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Spatial tumor immune heterogeneity
facilitates subtype co-existence and therapy
response in pancreatic cancer
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Kazeera Aliar 5, Foram Vyas5,6, Uday Kishore7, Elisabeth Hessmann1,8,9,
Andreas Trumpp 10,11, Elisa Espinet 10,11,12,13, Argyris Papantonis 4,8,9,
Rama Khokha5,6, Volker Ellenrieder1,8,9, Barbara T. Grünwald5,14,15 &
Shiv K. Singh 1,8,9,15

Pancreatic ductal adenocarcinoma (PDAC) displays a high degree of spatial
subtype heterogeneity and co-existence, linked to a diverse microenviron-
ment and worse clinical outcome. However, the underlying mechanisms
remain unclear. Here, by combining preclinical models, multi-center clinical,
transcriptomic, proteomic, and patient bioimaging data, we identify an inter-
play between neoplastic intrinsic AP1 transcription factor dichotomy and
extrinsic macrophages driving subtype co-existence and an immunosuppres-
sive microenvironment. ATAC-, ChIP-, and RNA-seq analyses reveal that JUNB/
AP1- and HDAC-mediated epigenetic programs repress pro-inflammatory sig-
natures in tumor cells, antagonizing cJUN/AP1 signaling, favoring a therapy-
responsive classical neoplastic state. This dichotomous regulation is amplified
via regional TNF-α+ macrophages, which associates with a reactive phenotype
and reduced CD8+ T cell infiltration in patients. Consequently, combined
preclinical anti-TNF-α immunotherapy and chemotherapy reduces macro-
phages and promotes CD3+/CD8+ T cell infiltration in basal-like PDAC,
improving survival. Hence, tumor cell-intrinsic epigenetic programs, together
with extrinsic microenvironmental cues, facilitate intratumoral subtype het-
erogeneity and disease progression.

The molecular heterogeneity in neoplastic and stromal immune
cells renders PDAC prognosis dismal and therapy challenging.
PDAC has become the third leading cause of cancer-related death
with a 5-year survival rate of 12%1. Presently, gemcitabine/nab-
paclitaxel and modified FOLFIRINOX are the main therapeutic
options in PDAC, though therapy resistance and local as well as
distal recurrences are common2,3. Transcriptome analyses iden-
tified two clinically relevant PDAC subtypes; the basal-like (BL) or
squamous subtype is linked to therapy resistance and worse

patient outcome, whereas the classical (CLA) subtype shows
better clinical outcome4–6.

Subtype-based screening of a small cohort of PDAC patients has
shownpotential prognostic aswell as predictive benefits6–8, and hence,
a number of current clinical studies (e.g., NCT05314998) are designed
to translate these subtypes into the clinical setting9. However, it has
become clear that the CLA and BL subtypes are not discrete states of
individual PDAC tumors, but rather co-exist and contribute to sig-
nificant intratumoral heterogeneity that is poorly understood. Multi-
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scale transcriptomic and imaging-based profiling revealed a wide-
spread co-existence of CLA and BL subtypes within PDAC patient
tumors, as well as hybrid/co-expressor states that are implicated as
transitionmechanismbetween the subtype extremes10–15, emphasizing
the complex tumor cell plasticity. Moreover, the extent of subtype co-
existence increases in advanced disease, especially in metastatic
samples12,13,16. This significantly associates with poor overall prognosis,
making precision-based therapies for PDAC patients a major
challenge13,16,17. Thus, understanding the underlying mechanisms of
intratumoral subtype plasticity may improve subtype-based predic-
tion and therapeutic response for PDAC patients.

While the precise mechanisms that drive this spatial plasticity in
PDAC unclear, it appears that both tumor cell-intrinsic and extrinsic
factors play a role. A major extrinsic driver of malignant cell pheno-
typic plasticity in PDAC is the regional tumor immune microenviron-
ment (TiME), which enables the acquisition of therapy resistance and
aggressive behavior14,18,19. A recent study showed that TGF-β can pro-
mote BL subtype specificity and therapy resistance by regulating
neoplastic cell-intrinsic transcriptional programs20. Furthermore, TNF-
α, secreted bymacrophages, and other cell types, along with signaling
events mediated by IFN-α/γ, can drive the BL subtype-specific tran-
scriptional program and promote PDAC aggressiveness21–24. Notably,
this transcription-based subtype plasticity is independent of genetic
alterations20,21. It is currently unknown whether plasticity imposed by
microenvironmental cues or other factors is responsible for intratu-
moral subtype heterogeneity and how such factors might promote a
specific cell-type identity and response to therapy.

PDAC neoplastic cells show a remarkable capacity to change their
phenotypic identity through transcriptional and epigenetic regulation.
Lineage-specific transcription factors (TFs) and epigenetic co-
regulators are considered a key hallmark of PDAC subtype specificity
and disease progression4,21,25–28. For instance, MYC, TP63, and AP1 are
crucial TFs in squamous/BL and inflammatory PDAC subtypes, while
TFs such as GATA6 drive the therapy-responsive CLA neoplastic
identity7,21,29–31. Notably, the AP1 inflammatory TF family drives a strong
response to external stimuli such as growth factors and cytokines and
regulates key cellular processes including differentiation and growth,
also in the context of tumor biology32–34. The JUN/AP1 factors fur-
thermore exhibit substantial heterogeneity in gene expression in the
distinct PDAC subtypes. For instance, while cJUN/AP1high PDACpatients
exhibit resistance to gemcitabine/nab-paclitaxel chemotherapy, ear-
lier relapse, and a BL phenotypic state21,35, JUNB/AP1 expression is
linked to low-grade/CLA-like PDAC16,21,25,36,37. This study thus addresses
the question whether and how AP1 heterogeneity could regulate
intratumoral subtype plasticity, inflammatory programs, and therapy
response in PDAC.

We report a spatially regulated dichotomy in the AP1 transcrip-
tional programs (JUNB vs. cJUN) in PDAC subtype plasticity via both
tumor cell intrinsic and extrinsic mechanisms. We show that JUNB/
AP1- and HDAC-mediated epigenetic and transcriptional networks
restrict macrophage infiltration in the TME. These spatial CD68+/
TNF-α+ macrophages promote intratumoral subtype co-existence by
destabilizing CLA-like epithelial and promoting a BL phenotypic
state. Mechanistically, the loss of JUNB-mediated repressive func-
tions is linked to TNF-α signaling, CLA-to-BL neoplastic transition,
and poorer outcomes in PDAC patients. Notably, macrophage-
derived TNF-αhigh expression marked a reactive stroma with low
CD3+/CD8+ T cell counts in PDAC patient tumors. Combined anti-
TNF-α and standard chemotherapy reduced CD68+/TNF-α+ macro-
phages and restored CD3+/CD8+ T cell infiltration, improving the
overall outcome in preclinical models. These molecular insights may
help define therapeutic vulnerabilities and subtype-based precision
therapy strategies cognizant of intratumoral subtype co-existence
in PDAC.

Results
JUNB associates with GATA6high CLA identity in PDAC patients
In our previous study, the AP1 pathway was found to significantly
influence the subtype identity of PDAC through tumor cell-intrinsic
and extrinsic mechanisms21. Due to their ability to integrate extrinsic
inflammatory signals and intrinsic transcriptional programs21,25,34,36, the
AP1 transcription factors (TF) JUNB and cJUN are particularly impor-
tant in the context of intratumoral subtype plasticity in PDAC. In this
study, the initial focuswas on JUNB/AP1, as it has been implicated in the
identity of low-grade or CLA-like PDAC16,21,25,36,37. Using our JUNB ChIP-
seq and ATAC-seq analysis of low-grade or CLA-like PDAC cell lines, we
observed an enrichment of pathways related to ‘cell adhesion’ and
‘developmental morphogenesis’ (Fig. 1a), supporting the notion that
JUNB could promote CLA-like epithelial features and/or early pan-
creatic differentiation. Hence, we analyzed flow cytometry-sorted
epithelial-specific (EPCAM+/CD45–/CD31–) transcriptomes of 31 PDAC
patients22 (Fig. 1b) to investigate a link between JUNB and epithelial-
specific features in PDAC. Indeed, our findings revealed a notable
association between JUNB expression in the epithelial compartment of
patients and the enrichment of classical (CLA) epithelial phenotype
signatures such as “CLA-A” and “CLA-B” subtype signatures, as defined
by Chan-Seng-Yue et al.12 (Fig. 1c). Next, we investigated a possible
association of JUNB and the bona fide marker of low-grade, CLA sub-
type PDAC, GATA6. We observed a significant positive correlation
between epithelial-specific JUNB and GATA6 expression (Fig. 1d). To
further investigate the link between JUNB and a GATA6high CLA-like
epithelial cell state, we analyzed 32 treatment-naive, resected PDAC
patient tissues. Using triple-IF staining for JUNB, GATA6, and the epi-
thelial marker pan-cytokeratin (panCK; Fig. 1e, Supplementary Fig. 1a),
we confirmed a strong relationship between JUNB and GATA6
expression in individual epithelial (panCK+) cells.Our findings revealed
that an increased JUNB-positive fraction correlates with high GATA6:-
JUNB double-positive cells in well-differentiated epithelial neoplastic
cells (Fig.1f). Notably, themajority of GATA6+ neoplastic (panCK+) cells
also expressed JUNB (62.5%). Furthermore, in pancreatic orthotopic
tumor models, low-grade/well-differentiated tumors not only dis-
played restricted GATA6 and JUNB expression, but also showed a
significantly higher number of GATA6:JUNB double-positive cells
compared to high-grade/poorlydifferentiated tumors (Supplementary
Fig. 1b,c).

Next, we analyzed a clinical sample from the PMCC cohort of 105
PDAC patient tissues where JUNB and GATA6 protein expression in
malignant neoplastic epithelial cells was carefully annotated (Supple-
mentary Fig. 1d–g). Interestingly, JUNB expression was not uniform
across each tumor, but rather displayed varying degrees of intratu-
moral spatial heterogeneity. Since multiple TMA cores were available
for each patient, we were able to quantify regional expression differ-
ences and observed intratumoral co-existence of JUNBhigh and JUNBlow

regions in 32.4% of patients (Supplementary Fig. 1e). We thus tested
association of JUNB with the epithelial differentiation markers GATA6
and E-cadherin (ECAD) both at the patient level as well as in individual
TMA cores (Fig. 1g). JUNBhigh vs. JUNBlow patient samples showed sig-
nificantly elevated GATA6 expression (Fig. 1h–j). Importantly, patient-
paired analysis showed that GATA6 expression was higher in JUNBhigh

than JUNBlow regions within the same patient (Fig. 1j). The epithelial
adhesionmolecule ECAD showed an analogous elevated expression in
JUNBhigh patients and samples, though it was only significant at the
regional level (Fig. 1k–m). Accordingly, we observed an overall positive
correlation of JUNB and GATA6 expression within patients and within
individual TMA cores (Supplementary Fig. 1f, g).

Given positive association between epithelial JUNB and GATA6 in
various cohorts of resected early-stage PDAC specimens, we pro-
ceeded to investigate whether this association was maintained at later
stages. We examined the epithelial-enriched RNA expression dataset
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from the COMPASS trial7, containing data of LCM-enriched epithelia
from both early and advanced stage patients (stage I–IV). In this
cohort, JUNB once again demonstrated a strong correlation with
GATA6 expression (Fig. 1n), further strengthening its association with
the CLA-like epithelial state in PDAC.

JUNB-mediated transcriptional repression affects the CLA phe-
notype, inflammation, and clinical outcome
As higher JUNB levels were linked to a GATA6-positive, CLA-like phe-
notype in PDAC neoplastic cells (Fig. 1), we investigated the underlying
transcriptional mechanism.We utilized our ChIP-seq data for JUNB (as
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in Fig. 1a), togetherwithpublicly availableH3K27ac25 data todetermine
the potential direct regulatory effects of JUNB on lineage TFs of the
low-grade/CLA-like PDAC. JUNB binds not only on itself (Fig. 2a), but
crucially also on a potential downstream enhancer of GATA6 (Fig. 2b).
Other CLA-associated factors such asHNF1B and FOXA1 are also bound
directly by JUNB in CLA-like PDAC cells at intronic and promoter
regions, respectively (Fig. 2c,d). Both JUNB binding (Fig. 2e) and
H3K27acoccupancy (Fig. 2f) were validated via ChIP-qPCR inCLA cells,
which showed the strongest binding of JUNB at theGATA6 locus. Next,
regulatory effects of JUNB were investigated in a global approach by
integrating JUNB-bound regions by ChIP-seq with differential expres-
sion upon silencing of JUNB (siJUNB) compared to control siRNA
(siCtrl; Supplementary Fig. 2a). Genes directly bound by JUNB showed
a higher fold change in gene expression than all genes (Fig. 2g). As
further illustrated in Fig. 2h, JUNB-bound genes were preferentially
upregulated upon silencing, suggesting direct repression by JUNB.
Gene ontology analysis of genes directly bound by JUNB indicated that
pathways involved in cell migration/stemness, inflammatory signaling,
as well as histone deacetylase (HDAC) targets were enriched upon
JUNB silencing in PDAC cells (Fig. 2i). Notably, these genes contained
major BL-specific driver genes, such as CD9, MYC, TP63, and cJUN
(Supplementary Table 3), indicating a direct tumor cell-intrinsic
repression of BL features. In accordance, JUNB silencing in estab-
lished (CAPAN2, CFPAC-1) as well as in PDX-derived (JUNBhigh GCDX62)
CLA cell lines led to a more invasive state (Supplementary Fig. 2b–j),
which is a characteristic of BL PDAC cells.

We then investigated how these JUNB regulatory effects impact
the overall clinical outcomes in PDAC patients. To enhance the global
applicability of the genes directly regulated by JUNB, which were
identified through combined ChIP- and RNA-seq in CAPAN1 cells
(Fig. 2h), we analyzed the correlation of JUNB to each of these 146
genes in a panel of 46 PDAC cell lines from the Cancer Cell Line
Encyclopedia38,39 (CCLE). We focused the analysis on genes that are
negatively associated with JUNB (Fig. 2j). Subsequently, the 37-gene
“JUNB repression signature” retained the enrichment of pathways
consistently, as identified in Fig. 2i, related to PDACaggressiveness and
inflammatory TNF-α signatures (Supplementary Fig. 2k). We then used
gene set variation analysis (GSVA) for the stratification of patients by
this signature (Supplementary Fig. 2l–o). In the combined TCGA,
QCMG, Puleo, and Zhou datasets (total n = 652), this revealed a clear
overall survival benefit for low expression of the JUNB repression sig-
nature (16 vs 24 months in upper vs lower quartile; hazard ratio = 1.49,
95% CI = 1.13–2.0; Fig. 2k). Particularly, a stark difference was noted in
the progression-free survival rate among the TCGA patients, with a
hazard ratio = 2.5, 95% CI = 1.36–4.4, for high expression of the sig-
nature (Fig. 2l). Additionally, the JUNB repression score was lowest
with lower AJCC stage (Supplementary Fig. 2p) and showed a trend
towards lower histological grade (Supplementary Fig. 2q). Together,
these data suggest that JUNB-dependent repression of BL-associated

pro-inflammatory drivers, such as TNF-α signaling, confer improved
survival in PDAC patients.

JUNB antagonizes cJUN and cytokine expression utilizingHDAC1
Upon silencing JUNB in CLA cell line, we noted significant enrichment
of inflammatory response and TNF-α signaling hallmark signatures, as
well as TGF-β signaling and IFN-γ response (Supplementary Fig. 3a–d).
This finding is particularly interesting given recent studies linking the
TNF-α signaling pathway to therapy-induced plasticity and
macrophage-driven inflammatory response in PDAC patients17,21,40.
Therein, the inflammatory cJUN TF, anAP1 familymember of JUNB, is a
crucial mediator of such pro-inflammatory signaling and BL pheno-
typic state21,35.

To understand whether JUNB-dependent repression of inflam-
matory pathways is associated with cJUN signaling, we validated the
expression of core inflammatory factors in the major inflammatory
signatures that were repressed by JUNB (Supplementary Fig. 3a–d).
Our results showed an expected upregulation of several interleukins
(e.g., IL1B, IL6) and C-X-C/C-C motif chemokines upon JUNB silencing,
both in RNA-seq (Fig. 3a) and qPCR (Fig. 3b). Notably, cJUN itself and its
downstream target CCL2 were upregulated upon JUNB silencing
(Fig. 3b). Furthermore, ChIP-seq data of JUNB and H3K27ac indicated
strong JUNB binding in the absence of H3K27ac at the loci for cJUN
(Fig. 3c), IL1B (Fig. 3d) andCXCL9/10/11 (Fig. 3e), suggesting repression.

The mechanism through which JUNB exerts transcriptional
repression in PDAC is poorly understood. TFs rely on additional epi-
genetic co-regulators to exert their regulatory functions on lineage
gene expression. A previous study identified key epigenetic regulators,
such as HDAC1, as crucial in determining PDAC subtype
heterogeneity26. Particularly, in the gene signatures directly repressed
by JUNB (see Fig. 2i, Supplementary Fig. 2k) and in GSEA in JUNB
silencing transcriptome data (Fig. 3f), HDAC target signatures were
found to be enriched. Therefore, we hypothesized that HDAC1may be
involved in JUNB-mediated transcriptional repression of BL-associated
inflammatory lineage signatures. To determine whether HDAC1
cooperates with JUNB in transcriptional repression, we investigated
protein-protein interaction, which confirmed a direct binding between
JUNB and HDAC1 (Fig. 3g,h). Importantly, targeted ChIP followed by
qPCR analysis further validated significant binding of both JUNB
(Fig. 3i) and HDAC1 (Fig. 3j) at the repressed loci, which suggests that
HDAC1 deacetylates and thereby represses these inflammatory genes.

In order to assess the impact of JUNB on the suppression of
inflammatory genes through HDAC1 on a genome-wide scale, we per-
formed ChIP-seq for HDAC1 and H3K27ac following JUNB silencing or
with control siRNA (Supplementary Fig. 3e,f). A pronounced loss of
HDAC1occupancywas noticed upondepletion of JUNB, indicating that
JUNB is necessary to maintain HDAC1 recruitment to the genome.
Overlap of the HDAC1-loss sites with the established JUNB binding
regions (as used in Fig. 1a) revealed 1454 sites that are significantly

Fig. 1 | Neoplastic JUNB expression associates with GATA6 in PDAC patients.
aMeta-analysis of enriched pathways in regions accessible in CAPAN1 and CAPAN2
(ATAC-seq) and bound in CAPAN1 by JUNB (ChIP-seq). Node color indicates sig-
nificance, link width the number of gene overlaps between gene sets. b Epithelial-
specific RNA-seq of resected PDAC patients in the Deutsche Krebsforschungszen-
trum (DKFZ) was generated by fluorescence-activated cell sorting (FACS) of
EPCAM+/CD45–/CD31– cells. c Gene set enrichment analysis for Chan-Seng-Yue
PDAC subtypes12 in genes correlating with JUNB in epithelial compartment-sorted
transcriptomes of b. Normalized enrichment score (NES) and FDR q value are
indicated. d Correlation analysis for epithelial-specific JUNB and GATA6. Linear
regression with 95% CI, as well as Spearman’s R and associated P value. n = 31
patients. e IF for JUNB, GATA6, and pan-cytokeratin (panCK) in resection tissue of
therapy-naive PDAC patients at representative region with high, intermediate, and
low epithelial JUNB expression in the University Medical Center Göttingen (UMG)
cohort. Epithelial area is overlayed on greyscale images in magenta, based on

panCK+ cell classification. In the overlay, blue: DAPI, green: JUNB, magenta: panCK,
yellow: GATA6. Scale bar 50μm. f Quantification of (e) for JUNB+ and GATA6:JUNB
double-positive epithelial (panCK+) cells, plotted as in (d). n = 32 patients. g–m IHC
analysis in 105 PDAC patients of the Princess Margaret Cancer Centre (PMCC) for
epithelial JUNB expression. g IHC for JUNB, GATA6 and ECAD in cores classified as
JUNBlow and JUNBhigh. Scale bar 200μm. h–mQuantification of (g), for GATA6 (h–j)
and ECAD (k–m) in JUNBlow and JUNBhigh expression per patient (h, k), per TMA core
across all patients (i, l) and in heterogeneous patients showing matched levels in
JUNBlow and JUNBhigh cores (j,m).h,j, high,n = 51; low,n = 52patients. i, high,n = 106,
low, n = 112 cores. k,m, high, n = 51; low, n = 49 patients. l high, n = 123; low, n = 119
cores. Boxplots show 25th to 75th percentile with median as box and highest and
lowest value in 1.5 times interquartile range as whiskers. Two-tailed Wilcoxon rank
sum test. n Correlation analysis for JUNB and GATA6 in LCM-enriched epithelia of
COMPASS trial patients (stage I–IV), plotted as in (d). n = 439 patients. Source data
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-55330-7

Nature Communications |          (2025) 16:335 4

www.nature.com/naturecommunications


enriched for TNF-α pathway signature (Fig. 3k, l), highlighting the
importance of HDAC1 in maintaining repression of these BL inflam-
matory processes with JUNB. As a likely response to the loss in HDAC1,
we observed increased H3K27 acetylation at 3589 JUNB-bound sites
upon siJUNB, which are also strongly enriched in inflammatory
response signatures, particularly TNF-α signaling (Supplementary
Fig. 3g,h). This genome-wide analysis further confirms the role of JUNB
in repressing TNF‑α signaling and its associated BL inflammatory

genes, such as the macrophage recruiting factor CCL2, and its reg-
ulator, the TF cJUN.

Consistent with our RNA expression and ChIP-qPCR data, we
found protein expression of cJUN induced in both established and
PDX-derived CLA-like PDAC cell lines (Supplementary Fig. 3i,j). We
also observed an upregulation CCL2 in CLA-like PDAC cell lines
(Fig. 3m, n, Supplementary Fig. 3k), which is a direct target of cJUN21,
indicating a direct repression of cJUN by JUNB. This was further

Fig. 2 | Prognostic relevance of JUNB-repressed inflammatory signaling. Cov-
erage of previously published21 JUNB ChIP-seq data in CAPAN1, as well as publicly
available H3K27ac25 data, for loci of JUNB (a), GATA6 (b), HNF1B (c), and FOXA1 (d).
ChIP-qPCR validation regions are indicated. ChIP-qPCR for regions indicated in
(a–d), showing signal relative to input for JUNB (e) and H3K27ac (f ) pulldown with
mean ± s.d. and average IgG isotype control. n = 3 biological replicates.
g–i Integration of RNA-seq data performed after JUNB silencing (siJUNB; n = 3
biological replicates) or control siRNA (siCtrl;n = 2biological replicates) inCAPAN1,
withChIP-seq for JUNB.gViolin plot of log2 fold change (FC) in siJUNBRNA-seqdata
for all (n = 36.740) or JUNB-bound (n = 698) genes. Median and quartiles are indi-
cated. Two-tailed Student’s t-test with Welch’s correction. h As in (g), showing the
number of genes that display a significant upregulation (sigUP) or downregulation
(sigDN), or no significant change (ns). i Gene ontology analysis of significantly

upregulated, JUNB-bound genes following JUNB silencing with –log10(q-value)
indicated. Hallmark (H) and curated (C2) signature collections of the Molecular
Signature Database (MSigDB) are shown. j Spearman correlation of genes as in (i)
with JUNB in 46 PDAC cell lines of the Cancer Cell Line Encyclopedia (CCLE).
Negatively associated genes (red) form the JUNB repression signature. k Overall
survival, numbers at risk, and hazard ratio in TCGA (n = 150), Puleo (n = 288),QCMG
(n = 96), andZhou (n = 85) patients stratifiedby JUNBrepression signature ( j) score.
Top: Kaplan-Meier survival analysis for the lower/upper quartiles (n = 155 patients
each) and mid-group (n = 309 patients) for JUNB repression signature scores.
Median survival (ms) is indicated. Log-rank test. Bottom: Cox proportional hazard.
Hazard ratio (to lower quartile) with 95% CI. P values are shown right. l As in (k), for
progression-free survival in the TCGA cohort. Source data are provided as a Source
Data file.
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Fig. 3 | JUNB-HDAC1 complex represses inflammatory signals and cJUN.
aHeatmap showing expression of cytokines present in the core enrichment of the
gene sets shown in Supplementary Fig. 3a–d, for JUNB silencing (siJUNB; n = 3
biological replicates) versus control siRNA (siCtrl; n = 2 biological replicates) in
CAPAN1 cells. Cell color indicates z score. b qRT-PCR analysis for indicated target
genes in siJUNB conditions (red), normalized to siCtrl (gray), in CAPAN1. Relative
mRNA expression with mean± s.d. shown. n = 3 biological replicates. Two-tailed
Student’s t-test with Welch’s correction. Coverage of JUNB ChIP-seq data in
CAPAN121, as well as publicly available H3K27ac25 data, for loci of cJUN (c), IL1A/B
(d), and CXCL9/10/11 (e). ChIP-qPCR validation regions are indicated. f Gene set
enrichment analysis for curated signatures (C2) of the Molecular Signature Data-
base (MSigDB) for siJUNB versus siCtrl in CAPAN1 cells. Normalized enrichment
score (NES) and FDR q value are indicated. Immunoblot for JUNB, HDAC1, and β-
actin after JUNBpulldown, IgG isotype control or input in CAPAN1 (g) and CAPAN2
(h). n = 3 biological replicates. i, j, ChIP-qPCR for regions indicated in (c–e),
showing signal relative to input for JUNB (i) and HDAC1 ( j) pulldown with

mean ± s.d. and average IgG isotype control. n = 3 biological replicates. k, l, ChIP-
seq analysis for JUNB in control cells (as in c–e) and HDAC1 with siJUNB or siCtrl.
k Overlap of JUNB binding regions and regions where HDAC1 is significantly lost
upon siJUNB (“HDAC1_DOWN”). l, GREAT analysis of the overlapping regions of (k)
with –log10(Padj) for binomial test indicated. Hallmark (H) and C2 signatures of
MSigDB are shown. Representative immunoblot for JUNB, cJUN, CCL2, and β-actin
in HPAF-II (m) and CFPAC-1 (n) after siJUNB or siCtrl. n = 3 biological replicates.
o Dual-luciferase reporter assay for cJUN promoter firefly luciferase (Luc) con-
structs in CAPAN2 cells with varying concentrations of JUNB overexpression
plasmids (or EV controls). Relative Luc activity to Renilla luciferase control with
mean ± s.d. shown. One-way ANOVA. n = 3 biological replicates. Immunoblot for
JUNB, cJUN, and β-actin in CAPAN1 (p) andCAPAN2 (q) cells with overexpression of
cJUN (cJUN-OE) or empty vector (EV) control. n = 3 biological replicates. Source
data are provided as a Source Data file.
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confirmed by dual luciferase reporter assays for the promoter of
cJUN, which showed that JUNB was able to directly downregulate
cJUN (Fig. 3o, Supplementary Fig. 3l,m), suggesting that cJUN plays
an antagonistic role, activating BL subtype-associated inflammatory
genes. To determine the molecular and functional differences
between cJUN and JUNB in subtype plasticity, we analyzed cJUN-
bound regions by ChIP-seq upon cJUN overexpression (cJUN-OE) in
JUNBhigh CLA cell lines (Supplementary Fig. 3n,o). Notably, unlike
JUNB, cJUN-bound genes showed no preference for up- or down-
regulation in RNA-seq data following HA-tagged cJUN-OE compared
to empty vector (EV) controls (Supplementary Fig. 3n), underlining
their diverging functions in PDAC subtype plasticity. Gene ontology
analysis of up- and downregulated genes (Supplementary Fig. 3o)
showed that the aggressiveness-associated pathways repressed by
JUNB (e.g., “cell migration”; Fig. 2i) were directly activated by cJUN
(Supplementary Fig. 3p). In particular, BL-associated EMT and TNF-α
gene signatures were enriched among cJUN-bound genes (Supple-
mentary Fig. 3p), indicating that cJUN may attenuate CLA-associated
functions by antagonizing JUNB signaling. Interestingly, however, the
expression of JUNB remained unchanged when cJUN was over-
expressed in CLA cell lines (Fig. 3p, q). This led us to hypothesize that
cJUN may employ indirect pathways, such as microenvironmental
extrinsic factors, to antagonize JUNB-dependent signaling. Together,
these findings suggest that JUNB restricts BL pro-inflammatory pro-
grams via HDAC1-mediated transcriptional repression.

Antagonistic roles of AP1 factors determine regional immune
recruitment
Detailed gene expression analysis has shown potential immune-
modulatory effects of the antagonistic JUNB-cJUN interplay (Fig. 3).
To investigate the opposing functions of JUNB and cJUN in the spatial
TME, we orthotopically implanted both cJUN-OE and EV control CLA-
like PDAC cell lines into the pancreas of immunodeficient nude mice
(Fig. 4a). Initially, we confirmed the expected high nuclear cJUN
expression levels compared to EV in cJUN-OE PDAC tumors (Supple-
mentary Fig. 4a,b). Intriguingly though, not all ductal cells in the HA-
cJUN-OE tumors exhibited cJUN expression (Supplementary Fig. 4a).
There were no obvious tumor histological differences between the
groups, however, we interestingly observed a trend towards higher
immune infiltrations (Fig. 4b). This was further supported by an
increase in CD45+/CD68+ and TNF-α+/CD68+ macrophages in cJUN-OE
CLA-derived tumors (Supplementary Fig. 4c-e), in line with the pro-
inflammatory effects mediated by cJUN.

As JUNB attenuated the expression of cJUN (Fig. 3m–o, Supple-
mentary Fig. 3i-m), we then assessed whether cJUNlow areas in this
heterogeneous tumor model exhibited high JUNB expression. This
presented a valuable opportunity to investigate spatial effects of the
AP1 heterogeneity in PDAC. Using whole slide images of IHC for HA-
cJUN (Fig. 4c) and IF for JUNB (Fig. 4d) in serial sections, we marked
and quantified “hotspot” regions of high cJUN and high JUNB
expression. This revealed not only reduced HA-cJUN+ cells in JUNB
hotspots, but JUNB+ cells were vice versa depleted in cJUN hotspot
areas (Fig. 4e). Since cJUN-OE did not lead to a direct repression of
JUNB expression (Fig. 3p, q), we hypothesized that microenviron-
mental factors may affect JUNB expression and shape PDAC plasti-
city. Previous studies have reported that microenvironmental factors
such as TNF-α or TGF-β can influence subtype specificity20,21. As
mentioned, we observed higher TNF-α+ macrophages in cJUN-OE
tumors (Supplementary Fig. 4c-e). Therefore, we sought to deter-
mine whether regional CD68+ macrophage infiltrations, particularly
surrounding cJUN+ hotspot area, might destabilize JUNB expression
(Fig. 4f). Indeed, the average distance of CD68+ macrophages to cJUN
hotspots was lower than to JUNB hotspots (448.5 vs 645.3μm;
Fig. 4g). When analyzing the distance of each cell to either hotspot, it

was observed that significantly more CD68+ macrophages were clo-
ser to the cJUN hotspot (Fig. 4h). Upon further examination of the
type ofmacrophages using IHC in the samemanner, it was noted that
M2-like (CD163+) macrophages are located closer to cJUN hotspots
(Fig. 4i,j), while the opposite is true forM1-like (CD86+)macrophages,
which are nearer to JUNB hotspots (Fig. 4k, l). Notably, M2 macro-
phages are linked to the BL subtype and poor prognosis in PDAC
patients14,17,41. Mechanistically, these M2 macrophages are likely
recruited through CCL2 secretion at cJUN hotspots, as CCL2+ cells in
IF staining of the cJUN-OE tissues were also found significantly closer
to cJUN hotspots (Fig. 4m, n).

Thus, cJUN+ cell clusters appeared to preferentially recruit M2
macrophages via CCL2,whichwas restricted in JUNB+ areas, potentially
affecting AP1 heterogeneity through spatial inflammatory cues. Col-
lectively, these results suggest that regional inflammatory macro-
phages can influence neoplastic stability by influencing AP1
transcriptional programs.

TNF-α destabilizes CLA-like neoplastic state and shapes local
TME heterogeneity
It has been shown that TNF-α or TGF-β can influence subtype
specificity20,21, yet the impact of inflammatory cell-derived TNF-α on
AP1 heterogeneity is unknown. Thus, to determine whether TNF-α
destabilizes the CLA-like epithelial state (potentially by affecting
JUNB signaling) and gradually promotes BL plasticity through neo-
plastic co-existence, we analyzed its impact on transcriptional sig-
natures in vitro and in vivo. Among genes upregulated in RNA-seq
data of CLA-like PDAC cells upon exogenous TNF-α treatment, we
found JUNB, together with a shift in established CLA and BL subtype
markers (Fig. 5a). To further test this observation in vivo, we utilized
a CLA-derived orthotopic murine model which was treated for three
weeks with exogenous TNF-α. These tumors were then subjected to
comprehensive cell type-specific transcriptome analysis. Alignment
of bulk RNA-seq of these tumors to human (implanted neoplastic
epithelial cells) ormurine (host stromal cells) reference genomes and
XenofilteR-based removal of the opposite species reads allowed
generation of virtually microdissected, compartment-specific tran-
scriptomes (Fig. 5b). Within the tumor cell-specific data, GSEA
showed a strong enrichment of TNF-α signaling pathways (Fig. 5c),
confirming that tumor cells reacted to the exogenous treatment. In
accordance with the in vitro data, TNF-α treatment led to repression
of CLA gene signatures in vivo (Fig. 5d). The stromal population also
responded to the TNF-α treatment with induction of TNF-α signaling
(Fig. 5e), along with a significant remodeling of the stromal immune
populations, as determined by MCPcounter (Fig. 5f). Specifically,
cytotoxic T cell, as well as B cell signatures were reduced after TNF-α
treatment. Further, CIBERSORTx-based deconvolution analysis
revealed a significant increase in M2 macrophages (Supplementary
Fig. 5a), consistent with the observations in the cJUN-OE tumors (see
Fig. 4). PDAC patients with a high expression of the JUNB repression
signature genes (see Fig. 2) also showed a reduced T and B cells,
along with an increase in monocytic lineage cells by MCPcounter
(Fig. 5g, Supplementary Fig. 5b). Further deconvolution analysis by
CIBERSORTx confirmed a decrease in CD8 T cells, as well as naïve and
memory B cells, and particularly an increase in M2 macrophages,
with no significant changes in monocytes, M0 or M1 macrophages
(Fig. 5h, Supplementary Fig. 5c). As shown above, the JUNB repres-
sion signature was directly associated with TNF-α signaling as well
(Supplementary Fig. 2k). Hence, we suspected that JUNB expression
might be reduced in response to TNF-α, potentially contributing to
the indirect cJUN-CCL2-dependent attenuation of JUNB in the spatial
TiME. Indeed, IF staining for JUNB (Fig. 5i) confirmed a reduction in
nuclear neoplastic JUNB intensity upon TNF-α treatment (Fig. 5j). In
addition, the expression of the CLA subtype marker ECAD and
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nuclear GATA6 were also significantly reduced (Fig. 5k–m). Further-
more, an increase in M2-like macrophages (CD163+) was validated in
the TNF‑α-treated tissues, corroborating the findings of the in silico
CIBERSORTx analysis (Fig. 5n, o). Together, these results suggest that
TNF-α directly influences the remodeling of the immune micro-
environment and the plasticity of neoplastic cells, thus fostering
neoplastic co-existence and PDAC aggressiveness.

TNF-α promotes reactive spatial TiME heterogeneity in PDAC
patients
ExogenousTNF-α treatment affected theTiMEaswell asneoplastic cell
plasticity in experimental models (Fig. 5). Next, we set out to correlate
TNF-α expression with spatial TME functions such as recruitment of
CD68+ macrophages or CD3+, CD4+, CD8+ T cell infiltrations at histo-
logical levels in PDAC patients. We analyzed TNF-α expression and its
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effects in 105 PDACpatients of the PMCCcohort by IHC.Overall, TNF-α
levels were highly heterogeneous, with 46.9% of tumors displaying
strong spatial variation in its expression (Fig. 6a). A major source of
TNF-α in the TiME are macrophages21,42; indeed, TNF-αhigh samples
exhibited higher CD68 scores, both globally as well as in the individual
samples (Fig. 6b–d). Importantly, TNF-α-dependent regional remo-
deling of the TiME seen in mice was recapitulated in patients, as the
lymphocyte populations, particularly CD8+ T cells, were significantly
reduced in TNF-αhigh/int compared to TNF-αlow patients (Fig. 6e, Sup-
plementary Fig. 6a–g). Recently, we have shown that the hetero-
geneous PDAC ecosystem self-organizes into ‘deserted’ and ‘reactive’
sub-tumor microenvironments (subTMEs), which leads to intratu-
moral zonationwith co-existing immune-cold and immune-hot regions
in human PDAC43. In accordancewith these diverse tumor ecosystems,
regional TNF-α expression was strongly increased within the immune-
rich ‘reactive’ subTME regions (Fig. 6f–h), which supports a BL
inflammatory phenotypic state in PDAC patients43. Together, these
results indicate that high TNF-α levels are involved in an immuno-
suppressive TME that supports a BL state in PDAC.

Targeting TNF-α during chemotherapy leads to favorable TiME
reorganization
Finally, we tested whether targeting TNF-α could shift tumors towards
a favorable clinical state, given the central role of TNF-α in shaping
PDAC subtype co-existence by influencing the JUNB-cJUN dichotomy.
Anti-TNF-α monotherapy is not effective in aggressive PDAC21. Simi-
larly, gemcitabine (GEM) chemotherapy alone or in combination with
paclitaxel is essentially ineffective in KrasG12D;p53R172H;Pdx1-Cre (KPC)-
derived murine PDAC models23,29. Thus, we tested whether combina-
tion of GEM with TNF-α inhibition may enhance treatment response.
We utilized a highly aggressive KPC-derived orthotopic model and
treated the animals with a combination of GEM plus anti-TNF-α
monoclonal antibody therapy (Fig. 7a). This significantly prolonged
overall survival from 19 to 32 days (Fig. 7b). While tumors maintained
comparable gross histology (Fig. 7c), analysis of CD45, CD68, and TNF-
α by IF showed a significant reduction in the number of CD45+/CD68+

macrophages, as well as reduction in CD45+/TNF-α+ cells (Fig. 7d–f).
Notably, this also resulted in a significant increase in CD3+ as well as
cytotoxic CD8+ T cells in the TME (Fig. 7g–i). Thus, TNF-α-dependent
macrophage recruitment appeared to be halted, leading to a less
immunosuppressive TiME in GEM plus anti-TNF-α-treated PDAC
tumors, which highlights the important role of TNF-α in shaping the
immune landscape to aid tumor growth and survival. The central
findings are summarized in Fig. 7j.

Discussion
PDAC is a highly heterogeneous disease, not only due to the intratu-
moral co-existence of neoplastic subtypes, but also in terms of its
complex, overabundant TME. This subtype co-existence is increased
during disease progression and negatively impacts both the predictive

and prognostic utility of the transcriptomic subtypes. However, spe-
cific regional drivers of subtype identity and their potential relation-
ship with the heterogeneous TME are currently unknown.

Here, we investigated the role of neoplastic AP1-mediated epige-
netic and transcriptional programs in shaping the local inflammatory
TiME, which in turn is critical for intratumoral subtype plasticity and
PDAC aggressiveness10–15,20,40,44. We report that AP1 transcription fac-
tors (JUNB/AP1 vs. cJUN/AP1) hold a dichotomous role in maintaining
both the plasticity and stability of CLA-like and BL neoplastic cells via
intrinsic epigenetic and transcriptional regulation of lineage gene
expression as well as extrinsic inflammatory processes. Integrated
bioimaging and epithelial-specific transcriptome analyses of PDAC
patients showed that high JUNB expression is associated with GATA6+

CLA identity. Mechanistically, neoplastic JUNB positively controls the
regulation of CLA-specific lineage factors (HNF1B and GATA6), while
epigenetically repressing BL-specific inflammatory immune regulators
(cJUN), which is critical for the maintenance of the CLA-like neoplastic
state. Intriguingly, this JUNB-mediated epithelial CLA-like state is not
stable, but highly plastic in response to inflammatory cues (i.e., TNF-α)
as characterized by loss of JUNB+/GATA6+ cells in preclinical models
and in PDAC patient specimens. These findings clearly indicate that
loss of JUNB/AP1-dependent gene regulation leads to destabilizationof
CLA-like neoplastic state, induces a CD68+/TNF-α+ macrophage-driven
inflammatory response in the TiME and, thereby, promotes a BL
invasive state via complementary intrinsic and extrinsic mechanisms.
Specifically, the TNF-α-mediated inflammatory response associated
with low JUNB expression destabilizes CLA-like neoplastic state by
promoting a CLA-to-BL transition via epigenetic transcriptional
reprogramming in PDAC. Notably, the maintenance of a CLA-like epi-
thelial state or the suppression of pro-inflammatory factors by JUNB
requires the epigenetic co-regulatorHDAC1. Our study emphasizes the
importance of previous work26, which has demonstrated how the
interaction of epigenetic co-regulators like HDAC1 with lineage-
specific TFs can affect PDAC heterogeneity. These results unveil a
key reciprocal interdependence between neoplastic (intrinsic) and
local microenvironmental (extrinsic) factors that influence subtype
plasticity/instability and thereby promote PDAC heterogeneity and
aggressiveness.

Emerging evidence shows that cJUN/AP1 TF plays an important
role in tumor inflammation, chemotherapy response, and tumor
recurrence in PDAC patients21,35. Complementarily, we here show that
JUNB/AP1 acts as a counterpart to promote a favorableCLAphenotypic
state in PDAC. Of note, JUNB/AP1-mediated transcriptional programs
can also confer tumor-promoting functions in other cancer types45–47;
JUN/AP1 TFs are highly context dependent and may co-operate for
target gene transcription47–49 or oppose one another50. Our data indi-
cates that in PDAC, JUN/AP TFs exert antagonistic roles, with JUNB
directly repressing cJUN and cJUN-regulated cytokine secretion (i.e.,
CCL2), thereby inhibiting recruitment of CD68+/TNF-α+ M2 macro-
phages in the TiME. Thus, JUNB not only maintains a CLA subtype

Fig. 4 | Regional AP1 heterogeneity determines macrophage recruitment.
a NMRI-Foxn1nu/nu mice were orthotopically transplanted with CAPAN2 cells with
stable HA-tagged cJUN overexpression (HA-cJUN-OE) or empty vector (EV) control.
b H&E staining of CAPAN2 HA-cJUN-OE and EV tumors. Immune infiltrates are
indicated. Scale bar 100μm. n = 8 animals. c-n, QuPath-based analysis of HA-cJUN-
OE tumors for HA-cJUN IHC, DAPI-JUNB IF, CD68 IHC, CD163 IHC, CD86 IHC, and
DAPI-CCL2 IF. IHC for the HA tag of cJUN (c) or IF for JUNB (d) in serial sections.
Nuclear-positive cell detections (red/green) are indicated. Density maps of positive
cells were created and thresholded to derive hotspot regions for HA-cJUN+ and
JUNB+ cells, respectively, in the same tumors. Whole tumor overviews as well as a
HA-cJUN (mid) and a JUNB (bottom) hotspot ROIs are shown. Scale bar: tumor
overview, 1mm; large ROI, 100 µm; ROI insert, 20 µm. e Quantification of (c, d) for
HA-cJUN+ and JUNB+ cells relative to the total number of detected cells in cJUN (red)
and JUNB (blue) hotspot regions, with mean ± s.d. shown. One outlier is indicated

(red circle), which was excluded for mean and s.d. n = 5 tumors. f IHC for CD68 in
HA-cJUN-OE tumors, with CD68+ cell detection (purple), as well as JUNB and HA-
cJUN hotspots. Exemplary 2D distancemeasurement strategy whichwas used in (g-
n) is shown. Scale bar 100 µm. Distance analysis of CD68+ (g), CD163+ (i), CD86+ (k),
or CCL2+ (m) cells to JUNB or HA-cJUN hotspots. Scatter plots show each individual
cell, with mean± s.d. Two-tailed Student’s t-test with Welch’s correction.
g, n = 14774 CD68+ cells from n = 5 tumors, with a total of n = 1,003,639 cells ana-
lyzed. i, n = 7691 CD163+ cells from n = 4 tumors, with a total of n = 654,297 cells
analyzed. k n = 8384 CD86+ cells from n = 4 tumors, with a total of n = 632,792 cells
analyzed.m n = 14,925 CCL2+ cells from n = 5 tumors, with a total of n = 745,208
cells analyzed. h, j, l, n As in (g, i, k,m) showing the shortest distances of each cell
towards both theHA-cJUNand JUNBhotspots. Sourcedata areprovided as a Source
Data file.
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lineage with high expression of epithelial differentiation factors such
as GATA6, but also directly represses drivers of disease aggressiveness
(e.g., MYC) as well as inflammatory pathways (e.g., M2 macrophages)
associated with poorer clinical outcome in PDAC patients17. In this
context, our model of CLA-derived orthotopic tumors with cJUN-OE
provides a key experimental benefit in that it recapitulates the intra-
tumoral subtype co-existence seen in PDAC patients. Specifically, this

model revealed significant infiltration of CD68+/TNF-α+ M2-like mac-
rophages in the spatial tumor neighborhoodof cJUNhigh but not cJUNlow

neoplastic cells, indicating that cJUN exploits regionalmacrophages to
attenuate JUNB expression and thereby suppress CLA-like neoplastic
state. These findings were crucial in revealing the mechanisms main-
taining AP1 dichotomy: direct (JUNB repressing cJUN) and indirect
(cJUN repressing JUNB via local macrophages), which regulate the
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divergent expression and functions of the AP1 TFs in a reciprocal
manner with the spatial TiME.

Altogether, this string of insights provides a potentialmechanistic
foundation for several recent studies that showed a high degree of
heterogeneity in the neoplastic and stromal immune compartments in
human PDAC, including hybrid/intermediate/co-expressor CLA/BL

subtype states that exist in naive and therapy-treated PDAC
tumors10–15,17,20,40,44. We propose that extrinsic regional TNF-α plays an
essential role in destabilizing CLA-like neoplastic state by promoting
BL cJUN/AP1-mediated transcriptional programs. Compartment-
specific transcriptomic profiling of TNF-α-treated tumors demon-
strated that TNF-α strongly affects both neoplastic-specific as well as

Fig. 5 | TNF-α disrupts CLA subtype identity and anti-tumor immunity.
a Heatmap of CLA and BL PDAC identity genes, in previously published21 RNA-seq
data of CAPAN1 cells treated with TNF-α or vehicle control (VC) for 18 h. Cell color
indicates z score. n = 3 biological replicates. b–f Virtually microdissected RNA-seq
data of orthotopically transplantedCAPAN1 tumors inNMRI-Foxn1nu/numice treated
with TNF-α or VC for 3 weeks. n = 3 tumors; one stroma-specific transcriptome was
excluded from the analysis. b Deconvolution of bulk RNA-seq to generate tumor
(human) and stromal (murine) cell-specific transcriptomes (Methods). Tumor cell-
specific transcriptome. Gene set enrichment analysis (GSEA) for Hallmark sig-
natures of the Molecular signature database (MSigDB) (c) and PDAC subtype sig-
natures (d), for TNF-α versus VC. Normalized enrichment score (NES) and FDR q-
value are indicated. e As in (c), for stroma-specific transcriptome. f MCPcounter
analysis in stroma-specific transcriptome. Cell color indicates z score. g Relative
MCPcounter scores for the indicated lineages in n = 652 patients of the TCGA,
QCMG, Puleo, and Zhou cohort, separated into quartiles based on the JUNB

repression signature score (as in Fig. 2k, l). MCPcounter scores were min–max
normalized and standardized to the mean of the lower JUNB repression signature
score group. Mean ± s.d. shown. h As in (g), but applying CIBERSORTx for decon-
volution. Mean± s.d. for CIBERSORTx percentages shown. i IF for JUNB in ortho-
topically transplantedCAPAN1 tumors treatedwith TNF-αorVC,with cell detection
for nuclear JUNB+ cells. Scale bar 50μm. jQuantification of i, for per-animal average
nuclear JUNB intensity with mean± s.d. shown. n = 5 animals. k As in (i), for ECAD
and GATA6 staining and cell detection for nuclear GATA6+ cells. lQuantification of
k for per-animal averageECAD intensity per FOVwithmean± s.d. shown.mAs in (l),
for nuclear GATA6 intensity. l,m, VC, n = 7 animals; TNF-α, n = 8 animals. nAs in (i),
for CD163 IHC staining. Arrows indicate positive cells. Scale bar: overview, 100μm;
insert, 25 μm.oQuantification of (n) for per-animal percentage of CD163+ cells with
mean ± s.d. shown. n = 7 animals. g, h, j, l, m, o Two-tailed Student’s t-test with
Welch’s correction. Source data are provided as a Source Data file.
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Fig. 6 | Spatial TNF-α expression promotes macrophage infiltration and T-cell
exclusion. a–h IHC analysis in 105 PDAC patients of the Princess Margaret Cancer
Centre (PMCC) for TNF-α expression. a Spatial heterogeneity of TNF-α expression
within different TMA cores of each patient. b IHC for TNF-α and CD68 in cores
classified as TNF-αlow and TNF-αhigh. Scale bar 200 μm. c, d Quantification of (b), in
TNF-αlow, TNF-αintermediate (TNF-αint), and TNF-αhigh expression per patient (c) and per
TMA core across all patients (d). c TNF-αhigh, n = 30 patients; TNF-αint, n = 28
patients; TNF-αlow, n = 32 patients. d TNF-αhigh, n = 87 cores; TNF-αint, n = 92 cores;
TNF-αlow, n = 96 cores. e Lymphoid compartment distribution in TNF-αlow/int/high

patients. Line and percentages denote patients above a third of the maximum
value. f Representative IHC staining of TMA cores for TNF-α in deserted, inter-
mediate, and reactive subTMEs. Scale bar 200μm. Quantification for TNF-α per
patient (g) or TMA core (h) is classified as deserted (des), intermediate (int), and
reactive (rea). g des, n = 41 patients; int, n = 45 patients; rea, n = 11 patients. h des,
n = 120 cores; int, n = 134 cores; rea, n = 39 cores. Boxplots show 25th to 75th per-
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range aswhiskers. Two-tailedWilcoxon rank sum test. Sourcedata areprovided asa
Source Data file.
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immunosuppressive stromal gene expression. In the neoplastic com-
partment, TNF-α treatment induced loss of CLA-like cell identity,
whereas in the TME it resulted in depletionof T andB cell signatures. In
line, in a large cohort of PDAC patient tumors, we observed a sig-
nificant reduction of CD3+, CD4+, and CD8+ T cell infiltrations parti-
cularly inTNF-αhigh tumors,whereasCD68+macrophageswere strongly
elevated, underlining how recruitment of inflammatory CD68+

macrophages to BL TNF-αhigh regions simultaneously leads to an
immunosuppressive TME. Furthermore, we also found strongly
enhanced TNF-α expression in reactive subTME regions43, strength-
ening TNF-α as amajor link between the TME and the BL inflammatory
subtype, as reactive subTMEs provide the organizational framework
for an inflamed, poorly differentiated and aggressive tissue state with
CK5high/GATA6low neoplastic cells. To explore the therapeutic potential
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of targeting TNF-α, we treated a highly aggressive KPC tumor model
with an anti-TNF-α monoclonal antibody plus GEM. Combined anti-
TNF-α and chemotherapy substantially improved the survival, reduced
the infiltration of CD45+/CD68+/TNF-α+ macrophages, and induced
recruitment of CD3+ and CD8+ T cells in the TME. This identifies TNF-α-
specific functions that appear to determine an immunosuppressive
regional TiME and PDAC aggressiveness. In accordance, the PRINCE
trial suggests that higher CD4+/8+ T cell levels relate to a better
response to immune checkpoint inhibition with chemotherapy. Ele-
vated TNF-α signaling has a negative impact on therapy response in
metastatic PDAC patients, emphasizing its role in
immunosuppression51. Combining anti-TNF-α therapy with che-
motherapy has shown significant benefits in metastatic lung cancer
patients52. This approach is now being used with nivolumab and anti-
TNF-α therapy in resectable lung cancer patients (NCT04991025).
Future studies targeting TNF-α pathways combined with immu-
notherapiesmay offer important therapeutic options in PDAC therapy.

In sum, our comprehensive analysis of the dichotomous role of
the AP1 TFs in PDAC subtype heterogeneity has shed light on the
mechanism of JUNB/HDAC-dependent suppression of BL-associated
inflammatory responses. JUNB signaling can be regionally repressed
through macrophage-secreted TNF-α, destabilizing favorable CLA-like
state and inducingT cell exclusion,whichhighlights the important role
of the single cytokine TNF-α in shaping an immunosuppressive TiME
and tumor aggressiveness. Thus, therapeutically shifting the balance
from T celllow/M2 macrophagehigh/BL towards T cellhigh/macrophagelow/
CLA-like state through inhibition of TNF-α with GEM chemotherapy
may provide a valuable strategy to enhance anti-tumor immunity and
treatment response in PDAC.

Methods
Ethical approval
All experiments conducted in this study adhere to relevant ethical
regulations. Specifically, all animal experiments were performed at the
University Medical Center Göttingen (UMG) in accordance with the
guidelines approved by the Central Animal Experimental Authority
and its ethics review board (permission numbers: 15/2057, 14/1634, 18/
2953). The ethics review board ofUMG approved the generation of the
PDXmouse model (permission no. 70112108). Regarding patient data,
the resectionmaterial from theUMGpatient cohort isderived fromthe
Molecular Pancreatic Cancer Program (MolPAC) at UMG. This material
is part of the study titled “Klinische und molekulare Evaluation von
Patienten mit Pankreasraumforderungen im Rahmen des Pankrea-
sprogramms der UMG (MolPAC),” which was approved by the ethics
committee of UMG under approval number “11/5/17.” For the Princess
Margaret Cancer Centre (PMCC) cohort tumors were obtained from
the UHN Biospecimens Program after collection at Princess Margaret
Cancer Centre (Toronto, Canada) and have been previously discussed
in studies43,53,54. All patients provided written informed consent for the
molecular characterization of their tumor samples and for follow-up
on their clinical information and were approved by University Health
Network Research Ethics Board (case numbers 03-0049, 08-0767, 15-
9596, 17-6106, 16-5380). The DKFZ cohort samples are part of the
Department of General, Visceral and Transplantation Surgery, Uni-
versity of Heidelberg (HIPO-project approved by the ethical

committee of the University of Heidelberg; case number S-206/2011
and EPZ-Biobank Ethic Vote no. 301/2001).

Further characteristics and experimental procedures of patient
cohorts are detailed hereafter.

Preclinical animal experiments
Eight to ten-week-old male NMRI-Foxn1nu/nu or C57BL/6 J mice were
used for orthotopic transplantation. 1 × 106 cells (CAPAN1, MiaPaCa2,
CAPAN2-EV, or CAPAN2-cJUN) were transplanted orthotopically into
NMRI-Foxn1nu/nu mice, or 3.5 × 104 KPC cells into syngeneic C57BL/6J
mice, each in 15μL culture medium under isoflurane anesthesia.
Tumor growth was monitored by weekly ultrasound. The TNF-α
treatment model in orthotopic CAPAN1 tumor model has been
described previously21. In brief, mice were treated intraperitonially
(i.p.) with TNF-α (0.4mg kg−1; 300-01 A; PeproTech) or control (aqua
dest.) three times per week when tumor size reached ~300mm3, for a
total of three weeks. For the anti-TNF-α plus gemcitabine treatment
model, C57BL/6J mice bearing orthotopic KPC tumors were treated
with 10μg g−1 anti-TNF-α antibody (BioLegend) in combination with
100mg/kg gemcitabine (Sigma-Aldrich) three times a week for three
weeks. Preclinical studies were terminated when mice displayed
exclusion criteria, e.g., body weight loss >20%, tumor volume of
>1 cm3, or overall poor clinical presentation. Tissues were fixed in
formalin and embedded in paraffin for histological analysis.

Human PDAC tissue and tumor microarray IHC analysis
PDAC resection tissue utilized for IF staining of the UMG cohort
included 32 chemotherapy-naïve, resected primary PDAC cases, with
23 female and 9male patients, 5 stage I, 19 stage II, and 8 stage III, with
a mean age at diagnosis of 72.2 years (age range 49–86 years). IF
staining was performed as described below.

The PDAC tissue microarray (TMA) cohort from PMCC comprises
resectable primary pancreatic tumor specimens from 105 treatment-
naïve patients diagnosed with PDAC. These included 50 female and 65
male patients, 9 stage I and 96 stage II, with amean age at diagnosis of
65.8 years (age range 42–84 years). Out of the 105 patients, specimens
fromaTMAwereutilized in the study. To create theTMA, apathologist
identified the optimal area for coring reviewed sections from paraffin
blocks. After marking the areas, 1.2mm tissue cores were manually
punched and transferred into recipient paraffin blocks. In addition to
the tumor samples, cores of benign pancreatic, renal, pulmonary, and
hepatic tissues were included for control purposes and to aid in TMA
slide orientation. Multiple tumor cores were arrayed (two-to four-fold
redundancy) fromtheparaffinblocks and spread acrossmultiple slides
for the final tissue microarray. Additionally, for a subset of n = 98
patients, tumor specimens were processed by Laser Capture Micro-
dissection (LCM) to enable epithelial-enriched RNA-seq profiling. This
analysis revealed thatn = 36 tumors exhibited a basal-like profile, while
n = 62 exhibited a classical profile, as determined using the clustering
methoddescribed previously5. In addition to the stainings described in
the original publication43, IHC was performed for JUNB (Cell Signaling
#3753) and TNF-α (abcam ab1793) manually according to standard
laboratory procedures using antigen retrieval by Tris-EDTA buffer
solution (pH 9.0). IHC staining was quantified using QuPath bioimage
analysis software55. Individual TMA cores were registered, and patient

Fig. 7 | TargetingofTNF-αduring chemotherapy restores anti-tumor immunity
and prolongs survival. a KPC cells were orthotopically implanted into syngeneic
C57BL6/J mice and treated with an anti-TNF-α antibody in combination with gem-
citabine (GEM) chemotherapy, or vehicle control (VC). b Kaplan-Meier survival
analysis of a. Median survival indicated. Log-rank test. VC, n = 5 animals. c H&E
staining of anti-TNF-α +GEM and VC tumors. Scale bar 100 μm. d IF for CD45 with
CD68, and CD45 with TNF-α, in anti-TNF-α +GEM and VC tumors. Scale bar 50μm.
Quantification of (d) for CD45/CD68 (e) and TNF-α/CD45 (f) double-positive cells.

Per-animal average counts per FOV with mean ± s.d. shown. VC, n = 4 animals; anti-
TNF-α +GEM, n = 5 animals. g, IHC for CD3 and CD8 in orthotopically transplanted
anti-TNF-α +GEM and VC tumors. Scale bar: overview, 100μm; insert, 30μm.
Quantification of (g) for CD3+ (h) and CD8+ (i) cells. Per-animal average percentage
of positive cells with mean ± s.d. shown. n = 5 animals. e, f, h, i Two-tailed Student’s
t-test with Welch’s correction. j Model of AP1 dichotomy in PDAC subtype co-
existence and immune recruitment. Source data are provided as a Source Data file.
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identifiers were superimposed for analysis. Malignant epithelial
regions were manually annotated for JUNB, Cytokeratin 19, CDH1 and
GATA6 expression (see also Supplementary Fig 1d), while the Simple
Tissue Detection tool was used to select tissue for TNF-α expression
analysis. Residual normal pancreas epithelium, nerves, large blood
vessels, tissue folds, and stain artifact were manually excluded. Pixel-
based detection parameters were set and optimized for each stain.
“Positive pixel percentage”within the annotated epithelial regions was
determined as the fraction of positive pixels within all detected pixels
and as indicated, either averaged across all cores per patient (patient
level). For display and statistical testing, samples were then stratified
into groups (“high”, “intermediate”, “low”) via the top, intermediate,
and bottom 33% of the obtained JUNB and TNF-α positive pixel per-
centage values, respectively.

Flow cytometry-sorted compartment RNA-seq
The compartment-sorted patient transcriptome data has been pub-
lished previously22. In brief, tumor tissue of untreated patient with
partial pancreatoduodenectomy at the Department of General, Visc-
eral and Transplantation Surgery, University of Heidelberg was sub-
jected to fluorescence-activated cell sorting with compartment-
specific markers (for epithelial EPCAM+/CD45–/CD31–) and subse-
quently RNA-sequenced in the sorted fractions. This cohort included
31 PDACcases, with 17 female and 14male patients, 4 stage IIA, 23 stage
IIB, 3 stage IV, and one without stage information available, with a
mean age at diagnosis of 65.79 years (age range 41–83 years).

Patient data analysis and study approval
For gene expression and survival analysis, publicly available
datasets4,17,56,57 were used. TCGA57 and QCMG4 datasets were accessed
via cBioPortal58,59, Puleo56 dataset was accessed via the ArrayExpress
database with accession number E-MTAB-6134b, the Zhou17 dataset
from Supplementary Tables of the original publication. For the TCGA
cohort, only 150 curated PDAC cases as described previously60 were
retained for analysis. The expression values were plotted as z scores
(TCGA), RMA-normalized probe intensities (of the highest-expressing
probe for one gene; Puleo), log(RSEM) (QCMG), log2(TPM+ 1) (com-
partment-sorted patients), or logR-normalized counts (Zhou). Survival
data was available for 288 of the total 309 patients of the Puleo cohort,
85 of 97 patients for Zhou, and all 96 and 150 patients for QCMG and
TCGA respectively.

R v4.2.0 was utilized for the analysis. For correlation analysis,
Spearman’s R and P value, as well as linear regression with 95% CI are
indicated in the figures, plotted using the ggscatter function of the
ggpubr package v0.5.0. GSEA analysis of compartment-sorted patient
data was performed as described for RNA-seq data, using a gene list
sorted by Spearman’s R for correlation of all genes to JUNB as input.
JUNB repression signature scores were calculated using the GSVA
package61 v1.44.5 for expression data of each cohort individually.
MCPcounter scores were determinedwith theMCPcounter package as
above. For merging the MCPcounter scores of the different cohorts,
scores were min-max normalized and standardized to the mean of the
lower quartile of the JUNB repression signature scores. CIBERSORTx
analysis62 was performed using the CIBERSORTx website (https://
cibersortx.stanford.edu) and cell fractions imputed using the
LM22 signaturematrix63. Patient survival analysis was performed using
the survival v3.5-5 and ggsurvfit v0.3.0 packages.

Cell culture
Established human PDAC cell lines CAPAN1, CAPAN2 and MiaPaCa2
were purchased from ATCC (Manassas, VA) and authenticated
(CAPAN1, RRID:CVCL_0237), (CAPAN2, RRID:CVCL_0026), (MiaPa-
Ca2:CVCL_0428) by the German Collection ofMicroorganisms and cell
culture GmbH (DSMZ). PDAC cell lines were cultured in RPMI 1640 or
DMEM (Thermo Fisher Scientific) with 10% (v/v) fetal calf serum (FCS;

Th. Geyer). CFPAC1 (RRID:CVCL_1119) and HPAF-II (RRID:CVCL_0313)
PDAC cell lines were provided by Gioaccino Natoli (Humanitas Uni-
versity) and authenticated by the IEO Tissue Culture Facility. CFPAC-1
cells were maintained in IMDM with 10% FBS, while HPAF-II cells were
maintained in Eagle’s minimum essential medium with 10% FBS, 1mM
sodium pyruvate, and 1% non-essential amino acids. Murine cells
derived from the KrasG12D;p53R172H;Cre mouse model (“KPC cells”) were
maintained in DMEM with 10% FCS and 1% non-essential amino acids.
Patient-derived primary cell line GCDX62 was maintained in a 3:1
mixture of Keratinocyte-SFM (KSF; Thermo Fisher Scientific; supple-
mented with 2% (v/v) FCS, 1% (v/v) Penicillin-streptomycin, bovine
pituitary extract (BPE), and human epidermal growth factor) and RPMI
1640 containing 10% (v/v) FCS. cJUN overexpression (cJUN-OE; con-
struct pMSCV-cJUN, no. 34898, addgene) and empty vector (EV; con-
struct MSCV, no. 68469, addgene) control cell lines of CAPAN2 and
GCDX62 were generated previously21, and were maintained in their
normal growth medium supplemented with 1μg/mL puromycin.

siRNA transfection
For transient knockdownexperiments, 5 × 105 cellswere seeded in 6-well
plates and immediately transfected with a mixture of 10μL Lipofecta-
mine2000 (Thermo Fisher Scientific), 6μL of 20μM target-specific
siRNA (or non-targeting siRNA as control), and 200μL Opti-MEM
(Thermo Fisher Scientific) after 15min incubation of the transfection
mixture at room temperature (RT). Cell culture medium was changed
after 24h, and protein or RNA extracted 48-72 h after transfection.

Immunoblotting
Cells were washed with phosphate-buffered saline (PBS) and lysed in
whole cell lysis (WCL) buffer supplemented with cOmplete protease
inhibitor cocktail (Roche Diagnostics), 100μM sodium orthovanadate
(NaO; Sigma-Aldrich) and 100μM phenylmethylsulfonyl fluoride
(PMSF; Sigma-Aldrich) for 30min on ice. Cell lysates were centrifuged
at 17,000 × g for 20min at 4 °C, and supernatants were collected.
Proteinswere diluted to 1μg/μL inWCL and Laemmli buffer and boiled
for 8min at 95 °C. Denatured samples were resolved by SDS-PAGE on
10 or 15% gels and transferred onto nitrocellulose membranes. After
blocking in 5% (w/v)milk powder inTRIS-buffered salinewith0.1% (v/v)
Tween 20, primary antibodies were incubated overnight at 4 °C. Sec-
ondary HRP-linked antibodies were subsequently incubated at RT for
1 h. Next, membranes were developed with ECL solution using a Che-
moStar imager (Intas Science Imaging Instruments). Antibodies are
listed in Supplementary Table 1.

Co-immunoprecipitation
Cells were seeded in 10 cm dishes and harvested by scraping in 1.5mL
ice-cold PBS. The cell suspension was centrifuged at 500 × g for 5min
at 4 °C. The resulting pellet was resuspended in lysis buffer containing
Triton X-100. After the cells were completely lysed, the lysates were
centrifuged at 17,000× g for 20min at 4 °C and the supernatant
transferred into new tubes. 500 μg of protein were added to washed
agarose protein A beads (MerckMillipore) and incubated on a rotating
wheel for 1 h at 4 °C. Afterwards, beads were removed by centrifuga-
tion and precleared lysates were incubated with the target antibodies
overnight at 4 °C. The following day, 50μL of washed agarose A beads
were added to the lysates and incubated on a rotating wheel for 2 h at
4 °C. The beads/antibody/target complexes were washed twice with
WCL buffer and twice with PBS with cOmplete protease inhibitor
cocktail. Finally, the complexes were resuspended in 65μL 2x Laemmli
buffer and incubated for 8min at 95 °C. These sampleswere processed
for immunoblotting as described above. To avoid the heavy chain
signal of the pulldown antibody in case pulldown and primary immu-
noblot antibody were of the same species, an anti-light-chain antibody
raised in another species was used prior to using the secondary anti-
body. Antibodies are listed in Supplementary Table 1.
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RNA isolation and quantitative real-time PCR
Total RNA was extracted using TRIzol reagent (Invitrogen) according
to themanufacturer’s protocol. Briefly, cells werewashedwith ice-cold
PBS and collected in 800μL TRIzol reagent, followed by addition of
200μL chloroform after a short incubation. The solution was vortexed
for 5 s to mix it thoroughly. After incubation at RT for 5min, samples
were centrifuged at 17,000 × g for 15min at 4 °C. Next, the upper
aqueous phase was transferred into a new 1.5mL tube. Subsequently,
500μL of isopropanol was added and mixed. After centrifugation at
17,000× g for 30min at 4 °C, the resulting pellet was washed twice
with 75% ethanol. Finally, the dried pellet was dissolved in 30μL of
nuclease-free water. 1μg RNA was used for cDNA synthesis using the
iScript cDNA Synthesis Kit (BioRad) according to the manufacturer’s
instructions. 5μL of SYBR green (BioRad) and 0.25μL of forward and
reverse primers each were mixed with 1μL of cDNA. Quantitative real-
time PCR (qRT-PCR) was performed using the StepOnePlus Real-Time
System (Applied Biosystems). Relative quantification values were cal-
culated with the associated StepOnePlus software, using XS13 as
reference control gene. Primer sequences are listed in Supplementary
Table 2.

Chromatin immunoprecipitation
For chromatin immunoprecipitation followedbyquantitative real-time
PCR (ChIP-qPCR), cellswere seeded in 10 cmculturedishes andfixed in
1% PFA (Thermo Fisher Scientific) in PBS for 20min at RT. After
quenchingwith 1.25Mglycine, cells werewashed in PBS and scraped in
1.5mL cold Nelson buffer with cOmplete protease inhibitor cocktail,
100μM NaO and PMSF, and 10mM sodium fluoride. Following cen-
trifugation at 12,000× g for 2min at 4 °C and washing with Nelson
buffer with inhibitors, nuclear pellets were snap-frozen in liquid
nitrogen. Nuclear pellets were lyzed in Gomes lysis buffer with cOm-
plete protease inhibitor cocktail, 100μM NaO and PMSF, and 10mM
sodium fluoride with 0.1% SDS (for JUNB, HDAC1) or 0.5% SDS (for
H3K27ac). After lysis for 15min at 4 °C, cells were sonicated on a
Bioruptor Pico (Diagenode) for 3–8 cycles with 30 s ON/OFF. Sonica-
tion efficiency was validated by agarose gel electrophoresis. There-
after, lysates were pre-clearedwith 15μLwashed protein A/Gmagnetic
beads (Thermo Fisher Scientific) and then incubated overnight with
the primary pulldown antibodies or isotype control (Supplementary
Table 1). For pulldown of antibody-antigen complexes, 30μL of
washed beads are added to lysates and incubated for 2 h at 4 °C.
Finally, lysates arewashedwithGomes lysis buffer,Gomeswashbuffer,
and TE buffer. Corresponding input and pulldown samples are then
RNase A and proteinase K digested. DNA was isolated by phenol-
chloroform-isoamyl alcohol method. RT-qPCR was performed as
described above, increasing total PCR cycles to 55. Primer sequences
are listed in Supplementary Table 2.

RNA-seq and ChIP-seq analysis
For RNA-seq, library preparation and sequencing for CAPAN1 cells
subjected to JUNB silencing (siJUNB) or non-targeting control (siCtrl)
were performed as described previously21. In brief, cDNA libraries were
made using 500ng total RNA and TruSeq RNA Library Prep kits (Illu-
mina; RS-122-2001/2). cDNA concentration was measured using Qubit
(Thermo Fisher; Q32854) and fragment sizes were confirmed by
Bioanalyzer (Agilent; 5067-4626). Single-end, 50bp sequencing was
performed on a HiSeq2000 (Illumina) at the next-generation sequen-
cing (NGS) Integrative Genomics Unit at UMG. For comparability,
previously published RNA-seq data of TNF-α-treated CAPAN1 cells was
analyzed analogously using the following pipeline.

Raw reads were quality-checked using FastQC, aligned to hg38
reference genome using STAR64 v2.7.3a and counted per gene using
htseq-count65 v0.11.3. Downstream analysis was conducted in R v4.2.0
and Bioconductor66 packages v3.15. Variance stabilization was per-
formed using RUVSeq67 v1.30.0 function RUVs. Differential gene

expression was performed using DESeq268 v1.36.0. Gene set enrich-
ment analysis69 (GSEA) was conducted with clusterProfiler70 v4.4.4,
using signatures of the Molecular Signature Database71, as well as
custom signatures based on published PDAC subtype
classifications4,5,12,72. Expression heatmaps were created by the pheat-
map package v1.0.12.

For tissue RNA of TNF-α or VC-treated tumors of orthotopically
implanted CAPAN1 cells, RNAwas purified using Direct-ZOL RNAMini-
prep (Zymo Research). Library preparation and sequencing (paired-
end, 150 bp read length) were performed by Novogene. To allow
deconvolution of human (tumor cell) and murine (host stroma) com-
partments, reads were aligned using STAR v2.7.3a to human reference
hg38, as well as murine reference mm39. Subsequently, the
XenofilteR73 package v1.6 in R v4.1.0 was used to remove eithermurine
reads from the human alignment or vice versa. After filtering, samples
were processed as above.

To estimate the relative abundance of stromal cells, murine reads
were processed with the MCPcounter74 package v1.2.0 in R v4.2.0.

JUNB and cJUN ChIP-seq, as well as ATAC-seq, were conducted
previously21, accessible at GSE179781. Further, previously published
RNA-seq data for GCDX62-cJUN-OE and GCDX62-EV was utilized,
which is accessible at GSE173121. For meta-pathway analysis of JUNB-
bound and accessible regions, genes were annotated to JUNB-bound
and ATAC-seq peak regions using GREAT and analyzed using
Metascape75 (https://metascape.org/). For integration of RNA- and
ChIP-seq data, consensus ChIP-seq peaks were annotated to genes
using the R package rGREAT76 v3.0.0, and their fold change in the
corresponding RNA-seq extracted. Gene ontology (GO) analysis was
then performed for the significantly up- or downregulated genes of
this subset using the clusterProfiler package as above. The list of JUNB-
bound, significantly upregulated genes in CAPAN1 is available in Sup-
plementary Table 3. The overlapof JUNB-bound genes (as per rGREAT)
with genes that are significantly upregulated upon siJUNB in the RNA-
seq were subsequently analyzed for their correlation to JUNB in 46
pancreatic cancer cell lines of the CCLE36,37 dataset, which was down-
loaded from cBioPortal. Those genes that had an inverse association
with JUNB (negative Spearman’s R) were termed the JUNB repression
signature; the full list is available in Supplementary Table 4.

For the ChIP-seq for HDAC1 and H3K27ac in CAPAN1 cells with
siJUNB or siCtrl, ChIP has been performed as detailed above. DNA
libraries for sequencing were constructed using Kapa Hyper Prep
(KR0961) and double size-selected (Nucleomags, Macherey-Nagel).
Library quality was controlled using the Agilent DNA High Sensitivity
DNA Kit and Agilent Bioanalyzer 2100. After concentration measure-
ment usingQubit dsDNAHSAssay, libraries weremultiplexed to 10 nM
in EBbuffer. Librarieswere sequencedbyBGI using aDNBSEQ-G400 to
100bp paired-end. One input control sample per condition was per-
formed and inputs for siJUNB and siCtrl were merged. Raw reads were
quality-checked using FastQC, adapters trimmed using Trimmomatic
v0.36, aligned to hg38 reference genome using bowtie2 v2.3.4.1, low-
quality alignments, not properly paired reads, and chrM filtered using
samtools v1.9, blacklist regions removed using bedtools v2.29.1, and
duplicates removed using PICARD v 2.20.2. Peaks were then called
using MACS2 v2.1.2. Differential binding sites were determined using
DiffBind v3.4.11 in R v4.1.0. Subsequent downstream analysis, includ-
ing peak overlap using ChIPpeakAnno v3.36.1, as well as gene ontology
analysis using clusterProfiler v4.10.1, was performed in R v4.3.2.

Reporter assay
For reporter assays, the Dual-Luciferase Reporter Assay System (Pro-
mega) was used. 5 × 104 cells were seeded into 24-well plates. The fol-
lowing day, cells were transfected with 200 ng of pJC6-GL3 (#11979,
Addgene; cJUN),which contains the cJUNpromoter linked to the firefly
luciferase gene. Additionally, cells were co-transfected with different
concentrations of JUNB-overexpressing plasmids (Paul Dobner,
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University of Massachusetts), 15 ng of pRL-null Renilla luciferase con-
trol reporter (#E2271, Promega; for background normalization), and
compensated with empty vector control (pCMV2c, David Russell,
UTSW) to ensure equal total amounts of transfected plasmids.
Reporter, overexpression, Renilla luciferase and empty vector plasmid
mixture was added to Lipofectamine 2000 (Thermo Fisher Scientific)
and 50μL of Opti-MEM (Thermo Fisher Scientific) and incubated at RT
for 10min. Thereafter, 50μL of the transfection mixture was added to
each well for 24 h. Before the measurement, cells were lysed with 1x
Passive Lysis Buffer (Promega) for 10min on a shaker at RT. Subse-
quently, 30μL of the cell lysate was transferred into a white 96-well
plate and 30μL of firefly luciferase substrate (Promega) was added.
The luminescence was measured using a LUmo microplate reader
(Autobio Diagnostics). Next, 30μL of the Stop & Glo reagent (Pro-
mega)was added to the previous solution and luminescencemeasured
again for the Renilla signal. Firefly luciferase luminescence signal was
finally divided by the Renilla luciferase luminescence and normalized
to the control sample.

Transwell invasion assay
For invasion assays of silenced cells, siRNA transfectionwas performed
24 h before as described above. 8 μm porous cell culture inserts (Fal-
con) were coated in type I collagen (Enzo; diluted 1:62.5 in 0.1M HCl)
for 2 h. Then, silenced or control cells were seeded in 50μL Matrigel
solution (Corning) and solidified for 30min before adding normal
culture medium to the inserts and wells. After 48 h incubation, med-
iumwas aspirated, Matrigel removed, andmembranes fixed in 4% PFA.
After washing with PBS, membranes were stained with DAPI for 1min
and finally mounted on glass slides in Immu-Mount (Thermo Fisher
Scientific). Invaded cells were imaged using a DMi8 fluorescence
microscope (Leica) and quantified manually using ImageJ Fiji77. For
each biological replicate, two independent inserts were evaluated.

Hematoxylin and eosin staining
Hematoxylin and eosin (H&E) staining was performed as follows.
Formalin-fixed paraffin-embedded tissues were cut into 4μm thin
sections. Tissue sections were incubated in xylene for 1 h and rehy-
drated in decreasing concentrations of ethanol and finally water. Then,
sections were stained with hematoxylin for 8min, followed by bluing
for 7min under running tapwater. Subsequently, sections were briefly
incubated inmild acetic acid solution and transferred into eosin/acetic
acid solution for 3min. Lastly, slides were dehydrated in an increasing
ethanol series and mounted with Roti-Mount (Carl Roth).

Immunofluorescence and immunohistochemical staining
Immunofluorescence (IF) staining was performed as follows. Slides
were deparaffinized in xylene and rehydrated followed by antigen
retrieval by boiling in citrate buffer (pH 6.0). Sections were blocked in
1% (w/v) bovine serum albumin (BSA; Sigma) in phosphate buffer (PB)
containing 0.4% Triton X-100. After washing five times with PB, sec-
tions were incubated with primary antibodies at 4 °C overnight. After
six PB washes, fluorophore-coupled secondary antibodies were incu-
bated at4 °C for 2 h. Subsequently, sectionswerewashed in PB, stained
with DAPI, and mounted in Immu-Mount (Thermo Fisher Scientific).

For immunohistochemistry (IHC) staining, the VECTASTAIN ABC-
HRP Kit and ImmPACT DAB Substrate Kit (Vector Laboratories) was
used.Deparaffinization and antigen retrievalwereperformedas above.
Then, slides were fixed on a slide holder and incubated with 3%
hydrogen peroxide solution for 10min prior to blocking in 10% BSA.
Next, the slides were incubated with primary antibodies overnight at
4 °C. The next day, slides were washed three times with PBS with 0.1%
Tween20 (Sigma; PBST) and incubated with secondary antibodies for
1 h followed by AB complex incubation. Afterward, slides were washed
with PBST and stained with DAB solution and further placed in deio-
nized water to stop the reaction. Slides were then stained with

hematoxylin for 7min andbluedunder runningwater. Lastly, the slides
were dehydrated and fixed as described for H&E staining.

Image acquisition and analysis
For bright-field applications (H&E, IHC), images were acquired using
either an Olympus BX43 light microscope or the Olympus VS120 vir-
tual slide microscope. IF staining was imaged using either an Olympus
IX81 confocal fluorescence microscope, or the Olympus VS120 virtual
slide microscope.

Quantification of IF and IHC images was performed either using
ImageJ Fiji77 (by manually counting positive cells, measuring the
fluorescence intensity of the entire field of view, or using semi-
automatic macros78), or using QuPath55 v0.4.3. In QuPath, cell detec-
tion was performed using the built-in detection feature, obtaining
intensity measurements per cell, per nucleus or per cytoplasm, which
were used for positive cell quantification using single measurement
classifications (or compound classifiers for double-positive cells). For
IHC images, positive cell detection using optical density for nuclei
detection and deconvoluted DAB intensity for positive cells was used.

For hotspot analysis of HA-cJUN IHC and JUNB IF, density maps of
positive cells were created and above a threshold defined as high-
density areas (“hotspots”), which were then transferred to the
respective other slide image to derive positive cells within cJUN or
JUNB hotspot regions. For distance analysis of hotspots to CD68+ cells,
cell detectionwasperformedas above, the hotspot regions transferred
to the CD68 staining image, and the 2D distance to annotation tool of
QuPath used.

Statistics and reproducibility
GraphPad Prism version 8.0.2 as well as R above version 4 were used
for statistical analysis. The comparison of independent groups was
performed using an unpaired Student’s t-test with Welch’s correction.
One-way analysis of variance (ANOVA) was used for more than three
conditions of a single factor. Survival data were analyzed using the log-
rank test. Results were considered significant with a P value below
0.05, as indicated in the figures. Spearman correlation coefficient with
a two-tailed P value was used for the correlation data. No statistical
method was used to predetermine the sample size. For animal
experiments, mice were randomized to implanted cell lines (if
applicable) as well as to treatment groups (if applicable). The Investi-
gators were not blinded to allocation during experiments and out-
come assessment. For sequencing analyses, samples were removed if
they did not pass overall quality control assessment. No other datawas
excluded from the analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
For this study, theMolecular Signatures Database (https://www.gsea-
msigdb.org/gsea/msigdb/) database was used. Previously
published21,25 ChIP- and ATAC-seq data are available at Gene Expres-
sion Omnibus (GEO) under accession codes GSE173159 and
GSE64560. ChIP- and RNA-seq data generated in this study has been
deposited at GEO with the accession code GSE276324. FACS-sorted
epithelial patient tumor RNA-seq data22 are available at EGA under
accession code EGAS00001004660. Access is restricted due to
patient data protection but can bemade available through the DKFZ-
HIPO Data Access Committee of Heidelberg Center for Personalized
Oncology (hipo_daco@dkfz-heidelberg.de) using the Data Access
Request via the EGA DAC Portal. Patient tumor LCM-enriched tran-
scriptome and proteome data are available at EGA under accession
code EGAS00001002543 and from UCSD’s MASSive database under
accession code MSV000086812 [https://massive.ucsd.edu/
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ProteoSAFe/dataset.jsp?task=
35d2ed0cbcd04045adceeb4866e478a3]. Data access can be
requested from the PanCuRx Translational Research Initiative using
the OICR Data Access Agreement as detailed on EGA. Processed
proteome data is detailed in the previous publication43 Table S7
[https://ars.els-cdn.com/content/image/1-s2.0-S0092867421011053-
mmc6.xlsx]. Source data are provided with this paper.
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