resistance (120,280). Weight loss has been observed to concurrently decrease with 

resistin levels. 
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Complex mechanisms modulate energy homeostasis, including lipid metabolism, hunger or 

satiety. Regarding intake and satiety mechanisms, leptin and ghrelin binomial account for great 

regulatory responsibility. Leptin is a polypeptide predominantly secreted by adipose tissue, 

although not exclusively, in direct proportion to fat mass, whose most well-known actions are 

exerted at hypothalamic level regulating the satiety circuit. Leptin exerts different actions across 

the body, from hypothalamus where the hunger-satiety regulation occurs, to inflammatory 

immune response. As an anorexigenic hormone, leptin modulates appetite impulses and indirectly 

regulating energy expenditure and body weight (Figure 13) (280,297).  

 

Resistance to leptin and excess circulating levels are typical findings in obesity, although 

mechanisms remain unclear. Hypothetical explanations comprise a reduced number of receptors 

and impaired transport across the BBB caused by saturation of transport mechanisms (298–300). 

Although the physiological role of leptin with weight maintenance is solid (300) several aspects 

remain controversial. No clear association between leptin exogenous administration, weight loss 

and maintenance has been established (298,301,302). Different functions have been attributed to 

leptin, such as enhancing macrophagic response, proinflammatory cytokine secretion, acute-

phase proteins (303–306) or immune regulation (298,300). Research on circulating levels, 

combined with other biomarkers, has been conducted to gather and predict information on 

cardiovascular risk (300,304,305,307). 

 

 

Figure 13 – Leptin's Endocrine and Paracrine Effects on Brain and Peripheral Tissues 

 

On the other hand, ghrelin, an endogenous peptide predominantly secreted by the stomach and 

intestine, plays a key role in stimulating appetite in response to orexigenic signals (308,309). 

Ghrelin regulates short-term hunger and long-term body weight, but also decreases energy 

expenditure (310). Ghrelin levels have been found to be reduced in obese individuals, partially 
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due to a counterregulatory mechanism involving insulin or leptin. Decreased levels can also be 

observed in weight maintenance period, after weight-loss program (311).  

 

In the short term, ghrelin administration raises plasma glucose levels (312), reducing insulin 

secretion and insulin sensitivity (312,313). Related to fat metabolism, ghrelin promotes adiposity 

and lipogenesis (314–316). Beyond its metabolic functions, ghrelin also plays a role in various 

physiological functions (Figure 14), including learning and memory, psychological stress, mood 

and anxiety, sleep/wake rhythm, and aging (316). Circulating ghrelin levels are characterized by 

pre-prandial rise and a postprandial fall, and they are also influenced by circadian rhythm (317). 

Ghrelin decreases inflammation by inhibiting the nuclear factor kB (NF-kB) pathway and 

mitigates fibrosis (309). Research on animal models has shed light on its participation in CVD 

processes such as cardiac output, ischemia or peripheral resistance (317,318). 

 

 

Figure 14 – Physiological Effect of Ghrelin on Body Systems 

 

New strategies have been proposed using circulating leptin and ghrelin levels, particularly in 

overweight and obese patients, to predict weight loss outcomes and the likelihood of weight regain 

during and after energy-restriction programs (319,320). There is some controversy whether 

circulating levels of these hormones can reliably predict anthropometric changes during and after 

interventions (321). 
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Hypothesis 1 

 

To examine whether an intensive lifestyle intervention with a calorie-restricted traditional 

Mediterranean diet and physical activity, versus a non-intensive ad libitum traditional 

Mediterranean dietary pattern intervention, in a cohort of old participants meeting metabolic 

syndrome criteria, is associated with less cardiometabolic risk. The expectation that inflammation 

will improve particularly in the group following the intensive calorie-restricted Mediterranean 

diet combined with physical activity.  The specific hypotheses for category: 

 

Anthropometric measurements 

 

• Participants following an intensive lifestyle intervention will exhibit a greater 

reduction in body weight and waist circumference than those on a traditional 

Mediterranean diet. These changes in lifestyle habits are hypothesized to be sustained 

over time, given the traditional Mediterranean diet’s palatability and adherence, 

driven by its plant-based content and use of olive oil. 

Carbohydrate and lipid metabolism 

 

• Intensive lifestyle intervention will lead to a more significant improvement in 

glycemic and lipid profiles. However, the control group following the traditional 

Mediterranean diet is also expected to show some improvement in both glycemic and 

lipid metabolism. 

Inflammatory status 

 

• Participants allocated in the intensive lifestyle intervention group will demonstrate a 

more pronounced reduction in inflammatory markers. Mild amelioration of 

biomarkers is expected to occur in the control group. 

Hunger-satiety circuit 

 

• Participants following the intensive lifestyle intervention are expected to show a more 

significant modulation of the hunger-satiety circuit, with a greater reduction in leptin 

levels and an increase in ghrelin levels, compared to the traditional Mediterranean 

diet group. The control group is expected to experience some degree of regulatory 

changes. 

 

Hypothesis 2 

 

The Mediterranean diet improves HDL function in high cardiovascular risk patients as published 

in the PREDIMED studies (PREDIMED and PREDIMED-Plus). We expect the modulation of 

gene expression to be a key mechanism underlying the improvement of HDL functionality. 

Specifically, we expect to observe: 

• An upregulation of cholesterol transporter gene expression in response to a targeted 

dietary pattern. 

• A positive correlation between gene expression and anthropometric measurements. 
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• Greater upregulation of genes involved in cholesterol efflux in in the group with 

promoted physical activity. 

 

Hypothesis 3 

 

The Mediterranean diet has been associated with a risk reduction of dementia and Alzheimer’s 

disease. The study hypothesizes that the traditional Mediterranean diet has the capacity to 

modulate neuroinflammation, a cornerstone of neurodegenerative diseases. In this regard, 

attenuation of systemic inflammation can mitigate the neuroinflammatory response, resulting in 

beneficial effects for both neurodegenerative diseases and cardiovascular disease. In this line 

Mediterranean dietary pattern may modify multiple inflammatory and oxidative pathways, with 

transcriptomic analysis serving as a surrogate marker of neuroinflammation, studied in a 

population of adults at high-cardiovascular risk. 

 

The hypothesis is: 

 

• The traditional Mediterranean diet will alter the expression of genes related to 

neuroinflammation in adults at high cardiovascular risk compared to the control low-

fat dietary pattern. 
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Manuscript 1 

 

To assess whether an intensive lifestyle intervention with a calorie-restricted traditional 

Mediterranean diet and physical activity, versus a non-restrictive traditional Mediterranean diet 

pattern, in subjects with obesity/overweight meeting criteria for metabolic syndrome improves 

overall cardiometabolic profile. The objectives can be summarized in: 

 

Anthropometric measurements  

 

• Assess changes in body weight, waist circumference, and BMI from baseline to 6 and 

12 months, and compare these changes between the calorie-restricted and non-

restrictive traditional Mediterranean diet groups.  

Carbohydrate and lipid metabolism  

 

• Assess changes in glucose, insulin, HOMA-IR (Homeostatic Model Assessment for 

Insulin Resistance), total cholesterol, HDL cholesterol, LDL cholesterol, and 

triglycerides from baseline to 6 and 12 months, and compare differences between the 

calorie-restricted and non-restrictive traditional Mediterranean diet groups.  

Inflammatory status  

 

• Measure changes in inflammatory markers such as C-reactive protein (CRP), 

plasminogen activator inhibitor-1 (PAI-1), resistin, and visfatin from baseline to 6 

and 12 months, and evaluate differences between the calorie-restricted and non-

restrictive traditional Mediterranean diet groups.  

Hunger-satiety circuit 

 

• Measure changes in leptin and ghrelin levels from baseline to 6 and 12 months and 

assess the differences between the calorie-restricted and non-restrictive 

Mediterranean diet groups. 

Trend assessment 

 

• Evaluate variable trends, linear or quadratic, in the adjusted models for the different 

biomarkers previously mentioned.  

 

Manuscript 2 

 

To examine the expression of cholesterol efflux-related genes involved in regulatory functions in 

patients at high cardiovascular risk subjected to two non-restrictive traditional Mediterranean 

diets, supplemented with extra-virgin olive oil or nuts, compared to a control low-fat diet.  

 

In this regard we aimed to: 

 

• Investigate the regulatory molecules involved in cholesterol efflux gene expression 

within and between-groups. 
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• Examine the gene expression of cholesterol transporters in response to a dietary pattern, 

and analyze the correlation with anthropometric measurements. 

• Examine the relationship among the regulated genes involved in cholesterol efflux. 

 

Manuscript 3 

 

To assess evaluate the impact of a long-term traditional Mediterranean diet interventions 

supplemented with extra-virgin olive oil or nuts, versus a low-fat control diet, on the expression 

of genes related to neuroinflammation and cardiovascular risk in an elderly population at high 

cardiovascular risk.
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General overview 
 

This thesis presents three original publications focusing on two different scopes. The first 

manuscript is framed within the PREDIMED-Plus trial. We assessed the effect of a hypocaloric 

MedDiet intervention, combined with physical activity promotion, versus an ad libitum MedDiet 

in subjects with MetS. We compared weight loss and long-term maintenance, carbohydrate and 

lipid metabolism, leptin and ghrelin behavior, and attenuation of inflammatory response 

measuring several biomarkers. 

 

In the second and third publications, we investigated the underlying molecular mechanisms of the 

MedDiet effects on cardiovascular risk by determining the gene expression of circulating nuclear 

peripheral cells in subjects at high cardiovascular risk. Firstly, we explored how different MedDiet 

interventions regulate the cholesterol efflux process in two different clinical trials (PREDIMED 

and PREDIMED-Plus). In the PREDIMED, we compared two traditional MedDiets 

supplemented with EVOO and nuts respectively, versus a control following a low-fat restricted 

diet. Then, we also analyzed gene expression within the frame of PREDIMED-Plus, comparing a 

hypocaloric MedDiet intervention with physical activity routine versus an ad libitum MedDiet. 

 

Finally, in the third paper, we investigated the molecular mechanisms regulating 

neuroinflammation within the context of the PREDIMED trial in subjects at high cardiovascular 

risk. This study compared the impact of two traditional Mediterranean diets, one supplemented 

with EVOO and the other with nuts against a low-fat control diet. Our analysis focused on gene 

expression related to neuroinflammatory and inflammatory markers.  

 

1st Manuscript 
Mid- and long-term changes in satiety-related hormones, lipid and glucose metabolism, 

and inflammation after a Mediterranean diet intervention with the goal of losing weight: A 

randomized, clinical trial 

 

Association hypocaloric MedDiet weight loss maintenance 
 

Short-term weight change is relatively straightforward, but maintaining these improvements over 

time is considerably more challenging, especially once the intervention has ended (322). 

Researchers have suggested various time frames for the onset of the weight regain phenomenon, 

also depending on the intervention (pharmacotherapy, lifestyle changes (323,324) or bariatric 

surgery) (322,325).  

 

Several predictors of weight-loss maintenance are those related to: a) lifestyle such as physical 

activity, low-calorie or low-fat diet, b) genetic factors such as metabolism, and c) psychological 

traits, environmental factors, socio-economic status, and social cohesion, and d) clock-related 

factors regarding eating habits, physical activity, and sleep (326–329). In this regard, given its 

unique position at the intersection of multiple domains of science, nutrition science has the 

potential to lead initiatives and common policies for delivering impactful research (330). 

Treatment for obesity prioritizes weight loss through lifestyle recommendations aimed at 

achieving an energy deficit. Nutritional therapy should be individualized to address personal 

causes of obesity, culture, and individual preferences, ensuring long-term adherence to treatment 

(331). 

 

After a follow-up of almost 5 years and 7447 individuals following non-energy restricted 

MedDiets (enriched with EVOO or nuts) in the PREDIMED trial, 90% of whom were overweight 

or obese at baseline, significant differences in body weight evolution were observed, although 

only a slight reduction was noted when compared to the control group. (332). Consequently, an 

intensive energy-restricted MedDiet together with physical activity should intensify the weight 
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loss and its maintenance over time, as evidenced in a posterior study, the PREDIMED-Plus trial 

(266,268). 

 

Aligned with the PREDIMED-Plus trial, our results in a subset of participants, the intensive 

lifestyle intervention group revealed reductions in both waist circumference and weight at the 6-

month and 12-month follow-ups, with significant differences compared to the control group at 

both intervals. The weight loss observed in the control group, despite following a non-restricted 

energy diet, may be attributed to their motivation to actively engage in a clinical trial targeting 

individuals with overweight or obesity. 

 

Combining diet-induced weight loss with exercise training has shown greater improvements in 

cardiovascular risk factors compared to diet by itself (333,334). The combination of physical 

activity and calorie-restricted diet has strongly demonstrated to prevent weight regain after a 

substantial initial loss (335). The difficulty in maintaining weight loss is often attributed to lack 

of adherence to the diet that led the initial weight loss, highlighting the need to focus on behavioral 

interventions (336). In our study, the weight loss tertiles showed improvements at mid-and long-

term follow-ups, correlating with MedDiet adherence and the amount of physical activity, 

regardless of the group.  

 

The key challenge for restrictive diets is the difficulty of adhering to long-term interventions, 

partially due to the unappetizing nature of the diet. In our study, the intervention group achieved 

maximum weight loss at 1 year, with no rebound effect observed from six- to twelve-month 

period. In this regard, a Mediterranean diet is characterized by strong palatability, due to its high 

intake of vegetal fat, such as olive oil and nuts, encourages participants to long-term commitment 

(337–340). 

 

Leptin and Ghrelin: Balancing Hunger and Satiety in Weight Regulation 
 

The physiological mechanisms governing weight stability or regain are complex and not 

completely understood, resulting from a combination of factors (socioeconomic, genetic, 

environmental, etc.) (341). The flexibility of adipose tissue allows for the enlargement of 

adipocyte size, to be able to maintain lipid homeostasis in the postprandial state. During long-

term processes such as weight loss, maintenance or regain, adipocyte balance functions similarly, 

but the regulatory mechanisms become more complex (Figure 15). Individuals suffering from 

obesity experience a disruption in homeostatic mechanisms, where adipocytes fail to respond to 

physiological stimuli (342).  

 

The energy expenditure and storage circuit is regulated among others through leptin effects, 

primarily exerted on hypothalamus and adipose tissue (300,341). A significant decrease in 

peripheral levels of leptin in energy-restricted interventions is caused by fat mass reduction (343–

345). Leptin levels can be modulated by certain dietary components (300), and prior research has 

reported systemic leptin concentration decrease after following a MedDiet for up to 24 weeks 

(116,346,347), although limited evidence exists for diet interventions beyond 24 weeks (348). In 

this regard, we observed a reduction in leptin levels in both the intervention and control groups. 

The intervention group showed a more pronounced decrease, likely due to greater reductions in 

anthropometric measurements. Notably, significant difference was found between the 

intervention and control groups at the 12-month follow-up.  
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Figure 15 - Adipocyte Changes in Weight Loss, Maintenance, and Regain (341). ECM: Extracellular matrix; WAT: 

White Adipose Tissue; miRNAs: micro ribonucleic acids 

 

The counterpart to leptin is partially exerted by ghrelin, an orexigenic, lipogenic and adipogenic 

hormone, whose deficiency is associated with lower weight (349–351). Obese individuals tend to 

have lower fasting plasma levels of ghrelin, which negatively correlate with body fat percentage, 

fasting insulin, and leptin concentrations. Weight loss is typically associated with an increase in 

ghrelin levels, regardless of the underlying factors contributing to weight reduction (352–354). In 

the same vein, ghrelin levels can be influenced by specific dietary components (314–316).  

 

Previous dietary interventions based on the Mediterranean dietary pattern have produced 

consistent results regarding ghrelin behavior, though varying outcomes have been observed when 

examining the relationship between ghrelin and body composition. A significant increase in 

ghrelin levels was observed among participants with MetS who gained visceral adipose tissue 

(VAT) after one year. Additionally, ghrelin changes based on VAT tertiles revealed that those who 

lost the most VAT had the highest baseline ghrelin levels and experienced the smallest increase in 

ghrelin over time (355). On the other hand, an 18-month MedDiet intervention showed a 

significant increase in ghrelin among men, suggesting that ghrelin plays an independent role in 

improving insulin sensitivity. The 18-month change in fasting ghrelin levels inversely correlates 

with VAT and weight. Additionally, higher ghrelin levels were significantly associated with 

decreases in HbA1c and HOMA-IR, as well as an increase in HDL cholesterol. These associations 

remained significant after adjusting for age, baseline measurements, and intervention group (356). 

 

Our results showed a pattern previously observed, in which ghrelin levels initially decreased to 

slightly increase over time, eventually returning to baseline values (357). However, these changes 

were not statistically significant when compared to the control group.  
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Carbohydrate metabolism 

 

Compelling evidence has clarified that diabetes can be tackled through lifestyle interventions, 

including various dietary strategies. Concurrent weight loss is likely a driving force leading to 

beneficial effects in the management and prevention of diabetes. The abundant scientific literature 

presents several approaches, although conflicting results exist around the optimal dietary 

composition to achieve these outcomes (358,359). The European and American Institutions 

recommend lifestyle as the primary approach for diabetes mellitus management (331). In this 

regard, Mediterranean dietary pattern supports the consumption of carbohydrate mostly based on 

whole grains, cereals and fruit (245,265,360). Evidence on this matter suggests that higher-quality 

carbohydrates improves CVDs risk factors (360,361) including favorable adipose tissue 

distribution changes (362). 

 

With regard to high-fat content, particularly MUFA, which are reported to promote positive 

effects on regulating the glycemic response and enhancing insulin sensitivity (363–365). In fact, 

clinical trials have consistently demonstrated such improvements, especially in individuals 

predisposed to insulin resistance, strengthening the positive impact of this dietary pattern (364). 

Previous findings from the PREDIMED study also reported improvements in carbohydrate-

related variables after a non-calorie-restricted MedDiet intervention enriched with EVOO or nuts 

(143). 

 

In contrast to isolated interventions, the combined effects of a calorie-restricted diet and physical 

activity have been shown to more significantly improve insulin sensitivity and cardiometabolic 

syndrome-related variables (333,334) . Analogously, we observed insulin level reduction in the 

intervention group during the first 6 months, that remained stable up to 12-month follow-up. The 

control group also showed a consistent reduction, though insulin levels were higher at 6- and 12-

month follow-ups. HOMA, C-peptide, HbA1c, and glucose levels displayed a comparable trend. 

 

Lipid metabolism  

 

Dyslipidemia is characterized by abnormal lipid and/or lipoprotein levels, comprising elevated 

triglycerides (hypertriglyceridemia) and LDL-c, along with reduced HDL-c levels. 

Hypertriglyceridemia is influenced by several factors, including body weight, fat distribution or 

diet composition. Reducing triglycerides often requires multiple interventions with additive 

effect. One key strategy is eliminating trans fatty acids from the diet, as these fats raise triglyceride 

levels and harmful lipoproteins like LDL-c, increasing cardiovascular risk.  

 

In contrast, a low-fat and high-carbohydrate diet has been linked to a rise in triglycerides and a 

decrease of HDL-c, which can be detrimental, since elevated triglycerides levels often coexist 

with T2DM (150). The MedDiet replaces animal fat with vegetable, namely SFA with MUFA and 

PUFA (366). The evidence has demonstrated MedDiet improves lipid profile over the long term, 

ameliorating triglycerides, LDL-c and HDL-c (263,367). Regarding our results, the data reflects 

a more substantial reduction in triglycerides in the intervention group at both the 6- and 12-month 

time points, after adjusting for sex and age. 

 

Changes in LDL particles may contribute to increase atherogenicity, especially when LDL 

particles are small and dense (146). MedDiet has been associated with positive changes regarding 

LDL particle size, the degree of resistance to oxidation, and LDL cytotoxicity in macrophages 

(368,369). At the same time, the functionality of the HDL particle is gaining increasing clinical 

relevance. We have previously observed in a substudy of PREDIMED-Plus, that a hypocaloric 

diet combined with physical activity promotes the reduction of triglycerides in HDL lipoproteins, 

suggesting an improvement in HDL's role in triglyceride metabolism. We also reported a decrease 

in apo-CIII levels after the intervention, which contributes to hepatic clearance of plasma 

triglycerides. These effects were shown to be mediated by BMI reduction (370). 
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Pro-inflammatory biomarkers  

 

CRP circulating levels are routinely measured to monitor multiple inflammatory processes 

regardless of the underlying cause (infectious, autoimmune, tumoral or metabolic). It is a widely 

used acute-phase reaction marker that helps to assess low-grade inflammation characteristic in 

patients with cardiovascular risk factors. The MedDiet has been demonstrated as an effective 

strategy for reducing inflammation and mitigating the inflammatory response, manifested with 

decreased CRP or IL-6 levels (371). The anti-inflammatory effect of the traditional MedDiet has 

also been reported in the PREDIMED study, with a significant reduction of pro-inflammatory 

markers observed at the 3- and 5-year follow-ups (95). Concretely, we observed a reduction in 

CRP levels over time in both groups, though without significant differences between them. 

 

Meanwhile, PAI-1 function is an indirect thrombotic enhancer by acting as an antifibrinolytic 

agent (287). Previous studies have shown that high adherence to MedDiet correlates with an 

improved inflammatory profile, which includes low PAI-1levels (282). In our experience, we 

observed significant changes in PAI-1 levels in both groups, with greater decreases occurring in 

the intensive intervention group, particularly at the 12-month follow-up. Adipose tissue 

constitutes a major source of PAI-1, linking obesity directly to elevated PAI-1 levels (283). The 

weight loss experienced by the energy-restricted group may have contributed to the steeper 

reduction observed. 

 

Visfatin levels decreased in both groups in a similar way, without significant inter-group 

differences. This suggests that both MedDiet types were effective in lowering visfatin 

independently of calorie restriction or promoted physical activity. In contrast, it has been 

previously reported no significant effects of MedDiet in visfatin levels in adult population with 

low cardiovascular risk according to ESC (116). 

 

Resistin levels decreased in both groups, with a steeper and significant reduction in the control 

group, but without significant inter-arm difference. Research on the field has sometimes shown a 

limited impact on resistin levels, which may be influenced by the designs, durations, and inclusion 

criteria for the population (age, sex, health status). However, both studies involved calorie 

restriction and physical activity, and achieved weight loss and inflammatory markers 

improvements (372,373) 

 

2nd Manuscript:  
Mediterranean diet transcriptomic modulation of cholesterol efflux molecular mechanisms 

in elderly adults at high cardiovascular risk 

 

CEC is probably the most well-known function of HDL. It is the process of cholesterol removal 

from various donors, typically peripheral cells in the blood or macrophages in the intima, to 

subsequent acceptors, which are primarily HDL lipoproteins (185). A wide range of molecules 

are involved in the cholesterol efflux process, making it challenging to quantify the individual 

contribution of each compound influence. In the context of a Mediterranean dietary pattern, these 

bioactive compounds, such as polyphenols, fatty acids, and other nutrients may work 

synergistically, likely through molecular mechanisms, to exert their effects.  

 

Rather than measuring the impact of isolated compounds, we assessed the intervention as a whole 

dietary pattern. This approach allows us to capture the combined effect of the various components 

of the MedDiet on cholesterol efflux gene expression regulators, providing a more realistic and 

comprehensive understanding of how this dietary pattern supports cardiovascular health. We have 

previously reported improvements in CEC as a result of a traditional MedDiet intervention, 

especially enriched with EVOO (32).  
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We observed mild upregulation of cholesterol efflux-related genes involving nuclear receptors 

such as RXRs (RXRA, RXRB), LXR-β, encoded by NR1H2, and peroxisome proliferator activated 

(PPARD), ABCG1 and ABCA1, occurred as long-term responses to different MedDiets in elderly 

adults at high cardiovascular risk. In the analysis joining both MedDiet groups, ABCG1, PPARD, 

and RXRA were differently expressed versus the control group.  

 

 

Figure 16 - Gene Contribution to Principal Components in Mediterranean Diets 

Dim 1: dimension 1; Dim 2: dimension 2.  

In parentheses, the total percentage of variance explained by the component 

 

We can observe from Figure 16 (Gene Contribution to Principal Components in Mediterranean 

Diets) that ABCA1 and ABCG1 display a similar contribution to overall variability. Both show a 

moderate-high positive contribution to Dim1, and slightly and negative contribution to Dim2. 

These genes are primarily associated with variance captured by Dim 1, which accounts for most 

of the variance (50.6 %), likely due to the fact that the studied genes are related with cholesterol 

efflux. In this regard, most of the cholesterol efflux-related enhancers such as NR1H2, NR1H3, 

RXRA and PPARs, also display high contribution to Dim1, being NR1H2, NR1H3, RXRA and 

PPARD upregulated in response to MedDiet. RXRB and PPARG, on the other hand, contribute 

moderately to Dim2, although RXRB is also upregulated by MedDiet, and PPARG slightly 

downregulated. This contribution to Dim2 may be due to these genes could be involved in 

additional biological processes captured by Dim2 (11 %), or due to alternative regulatory 

mechanisms that we cannot explain. A similar reasoning may justify CAV1 and SCARB1 which 

are also involved in the cholesterol efflux process but have not been modulated by MedDiets. A 

previous study found downregulation of RXRB and upregulation of CAV1 following functional 

virgin olive oil (FVOO) consumption, which contrasts with our findings. However, it should be 

noted that the study was based on three intervention periods of three weeks each, with washout 

periods between interventions, and focused solely on FVOO consumption, which may explain the 

difference (374). 

 

ABCA1 is tightly regulated by a network of transcriptional factors that can form partnerships that 

activate the promoter regions. In this role, LXR-α activity stands out due to the capacity to directly 
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enhance ABCA1 expression in response to cholesterol derivatives, as well as through dimerization 

with various regulatory molecules, such as RXRα  (Figure 17) or PPAR-γ.(375). RXR amplify 

transcriptional activity o working synergistically with LXR (376),  thus it is interesting to observe 

the contrast in the differing gene expression. 

 

 

 
 

Figure 17 - LXR–RXR heterodimers are ligand-activated transcription factors (377). 

 

In the PREDIMED-Plus, we found a similar pattern involving ABCA1 and ABCG1, which 

experienced a significant upregulation from baseline to 12-month follow-up- The larger 

upregulation may be consequence of the physical activity, which positively increases ABCA1 and 

ABCG1(236).  However, we reported PPARG downregulation despite previous research found 

that physical activity enhances its expression (378). We hypothesized the concurrence of the 

different regulatory pathways that modulate its expression, may explain the unexpected results 

(379–381). Figure 18 illustrates the regulatory network of cholesterol efflux, involving participant 

gene encoding proteins. The graphic shows the interactions among the molecules with each other 

and their influence on cholesterol efflux and transport processes. The diagram shows gene 

expression values, along with predicted  effect (activation, inhibition or inconsistent) and the 

nature of this one (direct or indirect) 
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Figure 18 - Ingenuity Pathway Analysis regulatory network prediction using log2FC. Legend illustrates relations of molecules in 

functional processes related to cholesterol homeostasis.  

Legend - 1: MedDiets combined (PREDIMED), 2: MedDiet (PREDIMED-Plus), 3: ErMedDiet (PREDIMED-Plus), 4: Control diet 

(PREDIMED)  

ABCA1: ATP binding cassette subfamily A member 1; ABCG1: ATP binding cassette subfamily G member 1; NR1H2/LXR-α: 

nuclear receptor subfamily 1 group H member 2; NR1H3/LXR-β: nuclear receptor subfamily 1 group H member 3; RXRA: retinoid 

X receptor alpha; RXRB: retinoid X receptor beta; SCARB1: Scavenger Receptor Class B Type 1; CAV1: Caveolin-1 PPARs: 

peroxisome proliferator activated receptors (A (alpha), D (delta), G (gamma)) 
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3rd Manuscript:  
Mediterranean diet transcriptomic modulation of neuroinflammation-related genes in 

elderly adults at high cardiovascular risk 

 

Systemic inflammation is triggered by different conditions, including atherosclerosis, 

dyslipidemia, obesity or hypertension, leading to an increase in proinflammatory cytokines, 

endothelial damage and oxidative stress. The inflammation may cause the impairment of the BBB, 

becoming permeable and allowing the entrance of pro-inflammatory molecules which activate 

the microglia. Neuroinflammatory states can be transient or chronic, with NDDs typically 

associated with a chronic neuroinflammatory response (266, 366). Both chronic low-grade 

inflammation and neuroinflammation involve similar genes and pathways (JAK-STAT, NLRP3 

inflammasome), establishing a direct link between systemic inflammation and brain inflammation 

(271,383,384). 

 

In this regard, we selected several genes from the overlapping pathways identified in the 

functional analysis using keywords related to cardiovascular and neurodegenerative conditions 

(Figure 19). 

 

 
 

Figure 19 - Venn diagram displaying the number of genes found from the overlap of the 4 selected pathologies 

(atherosclerosis, hyperlipidaemia, cerebrovascular disorders, and cerebrovascular disease) employing the public 

databases DisGeNET and Disease Ontology. 

 

 

Neuroinflammatory response is a direct consequence of various conditions that promote this state 

(270,279). These conditions are closely associated with the modern lifestyle, particularly the 

sedentary lifestyle and the Western dietary pattern (271,272). Adopting a healthy dietary pattern 

may help attenuate the detrimental effects caused by systemic inflammation (385,386).  

 

Peripheral blood transcriptomic profiling has proven to be a valuable tool for measuring 

neuropathological biomarkers in a convenient and accessible manner (387), although it does not 

precisely reflect alterations in primary tissue (388,389). In this regard, prior research conducted 

in the PREDIMED trial assessed whether a 3-month MedDiet enriched with either EVOO or nuts 

on pathways related to neuroinflammation, reported a potential delay on the risk of 

neurodegenerative diseases. The study found a downregulation of the TREM1 signaling pathway 

with the MedDiet enriched with EVOO, while MedDiet enriched with nuts downregulated the 

neuroinflammation signaling pathway in a whole transcriptome microarray analyses (390). In the 

Manuscript 3, we assessed the MedDiet effect on neuroinflammatory response. In this regard, 

related to MedDiet enriched with EVOO intervention group, we observed significant 12-month 

changes in the Real Time PCR (RT-PCR) expression of the following genes: IFNG, CDKN2A, 

NLRP3, PIK3CB, and TGFB2. Evidence has reported MedDiet supplemented with various types 

of olive oil cause a reduction in IFNG after 3 months (218, 360).  
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We also observed changes in TGFB2 expression from baseline to one-year follow-up in the 

MedDiet enriched with nuts group. Significant between-group differences in TGFB2 expression 

were found between the MedDiet enriched with EVOO and the control groups. Furthermore, 

significant differences in NAMPT expression were observed in the comparison between the 

MedDiet enriched with nuts and control groups. Model 1, adjusted for sex, age, and education 

level, revealed statistically significant differences in the interaction term (time-group 

intervention) for TGFB2 between the MedDiet enriched with EVOO and control groups, as well 

as significant results for NAMPT in the comparison between MedDiet enriched with nuts and 

control. However, Model 2 only showed statistically significant differences for NAMPT in the 

MedDiet enriched with nuts group versus the control group. In this regard, we were also unable 

to detect changes in systemic vifastin levels between groups following an energy-restricted diet 

(with physical activity) an ad libitum MedDiet in manuscript 1. However, we observed changes 

from baseline to the 6- and 12-month follow-ups, with a steady trajectory between 6 and 12 

months.  

 

Although, an increase in the TGFB2 expression has been observed in the three PREDIMED 

groups, including the control group, significant between-group differences in TGFB2 expression 

were found between the MedDiet enriched with EVOO and control groups. Although a direct 

correlation between TGF-β2 levels and soluble neurofibrillary tangles and Aβ42 (key form of Aβ 

aggregation) has been described (392), neurotrophic effects (393) have also been reported. In 

addition, whereas Aβ42 levels initially rise at the onset of AD, they typically decrease as the 

disease progresses (394,395). Interestingly, Aβ42 in cerebrospinal fluid has been associated with 

better cognitive outcomes and brain preservation in patients with amyloidosis (396,397). 

Furthermore, significant differences in NAMPT expression were observed in comparison between 

the MedDiet enriched with nuts and control groups. Model 1, adjusted for sex, age, and education 

level, revealed statistically significant differences in the interaction term (time-group 

intervention) for TGFB2 between the MedDiet enriched with EVOO and control groups, as well 

as significant results for NAMPT in the comparison between MedDiet enriched with nuts and 

control. However, Model 2 only showed statistically significant differences for NAMPT in the 

MedDiet enriched with nuts group. 

 

The dose-response phenomenon known as hormesis may explain the differences observed in gene 

expression modulation by diet, in particular when olive oil is supplemented. Hormesis refers to 

the biphasic response triggered by exposure to a substance, where the effect varies depending on 

the dose (398,399). The inter-species hormesis theory suggests that the stress-induced production 

of plant polyphenols and other phytochemicals creates an environmental chemical signature that 

can promote stress resistance in other species (400–402). In this context, a hormetic dose-response 

behavior related to NLRP3 has been observed in relation to polyphenol intake (366–368). 
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The overall strengths of our research across the three studies lie in the randomized, and controlled 

designs, which minimize bias and confounding factors enhancing the reliability of our results. 

The long-term longitudinal design and the focus on populations at high cardiovascular risk allow 

for in-depth analysis of metabolic and cardiovascular health outcomes. This approach provides 

foundational evidence on the effects of dietary interventions in target population. In terms of 

general limitations, generalizability is constrained by the focus on older adults and individuals 

with MetS or high cardiovascular risk, limiting the applicability of the findings to broader 

populations. The self-reported dietary intake, although assessed using a validated questionnaire, 

may provide inaccurate data, potentially undermining the reliability of the results. 

 

In the case of the first manuscript, the lack of post-prandial hormone measurements, such as 

ghrelin and leptin, prevents a full understanding of how the interventions affect short-term 

hormonal responses to meals. Given that leptin secretion is proportional to fat depots the leptin 

measurements were partially biased by the inability to estimate the overall adipose mass, as we 

did not utilize measurement direct techniques (Dual-Energy X-ray Absorptiometry or 

Bioelectrical Impedance Analysis). Due to the PREDIMED-Plus design based on a hypocaloric 

MedDiet versus a normocaloric MedDiet we cannot infer whether the Mediterranean dietary 

pattern may trigger a specific response in hunger-satiety circuit beyond evidence reported so far.  

On the other hand, longitudinal analysis allowed us to observe weight loss maintenance over time, 

along with reduction in proinflammatory biomarkers in a one-year period. 

 

In the case of transcriptomic studies in both the second and third manuscripts, the small sample 

size reduces statistical power, potentially missing key associations between variables.  Variations 

in the preanalytical phase (blood collection, storage, pipetting and processing) may carry 

significant changes in the results and difficult comparability among transcriptomic studies. A 

potential limitation may be the lack of technical replicates in our study. In the second manuscript, 

the cholesterol efflux-related study, simultaneous protein investigation could provide valuable 

insights into regulatory mechanisms and enable predictions of the relationship between 

transcriptomic and proteomic results. Post-transcriptional modifications, transcripts stability, and 

activity are crucial for understanding the impact of dietary interventions on cholesterol efflux 

pathways. Transcriptomic analysis alone might not capture the overall influence of the 

intervention. Additionally, individual responses to dietary interventions can vary greatly due to 

genetic, environmental, and lifestyle factors. This variability can make it difficult to distinguish 

diet-specific effects from other factors, such as physical activity in the PREDIMED-Plus trial. 

Furthermore, lipid-lowering treatments, commonly prescribed to participants of PREDIMED and 

PREDIMED-Plus, can influence the expression of genes related to cholesterol efflux and lipid 

metabolism. On the other hand, studying multiple genes involved in the key regulatory 

mechanisms of cholesterol efflux simultaneously allows us to observe expression patterns and 

attempt to infer the dynamic landscape of this biological process. However, some of the selected 

genes are involved in multiple metabolic processes, which can sometimes mask the specific 

effects of dietary intervention. 

 

Regarding the third manuscript, the reliance on blood as a biological specimen limits the 

understanding of gene expression in tissues that are anatomically more directly related to 

neurodegenerative risk. Neuroinflammation occurs in the central nervous system, a region with 

strict immune regulation. Blood samples may not always accurately reflect the inflammatory 

processes occurring in the brain due to differences in gene expression and regulation between the 

CNS and peripheral blood. It must be noted that many participants in the study were taking statins, 

whose pleiotropic effects have been reported to affect inflammatory pathways such as NFE2L2. 

Additionally, neuroinflammatory processes in peripheral mononuclear cells may not reflect brain 

cells like microglia and astrocytes. The studies did not include cognitive assessments, limiting 

conclusions about how dietary interventions might influence cognitive function or dementia risk.  
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1. An intensive lifestyle intervention with a calorie-restricted traditional Mediterranean diet 

combined with physical activity leads to several beneficial outcomes on adiposity, blood 

pressure, glucose metabolism, lipid profiles, leptin levels, and pro-inflammatory markers at 

both mid-term and/or long-term.  

• An intensive lifestyle intervention has demonstrated to achieve greater weight loss goals 

in comparison to an ad libitum Mediterranean diet, and can be sustained over a 6 and 12-

month period. 

• Higher adherence to the intensive lifestyle intervention was achieved in the intervention 

group compared to the control group at 6 and 12 months. 

• Reduction in triglyceride and remnant cholesterol levels was significantly greater in the 

intensive lifestyle intervention than in the ad libitum Mediterranean diet at 6 and 12 

months whereas HDL-c increased at 12 months. 

• Reduction in insulin, C-peptide, and insulin resistance was significantly greater in the 

intensive lifestyle intervention than in the ad libitum Mediterranean diet at 6 and 12 

months while HbA1c, leptin, and PAI-1 levels improved at 12 months. 

• Improvements in diastolic and systolic blood pressure at 6 months in the intensive 

lifestyle intervention than with the ad libitum Mediterranean diet.  

2. An increase of the expression of ABCG1, PPARD, and RXRA after 1 year-intervention 

considering the combined traditional Mediterranean diet groups versus the low-fat diet 

control group were observed.  

3. The gene expression patterns of cholesterol-efflux genes overlap between the Mediterranean 

diet enriched with extra-virgin olive oil and Mediterranean diet enriched with nuts. 

4. Both intensive lifestyle intervention and the traditional Mediterranean diet promote 

upregulation versus baseline in genes encoding transporters of cholesterol, ABCA1 and 

ABCG1, in older participants with metabolic syndrome. 

5. Mediterranean diet, specially enriched with extra-virgin olive oil has demonstrated to 

modulate pathways linked to neurodegenerative disorders, highlighting the potential brain 

benefits of a cardioprotective diet, in high cardiovascular elderly population Specifically, the 

traditional Mediterranean diet plus nuts resulted in a different expression of the NAMPT gene 

compared to the control diet. 

6. Gene expression changes from baseline to 12 months were observed mainly in the participants 

allocated to the traditional Mediterranean diet enriched with extra-virgin olive oil, particularly 

in CDKN2A, IFNG, NLRP3, PIK3CB, and TGFB2. 
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Weight loss, carbohydrate and lipid metabolic changes, and inflammatory response 

 

Future research may address the objectives of this manuscript simultaneously analyzing and 

integrating multi-omics data. Weight loss and weight loss maintenance comprise different phases 

that share the same objective, requiring different approaches to achieve sustained results.  On one 

hand, the biological standpoint is currently questioning the impact of the microbiota on the long-

term treatment of obesity. Unlike genetic traits, microbiota is highly modifiable and dynamic 

(403), emerging as a potential target for weight loss and prevention of rebound effect (404). 

Several interventions, such as diet, physical activity, medication, and bariatric surgery, capable of 

modifying the microbiota (405).  

 

The Mediterranean diet has been shown to modulate microbiota composition, although the 

strength of the evidence is limited and heterogeneous (406). Some positive results have been 

reported (407,408) regarding phyla’s relative abundance has been associated with weight loss. 

However the dynamism in the microbiota composition and the complex interaction with host 

make it difficult to draw firm conclusions (404). A potential limitation is that Mediterranean 

dietary pattern includes multiple sources; therefore, each component may exert a unique influence 

on microbiota that cannot be inferred. On the other hand, adherence to diet is crucial for achieving 

goals, therefore identifying the behavioral and psychological barriers is a cornerstone of 

successful weight loss interventions (409,410).  

 

New drugs targeting GLP-1 have demonstrated optimal results regarding DM2 and obesity 

treatment. It may be interesting research on lifestyle and dietary habits interaction with GLP-1 

receptor, which is known to participate in reward, motivation and mood regulation. Moreover, 

GLP-1 analogues have proven to shift microbiota towards a healthier profile (404). However, 

regulation is bidirectional, as microbiota changes in response to a Western diet can trigger 

hypothalamic diet-induced inflammation and leptin sensitivity via GLP-1 receptor (411). This 

complex interaction may also be worthwhile to explore. 

 

Regarding the low-grade inflammation, novel biomarkers with improved overall predictive power 

are emerging in certain contexts. For example, glycoprotein acetyls have shown potential as a 

biomarker with several advantages, though larger and more diverse population studies are needed 

to confirm its effectiveness in predicting cardiovascular risk (412). New dietary approaches, such 

as intermittent fasting or paleo diet, have recently gained interest due to promising results in 

improving cardiometabolic markers. However, long-term randomized clinical trials are required 

to report solid evidence (413–415). 

 

Cholesterol efflux  

 

The removal of peripheral cholesterol is a crucial step to avoid or delay atherosclerosis, as it 

plays a key role in the accumulation and formation of plaque within arterial walls. The first 

unsolved question is to elucidate regulatory mechanisms capturing genomic, transcriptomic, 

proteomic, and epigenomic, in response to multiple stimuli regarding cholesterol efflux (diet 

intervention, physical activity, bariatric surgery or drug treatments). The complexity of such 

achievement would require multiple studies to determine molecules involved in the process 

(416). In this line, not only the effects of exogenous factors need to be elucidated, but also those 

of endogenous hormones and cytokines that participate in the process (417), with the additional 

challenge of distinguishing their effects between in healthy and diseased states. In this regard, 

mediation analysis could provide evidence of overall molecular mechanisms, for example to 

study the mediation effect of different Mediterranean diet nutrients on HDL functionality, both 

at transcriptomic and systemic level.  



Future research 

 

A significant challenge lies in understanding the regulation of ABC transporters, such as 

ABCA1 and ABCG1. Cellular and structural studies should also gain insight in conformational 

and biochemical mechanisms (418). Future projects should consider look into alternative 

pathways of cholesterol transport (419), that may help reduce atherosclerosis.  

 

Deficiency in ABCA1 and ABCG1 transporters leads to cholesterol accumulation, which 

activates the inflammasome, resulting in systemic inflammation and neuroinflammatory 

responses. Targeting ABCA1, ABCG1 or NLRP3 proteins may be potential approaches to 

counteract inflammatory response (419) . This complexity becomes even more pronounced 

when considering their roles in diseases like atherosclerosis, Alzheimer’s or metabolic 

syndrome. Future research may look into enhancing the efficiency of cholesterol efflux 

transporters to treat associated diseases. 

 

Neuroinflammatory response 

 

The inflammatory response plays a central role in neurodegenerative diseases, making the 

discovery of novel biomarkers or identifying those with the strongest prognostic potential key 

targets for future treatments. Various signals are responsible for triggering different responses in 

glial cells; thus, selectively neutralizing or enhancing specific signaling pathways may improve 

inflammatory regulation and promote metabolic health. Microglial intervention in response to 

pathological insults can assume either neuroprotective or neurotoxic roles, partly mediated by 

gut metabolites generated from diet (420). Research on metabolites, the microbiota, and factors 

capable of modulating microglial status may provide valuable information.  

  

Lifestyle habits, particularly dietary patterns, can influence these specific pathways; however, 

further research is needed to determine how nutrients affect these processes, and which dietary 

composition is most beneficial. The gut-brain axis is a complex communication system currently 

investigated, influenced by microbiota composition. As previously mentioned, gut microbiota 

regulates different inflammatory pathways, such as GLP-1, which has been identified as a 

potential target with neuroprotective effects (421). In this context, the integrity of the BBB also 

depends on these pathways, as well as metabolites, which can either impair or help to restore it.  

 

Integrating this knowledge may be beneficial, or even essential, for assessing information from 

multiple sources, such as transcriptomic data, while simultaneously analyzing proteomic and 

epigenetic profiles alongside imaging techniques. The comprehensive perspective provided by 

combining these diverse data sources could further aid in the identification of pathological 

mechanisms. Potential precision nutrition tailored according to genotype and phenotype, presents 

a future challenge in the prevention based on individual traits. 

 

However, a key challenge remains the limited accessibility of brain samples, hindering the 

evaluation of how systemic inflammation affects central nervous system and contributes to the 

development or worsening of NDDs. In this context, longitudinal studies are particularly valuable, 

as they enable researchers to monitor changes in inflammatory markers, glial cell activity, and 

disease progression over time. These studies can provide insight into the temporal relationships 

between systemic inflammation and the onset and progression of NDDs. 
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