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1 Introduction

Particle-physics processes at energies significantly lower than the Electroweak (EW) scale —
such as weak decays of hadrons — are described by an Effective Field Theory (EFT) where
EW-scale Standard Model (SM) particles as well as potential heavy Beyond-the-SM (BSM)
fields are integrated out. The EFT description is very convenient in order to resum large
logarithms that arise from the large hierarchy between the EW scale and the energy of the
process (e.g. mB for a B decay). Such logarithms can spoil the convergence of perturbation
theory, particularly in QCD at energies below ∼ 5 GeV, where the strong coupling is not
small. The resummation of these logarithms is done by solving the Renormalization Group
Equations (RGEs), in terms of the Anomalous Dimensions of the effective operators [1, 2].
Over the last three decades, significant efforts have been devoted to the calculation of EFT
anomalous dimensions at two, three and even four loops in QCD.

Two-loop anomalous dimensions for ∆F = 1 four-quark operators of the type (s̄d)(q̄q)
were first calculated by Buras, Jamin, Lautenbacher and Weisz (BJLW) in the 1990’s [3, 4].
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The calculation focused exclusively on the SM operator basis, and was performed both in
the Naive Dimensional Regularization (NDR) and t’Hooft-Veltman (HV) schemes. In order
to avoid the usual problems involving traces with γ5 in the NDR scheme, BJLW devised a
method (hereon the “BJLW method”) that only requires the calculation of penguin diagrams
without closed fermion loops, where no ambiguous Dirac traces appear. The full set of
anomalous dimensions can then be reconstructed from this reduced subset of diagrams.
This calculation was checked and confirmed in several subsequent papers using different
operator bases and approaches [5–9], some of them addressing the issues with γ5 by using
the well-known CMM scheme [10], where Dirac traces in the NDR scheme never contain
a γ5. The results thus obtained can be compared to one another by performing a change
of basis properly at next-to-leading order (NLO), accounting for the appropriate scheme
dependence, including evanescent terms.

In the seminal paper by Buras, Misiak and Urban (BMU) [11], this set of anomalous
dimensions was extended to the full basis Beyond the Standard Model (BSM). This basis
includes three additional operators that complete the set involving penguin diagrams:1

Q11 = (s̄αγµPLdα)(s̄βγµPLsβ) + (s̄αγµPLdα)(d̄βγµPLdβ) , (1.1)
Q12 = (s̄αγµPLdβ)(s̄βγµPRsα) + (s̄αγµPLdβ)(d̄βγµPRdα) , (1.2)
Q13 = (s̄αγµPLdα)(s̄βγµPRsβ) + (s̄αγµPLdα)(d̄βγµPRdβ) , (1.3)

as well as the three corresponding operators with opposite chirality. The penguin contributions
to the anomalous dimensions of these operators were obtained by BMU from the SM subset
computed by BJLW, in a procedure analogous to the BJLW method. In this way, BMU
provided the complete NLO (two-loop) QCD Anomalous Dimension Matrix (ADM) in the
general BSM case. These results, to the best of our knowledge, have never been confirmed
independently.

However, as we shall discuss in the following, there is a class of tests that can be carried
out in any ADM calculation, based on the fact that anomalous dimensions satisfy a specific
form of flavor symmetry. In the case at hand, this flavor symmetry ensures that under a
transformation changing quark flavors u ↔ b, the ADM must remain the same,

γ̂BMU = γ̂BMU’ , (1.4)

where BMU’ is an operator basis obtained from the operator basis in BMU by performing
the field replacements u ↔ b everywhere. This condition is non-trivial, and obtaining γ̂BMU’
from γ̂BMU requires a complete knowledge of the renormalization scheme in which γ̂BMU is
given. The ADM for the SM sector given in BJLW satisfies this condition exactly, but the
ADM including BSM operators in BMU, assuming our interpretation of the scheme used
therein, explicitly violates eq. (1.4).

The purpose of this paper is to raise, clarify, and resolve this issue, and to provide the
correct two-loop ADM for the ∆F = 1 sector. We will also provide some insights that may
be useful in checking and manipulating anomalous dimension matrices. We shall see that the
particular way in which the BJLW method is extended in ref. [11] is in fact not valid, but

1Following ref. [11] we will focus on the case of s̄ → d̄ transitions, as a proxy to all other ∆F = 1 sectors.

– 2 –



J
H
E
P
0
4
(
2
0
2
4
)
1
0
5

that it can be modified minimally by introducing, in an intermediate step, a symmetrized
operator Q+

11, leading to an ADM that satisfies the flavor symmetry condition in eq. (1.4).
This letter is organized as follows. We begin in section 2 reviewing the necessary formalism

regarding the NLO renormalization of the EFT. In section 3 we present the problem: why the
ADM presented in ref. [11] presents an inconsistency. In section 4 we diagnose the problem,
showing that it is related to the anomalous dimension of the operator Q11 and more precisely
to the relation in eq. (4.8) below. The corrected entries of the ADM are presented in section 5,
where we also show that our ADM satisfies the flavor symmetry condition, thus solving the
problem raised. Based on the insight gained, in section 6 we present a proposal for a correct
alternative to the approach in ref. [11], and show that this alternative expression does indeed
provide the correct result for the NLO ADM. In order to gauge the numerical importance of
the corrected anomalous dimensions, in section 7 we perform a simple numerical analysis.
Finally, we conclude in section 8 with a summary of our results.

2 Renormalization of the effective theory

The renormalized EFT Lagrangian is given by

LEFT = LQCD +
∑
i,j

CiZijZ2
qOj , (2.1)

where the (renormalized) operators O = {Q, E} include physical (Qi) as well as evanescent
(Ei) operators, the latter needed for renormalization in d = 4 − 2ϵ dimensions. The operators
relevant for ∆F = 1 transitions in the so-called “BMU basis” of ref. [11] are given in
appendix A. The Ci are renormalized Wilson coefficients, and Zij is the renormalization
constant matrix, which takes care of the renormalization of the Wilson coefficients and
it is responsible for operator mixing. The renormalization factor Zq takes care of quark
wave-function renormalization of the four-quark operators (one factor of Z

1/2
q for each field).

The renormalized Wilson coefficients depend on the renormalization scale as
dCi

d log µ
= γji Cj = (α̂sγ

(0)
ji + α̂2

sγ
(1)
ji + · · · ) Cj , (2.2)

where γ̂ (with components γij) is the Anomalous Dimension Matrix (ADM), and γ̂(i) are
the constant coefficients in its expansion in powers of α̂s ≡ g2

s/(4π)2. In terms of the
renormalization matrix,

γ̂ = Ẑ
dẐ−1

d log µ
, (2.3)

with Ẑ depending on the renormalization scale through its expansion in α̂s(µ),

Ẑ = 1 +
∞∑

ℓ=1

ℓ∑
m=0

α̂ℓ
s

ϵm
Ẑ(ℓ,m) . (2.4)

In the MS scheme, Z
(ℓ,0)
ij = 0 whenever i refers to a physical operator or j refers to an

evanescent one. With this notation at hand, one finds (see e.g. ref. [5])

γ̂(0) = 2Ẑ(1,1) , (2.5)
γ̂(1) = 4Ẑ(2,1) − 2Ẑ(1,1)Ẑ(1,0) , (2.6)
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and so on. The renormalization constants can be calculated in the MS scheme in terms of
the bare matrix elements of the operators Qi. At any loop order, we write

⟨Qi⟩ =
∞∑

ℓ=0
µ̃2ℓϵ Z2ℓ

g α̂ℓ
s ⟨Qi⟩(ℓ) , (2.7)

⟨Qi⟩(ℓ) =
ℓ∑

k=0

1
ϵk

[
a

(ℓ,k)
QiQj

⟨Qj⟩(0) + a
(ℓ,k)
QiEj

⟨Ej⟩(0)
]

, (2.8)

where µ̃ is the MS scale, and Zg = 1 − 1
ϵ α̂sβ0 + O(α̂2

s) is the renormalization factor of gs,
with β0 = 11

3 Nc − 2
3f (see e.g. ref. [1]). Here f is the number of active quark flavors. Thus

the coefficients a
(ℓ,k)
QiOj

arise from the 1/ϵk poles of the bare ℓ-loop diagrams with insertion
of operator Qi. The renormalization then leads to

Ẑ(1,1) = −â(1,1) , (2.9)
Ẑ(2,1) = −â(2,1) + â(1,1) · â(1,0) − Ẑ(1,0) · â(1,1) + β0 â(1,0) , (2.10)

up to two loops. In addition, in the Buras-Weisz scheme for evanescent operators, we have
that Z

(1,0)
ij = −a

(1,0)
ij for (i, j)=(evanescent,physical), and zero otherwise. Inserting these

expressions into eqs. (2.5)–(2.6) one finds

γ
(0)
ij = −2â

(1,1)
QiQj

, (2.11)

γ
(1)
ij = −4â

(2,1)
QiQj

+ 4β0 â
(1,0)
QiQj

+ 4â
(1,1)
QiQk

â
(1,0)
QkQj

+ 2â
(1,1)
QiEk

â
(1,0)
EkQj

. (2.12)

In ref. [11], BMU give the full results for γ(0) and γ(1) for the full operator basis. However,
these results fail a simple consistency test, as we shall explain in the following section.

3 The problem: a flavor symmetry

We are going to consider the ADM in two different bases. The first one is the BMU basis, as
given in appendix A, while the second one is a modified version (BMU’) defined simply as

Q
(BMU’)
i = Q

(BMU)
i

∣∣∣
u↔b

. (3.1)

In dimensional regularization, the ADMs can be calculated by setting to zero the quark
masses, given that they depend exclusively on the UV structure of the theory. Thus, the
difference between BMU and BMU’ is merely a ‘renaming’ of up and bottom quark fields.
Hence, the ADM should have the exact same explicit entries before and after the renaming:

γ̂BMU’ = γ̂BMU . (3.2)

This relation can be checked by explicitly performing a change of basis. Note that this change
of basis is very non-trivial and involves Fierz-evanescent operators. Up to NLO [5, 10, 12],

γ̂
(0)
BMU’ = R̂γ̂

(0)
BMUR̂−1 , (3.3)

γ̂
(1)
BMU’ = R̂γ̂

(1)
BMUR̂−1 − 2β0∆r̂ −

[
∆r̂, γ̂

(0)
BMU

]
. (3.4)
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The correct NLO ADM should satisfy the following condition,

γ̂
(1)
BMU −−−−−−−−→

NLO Change
of Basis

γ̂
(1)
BMU’ ≡ γ̂

(1)
BMU . (3.5)

The details of the transformation involve calculating the tree-level transformation matrix
R̂ and the evanescent shift in the renormalization scheme, ∆r̂. For the latter we use the
MS-NDR scheme with the Buras-Weisz prescription [3], combined with the basis of evanescent
operators given below in appendix B. This basis of evanescent operators is equivalent2 to
the one used in refs. [4, 11], and corresponds both to the use of Greek projections and
also to the choice aev, bev, cev, . . . = 1 in ref. [13]. We also adopt this scheme in all our
calculations throughout this work.

We focus on the sector of vector operators {Q1, Q2, . . . , Q18} which is where the problem
arises. The tree-level transformation matrix in this sector is given by

R̂ =



0 0 2
3 0 0 0 0 0 −2

3 0 −1 0 0 0 0 0 0 0
0 0 0 2

3 0 0 0 0 0 −2
3 −1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3

4 0 −1
2 0 0 0 0 0 −3

2 0 0 0 0 −3
4

0 0 0 0 0 3
4 0 −1

2 0 0 0 −3
2 0 0 0 0 −3

4 0
−3

2 0 1 0 0 0 0 0 0 0 −3
2 0 0 0 0 0 0 0

0 −3
2 0 1 0 0 0 0 0 0 −3

2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1



,

(3.6)
while the matrix ∆r̂ only has two non-zero rows, with non-zero entries on the columns

2Even though BMU do not give explicitly in ref. [11] the evanescent basis used for s̄dq̄q operators, the fact
that their current-current contributions to the ADM are taken directly (and explicitly) from sectors s̄dūc and
s̄ds̄d — for which they do present the evanescent basis — allows us to infer their scheme. See the discussion
in section 4 for further details.
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corresponding to the four QCD penguin operators,

[∆r̂]2 j =
(

0 0 1
Nc

−1 1
Nc

−1 0 · · · 0
)

,

[∆r̂]10 j =
(

0 0 3
2Nc

−3
2

3
2Nc

−3
2 0 · · · 0

)
.

(3.7)

For the LO ADM one finds indeed that γ
(0)
BMU = γ

(0)
BMU’. However, at NLO, implementing the

change of basis starting with the original γ
(1)
BMU in ref. [11] leads to a direct violation of eq. (3.5),

as γ
(1)
BMU and γ

(1)
BMU’ are found to differ in the QCD penguin columns (Q3, Q4, Q5, Q6) and

rows first, second, ninth and tenth:

γ
(1)
BMU − γ

(1)
BMU’

∣∣∣
ref. [11]

=



0 0 −4
3 4 −4

3 4 0 · · · 0
0 0 −4

3 4 −4
3 4 0 · · · 0

06×18
0 0 −2 6 −2 6 0 · · · 0
0 0 −2 6 −2 6 0 · · · 0

08×18


. (3.8)

We therefore conclude that there is a problem with the matrix γ
(1)
BMU as given in ref. [11],

most likely related to penguin contributions, in the BSM sector.

4 The diagnosis: a naive treatment of Q11

4.1 The original approach in BJLW and BMU

Anomalous dimensions in dimensional regularization can be calculated setting the quark
masses to zero, given that they depend exclusively on the UV structure of the theory. This
means that, up to quark-mass effects, one has for example

Penguin diagram(Q3) = f · Penguin diagram(Q̃1) + 2 · Penguin diagram(Q2) , (4.1)

where the first term in the r.h.s. proportional to the number of active flavors f accounts
for closed penguins, and the second term accounts for the two open penguins with s and d

quarks in the loop. This sort of relations allows one to take a calculation involving insertions
of a certain reduced set of operators and extend them to infer the calculations involving
a full operator basis.

This methodology was used by BJLW in ref. [4] to compute the O(α2
s) contributions to

the ADM for the ten SM operators, and later in ref. [11] for the full set of forty operators in the
general BSM case (the BMU basis, see appendix A). In both cases the corresponding ADMs
were built out of a small set of tables of pole coefficients computed in refs. [3, 4, 11] for a single
quark flavor. Of all the contributions considered in refs. [4, 11], we shall focus exclusively on
the ones coming from penguin diagrams with insertions of VLL operators, as discussed above.

The building blocks for the NLO VLL-penguin ADM are the tables of two-loop pole-
coefficients computed in ref. [4] for Q1 and Q2, which involve only open penguin diagrams.
Ref. [4] proceeds then by performing a change of basis into a basis where the first two
operators (Q̃1 and Q̃2) are modified to be penguin-closed (i.e. with the structure s̄būu instead

– 6 –
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of s̄uūb). Thus, four separate contributions to the anomalous dimensions are obtained:
[γ̂(1)(Q1)]p, [γ̂(1)(Q2)]p, [γ̂(1)(Q̃1)]p and [γ̂(1)(Q̃2)]p. Once these basic ingredients are known,
ref. [4] proceeds by taking advantage of flavor-independence of the various Feynman diagrams
(e.g. eq. (4.1)), and reconstructing the penguin contributions of all VLL penguin operators
(Q3, Q4, Q9, Q10) simply by combining the only four independent pieces,[

γ̂(1)(Q3)
]

p
= f

[
γ̂(1)(Q̃1)

]
p

+ 2
[
γ̂(1)(Q2)

]
p

, (4.2)[
γ̂(1)(Q4)

]
p

= f
[
γ̂(1)(Q̃2)

]
p

+ 2
[
γ̂(1)(Q1)

]
p

, (4.3)[
γ̂(1)(Q9)

]
p

= (uQu + dQd)
[
γ̂(1)(Q̃1)

]
p

+ 2 Qd

[
γ̂(1)(Q2)

]
p

, (4.4)[
γ̂(1)(Q10)

]
p

= (uQu + dQd)
[
γ̂(1)(Q̃2)

]
p

+ 2 Qd

[
γ̂(1)(Q1)

]
p

. (4.5)

These relations involve anomalous dimensions, and not just Feynman diagrams as in eq. (4.1),
and thus the extra terms in the r.h.s. come from an additional assumption for s and b quarks:
that one can get these special cases (which contribute simultaneously via open and closed
penguin diagrams) through the separate combination of open and closed penguins,[

γ̂(1)(OV S,LL
sdss )

]
p

=
[
γ̂(1)(OV S,LL

sddd )
]

p
=
[
γ̂(1)(Q̃1)

]
p

+
[
γ̂(1)(Q2)

]
p

, (4.6)[
γ̂(1)(OV X,LL

sdss )
]

p
=
[
γ̂(1)(OV X,LL

sddd )
]

p
=
[
γ̂(1)(Q̃2)

]
p

+
[
γ̂(1)(Q1)

]
p

, (4.7)

where the generic operators OA,B
ijkl are defined at the end of appendix A.

In their posterior work, BMU derive the anomalous dimensions for the BSM operators
Q11,12,13 in a similar way. While ref. [11] is not completely explicit on the exact procedure
followed and on the evanescent operator basis used for this sector, it does literally state that:
(A) the current-current contributions can be directly taken from the ADMs for ∆F = 2 and
∆F = 1 operators of the type (s̄u)(c̄d), and (B) the penguin contributions can be “easily”
extracted from sections 3.2 and 5.3 of ref. [4]. From statement (A) we infer that the evanescent
basis is equivalent to the one used here (see appendix B), and we confirm their results for
current-current contributions. From statement (B) we infer that the penguin contributions
are obtained from the following relations,3[

γ̂(1)(Q11)
]

p
=

[
γ̂(1)(Q3)

]
p

∣∣∣
f=2

(allegedly) , (4.8)[
γ̂(1)(Q12)

]
p

=
[
γ̂(1)(Q6)

]
p

∣∣∣
f=2

(allegedly) , (4.9)[
γ̂(1)(Q13)

]
p

=
[
γ̂(1)(Q5)

]
p

∣∣∣
f=2

(allegedly) , (4.10)

where f = 2 indicates a calculation with only two active quark flavors (d and s). These
relations are all again presumably inspired by the (correct) statement in eq. (4.1), and result
from the application of eqs. (4.6) and (4.7) to Q11−13. We can confirm that using eqs. (4.8)–
(4.10) we reproduce the LO and NLO ADMs given by BMU.

3We thank Mikolaj Misiak for confirming to us that this was indeed the approach followed in ref. [11].
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The relation for Q11 in eq. (4.8) can be combined with eq. (4.2) and rewritten as[
γ̂(1)(Q11)

]
p

= 2
[
γ̂(1)(Q̃1)

]
p

+ 2
[
γ̂(1)(Q2)

]
p

(allegedly) . (4.11)

The BMU ADMs also satisfy this relation. Our claim here is that, while eqs. (4.6) and (4.7)
are true when used within eqs. (4.2)–(4.5) in the set of operators {Q3, Q4, Q9, Q10} of the SM
sector, the approach fails in eq. (4.11) as used in ref. [11], for Q11 alone. The key point to
understand our claim lies in the intermediate one-loop contributions participating in the ADM,
coming from the insertion of one-loop counterterms in the divergent subdiagrams of two-loop
penguins. These terms end up providing a contribution that depends not only on the operator
inserted in the two-loop diagram, but also on a closed set of operators around it. In particular,
we will see how the contribution from the one-loop counterterms to {Q1, Q2} and {Q̃1, Q̃2}
cannot be used directly to recover the one they provide for Q11, regardless of flavor symmetry.

4.2 Deconstruction of eq. (4.11)

We start from the expression for the two-loop ADM in eq. (2.12), focusing only on the
penguin contributions,[

γ̂(1)(Qi)j

]
p

= −4
[
â

(2,1)
QiQj

− β0 â
(1,0)
QiQj

]
p

+ 4
[
â

(1,1)
QiQk

â
(1,0)
QkQj

]
p

+ 2
[
â

(1,1)
QiEk

â
(1,0)
EkQj

]
p

. (4.12)

The penguin brackets [. . .]p indicate that only the contributions that involve at least one
penguin diagram are considered. Eq. (4.12) allows for a closer inspection on the source of
all the different contributions and their role in eq. (4.11):

First term in the r.h.s. of eq. (4.12). The first term in the r.h.s. of eq. (4.12) comes from
1/ϵ poles in the bare one- and two-loop penguin diagrams. This contribution projects always
only onto Q3−6 [11] and depends only on the definition of Qi. It is also clearly independent
of the flavor of the quark in the loop. Therefore, it allows for eq. (4.11) to be applied without
further dependence on the context.

It is then clear that if there is to be some dependence on intermediate operators that
spoils the validity of eq. (4.11), it must come from a physical Qk as in the second term in
eq. (4.12), or from an evanescent Ek in the third term.

Second term in the r.h.s. of eq. (4.12). We can separate this term into three contributions,
depending on the type of diagrams involved,[

â
(1,1)
QiQk

â
(1,0)
QkQj

]
p

=
[
â

(1,1)
QiQk

]
cc

[
â

(1,0)
QkQj

]
p

+
[
â

(1,1)
QiQk

]
p

[
â

(1,0)
QkQj

]
cc

+
[
â

(1,1)
QiQk

]
p

[
â

(1,0)
QkQj

]
p

. (4.13)

Among the various terms in eq. (4.13), those containing [â(1,1)
QiQk

]p involve (at most) only Qk =
Q3−6 as intermediate operators, for any Qi inserted. Therefore, this term provides universal
contributions too, and again allows for a separate use of the naive relation in eq. (4.11).

This is not the case, however, for the term containing [â(1,1)
QiQk

]cc, in which Qk runs only
through the set of operators connected to Qi by one-loop current-current diagrams. This set
is a pair of color-singlet and color-crossed operators for Qi = Q1, Q2 and their tilde versions.
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Meanwhile, for Qi = Q11 one has Qk = Q11, featuring only a color-singlet. The contributions
in both sides of eq. (4.11) read then, up to an overall factor of 8,

l.h.s. :
[
â

(1,1)
Q2Q1

]
cc

[
â

(1,0)
Q2Qj

]
p
+
[
â

(1,1)
Q2Q2

]
cc

[
â

(1,0)
Q2Qj

]
p
+
[
â

(1,1)
Q̃1Q̃1

]
cc

[
â

(1,0)
Q̃1Qj

]
p
+
[
â

(1,1)
Q̃1Q̃2

]
cc

[
â

(1,0)
Q̃1Qj

]
p

,

r.h.s. :
[
â

(1,1)
Q2Q1

]
cc

[
â

(1,0)
Q1Qj

]
p
+
[
â

(1,1)
Q2Q2

]
cc

[
â

(1,0)
Q2Qj

]
p
+
[
â

(1,1)
Q̃1Q̃1

]
cc

[
â

(1,0)
Q̃1Qj

]
p
+
[
â

(1,1)
Q̃1Q̃2

]
cc

[
â

(1,0)
Q̃2Qj

]
p

,

where we have used the fact that the 1/ϵ poles in one-loop diagrams are scheme-independent
to write all of the corresponding matrices in terms of the two u-type operators. We have
also taken into account that[

â
(1,0)
Q11Qj

]
p

= 2
[
â

(1,0)
Q̃1Qj

]
p

+ 2
[
â

(1,0)
Q2Qj

]
p

, (4.14)

which is only the one-loop statement that Q11 contributes both through closed and open
penguin diagrams. It is readily apparent that the l.h.s. and r.h.s. of eq. (4.11) differ in the
first and last terms. Numerically, written in terms of Qj = (Q3, Q4, Q5, Q6), the difference
(factor of 8 included) amounts to

l.h.s. − r.h.s.
∣∣∣
second term

= 8
(

1
Nc

−1 1
Nc

−1
)

, (4.15)

computed in the renormalization scheme defined below eq. (3.5). This non-zero result does
not pose any problem per se, as it could cancel against the third term of eq. (4.12).

Third term in the r.h.s. of eq. (4.12). There is a similar situation for the evanescent
contribution in eq. (4.12), further simplified by the fact that one-loop penguin insertions of
physical operators produce no evanescent structures. Therefore, only the current-current 1/ϵ

poles will contribute. Given that the set of evanescent operators are defined independently
of the physical basis, as long as they respect quark-flavor symmetry (analogous evanescents
for each flavor) the contribution from the third term in eq. (4.12) to each [γ̂(1)(Qi)]p will
be flavor-universal, and thus have l.h.s. = r.h.s. in eq. (4.11). This is indeed the case of the
evanescent basis used by BMU, as argued below eq. (3.5).

Nonetheless, for the special case of Q11 there is an additional evanescent structure with
no analog associated to Q1,2 or Q̃1,2, needed in the one-loop current-current diagrams with
an insertion of Q11,

E11 ≡ Q′
11 − Q11 = E

VLL(d)
1 + E

VLL(s)
1 . (4.16)

The leftmost equality in eq. (4.16) is written as in ref. [11] (cf. appendix A for the definition
of these operators), while the rightmost expression is written in terms of the evanescent
operators listed in appendix B. Due to the emergence of this evanescent structure, the l.h.s.
of eq. (4.11) gets an additional contribution that is not present in the r.h.s., given by

l.h.s. − r.h.s.
∣∣∣
third term

= 2
[
â

(1,1)
Q11E11

]
cc

[
â

(1,0)
E11Qj

]
p

= 4
(
− 1

Nc
1 − 1

Nc
1
)

. (4.17)
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4.3 Correction to eq. (4.11)

Putting together the two contributions in eqs. (4.15) and (4.17), we can write[
γ̂(1)(Q11)

]
p

= 2
[
γ̂(1)(Q̃1)

]
p

+ 2
[
γ̂(1)(Q2)

]
p

+ ∆11 , (4.18)

with

∆11 =
(

0 0 4
Nc

−4 4
Nc

−4 0 · · · 0
)

. (4.19)

This correction is the reason behind the inconsistency found in the NLO ADM given in
ref. [11], as discussed in section 3, and it is contained entirely in the anomalous dimension
of the BSM operator Q11.

5 The solution

Applying this correction to the ADM of ref. [11] we get, for the 11th row of γ̂(1),

γ
(1)
11 j = γ

(1)
11 j

∣∣∣
Ref. [11]

+ ∆11

=
(

0 0 3862
243

2330
81 −5894

243
1430
81 0 0 0 0 4f

9 − 7 0 · · · 0
)

, (5.1)

where f indicates the number of quark flavors, and we have set Nc = 3 for simplicity. The
general expression in terms of Nc is given below in section 6. We have also indicated in
red the four terms that are different from ref. [11].

With our corrected version of γ̂(1) at hand we can now verify that eq. (3.5) is, indeed,
satisfied. That is,

γ̂
(1)
Ref. [11] − R̂γ̂

(1)
Ref. [11]R̂

−1 + 2β0∆r̂ +
[
∆r̂, γ̂

(0)
BMU

]
= R̂∆11R̂−1 − ∆11 , (5.2)

as can be checked explicitly by noting that the right-hand-side agrees exactly with the matrix
in eq. (3.8). (Here we have made a slight abuse of notation by denoting by ∆11 the matrix
with ∆11 as the 11th row and all other entries vanishing.) Thus we are confident that the
diagnosis in the previous section is correct, and that no other issues, aside from the one
related to Q11, affect the results of ref. [11].

Our results can also be compared to the results for the anomalous dimensions of the
operator Pb in ref. [9] (adjusting for the case of our s̄ → d̄ transition),

Pb = 1
12(s̄αγµγνγρPLdα)(d̄βγµγνγρdβ) − 1

3(s̄αγµPLdα)(d̄βγµdβ) , (5.3)

and in particular to the two-loop mixing of Pb onto the QCD penguin operators P3 − P6

γ
(20)
BP =

(
− 1576

81
446
27

172
81

40
27

)
. (5.4)

In the BMU basis, the operator Pb is given by

Pb = 1
12

[
(6 − 2ϵ)(Q11 + Q14) + 2ϵ (Q13 + Q16) + E

VLL(d)
2 + E

VLR(d)
2

]
. (5.5)

– 10 –



J
H
E
P
0
4
(
2
0
2
4
)
1
0
5

We perform a change of basis from the BMU basis to the basis of ref. [9] (taking into account
that a different basis for evanescent operators is used in that paper), and we confirm the
anomalous dimensions in eq. (5.4), only when using the new results in eq. (5.1).

As a final note, we note that our results in eq. (5.1) have been confirmed a posteriori
in an erratum to ref. [11].

6 A proposal: crossed/singlet symmetrization

The rationale behind this discrepancy is the fact that the four VLL penguin contributions to
the ADM computed in ref. [4] (for Q1, Q2 and their tildes) are valid only for cases with an
analogous set of operators connected by one-loop current-current diagrams, which should
involve a pair of color-singlet and color-crossed operators. If we want to extrapolate these
results to d-type and s-type operators, we must then use a properly crafted operator that
is connected to an equivalent set. Such property can be found, for instance, in a modified
version of Q11 that symmetrizes over color structures, Q+

11 = 1
2 Q11 + 1

2 Q̃11. The connected
set for this operator is again only itself, but it now includes the proper pair of singlet/crossed
structures, with which the counterterm contributions become[

â
(1,1)
Q+

11Q+
11

]
cc

=
[
â

(1,1)
Q2Q1

]
cc

+
[
â

(1,1)
Q2Q2

]
cc

+
[
â

(1,1)
Q1Q1

]
cc

+
[
â

(1,1)
Q1Q2

]
cc

=
[
â

(1,1)
Q11Q11

]
cc

, (6.1)[
â

(1,0)
Q+

11Qj

]
p

=
[
â

(1,0)
Q̃1Qj

]
p

+
[
â

(1,0)
Q2Qj

]
p

+
[
â

(1,0)
Q̃2Qj

]
p

+
[
â

(1,0)
Q1Qj

]
p
̸=
[
â

(1,0)
Q11Qj

]
p

. (6.2)

The product of these two expressions now aligns perfectly with the decomposition in terms
of operators Q1, Q2, Q̃1 and Q̃2,[

â
(1,1)
Q+

11Q+
11

]
cc

[
â

(1,0)
Q+

11Qj

]
p

=
[
â

(1,1)
Q2Qk

]
cc

[
â

(1,0)
QkQj

]
p

+
[
â

(1,1)
Q̃1Qk

]
cc

[
â

(1,0)
QkQj

]
p

+
[
â

(1,1)
Q1Qk

]
cc

[
â

(1,0)
QkQj

]
p

+
[
â

(1,1)
Q̃2Qk

]
cc

[
â

(1,0)
QkQj

]
p

.

(6.3)

In the evanescent plane of eq. (4.17), Q+
11 has two identical and opposite-sign contributions

to [â(1,1)
Q11E11

]p, given that insertions of color-crossed operators project onto −E11; and thus
this contribution to the discrepancy between the actual contribution and its construction
from single-flavor results vanishes too for Q+

11 (that is, ∆+
11 = 0).

With both the physical and evanescent contributions to the ADM agreeing for Q+
11 on

the naive comparison with u-type operators, we can now safely apply the respective naive
reconstruction of the penguin-borne anomalous dimension,[

γ̂(1)(Q+
11)
]

p
=

[
γ̂(1)(Q̃1)

]
p

+
[
γ̂(1)(Q2)

]
p

+
[
γ̂(1)(Q̃2)

]
p

+
[
γ̂(1)(Q1)

]
p

. (6.4)

One can then perform a NLO change of basis from this quasi-BMU basis containing Q+
11

to the original BMU basis, to obtain the correct [γ̂(1)(Q11)]p. This change of basis affects
only Q11, and leaves the rest of the ADM (and in particular the SM sector) unaltered. The
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resulting contributions from either operator to the ADM read

[
γ̂(1)(Q+

11)
]

p
=


160

27N2
c

+ 6Nc − 10
3Nc

− 52
27

286Nc
27 − 394

27Nc
− 8

3
− 92

27N2
c
− 6Nc + 26

3Nc
− 178

27
160Nc

27 + 110
27Nc

− 8
3


T

, (6.5)

[
γ̂(1)(Q11)

]
p

=


172

27N2
c

+ 6Nc − 4
3Nc

− 64
27

352Nc
27 − 460

27Nc
− 14

3
− 188

27N2
c
− 6Nc + 32

3Nc
− 244

27
172Nc

27 + 260
27Nc

− 14
3


T

, (6.6)

with these vectors being written in terms of the four QCD penguins (Q3, Q4, Q5, Q6).
Eq. (6.6) is the corrected version of the penguin contribution to the ADM due to Q11, and
agrees with the result given in section 5 for Nc = 3.

Going back to our original claim below eq. (4.11), we can see that, as opposed to eq. (4.11),
eqs. (4.6) and (4.7) are correct because the penguin operators Q3, Q4, Q9, Q10 are built
respecting the required structure of color-singlet/crossed pairs. Consequently, one is allowed
to directly export the single-flavor penguin anomalous dimensions as in eqs. (4.2), (4.3), (4.4)
and (4.5), leading to the results given in ref. [4], which are in full agreement with multiple
independent calculations of the anomalous dimensions at O(α2

s) performed for the SM
sector [5–9], after the proper change of basis.

7 Numerical impact of the correction

We now study the phenomenological impact of the correction put forward in this work.
We do this by comparing the Renormalization Group Evolution resulting from BMU on
the one hand, and from our results on the other. We compute the running between two
representative scales, from µ0 ∼ MZ (i.e. the scale of a matching to the SMEFT) to µ ∼ mb

(the characteristic scale of B-physics).
Limiting ourselves to contributions of dimension 6, i.e. of order 1/Λ2, the mixing relevant

to penguin operators involves only single insertions of the first thirteen operators in the
BMU basis (cf. appendix A). In this situation the equation for the running can be written
in terms of the unitary evolution matrix,

Ci(µ) = Ûij(µ, µ0) Cj(µ0) . (7.1)

This matrix can then be computed as the solution to the RGE in eq. (2.2), with the appropriate
boundary conditions. The general solution reads:

Û(µ, µ0) = exp
(∫ µ

µ0
γ̂(µ′) d log µ′

)
= exp

(∫ αs(µ)

αs(µ0)

γ̂(αs)
2β(αs)

dαs

αs

)
, (7.2)

where the anomalous dimensions, γ̂, and the QCD beta function, β, can be expanded
perturbatively in αs. Solving the RGE numerically to NLO both in the ADM and the QCD
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beta function, one obtains the corresponding 13 × 13 matrix,

Û(mb,MZ) (7.3)

=



1.11 −0.24 0 0 0 0 0 0 0 0 0 0 0
−0.24 1.11 0 0 0 0 0 0 0 0 0 0 0
−0.01 0.01 1.11 −0.19 0.02 0.08 0 0.01 −0.01 0.01 0.01 0.03 0.01

0.01 −0.03 −0.28 0.97 −0.01 −0.17 0 −0.02 0.03 −0.02 −0.05 −0.07 −0.01
0 0.01 0.03 0.04 0.92 0.09 0 0 −0.01 0 0.02 0.01 −0.01

0.01 −0.04 −0.05 −0.16 0.32 1.71 0 −0.02 0.04 −0.02 −0.06 −0.10 −0.01
0 0 0 0 0 0 0.93 0.06 0 0 0 0 0
0 0 0 0 0 0 0.34 1.95 0 0 0 0 0
0 0 0 0 0 0 0 0 1.11 −0.24 0 0 0
0 0 0 0 0 0 0 0 −0.24 1.11 0 0 0
0 0 0 0 0 0 0 0 0 0 0.87 0 0
0 0 0 0 0 0 0 0 0 0 0 1.95 0.34
0 0 0 0 0 0 0 0 0 0 0 0.06 0.93



.

The correction to the NLO ADM affects only the entries mixing Q11 into Q3 −Q6 (rows third
to sixth in the eleventh column). Focusing on these entries (to a precision of four significant
figures, consistent with an α̂s(mb)2 correction) and comparing them to the calculation with
the original ADM of ref. [11], one finds

[
Û (this paper)(mb, MZ)

]
i 11

=


0.0127
−0.0534
0.0206
−0.0619

 ,
[
Û (Ref. [11])(mb, MZ)

]
i 11

=


0.0134
−0.0550
0.0211
−0.0639

 .

(7.4)
The difference in these entries is of the order of 5%. Although small in absolute terms, the
impact of such corrections could become sizeable in phenomenological studies where the
BSM matching condition C11(MZ) is significantly larger than the SM contribution to QCD
penguins, C3−6(MZ). In such cases, the running described by eq. (7.3) could lead to similar
contributions by both SM and BSM to the coefficients C3−6(mb) at the low scale, and the
corrections in eq. (7.4) would then make a measurable difference to suitable observables. It
remains to be clarified to which extent current data allows for large values of C11(MZ).

8 Summary

In this paper we have revisited the two-loop anomalous dimensions for ∆F = 1 four-quark
operators in the general BSM case. These anomalous dimensions were presented in complete
form for the first time in the highly relevant paper by Buras, Misiak and Urban (BMU) in
the year 2000 [11]. However, the BMU result for the NLO anomalous dimension matrix γ̂(1)

does not satisfy a simple requirement related to renaming of quark fields.
The root of the problem is related to the particular structure of the operator Q11, an issue

that, once addressed, can be used to derive the correct version of the anomalous dimensions,
which can be found in appendix C. Our corrected version satisfies the renaming requirement,
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and thus confirms our diagnosis of the problem. Having understood the issue, the approach
followed by BMU can be modified in a way that leads directly to the correct result.

In order to assess the numerical importance of this correction, we have performed a very
simple numerical analysis that points to an effect of around ∼ 5%. Our results are also very
relevant in the present time in which automation is prompting the development of public
codes which implement computations in EFTs in full generality [14–18].

Many of the points put forward in this work can be applied to general n-loop anomalous
dimensions. On the one hand, as long as the evanescent basis is properly defined, quark-flavor
symmetry tests are completely general consistency checks. On the other hand, analyses like
the one carried out in section 4 are always necessary when trying to extend calculations
performed in small operator subsets to other sectors of the basis. One must ensure that both
sectors have analogous physical and evanescent “surroundings”, as the direct extension fails
otherwise. It is possible that the issues discussed in this paper can be framed within recent
attempts to simplify the handling of evanescent structures in loop calculations [19–23].
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A BMU operator basis

The physical operator basis we use and refer to throughout the text is the so-called BMU
basis [11] for (s̄d)(q̄q) operators. The first two operators in this basis are the u-type

Q1 = (s̄αγµPLuβ)(ūβγµPLdα) , Q2 = (s̄αγµPLuα)(ūβγµPLdβ) , (A.1)

where α, β are SU(Nc) indices. We use also the alternative Fierz-transformed version of
these two operators, also featured in [11],

Q̃1 = (s̄αγµPLdα)(ūβγµPLuβ) , Q̃2 = (s̄αγµPLdβ)(ūβγµPLuα) . (A.2)
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Following up, one has the four QCD penguin operators, summing over all flavors,

Q3 = (s̄αγµPLdα)
∑

q

(q̄βγµPLqβ) , Q4 = (s̄αγµPLdβ)
∑

q

(q̄βγµPLqα) ,

Q5 = (s̄αγµPLdα)
∑

q

(q̄βγµPRqβ) , Q6 = (s̄αγµPLdβ)
∑

q

(q̄βγµPRqα) ,
(A.3)

and the four QED penguins, again featuring a sum over flavors,

Q7 = 3
2(s̄αγµPLdα)

∑
q

Qq(q̄βγµPRqβ) , Q8 = 3
2(s̄αγµPLdβ)

∑
q

Qq(q̄βγµPRqα) ,

Q9 = 3
2(s̄αγµPLdα)

∑
q

Qq(q̄βγµPLqβ) , Q10 = 3
2(s̄αγµPLdβ)

∑
q

Qq(q̄βγµPLqα) .
(A.4)

These ten operators form the Standard Model sector, which is addressed in [3, 4]. The BMU
basis then follows with a set of BSM operators, as introduced in [11], which starts with

Q11 = (s̄αγµPLdα)(d̄βγµPLdβ) + (s̄αγµPLdα)(s̄βγµPLsβ) ,

Q12 = (s̄αγµPLdβ)(d̄βγµPRdα) + (s̄αγµPLdβ)(s̄βγµPRsα) ,

Q13 = (s̄αγµPLdα)(d̄βγµPRdβ) + (s̄αγµPLdα)(s̄βγµPRsβ) .

(A.5)

In our discussion, we need only operators up to Q11; although its Fierz-transformed version
Q′

11 is also featured in the composition of the alternative operator Q+
11 before eq. (6.4),

Q′
11 = (s̄αγµPLdβ)(d̄βγµPLdα) + (s̄αγµPLdβ)(s̄βγµPLsα) . (A.6)

In addition, to refer to specific structures within operators, as in eqs. (4.6) and (4.7) we
use the following general notation:

OV S,LL
ijkl = (q̄α

i γµPLqα
j )(q̄β

k γµPLqβ
l ) , OV X,LL

ijkl = (q̄α
i γµPLqβ

j )(q̄β
k γµPLqα

l ) . (A.7)

Beyond the discussion given in this work, there are three more d-type BSM vector operators,

Q14 = (s̄αγµPLdα)(d̄βγµPLdβ) − (s̄αγµPLdα)(s̄βγµPLsβ) ,

Q15 = (s̄αγµPLdβ)(d̄βγµPRdα) − (s̄αγµPLdβ)(s̄βγµPRsα) ,

Q16 = (s̄αγµPLdα)(d̄βγµPRdβ) − (s̄αγµPLdα)(s̄βγµPRsβ) ,

(A.8)

and two additional vector operators involving flavors u and c,

Q17 = (s̄αγµPLdβ)(ūβγµPRuα) − (s̄αγµPLdβ)(c̄βγµPRcα) ,

Q18 = (s̄αγµPLdα)(ūβγµPRuβ) − (s̄αγµPLdα)(c̄βγµPRcβ) .
(A.9)

The rest of operators are scalar. They can be divided in 6 chirality-mixed operators,

Q19 = (s̄αPRdβ)(ūβPLuα) , Q20 = (s̄αPRdα)(ūβPLuβ) ,

Q21 = (s̄αPRdβ)(c̄βPLcα) , Q22 = (s̄αPRdα)(c̄βPLcβ) ,

Q23 = (s̄αPRdβ)(b̄βPLbα) , Q24 = (s̄αPRdα)(b̄βPLbβ) ,

(A.10)
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and 16 scalar right-handed operators,

Q25 = (s̄αPRdβ)(d̄βPRdα) , Q26 = (s̄ασµνPRdα)(d̄βσµνPRdβ) ,

Q27 = (s̄αPRdβ)(s̄βPRsα) , Q28 = (s̄ασµνPRdα)(s̄βσµνPRsβ) ,

Q29 = (s̄αPRdβ)(ūβPRuα) , Q30 = (s̄αPRdα)(ūβPRuβ) ,

Q31 = (s̄ασµνPRdβ)(ūβσµνPRuα) , Q32 = (s̄ασµνPRdα)(ūβσµνPRuβ) ,

Q33 = (s̄αPRdβ)(c̄βPRcα) , Q34 = (s̄αPRdα)(c̄βPRcβ) ,

Q35 = (s̄ασµνPRdβ)(c̄βσµνPRcα) , Q36 = (s̄ασµνPRdα)(c̄βσµνPRcβ) ,

Q37 = (s̄αPRdβ)(b̄βPRbα) , Q38 = (s̄αPRdα)(b̄βPRbβ) ,

Q39 = (s̄ασµνPRdβ)(b̄βσµνPRbα) , Q40 = (s̄ασµνPRdα)(b̄βσµνPRbβ) .

(A.11)

Many of the operators in this basis can be separated in blocks not connected by the RGE, as it
can be seen in the block diagonal ADM in appendix C. Apart from these 40 operators, there is
an additional RGE-disconnected block of the same size corresponding to the opposite-chirality
operators.

This operator basis contains five quark flavors, corresponding to an EFT where the top
quark has been integrated out. The bases for EFTs with lower numbers of active flavors (i.e.
integrating out the bottom, the charm, etc.) can be readily obtained by eliminating some
of the operators in the five-flavor EFT. For instance, a candidate for the four-flavor (f = 4)
basis, corresponding to integrating out the b-quark, is obtained by eliminating the four QED
penguins (Q7 − Q10) and all scalar operators containing b-quarks (Q23, Q24, Q37 − Q40). A
three-flavor (f = 3) basis, can then be obtained by eliminating also Q1, Q2, Q17,Q18, and
all scalar operators with c-quarks (Q21, Q22, Q33 − Q36).

B Evanescent operator basis

The set of evanescent operators we use to specify the renormalization scheme for the two-loop
ADM in the case of s̄bq̄q operators is analogous to the ones given in ref. [11] for sectors s̄dūc

and s̄ds̄d, equivalent to the choice aev, bev, cev, . . . = 1 in ref. [13]. We list them here separated
for generic flavors q = u, c, d, s, b, noting that they become redundant for q = d, s. In such
case the tilde evanescents are absent (that is, Ẽ

X(q)
i exist only for q = u, c, b).

An evanescent basis defined in this manner, with analogous structures for each flavor (i.e.
ensuring the same d-dimensional Fierz identities for all flavors), satisfies the condition discussed
above eq. (4.16). Let us also note that any linear rotation of this evanescent basis (E′

i =
WijEj), involving no physical operators, leaves the physical anomalous dimensions unaltered.
Therefore, any such evanescent basis defines a completely equivalent renormalization scheme.

Again, we limit our exposition to half of the total basis, given that the definition of the
chiral-opposite sector is straightforward, PL ↔ PR. Starting with the VLL sector,

E
VLL(q)
1 = (s̄αγµPLqβ)(q̄βγµPLdα) − (s̄αγµPLdα)(q̄βγµPLqβ) ,

Ẽ
VLL(q)
1 = (s̄αγµPLqα)(q̄βγµPLdβ) − (s̄αγµPLdβ)(q̄βγµPLqα) ,

E
VLL(q)
2 = (s̄αγµγνγρPLdα)(q̄βγµγνγρPLqβ) − (16 − 4ϵ)(s̄αγµPLdα)(q̄βγµPLqβ) ,

E
VLL(q)
3 = (s̄αγµγνγρPLdβ)(q̄βγµγνγρPLqα) − (16 − 4ϵ)(s̄αγµPLdβ)(q̄βγµPLqα) , (B.1)
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Ẽ
VLL(q)
2 = (s̄αγµγνγρPLqα)(q̄βγµγνγρPLdβ) − (16 − 4ϵ)(s̄αγµPLqα)(q̄βγµPLdβ) ,

Ẽ
VLL(q)
3 = (s̄αγµγνγρPLqβ)(q̄βγµγνγρPLdα) − (16 − 4ϵ)(s̄αγµPLqβ)(q̄βγµPLdα) .

As for the VLR sector,

E
VLR(q)
1 = 2(s̄αPRqβ)(q̄βPLdα) − (s̄αγµPLdα)(q̄βγµPRqβ) ,

E
VLR(q)
2 = 2(s̄αPRqα)(q̄βPLdβ) − (s̄αγµPLdβ)(q̄βγµPRqα) ,

Ẽ
VLR(q)
1 = 2(s̄αPRdβ)(q̄βPLqα) − (s̄αγµPLqα)(q̄βγµPRdβ) ,

Ẽ
VLR(q)
2 = 2(s̄αPRdα)(q̄βPLqβ) − (s̄αγµPLqβ)(q̄βγµPRdα) , (B.2)

E
VLR(q)
3 = (s̄αγµγνγρPLdα)(q̄βγµγνγρPRqβ) − (4 + 4ϵ)(s̄αγµPLdα)(q̄βγµPRqβ) ,

E
VLR(q)
4 = (s̄αγµγνγρPLdβ)(q̄βγµγνγρPRqα) − (4 + 4ϵ)(s̄αγµPLdβ)(q̄βγµPRqα) ,

Ẽ
VLR(q)
3 = (s̄αγµγνγρPLqα)(q̄βγµγνγρPRdβ) − (4 + 4ϵ)(s̄αγµPLqα)(q̄βγµPRdβ) ,

Ẽ
VLR(q)
4 = (s̄αγµγνγρPLqβ)(q̄βγµγνγρPRdα) − (4 + 4ϵ)(s̄αγµPLqβ)(q̄βγµPRdα) .

For the SRL sector, Fierz-related to VLR,

E
SRL(q)
1 = (s̄ασµνPRdα)(q̄βσµνPLqβ) − 6ϵ(s̄αPRdα)(q̄βPLqβ) ,

E
SRL(q)
2 = (s̄ασµνPRdβ)(q̄βσµνPLqα) − 6ϵ(s̄αPRdβ)(q̄βPLqα) ,

Ẽ
SRL(q)
1 = (s̄ασµνPRqα)(q̄βσµνPLdβ) − 6ϵ(s̄αPRdα)(q̄βPLqβ) , (B.3)

Ẽ
SRL(q)
2 = (s̄ασµνPRqβ)(q̄βσµνPLdα) − 6ϵ(s̄αPRdβ)(q̄βPLqα) .

Finally, for the SRR sector,

E
SRR(q)
1 = (s̄ασµνPRdα)(q̄βσµνPRqβ) + 4(s̄αPRdα)(q̄βPRqβ) + 8(s̄αPRqβ)(q̄βPRdα) ,

E
SRR(q)
2 = (s̄ασµνPRdβ)(q̄βσµνPRqα) + 4(s̄αPRdβ)(q̄βPRqα) + 8(s̄αPRqα)(q̄βPRdβ) ,

Ẽ
SRR(q)
1 = (s̄ασµνPRqα)(q̄βσµνPRdβ) + 4(s̄αPRqα)(q̄βPRdβ) + 8(s̄αPRdβ)(q̄βPRqα) ,

Ẽ
SRR(q)
2 = (s̄ασµνPRqβ)(q̄βσµνPRdα) + 4(s̄αPRqβ)(q̄βPRdα) + 8(s̄αPRdα)(q̄βPRqβ) ,

E
SRR(q)
3 = (s̄αγµγνγργσPRdα)(q̄βγµγνγργσPRqβ) − (64 − 96ϵ)(s̄αPRdα)(q̄βPRqβ)

+(16 − 8ϵ)(s̄ασµνPRdα)(q̄βσµνPRqβ) , (B.4)

E
SRR(q)
4 = (s̄αγµγνγργσPRdβ)(q̄βγµγνγργσPRqα) − (64 − 96ϵ)(s̄αPRdβ)(q̄βPRqα)

+(16 − 8ϵ)(s̄ασµνPRdβ)(q̄βσµνPRqα) ,

Ẽ
SRR(q)
3 = (s̄αγµγνγργσPRqα)(q̄βγµγνγργσPRdβ) − (64 − 96ϵ)(s̄αPRqα)(q̄βPRdβ)

+(16 − 8ϵ)(s̄ασµνPRqα)(q̄βσµνPRdβ) ,

Ẽ
SRR(q)
4 = (s̄αγµγνγργσPRqβ)(q̄βγµγνγργσPRdα) − (64 − 96ϵ)(s̄αPRqβ)(q̄βPRdα)

+(16 − 8ϵ)(s̄ασµνPRqβ)(q̄βσµνPRdα) .

C Full anomalous dimension matrix to NLO in QCD

We provide here the complete one- and two-loop ADMs, for the BMU basis as presented in
the previous appendix. These ADMs include current-current and penguin contributions, the
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latter accounting already for the correction discussed in this work (in red). As in appendix A,
we will limit ourselves to half of the basis, with the other half being its chiral-opposite, given
that the full matrix corresponds to two identical copies of the one we shall provide here.

In these expressions, f will be the number of active quark flavors, u, d stand for the
number of active up- and down-type quarks, respectively. The references to f in these ADMs
allow for the determination of the corresponding anomalous dimensions in theories with a
different number of active quark flavors. Strictly speaking, the full set of matrices given
in this appendix correspond to the five-flavor theory (f = 5). Going to lower numbers of
active flavors not only changes the value of f , but also requires for the elimination of all
rows and columns corresponding to redundant operators “integrated out” from the basis,
as explained in appendix A.

C.1 Leading order

The LO ADM can be written in terms of two main blocks,

γ̂
(0)
BMU =

(
γ̂

(0)
VLV 0
0 γ̂

(0)
SRS

)
. (C.1)

The first block corresponds to the 18 vector operators {Q1 − Q18}, and thus contains all
penguin contributions,

γ̂
(0)
VLV =



γ̂
(0)
CC γ̂

(0)
CC→P 0 0 0

0 γ̂
(0)
P 0 0 0

0 γ̂
(0)
d+s→P γ̂

(0)
d+s 0 0

0 0 0 γ̂
(0)
d−s 0

0 0 0 0 γ̂
(0)
u−c


, γ̂

(0)
P =

(
γ̂

(0)
P P 0

γ̂
(0)
QP γ̂

(0)
QQ

)
. (C.2)

The other term in eq. (C.1) is block-diagonal, and involves the 22 scalar operators {Q19−Q40},

γ̂
(0)
SRS = diag

(
γ̂

(0)
SRL(u), γ̂

(0)
SRL(c), γ̂

(0)
SRL(b), γ̂

(0)
SRR(d), γ̂

(0)
SRR(s), γ̂

(0)
SRR(u), γ̂

(0)
SRR(c), γ̂

(0)
SRR(b)

)
. (C.3)

The first three blocks here γ̂
(0)
SRL(u,c,b) are identical 2×2 matrices corresponding to the operators

in eq. (A.10). The following two blocks γ̂
(0)
SRR(d,s) are again identical and 2 × 2, corresponding

to the first four operators in eq. (A.11). The remaining three blocks γ̂
(0)
SRR(u,c,b) are identical

4 × 4 matrices, and correspond to the last twelve operators in eq. (A.11).
The individual blocks in eqs. (C.2) and (C.3) read, fixing the number of colors in the

QCD gauge group SU(Nc) to Nc = 3,

γ̂
(0)
CC =

(
−2 6
6 −2

)
, γ̂

(0)
CC→P =

(
0 0 0 0
−2

9
2
3 −2

9
2
3

)
, (C.4)

γ̂
(0)
P P =


−22

9
22
3 −4

9
4
3

6−2f
9

2f
3 −2 −2f

9
2f
3

0 0 2 −6
−2f

9
2f
3 −2f

9
2f
3 −16

, γ̂
(0)
QQ=


2 −6 0 0
0 −16 0 0
0 0 −2 6
0 0 6 −2

, (C.5)
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γ̂
(0)
QP =


0 0 0 0

−2(u−d/2)
9

2(u−d/2)
3 −2(u−d/2)

9
2(u−d/2)

3
2
9 −2

3
2
9 −2

3
−2(u−d/2)

9
2(u−d/2)

3 −2(u−d/2)
9

2(u−d/2)
3

, γ̂
(0)
d+s→P =

−4
9

4
3 −4

9
4
3

−4
9

4
3 −4

9
4
3

0 0 0 0

, (C.6)

γ̂
(0)
d+s=γ̂

(0)
d−s=

 4 0 0
0 −16 0
0 −6 2

, γ̂
(0)
u−c=

(
−16 0
−6 2

)
, (C.7)

γ̂
(0)
SRL(u)=γ̂

(0)
SRL(c)=γ̂

(0)
SRL(b)=

(
2 −6
0 −16

)
, γ̂

(0)
SRL(d)=γ̂

(0)
SRL(s)=

(
−10 −1

6
40 34

3

)
,

(C.8)

γ̂
(0)
SRR(u)=γ̂

(0)
SRR(c)=γ̂

(0)
SRR(b)=


2 −6 −7

6 −1
2

0 −16 −1 1
3

−56 −24 −38
3 6

−48 16 0 16
3

. (C.9)

C.2 Next-to-leading order

The NLO ADM can also be written in terms of two main blocks,

γ̂
(1)
BMU =

(
γ̂

(1)
VLV 0
0 γ̂

(1)
SRS

)
. (C.10)

The first block corresponds to the 18 vector operators {Q1 − Q18}, and thus contains all
penguin contributions,

γ̂
(1)
VLV =



γ̂
(1)
CC γ̂

(1)
CC→P 0 0 0

0 γ̂
(1)
P 0 0 0

0 γ̂
(1)
d+s→P γ̂

(1)
d+s 0 0

0 0 0 γ̂
(1)
d−s 0

0 0 0 0 γ̂
(1)
u−c


, γ̂

(1)
P =

(
γ̂

(1)
P P 0

γ̂
(1)
QP γ̂

(1)
QQ

)
. (C.11)

The other term in eq. (C.10) is block-diagonal, and involves the 22 scalar operators {Q19−Q40},

γ̂
(1)
SRS = diag

(
γ̂

(1)
SRL(u), γ̂

(1)
SRL(c), γ̂

(1)
SRL(b), γ̂

(1)
SRR(d), γ̂

(1)
SRR(s), γ̂

(1)
SRR(u), γ̂

(1)
SRR(c), γ̂

(1)
SRR(b)

)
. (C.12)

The correspondence to the respective operators is analogous to the one in eq. (C.3).
The individual blocks in eqs. (C.11) and (C.12) read, fixing the number of colors in

the QCD gauge group SU(Nc) to Nc = 3,

γ̂
(1)
CC =

(
−2f

9 − 21
2

2f
3 + 7

2
2f
3 + 7

2 −2f
9 − 21

2

)
, γ̂

(1)
CC→P =

(
79
9 −7

3 −65
9 −7

3 0 0 0 0
−202

243
1354
81 −1192

243
904
81 0 0 0 0

)
, (C.13)

γ̂
(1)
P P =


71f

9 − 5911
486

f
3 + 5983

162 −71f
9 − 2384

243
1808
81 − f

3
56f
243 + 379

18
808f

81 − 91
6 −502f

243 − 130
9

646f
81 − 14

3
−61f

9 −11f
3

61f
9 + 71

3
11f

3 −99
−682f

243
106f

81
1676f

243 − 225
2

1348f
81 − 1343

6

 , (C.14)
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γ̂
(1)
QP =


61d
18 − 61u

9
11d
6 − 11u

3
83u

9 − 83d
18

11d
6 − 11u

3
341d
243 − 682u

243
106u

81 − 53d
81

704u
243 − 352d

243
736u

81 − 368d
81

−73d
18 + 73u

9 + 202
243

d
6 −

u
3 −

1354
81

71d
18 − 71u

9 + 1192
243

d
6 −

u
3 −

904
81

53d
243 −

106u
243 − 79

9 −413d
81 + 826u

81 + 7
3

251d
243 − 502u

243 + 65
9 −323d

81 + 646u
81 + 7

3

 , (C.15)

γ̂
(1)
QQ =


71
3 − 22f

9
22f

3 −99 0 0
4f − 225

2
68f

9 − 1343
6 0 0

0 0 −2f
9 − 21

2
2f
3 + 7

2
0 0 2f

3 + 7
2 −2f

9 − 21
2

 , (C.16)

γ̂
(1)
d+s→P =


3862
243

2330
81 −5894

243
1430
81 0 0 0 0

−1364
243

212
81

1408
243

1472
81 0 0 0 0

−122
9 −22

3
166
9 −22

3 0 0 0 0

 , (C.17)

γ̂
(1)
d+s = γ̂

(1)
d−s =


4f
9 −7 0 0

0 68f
9 − 1343

6 4f − 225
2

0 22f
3 −99 71

3 − 22f
9

 , γ̂
(1)
u−c =

( 68f
9 − 1343

6 4f − 225
2

22f
3 −99 71

3 − 22f
9

)
,(C.18)

γ̂
(1)
SRL(u) = γ̂

(1)
SRL(c) = γ̂

(1)
SRL(b) =

(
71
3 − 22f

9
22f

3 −99
4f − 225

2
68f

9 − 1343
6

)
, (C.19)

γ̂
(1)
SRL(d) = γ̂

(1)
SRL(s) =

( 74f
9 − 1459

9
f
54 + 35

36
6332

9 − 584f
9

2065
9 − 394f

27

)
, (C.20)

γ̂
(1)
SRR(u) = γ̂

(1)
SRR(c) = γ̂

(1)
SRR(b) =


350
9 − 64f

9
16f

3 − 470
3

7f
54 −

805
36

f
18 + 77

12
−130

3
80f

9 − 2710
9

f
9 −

31
2

61
18 −

f
27

616f
9 − 12292

9
88f

3 − 2908
3

200f
27 − 1262

9 50− 8f
3

176f
3 − 1880

3
2648

9 − 176f
9

8f
3 + 26

3
1582

9 − 232f
27

 . (C.21)

Again, we have indicated in red the entries that are different from BMU.
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