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We perform a global analysis of exclusive hadronic tau decays into one and two mesons using the low-
energy limit of the Standard Model Effective Field Theory up to dimension six, assuming left-handed 
neutrinos. A controlled theoretical input on the Standard Model hadronic form factors, based on chiral 
symmetry, dispersion relations, data and asymptotic QCD properties, has allowed us to set bounds on the 
New Physics effective couplings using the present experimental data. Our results highlight the importance 
of semileptonic τ decays in complementing the traditional low-energy probes, such nuclear β decays or 
semileptonic pion and kaon decays, and the high-energy measurements at LHC scales. This makes yet 
another reason for considering hadronic tau decays as golden modes at Belle-II.
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1. Introduction

The τ lepton is the only known lepton heavy enough (mτ =
1.77686 GeV [1]) to decay into hadrons; the ∼ 65% of its partial 
width contains hadrons in the final state. In the Standard Model 
(SM), hadronic tau decays proceed through the exchange of W ±
bosons which couple the τ and the generated neutrino ντ to-
gether with a quark-antiquark pair that subsequently hadronizes. 
Such decays thus offer an advantageous laboratory to study low-
energy effects of the strong interactions under clean conditions 
[2] since half of the process is purely electroweak and, therefore, 
free of uncertainties at the required precision. At the inclusive 
level, these decays allow to extract fundamental parameters of the 
SM, most importantly the strong coupling αS [3,4], but also the 
CKM quark-mixing matrix element |V us| [5–7] and the mass of 
the strange quark at high precision [8–14]. On the other hand, ex-
clusive hadronic decays can be used to learn specific properties 
of the hadrons involved and the interactions among them. These 
can be classified according to the number of hadrons in the final 
state. The simple one-meson transitions τ− → P−ντ (P = π, K )

are very well-known due to the precise determinations of the 
pion and kaon decays constants obtained by the Lattice collab-
orations [15]. At present, we also have a very good knowledge 
on the decays into a pair of mesons, the SM input of which is 
encoded in terms of hadronic form factors. An ideal roadmap to 
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describe meson form factors would require a model-independent 
approach demanding a full knowledge of QCD in both its pertur-
bative and non-perturbative regimes, knowledge not yet unraveled. 
An alternative to such enterprise would pursuit a synergy between 
theoretical calculations and experimental data. In this respect, dis-
persion relations are a powerful tool to direct oneself towards a 
model-independent description of meson form factors. For exam-
ple, the analyses of the decays π−π0 [16–19] and K Sπ

− [20–24], 
carried out by exploiting the synergy between Resonance Chi-
ral Theory [25] and dispersion theory, are found to be in a nice 
agreement with the rich data provided by the experiments. Accord 
with experimental measurements is also found for the K −K S [19]
and K −η [24,26] decay modes, although higher-quality data on 
these processes is required to constrain the corresponding theories 
or models, while the predictions for the isospin-violating π−η(′)
channels [27,28] respect the current experimental upper bounds. 
The latter are very challenging processes for Belle-II [29]. Higher-
multiplicity decay modes involve a richer dynamical structure but 
accounting for the strong rescattering effects is not an easy task 
when three or more hadrons are present.

So far, all experimental results with the τ lepton are found to 
be in accord with the SM, with the exception of the 2.6σ(2.4σ)

deviation from lepton flavour universality in |gτ /gμ|(|gτ /ge|) from 
W − → τ−ν̄τ [1,30],1 of the BaBar measurement of the CP asym-
metry in τ− → K Sπ

−ντ , AC P = −3.6(2.3)(1.1) × 10−3 [32], which 

1 See also Ref. [31], where the authors show that a NP explanation of this tension 
is not very plausible.
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is 2.8σ off the SM prediction, AC P = 3.6(1) × 10−3 [33], and of 
the anomalous excess of τ production observed in some B de-
cays. As seen, these effects are not statistically large. However, the 
increased sensitivities of the most recent experiments yield inter-
esting limits on possible New Physics contributions in the hadronic 
tau sector.

Several recent works [34–38] have put forward that semilep-
tonic tau decays are not only a clean QCD laboratory but also 
offer an interesting scenario to set bounds on non-standard weak 
charged current interactions complementary to the traditional low-
energy semileptonic probes such nuclear beta decays, purely lep-
tonic lepton, pion and kaon decays or hyperon decays (see e.g. 
Refs. [40–47,49,48,50]).

The aim of the present work is to close the circle by extend-
ing our previous individual analyses of the decays τ− → π−π0ντ

[35], τ− → (Kπ)−ντ [37], τ− → K −(K 0, η(′))ντ [38] and τ− →
π−η(′)ντ [34], carried out using the low-energy limit of the Stan-
dard Model Effective Field Theory Lagrangian (SMEFT) [51,52] up 
to dimension six, to a global analysis of the strangeness-conserving 
(	S = 0) and strangeness-changing (|	S| = 1) semileptonic exclu-
sive tau decays into one and two pseudoscalar mesons. The main 
advantage of this EFT framework is that experimental measure-
ments and their implications for New Physics can be compared 
unambiguously either at low energies or at the high LHC energies 
in a model-independent way [36].

We can anticipate that the bounds for the NP couplings that we 
get in this work (in the MS scheme at scale μ = 2 GeV), obtained 
from all data available on exclusive τ decays only, are competi-
tive and found to be in line with those of Ref. [36], which were 
obtained analyzing data including both exclusive and inclusive de-
cays. This agreement represents a good consistency test between 
exclusive and inclusive determinations.

On the theory side, a controlled theoretical determination, with 
a robust error band, of the corresponding form factors within the 
SM is required in order to increase the accuracy of the search for 
non-standard interactions. At present, we have such a knowledge 
for the vector and-to a great extent- the scalar form factors, but 
there are no experimental data that can help us constructing the 
tensor form factor and, therefore, it has to be built under theoreti-
cal considerations only.

The fantastic possibilities offered by the Belle-II experiment 
[29], and other future Z , tau-charm and B-factories, to study τ
physics and low multiplicity final states with high precision make 
these studies of timely interest.

This letter is organized as follows. The theoretical framework 
is given in section 2 where we briefly present the effective 
Lagrangian for weak charge current interactions involving light 
flavours up to dimension six, assuming left-handed neutrinos. The 
expressions for the one-and two-meson partial decay width to be 
used in our fits are also defined in this section. The description 
of the corresponding form factors is the subject of section 3. In 
sections 4 and 5 we perform fits to the strangeness-conserving 
(	S = 0) and changing (|	S| = 1) transitions, respectively, and set 
bounds on the New Physics effective couplings. A global fit to both 
sectors i.e. (|	S| =0 and 1), is performed in section 6. Finally, our 
conclusions are presented in section 7.

2. SMEFT Lagrangian and decay rate

We start out writing the low-energy limit of the Standard 
Model Effective Field Theory Lagrangian including dimension six 
operators that describes semileptonic τ− → ντ ūD strangeness-
conserving (D = d) or strangeness-changing (D = s) charged cur-
rent transitions with left-handed neutrinos. Such Lagrangian reads 
[40,41]:
LCC = − G F V uD√
2

[
(1 + ετ

L )τ̄ γμ(1 − γ 5)ντ · ūγ μ(1 − γ 5)D

+ετ
R τ̄ γμ(1 − γ 5)ντ · ūγ μ(1 + γ 5)D

+τ̄ (1 − γ 5)ντ · ū(ετ
S − ετ

P γ 5)D

+ετ
T τ̄ σμν(1 − γ 5)ντ ūσμν(1 − γ 5)D

]
+ h.c. , (1)

where σμν = i[γ μ, γ ν ]/2, G F is the tree-level definition of the 
Fermi constant and εi (i = L, R, S, P , T ) are effective couplings 
characterizing NP. These can be complex, although we will assume 
them real in first approximation since we are only interested in 
C P conserving quantities.2 The product G F V uD in Eq. (1) denotes 
that its determination from the superallowed nuclear Fermi β de-
cays carries implicitly a dependence on εe

L and εe
R that is given by 

[46]

G F Ṽ e
uD = G F

(
1 + εe

L + εe
R

)
V uD , (2)

and that we use for our analysis. Setting the coefficients εi = 0, 
one recovers the SM Lagrangian.

The simplest semileptonic decays that can be calculated with 
the low-energy effective Lagrangian of Eq. (1) are the one-meson 
decay modes τ− → P−ντ (P = π, K ). The expression for the 
τ− → π−ντ decay rate reads

�(τ− → π−ντ ) = G2
F |Ṽ e

ud|2 f 2
πm3

τ

16π

(
1 − m2

π

m2
τ

)2

× (1 + δτπ
em + 2	τπ +O(ετ

i )2 +O(δτπ
em ετ

i )) ,

(3)

where fπ is the pion decay constant, the quantity δτπ
em accounts for 

the electromagnetic radiative corrections and the term 	τπ con-
tains the tree-level NP corrections that arise from the Lagrangian in 
Eq. (1)3 that are not absorbed in Ṽ e

ud . For the channel τ− → K −ντ , 
the decay rate is that of Eq. (3) but replacing Ṽ e

ud → Ṽ e
us , fπ → f K , 

mπ → mK , and δτπ
em and 	τπ by δτ K

em and 	τ K , respectively.
The amplitude for two-meson decays τ− → (P P ′)−ντ that 

arises from the Lagrangian in Eq. (1) contains a vector, an scalar 
and a tensor contribution. The structure of the amplitude, includ-
ing a detailed definition of the corresponding hadronic matrix el-
ement, can be found in our previous works i.e. in Ref. [35] for 
π−π0, in Ref. [37] for the (Kπ)− system, and in Ref. [38] for the 
cases K −(K 0, η(′)), and we therefore have decided not repeat it 
here once again.

The resulting partial decay width for two-meson decays is given 
by (the variable s is the invariant mass of the corresponding two-
meson system):

d�

ds
= G2

F |Ṽ e
uD |2m3

τ S EW

384π3s

(
1 − s

m2
τ

)2

λ1/2(s,m2
P ,m2

P ′)

×
[(

1 + 2(ετ
L − εe

L + ετ
R − εe

R)
)

XV A

+ετ
S XS + ετ

T XT + (ετ
S )2 XS2 + (ετ

T )2 XT 2

]
, (4)

where

2 The only coupling sensitive to an imaginary part is ετ
S from the decay τ− →

π−ηντ [36] that we do not consider in this work for lack of data.
3 In Eq. (3) we have expanded up to linear order on the ετ

i couplings.
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XV A = 1

2s2

{
3
(

C S
P P ′
)2 |F P P ′

0 (s)|2	2
P P ′

+
(

C V
P P ′
)2 |F P P ′

+ (s)|2
(

1 + 2s

m2
τ

)
λ(s,m2

P ,m2
P ′)

}
,

XS = 3

s mτ

(
C S

P P ′
)2 |F P P ′

0 (s)|2 	2
P P ′

md − mu
,

XT = 6

s mτ
C V

P P ′ Re
[

F P P ′
T (s)

(
F P P ′

+ (s)
)∗]

λ(s,m2
P ,m2

P ′) ,

XS2 = 3

2 m2
τ

(
C S

P P ′
)2 |F P P ′

0 (s)|2 	2
P P ′

(md − mu)2
,

XT 2 = 4

s
|F P P ′

T (s)|2
(

1 + s

2 m2
τ

)
λ(s,m2

P ,m2
P ′) , (5)

with C V
P P ′ and C S

P P ′ being the corresponding Clebsch-Gordan coef-
ficients and where we have defined 	P P ′ = m2

P − m2
P ′ . In Eq. (4), 

S EW = 1.0201 [53] resums the short-distance electroweak correc-
tions and the function λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz
is the usual Kallen function.

The functions F P P ′
0 (s), F P P ′

+ (s) and F P P ′
T (s) in Eq. (5) are, re-

spectively, the scalar, the vector and the tensor form factors, and 
their respective parametrizations is the subject of the next sec-
tion.

3. Two-meson form factors

In this section, we provide a brief overview of the description 
of the scalar, vector and tensor form factors that we employ in 
our analysis. It is fundamental to have good control over them 
since they are used as SM inputs for binding the non-standard 
interactions. We will not discuss them here at length but rather 
provide a compilation of the main formulae to make this work 
self-contained.

To describe the pion vector form factor we follow the represen-
tation outlined in Ref. [19], and briefly summarized below for the 
convenience of the reader, and write a thrice subtracted dispersion 
relation

F ππ+ (s) = exp

⎡
⎢⎣α1s + α2

2
s2 + s3

π

scut∫
4m2

π

ds′

(s′)3

φ(s′)
(s′ − s − i0)

⎤
⎥⎦ , (6)

where α1 and α2 are two subtraction constants that can be related 
to the slope and curvature appearing in the low-energy expansion 
of the form factor. The use of a three-times subtracted dispersion 
relation reduces the high-energy contribution of the integral where 
the phase is less well-known. In Eq. (6), scut is a cut-off whose 
value is fixed from the requirement that the fitted parameters are 
compatible within errors with the case scut → ∞. The value of 
scut = 4 GeV2 was found to satisfy this criterion [19], and varia-
tions of scut were used to estimate the associated systematic error. 
For the input phase φ(s) we use [19]

φ(s) =

⎧⎪⎪⎨
⎪⎪⎩

δ1
1(s) 4m2

π ≤ s < 1 GeV2 ,

ψ(s) 1 GeV2 ≤ s < m2
τ ,

ψ∞(s) m2
τ ≤ s .

(7)

This phase consists in matching smoothly at 1 GeV the phase ψ(s), 
that we will explain in the following, to the phase-shift δ1

1 (s) solu-
tion of the Roy equations of Ref. [54]. We thus exploit Watson’s 
Fig. 1. Belle measurement of the modulus squared of the pion vector form 
factor [57] as compared to our fits [19].

theorem [55].4 The phase δ1
1(s) encodes the physics of the ρ-

meson, it is totally general and provides a phase which perfectly 
agrees with the P -wave ππ experimental data within the elastic 
region. For ψ(s), we use a physically motivated parametrization 
that contains the physics of the inelastic regime until m2

τ . This 
phase can be extracted from the relation

tanψ(s) = Im f ππ+ (s)

Re f ππ+ (s)
, (8)

where f ππ+ (s) includes the contributions from the excited reso-
nances ρ ′ and ρ ′′ that cannot be neglected. The expression of 
f ππ+ (s) that we use for our study is given by Eq. (17) of Ref. [19]. 
Finally, for the high-energy region, we guide smoothly the phase 
to π at m2

τ (ψ∞(s)) to ensure the correct asymptotic 1/s fall-off 
of the form factor [56].5 Armed with this parametrization, in [19]
we have analyzed the high-statistics Belle data [57] on the pion 
vector form factor. The outcome that better illustrates the result-
ing analysis, and that we use for this work, is displayed in Fig. 1, 
where the red error band denotes the statistical fit uncertainty.6

The corresponding vector form factors for the (Kπ)− , K −K 0

and K −η(′) systems can be obtained following a similar disper-
sive procedure. We do not show here the explicit expressions that 
we use for our analysis but rather provide a graphical account 
of their applications (of some) against the Belle τ− → K Sπ

−ντ

(red solid circles) [58] and τ− → K −ηντ (green solid squares) 
[59] experimental data (Fig. 2) and refer the interested reader to 
Refs. [19,22,24,26], where they are derived and explained in de-
tail. As seen, the K Sπ

− spectrum is dominated by the K ∗(892)

resonance, whose peak is neatly visible, followed by a mild shoul-
der due to the heavier K ∗(1410). There is no such a clear peak 
structure for the K −η channel as a consequence of the interplay 
between both K ∗ resonances. In all, satisfactory agreement with 
data is seen for all data points.

Regarding the scalar form factors we take: the phase disper-
sive representation of the π−π0 scalar form factor from Ref. [28]
while for the K −K 0 ones, we use the results of Refs. [60–62].7

These were obtained after the unitarization, based on the method 
of N/D , of the complete one-loop calculation of the strangeness 

4 Watson’s theorem applied to the pion vector form factor tells us that the form 
factor phase equals that of the two-pion scattering within the elastic region.

5 In fact, this behaviour it is not guaranteed because the subtraction constants in 
Eq. (6) are fixed from a fit to data. However, we have checked that our form factor is 
indeed a decreasing function of s (apart from the resonance peak structures) within 
the entire range where we apply it.

6 In [19], we have also estimated potential systematic uncertainties.
7 We thank very much Zhi-Hui Guo for providing us tables with the unitarized 

πη, πη′ and K 0 K̄ 0 scalar form factors. We translate the result of K 0 K̄ 0 to the 
K − K 0 concerning us through F K − K 0

0 (s) = −F K 0 K̄ 0

0 (s)/
√

2.
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Fig. 2. Belle τ− → K Sπ
−ντ (red solid circles) [58] and τ− → K −ηντ

(green solid squares) [59] measurements as compared to our best fit re-
sults in [24] (solid black and blue lines, respectively) obtained from a 
combined fit to both data sets. The small scalar contributions are rep-
resented by black and blue dashed lines.

conserving scalar form factors within U (3) ChPT. Finally, for the 
Kπ and Kη(′) scalar form factors, we employ the well-established 
results of Ref. [63] derived from a dispersive analysis with three 
coupled channels (Kπ, Kη, Kη′).8 the Kπ scalar form factor con-
tribution, although small, is important to describe the data im-
mediately above threshold, while the Kη one is irrelevant for the 
decay distribution.

We next turn to the tensor form factor. This is the most difficult 
input to be reliably estimated since there are no experimental data 
that can help its construction. Therefore, we shall rely on theoreti-
cal considerations only. The key observation is that the tensor form 
factor admits an Omnès dispersive representation [35,37,38,64,65]. 
We thus write the general two-meson (P P ′) tensor form factor as

F P P ′
T (s) = F P P ′

T (0)exp

⎡
⎣ s

π

scut∫
sth

ds′

s′
δP P ′

T (s′)
(s′ − s − i0)

⎤
⎦ , (9)

where sth = (mP + mP ′ )2 is the corresponding two-meson produc-
tion threshold, and where in the elastic region, the phase of the 
tensor form factor equals the P -wave phase of the corresponding 
vector one i.e. δP P ′

T (s) = δP P ′
+ (s). We will assume the previous re-

lations also hold above the onset of inelasticities until m2
τ where 

we guide smoothly the tensor phase to π as in Ref. [19] to en-
sure the asymptotic 1/s behaviour dictated by perturbative QCD 
[56]. Lacking of precise low-energy information, we do not increase 
the number of subtractions, which, in turn, would reduce the im-
portance of the higher-energy part of the integral, but rather cut 
the integral at different values of scut e.g. scut = 4, 9 GeV2, and 
consider the differing with respect to the case scut → ∞, that 
we take as a baseline hypothesis, as an estimate of our (uncon-
troled) theoretical systematic uncertainty for the results presented 
in the following sections. For the required normalization F P P ′

T (0), 
we take the corresponding ChPT based results derived in [35,37,38]
obtained with the use of the corresponding determination on the 
lattice [39]. In these references, a graphical account of the energy-
dependence of the tensor form factors is also shown.

8 We are very grateful to Matthias Jamin and Jose Antonio Oller for providing us 
their solutions in tables.
4. New physics bounds from �S = 0 decays

We start with the individual analysis of the decay mode with 
lowest multiplicity, τ− → π−ντ . Taking the decay rate given in 
Eq. (3) and using fπ = 130.2(8) MeV from the lattice9 [15] to-
gether with δτπ

em = 1.92(24)%, obtained from a combination of the 
values given in Refs. [66–68], and the PDG reported values [1] for: 
|Ṽ e

ud| = 0.97420(21) from nuclear β decays, the measured branch-
ing ratio B R(τ− → π−ντ ) = 10.82(5)%, mπ = 0.13957061(24)

GeV, mτ = 1.77686(12) GeV, �τ = 2.265 × 10−12 GeV and G F =
1.16637(1) × 10−5 GeV−2, we get the constraint:

ετ
L − εe

L − ετ
R − εe

R − m2
π

mτ (mu + md)
ετ

P = (−0.12 ± 0.68) × 10−2 ,

(10)

where the uncertainty is dominated by fπ , followed by the error 
of branching ratio and the radiative corrections uncertainty. The 
central value in Eq. (10) shows a slight difference with respect to 
the result of [36], (−0.15 ± 0.67) × 10−2, that we may attribute to 
a different numerical input.

We next perform a simultaneous fit to one and two me-
son strangeness-conserving exclusive hadronic tau decays. For our 
analysis, we consider the following observables: the high-statistics 
τ− → π−π0ντ experimental data reported by the Belle collab-
oration [57], including both the normalized unfolded spectrum 
and the branching ratio, and the branching ratios of the decay 
τ− → K −K 0ντ and of the one-meson τ− → π−ντ transition. The 
χ2 function to be minimized in our fits is

χ2 =
∑

k

(
N̄th

k − N̄exp
k

σN̄exp
k

)2

+
(

B Rth
ππ − B Rexp

ππ

σB Rexp
ππ

)2

+
(

B Rth
K K − B Rexp

K K

σB Rexp
K K

)2

+
(

B Rth
τπ − B Rexp

τπ

σB Rexp
τπ

)2

, (11)

where N̄th
k relates the decay rate of Eq. (4) for τ− → π−π0ντ

to the normalized distribution of the measured number of events 
through

1

Nevents

dNevents

ds
= 1

�(ετ
i , εe

j )

d�(s, ετ
i , εe

j )

ds
	bin (12)

where Nevents is the total number of measured events and 	bin

is the bin width. N̄exp
k and σN̄exp

k
in Eq. (11) are, respectively, 

the experimental number of events and the corresponding uncer-
tainties in the k-th bin. The unfolded distribution measured by 
Belle is available in 62 equally distributed bins with bin width of 
0.05 GeV2. The second, third and fourth terms in the χ2 func-
tion Eq. (11) are data points that are used as a constraint of 
the branching ratios of τ− → π−π0ντ (B Rexp

ππ = 25.49(9)%), of 
τ− → K −K 0ντ (B Rexp

K K = 1.486(34) × 10−3) and of τ− → π−ντ

(B Rexp
τπ = 10.82(5)%) [1].

The bounds for the non-SM effective couplings resulting from 
the global fit are found to be (in the MS scheme at scale μ = 2
GeV)

9 The pion decay constant determined from data cannot be employed as it may 
be contaminated with NP effects.
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⎛
⎜⎜⎜⎜⎝

ετ
L − εe

L + ετ
R − εe

R

ετ
R + m2

π
2mτ (mu+md)

ετ
P

ετ
S

ετ
T

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

0.5 ± 0.6+2.3
−1.8

+0.2
−0.1 ± 0.4

0.3 ± 0.5+1.1
−0.9

+0.1
−0.0 ± 0.2

9.7+0.5
−0.6 ± 21.5 +0.0

−0.1 ± 0.2

−0.1 ± 0.2+1.1
−1.4

+0.0
−0.1 ± 0.2

⎞
⎟⎟⎟⎟⎠× 10−2,

(13)

with χ2/d.o.f.∼ 0.6, and where the first error is the statistical 
fit uncertainty while the associated (statistical) correlation matrix 
(ρi j) is

ρi j =
⎛
⎜⎝

1 0.684 −0.493 −0.545
1 −0.337 −0.372

1 0.463
1

⎞
⎟⎠ . (14)

The second error in Eq. (13) is the dominant one and comes 
from the theoretical uncertainty associated to the pion vector form 
factor (cf. Fig. 1), while the third and fourth ones are system-
atic uncertainties coming, respectively, from the error of the quark 
masses and from the uncertainty associated to the corresponding 
tensor form factors. The systematic errors, here and hereafter, have 
been obtained by taking the difference of the central values that 
are obtained while varying the corresponding inputs with respect 
to the reported central fit values.

Comparing our limits10 in Eq. (13) with the bounds, ε
μ
S =

(−0.039 ± 0.049) × 10−2 and εμ
T = (0.05 ± 0.52) × 10−2 [46], ob-

tained from semileptonic kaon decays involving muons, and with 
those from hyperon decays [44], where |εS | < 4 × 10−2 and |εT | <
5 × 10−2 are found at a 90% C.L., we conclude that while it is im-
possible to compete with the limits on εS coming from K�3 decays, 
our analysis yields a very competitive constraint on the coupling 
εT .

Our results are in accord with those of [36],11 which were ob-
tained through a combination of inclusive and exclusive (strange-
ness-conserving) tau decays, but for the limit on the coefficient ετ

S . 
Ours is much weaker, but still compatible within errors with, the 
bounds set in [34,36], since we are not using the τ− → π−ηντ

decay in the global fit for lack of experimental measurements. The 
differing bound on εS obtained with and without the πη mode 
increases the interest of its measurement and demands improved 
theoretical understanding accordingly.

5. New physics bounds from |�S| = 1 decays

The lowest multiplicity strangeness-changing tau decay is 
τ− → K −ντ , which can be used to restrict the combination of 
the couplings of the left-hand side of Eq. (10), but replacing 
md → ms and mπ → mK and with the ε ’s corresponding to u → s
transitions.12 Using the lattice calculation of f K = 155.7(7) MeV 
[15], the radiative corrections δτ K

em = 1.98(31)% from Refs. [66–68]
and |Ṽ e

us| = 0.2231(7), B R(τ− → K −ντ ) = 6.96(10) × 10−3 and 
mK = 0.493677(16) GeV from the PDG [1] as numerical inputs, we 
obtain the constraint:

10 For the comparison, here and throughout the rest of the paper, we need to 
assume lepton universality because our study involves the tau lepton, while theirs 
electrons and muons. Given the smallness of possible lepton universality violations, 
this is enough for current precision. We have also assumed that the corresponding 
CKM matrix elements do not change under NP interactions, which is the case if 
ε(lud) = ε(lus) [70].
11 We would like to notice that our fit to 	S = 0 processes is not sensitive to the 

coefficients ετ
P and ετ

R individually but rather to a combination of them (given by 
the second row in Eq. (13)). However, as we will see in section 6, one can still fit 
them separately if one performs a global fit including strangeness-changing decays. 
This is also the case in the next section.
12 In the chiral limit ετ

P is the same as in Eq. (10).
ετ
L − εe

L − ετ
R − εe

R − m2
K

mτ (mu + ms)
ετ

P = (−0.41 ± 0.93) × 10−2 ,

(15)

where the error is dominated by f K and |V us| followed by the 
branching ratio and the radiative corrections uncertainty.

Analogously to the previous section, we next analyze strange-
ness-changing exclusive transitions with one and two mesons in 
the final state simultaneously. In particular, we fit the τ− →
K Sπ

−ντ Belle spectrum [58]13 including the measured branching 
ratio, B Rexp

Kπ = 0.404(2)(13)%, as experimental datum to constrain 
the fit. The PDG branching ratio [1] of the decays τ− → K −ηντ

(B Rexp
Kη = 1.55(8) × 10−4)14 and τ− → K −ντ (B Rexp

τ K = 6.96(10) ×
10−3) are also added as external restrictions to the fit. The decay 
τ− → K −η′ντ has not been detected yet, there is only an upper 
limit at the 90% confidence level placed by BaBar [69] and we 
therefore have decided to not include it in our analysis. Hence, the 
χ2 function to be minimized in this case is chosen to be

χ2 =
∑

k

(
N̄th

k − N̄exp
k

σN̄exp
k

)2

+
(

B Rth
Kπ − B Rexp

Kπ

σB Rexp
Kπ

)2

+
⎛
⎝ B Rth

Kη − B Rexp
Kη

σB Rexp
Kη

⎞
⎠

2

+
(

B Rth
τ K − B Rexp

τ K

σB Rexp
τ K

)2

, (16)

where now N̄th
k refers to the K Sπ

− decay mode and its expression 
is given by

dNevents

d
√

s
= Nevents

�(ετ
i , εe

j )

d�(
√

s, ετ
i , εe

j )

d
√

s
	bin . (17)

The number of events is Nevents = 53113.21, the bin width is 
	bin = 11.5 MeV [58] and the number of fitted data points is 86 
for the spectrum,15 together with the respective branching ratios 
used as a constraint: thus 89 data points in total.

In this case, the limits for the NP effective couplings are found 
to be (in the MS scheme at scale μ = 2 GeV)⎛
⎜⎜⎜⎜⎝

ετ
L − εe

L + ετ
R − εe

R

ετ
R + m2

K
2mτ (mu+ms)

ετ
P

ετ
S

ετ
T

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

0.5 ± 1.5 ± 0.3

0.4 ± 0.9 ± 0.2

0.8+0.8
−0.9 ± 0.3

0.9 ± 0.7 ± 0.4

⎞
⎟⎟⎟⎠ × 10−2, (18)

where the first error is the statistical fit uncertainty while the sec-
ond one is a systematic uncertainty due to the tensor form factor. 
Different to Eq. (18), the uncertainty associated to the kaon vector 
form factor and to the quark masses is negligible.

The (statistical) correlation matrix associated to the results of 
Eq. (18) is

ρi j =
⎛
⎜⎝

1 0.854 −0.147 0.437
1 −0.125 0.373

1 −0.055
1

⎞
⎟⎠ , (19)

13 We thank the Belle collaboration, in particular S. Eidelman, D. Epifanov and B. 
Shwartz, for providing their data and for useful discussions.
14 While the τ− → K −ηντ decay spectrum has been measured by Belle [59], un-

folding detector effects has not been performed and we therefore have decided to 
include only the branching ratio in our study.
15 The points corresponding to bins 5,6 and 7 are difficult to bring into accord 

with theoretical parametrizations, even when non-standard interactions are consid-
ered [37], and have been excluded from the minimization. The first point has not 
been included either, since the centre of the bin lies below the K Sπ

− production 
threshold. We have furthermore excluded data corresponding to bin numbers larger 
than 90 following a suggestion from the experimentalists.



6 S. Gonzàlez-Solís et al. / Physics Letters B 804 (2020) 135371
with χ2/d.o.f.∼ 0.9.
Notice that ρ12 in Eq. (19) is large (it was also the largest el-

ement in Eq. (14)). As we will see in section 6, where we will 
perform a global fit to both 	S = 0 and |	S| = 1 sectors and 
obtain both ετ

R and ετ
P independently, this is due to the strong 

correlation between ετ
R and ετ

P .
The limits obtained from the |	S| = 1 transitions in Eq. (18)

serve as a consistency check upon comparison with those of 
Eq. (13) from the 	S = 0 ones. As one can observe, the results 
of the first and second lines in Eq. (18) are found to be in line 
with those from Eq. (13). As for the central value of the coefficient 
ετ

S (ετ
T ) from the |	S| = 1 sector, it has decreased (increased) by 

about one order of magnitude with respect to the 	S = 0 one; the 
ετ

S coupling is now more competitive while ετ
T has changed sign. 

We can anticipate, however, that the global fit in section 6 benefits 
from εT from the 	S = 0 decays and from εS from the |	S| = 1
ones.

6. New physics bounds from a global fit to both �S = 0 and 
|�S| = 1 sectors

In this section, we close our exploratory analysis by performing 
a global fit to both 	S = 0 and |	S| = 1 sectors simultaneously. 
The participant |V ud| and |V us| elements of the CKM matrix to be 
used in this case are not independent but rather correlated accord-
ing to [15]

|V us|
|V ud| = 0.2313(5) . (20)

For our analysis, we take |V us| = 0.2231(7) [1] and extract |V ud|
through Eq. (20).

The χ2 function to be minimized in the global fit includes all 
the quantities in Eqs. (11) and (16) that were used for the individ-
ual analysis of the 	S = 0 and |	S| = 1 transitions, respectively. 
The resulting limits for the NP effective couplings are (in the MS
scheme at scale μ = 2 GeV)⎛
⎜⎜⎜⎝

ετ
L − εe

L + ετ
R − εe

R
ετ

R
ετ

P
ετ

S
ετ

T

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2.9 ±0.6 +1.0
−0.9 ±0.6 ±0.0 ±0.4 +0.2

−0.3

7.1 ±4.9 +0.5
−0.4

+1.3
−1.5

+1.2
−1.3 ±0.2 +40.9

−14.1

−7.6 ±6.3 ±0.0 +1.9
−1.6

+1.7
−1.6 ±0.0 +19.0

−53.6

5.0 +0.7
−0.8

+0.8
−1.3

+0.2
−0.1 ±0.0 ±0.2 +1.1

−0.6

−0.5 ±0.2 +0.8
−1.0 ±0.0 ±0.0 ±0.6 ±0.1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

× 10−2 ,

(21)

where the first error is the statistical error resulting from the fit, 
the second one comes from the uncertainty on the pion vector 
form factor, the third error corresponds to the CKM elements |V ud|
and |V us|, the fourth one is due to the radiative corrections δτπ

em
and δτ K

em , the fifth estimates the (uncontrolled) systematic uncer-
tainty associated to the tensor form factor, while the sixth, and 
last error, is due to the errors of the quark masses.

The (statistical) correlation matrix associated to the limits of 
Eq. (21) is

A =

⎛
⎜⎜⎝

1 0.055 0.000 −0.279 −0.394
1 −0.997 −0.015 −0.022

1 0.000 0.000
1 0.243

1

⎞
⎟⎟⎠ , (22)
with χ2/d.o.f.∼ 1.38.
As anticipated in the previous section, the combined fit yields 

an independent determination of the couplings ετ
R and ετ

P which, 
in turn, carry a large statistical (and systematic) error. This origi-
nates in the fact that these parameters are almost 100% correlated 
(cf. Eq. (22)). For the combination of the couplings of the first line 
in Eq. (21), our limits are competitive and within errors with [36]. 
Regarding ετ

S , our limit is not competitive and disagrees with the 
values of Refs. [36,34], where a constraint for ετ

S was placed from 
the isospin-violating decay τ− → π−ηντ . We do not take into ac-
count this channel here since it has not been measured yet; only 
an upper bound exists. Finally, our bound for ετ

T is competitive and 
found to be in agreement with [36,35]. We would like to notice 
that the uncertainty associated to the CKM elements dominates 
the error of those coefficients in Eq. (21) for what we get compet-
itive bounds. Therefore, future lattice results can result in tighter 
constraints.

Our limits on the NP effective couplings Eq. (21) can be trans-
lated into bounds on the corresponding NP scale � through the 
relation

� ∼ v (V uDεi)
−1/2 , (23)

where v = (
√

2G F )−1/2 ∼ 246 GeV. Our bounds can probe scales 
as high as ∼ O(5) TeV, which are quite restricted compared to the 
energy scale probed in semileptonic kaon decays i.e. O(500) TeV 
[46].

7. Conclusions

This letter highlights that hadronic tau lepton decays remain to 
be not only a privileged tool for the investigation of the hadroniza-
tion of QCD currents but also offer an interesting scenario as New 
Physics probes.

In this work, we have performed a global analysis of strange-
ness-conserving (	S = 0) and strangeness-changing (|	S| = 1) ex-
clusive hadronic τ decays into one and two mesons. From the cur-
rent experimental measurements of the corresponding decay spec-
tra and/or branching ratios, we have set bounds on the NP effective 
couplings of the low-energy (dimension six) Standard Model Effec-
tive Field Theory Lagrangian. This has been possible due to a con-
trolled theoretical determination of the necessary Standard Model 
hadronic input i.e. the form factors. For the description of the cor-
responding vector and scalar form factors, we have employed pre-
vious results, based on constraints from Chiral Perturbation Theory 
supplemented by dispersion relations, that show a nice agreement 
with the rich experimental data provided by the experiments. On 
the other hand, as there is no experimental data that can help us 
constructing the corresponding tensor form factors, they have been 
built under theoretical arguments only.

In general, our bounds on the NP couplings, Eqs. (13), (18)
and (21), are competitive. This is specially the case for the com-
bination of couplings ετ

L − εe
L + ετ

R − εe
R , which is found to be in 

accord with the constraints placed from a combination of inclusive 
and exclusive (strangeness-conserving) tau decays [36], and for ετ

T , 
that can even compete with the constraints set by the theoretically 
cleaner K�3 decays (for the comparison, lepton flavor universality 
is assumed as mentioned throughout the main text). Our separate 
fits to both 	S = 0 and |	S| = 1 decays reflect that we are not 
sensitive to the coefficients ετ

P and ετ
R individually but rather to 

a combination of them. It is still possible to fit them separately 
performing a global fit to both 	S = 0 and |	S| = 1 sectors si-
multaneously. However, they carry a large error bar whose origin 
stems from the very strong correlation between them. As for ετ

S , it 
is impossible to compete with the limits coming from K�3 decays. 
Our limit, however, is found to be much weaker than previous con-
straints from tau decays. This is due to the fact that, for lack of 
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experimental data, the decay τ− → π−ηντ has not been taken 
into account in our analysis. These different bounds on ετ

S ob-
tained with and without the πη mode thus increase the interest 
of its measurement and demands refined theoretical descriptions 
accordingly.

Our study is presently limited by the fact that the Standard 
Model form factors, the input parameters of which have been fit-
ted to data previously, may have absorbed some NP information, 
if this is in the data. We have tried to address this drawback 
through fits where not only the NP effective couplings are treated 
as free parameters to fit but also the Standard Model input pa-
rameters entering the corresponding form factors. In doing so, we 
have too many free parameters to fit and found no sensitivity to 
the NP couplings. This is indeed interesting to prove in the fu-
ture, with a higher-quality data, but at present is not feasible. We 
thus hope our work can serve to encourage the experimental tau 
physics groups at Belle-II to measure these decays with higher ac-
curacy.
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