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REVIEW

The regulation of Net1/Cdc14 by the Hog1 MAPK upon osmostress unravels 
a new mechanism regulating mitosis
Javier Jiménez a,b†, Ethel Queralt c†, Francesc Posas a,d, and Eulàlia de Nadal a,d
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d’Investigacions Biomèdica De Bellvitge (IDIBELL), L’Hospitalet De Llobregat, Barcelona, Spain; dInstitute for Research in Biomedicine (IRB 
Barcelona), the Barcelona Institute of Science and Technology, 08028 Barcelona, Spain

ABSTRACT
During evolution, cells have developed a plethora of mechanisms to optimize survival in 
a changing and unpredictable environment. In this regard, they have evolved networks that 
include environmental sensors, signaling transduction molecules and response mechanisms. 
Hog1 (yeast) and p38 (mammals) stress-activated protein kinases (SAPKs) are activated upon 
stress and they drive a full collection of cell adaptive responses aimed to maximize survival. 
SAPKs are extensively used to learn about the mechanisms through which cells adapt to changing 
environments. In addition to regulating gene expression and metabolism, SAPKs control cell cycle 
progression. In this review, we will discuss the latest findings related to the SAPK-driven regula-
tion of mitosis upon osmostress in yeast.
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Introduction

The budding yeast Saccharomyces cerevisiae has been 
used as a model to study environmental signal trans-
duction pathways. Yeasts have the HOG (High 
Osmolarity Glycerol) pathway to sense, transduce 
and respond to an external increase in osmolarity. 
The cornerstone of the HOG pathway is the stress- 
activated protein kinase (SAPK) Hog1 (p38 in mam-
malian cells), which belongs to the mitogen- 
activated protein kinase (MAPK) family. Upon 
osmostress, the HOG pathway is rapidly activated 
to orchestrate a full set of actions to protect cells and 
ensure their fitness and survival. This response 
involves various aspects of cell biology, ranging 
from gene transcription regulation and metabolism 
control to cell cycle progression [1,2].

Beyond cyclin-dependent kinases (CDKs) and 
cyclins, the main proteins involved in cell cycle pro-
gression, cells have evolved to develop regulatory 
mechanisms aimed at ensuring their faithful dupli-
cation and, consequently, perpetuation. Safe and 
accurate cell duplication has many threads, both 
internal and external, and adaptation to a changing 

environment is a remarkable one. Osmostress in 
yeast cells has been used as a model to study the 
mechanisms used by cells to protect their progeny in 
a changing environment [3,4]. Among these 
mechanisms, the transient arrest of cell cycle pro-
gression has attracted the attention of several 
research groups, which have unveiled several 
mechanisms that govern G1, S and G2 phases. 
Recently, the molecular mechanism responsible for 
regulating cell cycle progression in mitosis has been 
reported. In this review, we will focus on the SAPK- 
dependent molecular mechanisms that regulate tran-
sient arrest of the cell cycle in response to stress, with 
a particular emphasis on mitosis, using osmostress as 
a prototypical case study.

1. The SAPK stress signaling pathway

The HOG pathway of the yeast S. cerevisiae is the 
paradigm of a SAPK signaling pathway. One of 
the five MAPK cascades present in this organism, 
the HOG pathway is the main signaling system 
responsible for cellular adaptation to osmostress [5]. 
Upon osmostress, this pathway is rapidly and 
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transiently activated by two upstream branches: Sln1 
and Sho1 [6,7]. The MAPK core module has three 
MAPKKKs (Ssk2, Ssk22 and Ste11) [8–11], which 
activate the MAPKK component (Pbs2) by phosphor-
ylation. Subsequently, Pbs2 phosphorylates and acti-
vates the MAPK Hog1 (Figure 1) (reviewed in [2]. 
Upon activation, Hog1 rapidly translocates into the 
nucleus [12], where it exerts some of its main func-
tions, such as reprogramming gene expression 
(reviewed in [1,13] and delaying cell cycle progression 
(focus of this review). p38 is the mammalian SAPK 
ortholog of Hog1. p38 responds to an increase in 
extracellular osmolarity and is essential for adaptation 
to osmostress [14]. However, it is activated and 
responds to other stimuli such as cytokines, DNA 
damage, oxidative and heat stress [15,16]. The 
core structure of the p38 pathway is similar to 
that of HOG in yeast [17], although the activation 
mechanism is not totally understood. In vivo repla-
cement of components of the HOG pathway in 
S. cerevisiae by their mammalian counterparts 
demonstrated that there is a strong functional pre-
servation of these MAPK pathways from yeast to 
mammals [14,18]. It is also worth mentioning the 
pleiotropic function of p38, which is also pivotal in 
regulating differentiation, proliferation, apoptosis, 
cell morphology and immune response [15,19,20].

2. Regulation of G1, S and G2 phases by SAPKs 
upon stress

Upon activation, Hog1 rapidly and transiently 
migrates into the nucleus, where it phosphorylates 
substrates to regulate cell cycle progression. This 
serves to prevent cells having to deal with cell cycle 
progression in stress conditions where successful 
accomplishment cannot be assured and thus viability 
is compromised. All the mechanisms presented 
below share the same strategy: arresting the cell 
cycle to provide cells with time to adapt to the 
osmotic change and resuming it only when the 
osmotic imbalance has been corrected and home-
ostasis restored. Research over the last 15 years has 
revealed several molecular mechanisms that occur 
during the different phases of the cell cycle.

The G1-S transition in budding yeast is driven 
by the complex of CDK and G1 cyclins or Clns 
(Cln1, Cln2 and Cln3), whose expression is con-
trolled by the Swi4/6 cell cycle box (SBF) tran-
scription factor [21,22]. SBF is kept inactive by 
the transcriptional repressor Whi5, the yeast func-
tional ortholog of human RB. This repression is 
alleviated by phosphorylation of Whi5 by CDK, 
which leads to the expression of several proteins, 
including Clns, which are essential for cell cycle 
progression through G1. Additional proteins are 
involved in G1-specific transcription; Stb1 and 
Nrm1 regulate the activity of the Mlu1 cell cycle 
box (MBF) [23,24], while Msa1, able to interact 
with Stb1 and Nrm1, is a coactivator of both SBF 
and MBF [25]. In addition to factors involved in 
the expression of the CDK activators, there is an 
extra layer of regulation based on the CDKI (CDK 
Inhibitor) Sic1 [26]. Sic1 inhibits the CDK-Clb5 
complex. When the levels of Clb5 surpass a certain 
threshold both by the firing of the Clb5 promoter 
and by the degradation of Sic1 (determined by its 
phosphorylation by CDK-Clns), cells abruptly 
enter S phase [27].

Activation of Hog1 by osmostress (or by genetic 
means using conditional hyperactive mutant alleles 
of upstream components of the MAPK pathway) 
yields a transient arrest in G1 via the stabilization 
of Sic1 and the down-regulation of G1 cyclins 
(Figure 2a) [28]. The stabilization of Sic1 and con-
sequent Hog1-dependent transient G1 arrest is 

Figure 1. Schematic representation of the HOG and p38 
SAPK pathways. In mammalian cells (left panel), the sensors 
are unclear. In budding yeast (right panel), two independent 
osmosensing mechanisms, the Sln1 and Sho1 branches, con-
verge in the MAPK module. Activation of the sensors leads to 
the phosphorylation of the MAPK (p38 and Hog1) by specific 
MAPKKK and MAPKK, triggering the osmo-adaptive response by 
phosphorylation of multiple substrates.
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essential for the adaptive response to osmostress, and 
cells lacking Sic1 or carrying the non- 
phosphorylatable allele sic1T73A show reduced viabi-
lity under high osmolarity [29,30]. Additionally, 
Hog1 activation represses cyclins CLN2 and CLB5 
expression through Whi5 and Msa1 phosphoryla-
tion to ensure coherent passage through G1/S. The 
phosphorylation of these two transcriptional regula-
tors by Hog1 is essential for inhibiting G1-cyclin 
expression, regulating cell morphogenesis, and 
ensuring maximal cell survival upon stress [31]. 
Recently, it has been reported that the phosphatase 
calcineurin prolongs Hog1 activation and the extent 
of cell cycle arrest upon osmostress. The crosstalk 
between calcineurin and the MAPK contributes to 
the inactivation of multiple regulatory transcription 

factors of the cell cycle and the down-regulation of 
cell cycle-regulated genes [32].

Mathematical modeling and quantitative analy-
sis of G1 progression upon osmostress has allowed 
evaluation of the contribution of the different 
Hog1-dependent mechanisms. Whereas inhibition 
of CLN2 expression and Sic1 stabilization are 
important to prevent S phase entry in response 
to stress occurring close to Start, the inhibition of 
CLB5 expression is critical in the response to 
osmostress occurring at any stage of G1 [33–35].

Although the cell cycle machinery is more com-
plex in mammals from a molecular perspective, 
the same principles described above in yeast gov-
ern cell cycle progression. CDK activity is regu-
lated by two families of CDKIs: the INK and the 

Figure 2. Regulation of G1, S and G2 phases by Hog1. (a) G1-S phase transition controlled by p38 and Hog1 SAPKs upon stress. 
Upon osmostress, p38 and Hog1 SAPKs phosphorylate the S/CDK inhibitor p57 or Sic1 respectively at a single residue. In mammalian 
cells (left panel), p57 phosphorylated at Thr143 has increased affinity toward the Cyclin A/Cdk2 complex, leading to G1 arrest. In 
budding yeast (right panel), Sic1 phosphorylation at T173 protects it from degradation by the proteasome, resulting in G1 arrest. 
Additionally, SAPK activation delays the G1-S phase transition by down-regulating the expression of G1 cyclins via phosphorylation 
of the transcription regulators Whi5 and Msa1 (yeast) and RB (mammals). (b) S phase regulation by Hog1 upon osmostress. Activated 
Hog1 phosphorylates the replication fork progression regulator Mrc1, delaying DNA replication and avoiding collisions between DNA 
Pol and the transcription machinery, which transcribes the osmo-responsive genes that are essential for cell adaptation and survival. 
Avoiding the concurrence of transcription and replication protects cells from DNA instability. (c) G2 regulation by Hog1 upon 
osmostress. In basal conditions, the CDK inhibitor Swe1 is recruited to the septin ring at the bud neck by the Hsl1–Hsl7 complex. At 
the neck, Swe1 is phosphorylated by Cdc5, leading to its degradation, which in turn activates Clb2–Cdc28. Activated Hog1 
phosphorylates Hsl1, dissolving the complex with Hsl7, thereby preventing Swe1 migration to the neck and its degradation and, 
consequently, delaying the activation of the CDK and cell cycle progression through G2-M phases.
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Cip/Kip, which include p21CIP1, p27KIP1 and 
p57KIP2 [36]. In response to osmostress (and other 
stresses), p38 delays G1 progression by directly tar-
geting p57KIP2, by phosphorylating its Thr143, 
thereby increasing its affinity toward the CDK and, 
as a result, reducing its activity and causing 
a transient G1 arrest [37,38] (Figure 2a). Moreover, 
p38 induces p21 mRNA stabilization, without affect-
ing its transcription or the stability of the protein. 
Inhibition of p38 impairs p21 accumulation and, as 
a result, the ability of cells to arrest in G1 in response 
to gamma radiation [39]. p38-activated signaling 
leads to p27 stabilization [40,41]. Additionally, p38 
phosphorylates the Retinoblastoma (RB; Whi5 
ortholog) tumor suppressor in the N-terminal 
region, at Ser249 and Thr252, thereby revealing 
a new interaction surface between RB and E2F tran-
scription factor. This interaction leads to an increase 
in RB affinity for E2F and, in turn, to a down- 
regulation of E2F-dependent gene expression (e.g. 
CycA2) and reduction of cell proliferation (Figure 
2a). Remarkably, the p38-dependent phosphoryla-
tion of RB is dominant over the effect of CDKs, 
yielding RB insensitive to CDK inactivation, which 
is typical of cancer cells. Moreover, a p38- 
phosphomimetic RB mutant blocks cyclin expres-
sion, prevents cell proliferation in cancer cell lines, 
and leads to reduced tumor size in a mouse xenograft 
model. These observations thus suggest that phos-
phorylated RB acts as a super-repressor that prevents 
cancer cell proliferation [17,42–44].

Hog1 also plays a key role in S phase by transiently 
delaying DNA replication in response to osmostress 
[45]. S phase progression in yeast is driven mainly by 
CDK-Clb5/Clb6 activity, which phosphorylates sub-
strates at the early and late replication origins. Cells 
dispose a specific S phase checkpoint pathway 
mediated by Rad53 to cope with genotoxic agents or 
stresses that endanger correct progression of DNA 
replication [46,47]. Interestingly, Hog1-dependent 
arrest in S phase upon osmostress is independent of 
the Rad53-dependent checkpoint. Hog1 interacts 
with and phosphorylates Mrc1, a component of the 
replication complex, at the N-terminal Thr169, 
Ser215 and Ser229 sites [48], (Figure 2b). Mrc1 phos-
phorylation by Hog1 delays early and late origin firing 
by preventing Cdc45 loading, as well as slowing down 

replication-complex progression [49,50]. This 
mechanism is especially relevant because it allows 
cells to circumvent conflicts between DNA replication 
and transcription during a burst in transcription, 
which takes place as a crucial response for adaptation 
[51]. The N-terminal phosphorylation of Mrc1 blocks 
replication and prevents transcription-associated 
recombination (TAR) and genomic instability during 
stress-induced gene expression in S phase. 
Interestingly, cells adapt to sudden increases in tran-
scription caused by factors other than osmostress 
while replicating by the same Mrc1-dependent 
mechanism, although signaling and kinases other 
than Hog1 are involved. Thus, Mrc1 integrates multi-
ple signals, thereby defining a general safeguard 
mechanism to protect genomic integrity upon tran-
scriptional outbursts [52].

Entry into mitosis is driven by the activity of the 
CDK-Clb2 complex, which is negatively regulated by 
Swe1 to ensure that cells have the required size to 
accomplish cell division [53,54]. Cells remain in G2 
until Swe1 is degraded by two independent mechan-
isms, namely phosphorylation by CDK-Clb2 [55], 
and degradation by the Hsl1 and Cdc5 kinases when 
targeted to the septin ring by Hsl7 [56]. Hog1 activa-
tion stabilizes Swe1 and down-regulates the cyclin 
CLB2, triggering a transient arrest in G2 phase 
(Figure 2c) [57–59]. Upon osmostress, Hog1 phos-
phorylates the Hsl1 kinase in Thr169, which deloca-
lizes Hsl7 from the septin ring and impairs Swe1 
recruitment to the bud neck. This prevents Swe1 
degradation, leading a transient G2 arrest and, thus, 
a delay in progression into M phase, thereby allowing 
adaptation to osmostress. It should be noted that the 
same mechanism has been proposed in 
Schizosaccharomyces pombe [60], together with alter-
native mechanisms where the SAPK sty1 regulates 
cdc25, the phosphatase involved in inhibiting the 
mitosis repressor wee1 [61]. Similar to the fission 
yeast, activated p38 is required for a G2/M checkpoint 
involving Cdc25B and Cdc25C, which regulate the 
activity of the CDK-cyclin B1 complex during mitosis. 
Upon DNA damage, the downstream kinase MK2 
phosphorylates Cdc25, which creates a docking site 
for 14-3-3 proteins that will retain Cdc25 in the cell 
cytoplasm, thus preventing Cdc2-CyclinB depho-
sphorylation and activation [62–64].
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3. Mitosis

Mitosis ensures the accurate inheritance of genetic 
information. The genome, which is packed into 
chromosomes, is distributed between the two daugh-
ter cells during mitosis. Before mitosis, sister chro-
matids are tightly interlinked via the intertwining of 
their DNA (DNA catenation) and by specialized 
protein complexes called cohesins. In early mitosis, 
the connected sister chromatids are prepared for 
separation under the influence of a sophisticated 
regulatory system based on mitotic CDK-cyclin 
complexes. First, during prophase, the chromosomes 
are condensed into flexible rods, which are easily 
moved by the mitotic spindle. Entry into mitosis 
also leads to the separation of the two centrosomes 
(spindle pole bodies in yeast). In metaphase, the 
sister chromatids are aligned at the center of the 
spindle (the metaphase plate). At the onset of ana-
phase, the cohesin links between the sister chroma-
tids are abruptly dissolved, and the separated sister 
chromatids are pulled to opposite poles of the spin-
dle, a process called anaphase A. In anaphase B, the 
spindle poles move apart, completing the segregation 
of the sister chromatids into the two opposing halves 
of the dividing cell. Mitosis is completed in telo-
phase, when the chromosomes and other nuclear 
components are repackaged into identical daughter 
nuclei and the mitotic spindle is disassembled. In 
vertebrate cells, the nuclear envelope breaks down 
in early mitosis. By contrast, yeasts do not dismantle 
their nuclear envelope, and the mitotic spindle forms 
inside the nucleus (referred to as closed mitosis).

Mitotic CDKs trigger entry into mitosis, pro-
moting nuclear envelope breakdown, spindle 
assembly and organization, chromosome conden-
sation, and Golgi fragmentation, and contribute to 
APC/C regulation [65–70]. When chromosomes 
are correctly attached and aligned and the bipolar 
tension forces are present, the spindle assembly 
checkpoint (SAC) is satisfied and the anaphase- 
promoting complex (APC/C or cyclosome) is trig-
gered by its co-activator Cdc20, promoting the 
metaphase to anaphase transition. Upon activa-
tion, the APC/C-Cdc20 complex ubiquitinates sev-
eral proteins, promoting their degradation by the 
proteasome. The most important APC/C-Cdc20 
targets are securin and B-type cyclins [71,72].

Sister chromatid separation at the onset of ana-
phase is triggered upon cleavage of the Scc1 subunit 
of cohesin by the protease separase [73]. Before ana-
phase, separase (Esp1 in budding yeast) is maintained 
inactive by the binding of securin [74]. To prevent the 
early segregation of sister chromatids, separase must 
be kept inactive until the chromosomes are aligned 
and attached to the microtubules. At the metaphase to 
anaphase transition, APC/C-Cdc20 ubiquitinates 
securin, targeting it for proteasomal degradation and 
thereby activating separase. Active separase cleaves 
the Scc1 subunit of the cohesin complex upon its 
phosphorylation by Cdc5, promoting the separation 
of the sister chromatids [73–75]. The APC/C-Cdc20 
complex also targets cyclins B for degradation, pro-
moting the first wave of Cdk1 inactivation [76,77]. 
However, destruction of cyclins B by APC/C-Cdc20 is 
not sufficient to nullify all Cdk1 activity, which is 
essential for mitotic exit. Activation of the mitotic 
phosphatase Cdc14 is therefore essential to counteract 
Cdk1 activity. Cdc14 contributes to Cdk1 inactivation 
by promoting the accumulation of the Cdk1 inhibitor 
Sic1, the dephosphorylation and activation of 
the second APC/C co-activator Cdh1, and the depho-
sphorylation of Cdk1 substrates [78,79].

Cdc14 belongs to a family of highly conserved 
dual-specificity phosphatases (DUSPs) that is con-
served from yeast to humans (reviewed in [80,81]) 
and tightly regulated by changes in its subcellular 
localization. During most of the cell cycle, Cdc14 
is kept sequestered at the nucleolus by its binding 
to the nucleolar protein Net1 (also called Cfi) [82]. 
The dimer Cdc14-Net1, together with Sir2 and 
Fob1, form the RENT (regulator of nucleolar silen-
cing and telophase) complex, which regulates ribo-
somal DNA (rDNA) silencing and segregation 
[83–87]. In anaphase, Cdc14 is dissociated from 
the RENT complex and released from the nucleo-
lus, allowing its translocation throughout the cell, 
active as a phosphatase [83,85]. Different localiza-
tion of Cdc14 phosphatase allows the targeting of 
distinct substrates during anaphase progression. In 
addition, the net balance of Cdk1 and Cdc14 activ-
ities toward their substrates also regulates their 
phosphorylation status, thereby contributing to 
the order of substrate dephosphorylation and pro-
gression through mitosis [88].
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The release of Cdc14 from the nucleolus depends 
on two regulatory networks: the Cdc-Fourteen Early 
Anaphase Release (FEAR) network (reviewed in 
[80,89]), which initiates Cdc14 release, and the 
Mitotic Exit Network (MEN), a G-protein signaling 
cascade that completes Cdc14 activation and release 
to the cytoplasm (reviewed in [90,91]) (Figure 3). 
FEAR acts in early anaphase, when Cdk1 activity is 
high and promotes the first wave of Cdc14 release 
from the nucleolus to the nucleus. Numerous pro-
teins, including Slk19, Fob1, Spo12, Clb2, Cdc5, 
Zds1, PP2A-Cdc55, separase (Esp1) and Hit1, have 
been implicated in FEAR since their mutants exhibit 
delayed release of Cdc14 from the nucleolus during 
early anaphase [80,92–99]. FEAR-dependent Cdc14 
release requires Net1 phosphorylation at Cdk1 con-
sensus sites [95,96]. In metaphase, Net1 is main-
tained in an under-phosphorylated state by the 
phosphatase PP2A-Cdc55. At anaphase onset, separ-
ase, together with Zds1/2 proteins, promotes the 

PP2A-Cdc55 inactivation via the Cdk1-dependent 
phosphorylation of the Cdc55 regulatory subunit, 
allowing the accumulation of phosphorylated Net1 
isoforms [96,98,100,101]. Increase levels of phos-
phorylated Net1 by Cdk1-Clb2, with the contribu-
tion of the polo-like kinase Cdc5, stimulates Cdc14 
release from the nucleolus since the phosphorylated 
form of Net1 has lower affinity toward Cdc14 [93– 
96,102]. The early activated Cdc14 is required for 
anaphase progression. It leads to spindle stabilization 
and elongation in anaphase [103,104], positioning of 
the anaphase nucleus [105], segregation of repetitive 
DNA regions such as rDNA and telomeres 
[86,106,107], recruitment of condensin to rDNA 
[87,99], and full Cdc14 activation by a positive feed-
back loop activating MEN by Cdc15 dephosphoryla-
tion [92;108].

After the first wave of FEAR-Cdc14 release, when 
the Cdk1 mitotic kinase activity declines, the MEN 
kinases sustain Net1 phosphorylation and Cdc14 acti-
vation. The MEN pathway is GTPase-driven and is 
closely related to the mammalian Hippo pathway, 
which is involved in mitotic exit regulation, spindle 
orientation checkpoints (SPOC) and cytokinesis. The 
core of the MEN cascade consists of two serine/threo-
nine kinases, Cdc15 (the Pak-like kinase) and Dbf2- 
Mob1 (NDR/LATS-related MEN kinases). The 
upstream effector of the MEN is Tem1, a small Ras- 
like GTPase that is localized at the centrosome (or 
spindle pole body, SPBs in yeast) [108]. Tem1 activity 
is negatively regulated by the two-component 
GTPase-activating protein (GAP) Bfa1-Bub2 
[109,110] and positively regulated by the Lte1 protein 
[111–113]. In metaphase, PP2A-Cdc55 keeps Bfa1 
dephosphorylated, thereby contributing to the activa-
tion of Bfa1-Bub2 [114]. When cells reach anaphase 
with a correct aligned mitotic spindle, Cdc5 phos-
phorylates Bfa1 and inactivates Bfa1-Bub2 GAP 
[115,116]. In addition, Cdk1-dependent PP2A- 
Cdc55 inhibition at early anaphase [96,101] also pro-
motes the accumulation of phosphorylated Cdc5- 
dependent Bfa1. Active Tem1 interacts with and acti-
vates the Pak-like kinase Cdc15 [117,118]. In addition, 
the released FEAR-Cdc14 dephosphorylates Cdc15, 
facilitating Cdc14 activation in a positive feedback 
loop [92,119]. Once active, Cdc15 recruits the LATS- 
related Dbf2-Mob1 complex to the SPB and 

Figure 3. Molecular mechanisms for Cdc14 activation and cell 
cycle progression in mitosis. For mitosis to progress, substrates 
phosphorylated by CDK must be dephosphorylated. This action is 
carried out by the phosphatase Cdc14, which is sequestered in the 
nucleolus and kept inactive by its interaction with Net1 during all 
phases of the cell cycle except mitosis. There are two mechanisms 
devoted to releasing Cdc14, namely FEAR, which is shown on the left 
of the figure, and MEN, on the right. PP2A-Cdc55 phosphatase keeps 
Net1 dephosphorylated (and as a consequence Cdc14 sequestered) 
throughout the cell cycle until securin is degraded, a process that 
activates separase and causes chromosome separation. The inhibi-
tion of PP2A-Cdc55 along with the phosphorylation of Net1 by CDK 
and polo (Cdc5) allow Cdc14 release from the nucleolus to the 
nucleus, where it becomes active, dephosphorylating its nuclear 
substrates. Full release of Cdc14 to the cytoplasm requires the action 
of MEN, which is activated in coordination with SPB migration to the 
daughter cell. Fully cytoplasmic released Cdc14 triggers the end of 
mitosis by resetting all CDK substrates and it determines the mor-
phogenetic mechanisms for septum formation and cell separation.
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phosphorylates Dbf2 [120,121]. Moreover, Cdc14 
and PP2A-Cdc55 dephosphorylate Mob1, thereby 
alleviating its Cdk1 inhibitory phosphorylation 
[114,122,123]. The Dbf2-Mob1 kinase mediates 
Cdc14 release from the nucleus, thus maintaining 
Net1 phosphorylated [124–126] and retaining 
Cdc14 in the cytoplasm by phosphorylation at sites 
adjacent to its nuclear localization signal (NLS) 
[125]. Cytoplasmatic Cdc14 directly promotes mito-
tic exit via dephosphorylation of several Cdk1 tar-
gets, the second APC/C activator Cdh1, the 
transcription factor Swi5, and the Cdk1 inhibitor 
Sic1 [78,127–129]. Cytoplasmatic Cdc14 also regu-
lates cytokinesis, ensuring timely septum disruption 
after cytokinesis (reviewed in [130–132]).

Mitotic exit is precisely and tightly coordinated to 
ensure that cell division occurs only after chromo-
somes are properly replicated and equally segregated 
between the two new daughter cells. Problems dur-
ing mitotic exit can lead to genomic instability, 
genetic diseases and neurodegenerative disorders 
[133,134]. Various surveillance mechanisms or 
checkpoints delay mitotic progression to guarantee 
faithful inheritance of the genetic material. In bud-
ding yeast, the main mitotic checkpoints are the 
DNA damage checkpoint (DDC), the spindle assem-
bly checkpoint (SAC) and the spindle position 
checkpoint (SPOC) (reviewed in [135]). The DDC 
delays the metaphase to anaphase transition in 
response to DNA lesions to give the cell time to 
repair the DNA damage [115,136,137]. In the pre-
sence of DNA damage, Pds1 is phosphorylated by 
the DDC-effector kinase Chk1, thereby preventing 
its ubiquitination and degradation by the protea-
some [71,138]. Rad53, the other DDC-effector 
kinase, contributes to Pds1 stability by preventing 
Pds1 and Cdc20 interaction [138] and halts elonga-
tion of the mitotic spindle and MEN activation by 
Cdc5 inhibitory phosphorylation [136,139].

The SAC responds to unattached kinetochores 
by arresting the cells in metaphase and inhibit-
ing MEN activity (reviewed in [140,141]). The 
molecular mechanisms leading to MEN inhibi-
tion upon SAC activation remain unclear. At 
metaphase, SAC proteins inhibit the APC/ 
C-Cdc20 complex in the presence of unattached 
microtubules [142,143]. In addition, Aurora 

B (Ipl1 in S. cerevisiae) and Shugosin (Sgo1) 
are also important to sense the lack of tension 
upon incorrect kinetochore-microtubule attach-
ments and to promote bi-orientation of the 
chromosomes [144–147].

The SPOC inhibits MEN to prevent mitotic exit 
until the spindle is properly positioned. Upon 
spindle misalignment, the main SPOC kinase 
effector Kin4 regulates the activity and localization 
of the Bfa1-Bub2 complex, thereby preventing 
Bfa1 activation by Cdc5 phosphorylation [148– 
152]. Although the DDC, SAC and SPOC are 
induced in response to distinct stimuli, there is 
crosstalk between them, the polo-like kinase 
Cdc5 being the central hub that coordinates mito-
tic progression with the main cell cycle check-
points [136,150,153–155].

4. Regulation of mitosis by the Hog1 SAPK upon 
stress

Mitosis is another phase in which a molecular 
mechanism for cell cycle control in response to 
osmostress has been proposed. In a MEN mutant 
background, enhanced activation of Cdc14 leads to 
accelerated mitosis upon osmostress in a Hog1- 
dependent manner [156]. Indeed, mathematical 
model predictions supported the notion that cells 
stressed at the late G2/M phase display accelerated 
exit from mitosis and arrest in the next cell cycle 
[35]. However, the same model predicted the con-
tribution of mechanisms other than the hyperacti-
vation of Cdc14 to mitosis regulation upon 
osmostress [35] Along these lines, a novel mole-
cular mechanism by which Hog1 activation regu-
lates the M phase in response to stress has recently 
been described [157] (Figure 4).

There are several lines of evidence demonstrat-
ing that cells arrest in M phase in response to 
osmostress. Biochemical (Clb2 destruction) and 
cellular (DNA content) readouts revealed that 
cells synchronized in early M phase by Cdc20 
depletion or other methods delay the next cell 
cycle G1entry by around 60 min in response to 
0.4 M NaCl. Moreover, genetic activation of Hog1 
using a temperature-sensitive SLN1 (sln1ts) mutant 
allele in early metaphase showed a similar delay, 
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thereby suggesting a direct role of the HOG path-
way in this transient cell cycle arrest. Activation of 
Hog1 resulted in cells progressing normally 
through anaphase, timely elongated spindles, and 
apparently separated nuclei, but with a delay in 
spindle disassembly and physical separation [157]. 
Accordingly, nucleolar release of Cdc14, is delayed 
upon Hog1 activation. Of note, Net1, which is 
responsible for the timely release of Cdc14, is 
targeted by Hog1. In vitro and in vivo experiments 
showed that Hog1 phosphorylates Net1 at Thr62 
and Ser385, which, in fact, are distinct residues to 
those targeted by CDK to release Cdc14 in unper-
turbed cells. Net1 phosphorylation by Hog1 does 
not prevent Clb2-CDK phosphorylation on Net1, 
but stabilizes the interaction between Net1 and 
Cdc14, even in the presence of the Clb2-CDK 
complex, thereby impairing Cdc14 release. 
Nucleolar retention of Cdc14 upon HOG pathway 
activation is abolished when genomic net1T62A, 

S385A mutations are present. Thus, Hog1 phos-
phorylates Net1, altering its affinity for the phos-
phatase Cdc14, whose activity is essential for 
mitotic exit and completion of the cell cycle.

The delayed Cdc14 release from the nucleolus upon 
activation of Hog1 is coupled to a defect in rDNA and 

telomere segregation, and it eventually delays cell divi-
sion. Of note, the mutant net1T62A, S385A, which cannot 
be phosphorylated by Hog1, displays reduced viability 
upon osmostress. This observation thus indicates that 
Hog1 contributes to maximizing cell survival upon 
stress by regulating mitotic exit. As a summary, the 
model emerging from these lines of evidence can be 
presented as follows; in an unperturbed cell cycle, 
Clb2-CDK complex phosphorylates Net1 and deter-
mines Cdc14 release, which in turn promotes the 
dephosphorylation of several targets to promote cell 
division. However, when the HOG pathway is acti-
vated at early M phase, Hog1 phosphorylates Net1, 
thus increasing Net1 affinity for Cdc14, and, conse-
quently, making the complex more resistant to disso-
ciation by CDK activity. The nucleolar retention of 
Cdc14 determines the transient arrest in the progres-
sion to G1. Of note, in mammalian cells, p38 is 
required for mitosis progression and is essential for 
the timely stable attachment of all kinetochores to 
spindle microtubules, but not for the fidelity of mitosis 
[158,159]. However, other evidence shows that loss of 
p38γ results in multipolar spindle formation and 
chromosome misalignment, which induce 
a transient M phase arrest [160], indicating also 
a role in regulation of mitosis.

Figure 4. Hog1 regulation of mitosis upon osmostress. Increased levels of phosphorylated Net1 by the Cdk1-Clb2 complex, with 
the contribution of the polo-like kinase Cdc5, promotes the release of Cdc14 from the nucleolus. Activated Hog1 phosphorylates 
Net1 at Thr62 and Ser385, altering its affinity for the phosphatase Cdc14 and rendering the Net1-Cdc14 complex more resistant to 
CDK activity. Consequently, Cdc14 is kept sequestered at the nucleolus and mitosis progression is delayed.
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Concluding remarks

During the last two decades, a large body of 
evidence has demonstrated that cell cycle pro-
gression is delayed in a context of stress, under-
stood as changes in the environment. In parallel 
with other adaptive responses at the transcrip-
tional and metabolic level, cells stop their cell 
cycle and growth to provide a time window for 
adaptation. Only when homeostasis has been 
restored, does the cell cycle resume and can all 
the delicate processes leading to the accurate 
division of the genome be achieved. Several 
molecular mechanisms devoted to providing 
cells with this invaluable time for adaptation 
have been described in detail. Despite some idio-
syncratic differences, these mechanisms are rea-
sonably well-conserved among eukaryotes. More 
interestingly, these mechanisms are present in all 
phases of the cell cycle, in contrast to other 
control mechanisms that are focused on one 
specific phase of the cell cycle. These observa-
tions thus indicate the importance of regulation 
of the whole cell cycle in response to external or 
environmental conditions. Recently, we have 
added a new piece of the puzzle by describing 
a molecular mechanism responsible for arresting 
the cell cycle in its final phase, namely mitosis. 
This mechanism gives coherence to the remaining 
arresting mechanisms in G1, S and G2 phases. 
Additional mechanisms of cell cycle progression 
upon stress will appear, some of them by using 
strategies that are qualitatively different to target-
ing particular activators or inhibitors and that 
rather modulate more general machineries. The 
use of cutting-edge technologies and approaches 
are starting to reveal mechanisms such as the reg-
ulation exerted by the HOG pathway on the anti-
sense RNA of the CDK Cdc28 upon osmostress 
[161,162]. Taken together, the new knowledge 
gained will provide a comprehensive view of cell 
cycle regulation by osmostress and more generally 
by external modulators.
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