
Enhancing the Utility of Privacy-Preserving
Cancer Classification using Synthetic Data

Richard Osuala1,2,3, Daniel M. Lang2,3, Anneliese Riess2,3, Georgios
Kaissis2,3,4, Zuzanna Szafranowska1, Grzegorz Skorupko1, Oliver Diaz1,5, Julia

A. Schnabel2,3,6, and Karim Lekadir1,7

1 Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Spain
richard.osuala@ub.edu

2 Helmholtz Center Munich, Munich, Germany
3 Technical University of Munich, Munich, Germany
4 Imperial College London, London, United Kingdom

5 Computer Vision Center, Bellaterra, Spain
6 Kings College London, London, UK

7 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

Abstract. Deep learning holds immense promise for aiding radiologists
in breast cancer detection. However, achieving optimal model perfor-
mance is hampered by limitations in availability and sharing of data
commonly associated to patient privacy concerns. Such concerns are fur-
ther exacerbated, as traditional deep learning models can inadvertently
leak sensitive training information. This work addresses these challenges
exploring and quantifying the utility of privacy-preserving deep learn-
ing techniques, concretely, (i) differentially private stochastic gradient
descent (DP-SGD) and (ii) fully synthetic training data generated by
our proposed malignancy-conditioned generative adversarial network.
We assess these methods via downstream malignancy classification of
mammography masses using a transformer model. Our experimental re-
sults depict that synthetic data augmentation can improve privacy-utility
tradeoffs in differentially private model training. Further, model pretrain-
ing on synthetic data achieves remarkable performance, which can be fur-
ther increased with DP-SGD fine-tuning across all privacy guarantees.
With this first in-depth exploration of privacy-preserving deep learning
in breast imaging, we address current and emerging clinical privacy re-
quirements and pave the way towards the adoption of private high-utility
deep diagnostic models. Our reproducible codebase is publicly available
at https://github.com/RichardObi/mammo_dp.
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1 Introduction

Breast cancer accounts for staggering estimates of 684.000 deaths and 2,26 mil-
lion new cases worldwide per year [11]. Part of this burden could be reduced

https://github.com/RichardObi/mammo_dp
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Fig. 1: Overview of our privacy-preserving deep learning pipeline and
malignancy-conditioned generative adversarial network (MCGAN).

through earlier detection and timely treatment. Screening mammography is a
cornerstone for early detection and further associated with a reduction in breast
cancer mortality [21]. Recent literature emphasizes the potential of deep learning-
based computer-aided diagnosis (CAD) [30,24,15,22], e.g., demonstrating that a
symbiosis of deep learning models with radiologist assessment yields the high-
est breast cancer detection performances [21]. However, training deep learning
models on patient data poses a risk of leakage of sensitive person-specific infor-
mation during and after training [24], as models have the capacity to memorise
sufficient information to allow for high-fidelity image reconstruction [3,13]. To
avoid such leakage of private patient information, data needs to be protected
during model training, in particular when the objective is to develop models
to be used in clinical practice or shared among entities. Furthermore, interna-
tional data protection regulations grant patients the right to request the removal
of their information from data holders. For instance, point (b) of article 17(1)
of the EU General Data Protection Regulation (GDPR) [9] stipulates that data
subjects have a “right to be forgotten”. Given, for instance, the proven possibility
of reconstructing training data given a model’s weights [3,13], these rights can
extend to the removal of patient-specific information from already trained deep
learning models [29]. However, it is known to be difficult to “reliably” and “prov-
ably” remove patient information — present in only one or few specific training
data points — from already trained model weights [29]. A generic and verifiable
alternative is given by the removal of a patient’s data point from the training
data and retraining of the respective model with the reminder of the dataset.
This procedure is not only likely to have negative impacts on the performance of
algorithms, but also emerges as a deterrence and risk for hospitals to adopt deep
learning models, due to extensive economic, organisational, and environmental
costs caused by retraining. Anticipating patient consent withdrawals, costly re-
training can be avoided by demonstrating that deep learning model weights do



Enhancing Privacy-Preserving Cancer Classification using Synthetic Data 3

not include personally identifiable information (PII) about any specific patient.
To this end, a powerful technique to ensure privacy during model training is
given by Differentially Private Stochastic Gradient Descent (DP-SGD)[1], which
quantifiably reduces the effect each single training sample can have on the re-
sulting model weights. Furthermore, privacy-preservation can also be achieved
by diagnostic models exclusively trained on synthetic data, which is not (unam-
biguously) attributable to any specific patient but rather contains anonymous
samples representing the essence of the dataset [12,24]. The caveat of both DP-
SGD and synthetic data strategies is, however, that they generally lead to a
reduction in model performance, known as the privacy-utility trade-off. Investi-
gating this trade-off in the realm of breast imaging, our core contributions are
summarised as follows:

– We design and validate a transformer model, achieving promising perfor-
mance as a backbone for privacy-preserving breast mass malignancy classi-
fication.

– We propose and validate a conditional generative adversarial network capa-
ble of differentiating between benign and malignant breast mass generation.

– We empirically quantify privacy-utility-tradeoffs in mass malignancy classifi-
cation, assessing various differential privacy guarantees, and further combine
and compare them with training on synthetic data.

2 Methods and Materials

Datasets and Preprocessing

We use the open-access Curated Breast Imaging Subset of Digital Database
for Screening Mammography (CBIS-DDSM) dataset [16], which consists of 891
scanned film mammography cases with segmented masses with biopsy-proven
malignancy status. After extracting mass images from craniocaudal view (CC)
and mediolateral oblique (MLO) views, we follow the predefined per-patient
train-test split [16], allocating 1296 mass images for training and 402 (245 benign,
157 malignant) mass images to testing. We further divided this training set
randomly per-patient into a training (1104 mass images, 525 malignant) and a
validation set (192 mass images, 102 malignant). As external test set, we further
adopt the publicly available BCDR cohort [19], which comprises 1010 patients,
totalling 1493 lesions (639 masses) with contours and biopsy information from
both digital mammograms (BCDR-DM) and film mammograms (BCDR-FM).
Our final BCDR test set contains 1106 mass images extracted from CC and MLO
views, 486 of which are malignant and 620 benign. To obtain mass patches from
the mammograms, the lesion contour information is used to define bounding
boxes, which enclose the mass. We then create a square patch around each
bounding box with a minimum length and width of 128 pixels. Next, we increase
the patch size by adding a margin of 60 pixels in each direction, before extracting
the resulting patch, and resizing it to a pixel dimensions of 128x128 using inter-
area interpolation. For classification, the mass patches are further resized to
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224x224px maintaining image ratios, and stacked to 3 channels. Models were
trained on either a single 8GB NVIDIA RTX 2080 Super or 48GB RTX A6000
GPU using PyTorch and opacus [31] for DP-SGD.

Cancer Classification Transformer Model

Given its reported high performance on classifying the presence of a lesion in
mammography patches [30] and its shifted window mechanism, allowing to effec-
tively attend to shapes of varying sizes, we adopt a swin transformer (Swin-T)
[17] as cancer classification model, to distinguish between benign and malignant
masses. We inititalize ImageNet-pretrained [6] network weights and, after fol-
lowing the Swin-T hyperparameter setup [17] (stride, window size), we adjust
the last fully-connected layer of the swin transformer reinitializing it with two
output nodes each one outputting the logits for one of our respective classes
(i.e., malignant or benign). We only set the parameters of the adjusted fully-
connected layer as trainable and apply a learning rate of 1e-5. A weight decay
of 1e-8 is used following the fine-tuning experiment described in [17]. Further-
more, an adamw optimizer [20], label smoothing of 0.1, and a batch size of 128
are used. During training, random horizontal and vertical flips are applied as
data augmentation and a cross entropy loss is backpropagated. Training for 300
epochs using a cross entropy loss function, the model from the epoch with the
lowest area under the precision-recall curve (AUPRC) on the validation set is
selected for testing.

Malignancy-Conditioned Generative Adversarial Network

Going beyond unconditional mass synthesis in the literature [30,2], we propose
a malignancy conditioned generative adversarial network (MCGAN) to control
the generation of either benign or malignant synthetic breast masses. In general,
GANs consist of a generator (G) and a discriminator (D) network, which engage
in a two-player zero-sum game, where G generates synthetic samples that D
strives to distinguish from real ones [12]. We design G and D as deep convolu-
tional neural networks [27] and, as shown in Fig. 1, integrate class-conditional
information [23]. To this end, we extract the histopathology report’s biopsy in-
formation for each mass from the metadata, and convert it into a discrete malig-
nancy label. Then, we transform this label into a multi-dimensional embedding
vector to either represent the (a) malignant or (b) benign class, before passing it
through a fully-connected layer yielding a representation with the corresponding
dimensionality to concatenate it to the generator input (100 dim noise vector)
and to the discriminator input (128x128 input image). As D learns to associate
class labels with patterns in the input images, it has to learn whether or not
a given class corresponds to a given synthetic sample. Furthermore, as the dis-
criminator loss is backpropagated into the generator, G is forced to synthesize
samples corresponding to the provided class condition. This results in G learning
a conditional distribution based on the value function

min
G

max
D

V (D,G) = min
G

max
D

[Ex∼pdata
[logD(x|y)] + Ez∼pz [log(1−D(G(z|y)))]].
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Optimizing the discriminator via binary cross-entropy [12], we define its loss in
a class-conditional setup as

LDMCGAN
= −Ex∼pdata

[logD(x|y)] + Ez∼pz
[log(1−D(G(z|y)))].

We train our MCGAN on the CBIS-DDSM training data, applying random
horizontal (p=0.5) and vertical (p=0.5) flipping as well as random cropping
with resizing, where the resize scale ranges from 0.9 to 1.1 and aspect ratio from
0.95 to 1.1. We further include one-sided label smoothing [27] in a range of [0.7,
1.2]. Following [2], we employ a discriminator convolutional kernel size of 6 and a
generator kernel size of 4. We observe that this reduces checkerboard artefacts as
D’s field-of-view now requires G to create realistic transitions between the kernel-
sized patches in the image. MCGAN is trained for 10k epochs with a batch size
of 16. Based on the best quality-diversity tradeoff, we select the model from
epoch 1.4k after qualitative visual assessment of generated samples .

Patient Privacy Preservation Framework

Privacy protection is an ethical norm and legal obligation, e.g. granting patients
the right of their (retrospective) removal from databases [9]. Since (biomedical)
deep learning models are vulnerable to information leakage, e.g. sensitive patient
attributes [29,3,13], they can be affected by such (and future) regulations. How-
ever, privacy-preserving techniques can be integrated into deep learning frame-
works and, to some extent, avoid compromising confidential data. For instance,
(i) model training with DP-SGD [1] or (ii) training exclusively on synthetic data.

From a legal perspective, models trained on only synthetic data remain un-
affected by patient consent withdrawal if “relatedness” between the data and the
data subject cannot be established, or if “personal data has been rendered syn-
thetic in such a manner that the data subject is no longer identifiable” [18] e.g.,
according to article 4(1) and recital 26 of the GDPR [9]. It is to be noted that in
the “acceptable-risk” legal interpretation, a data subject’s re-identification risk
is reduced to an “acceptable” level rather than fully eradicated [18]. Hence, this
interpretation enables approaches such as synthetic data and/or Differential Pri-
vacy (DP) model training to be used as legally compliant privacy preservation
methods despite not guaranteeing a “zero-risk” of patient re-identification.

DP is a mathematical framework that allows practitioners to provide (worst-
case scenario) theoretical privacy guarantees for an individual sharing their data
to train a deep learning model. Consider two databases (e.g., containing image-
label pairs), we call them adjacent if they differ in a single data point, i.e.,
one image is present in one database but not in the other. Then, a randomised
mechanism M : D → R with domain D and range R is said to satisfy (ε, δ)-
differential privacy, if for any two adjacent databases d, d′ ∈ D and for any subset
of outputs S ⊆ R, Pr[M(d) ∈ S] ≤ eε Pr[M(d′) ∈ S] + δ holds. ε and δ bound
a single data point’s influence on a model’s output (e.g. the models’ weights
or predictions). Thus, the smaller the value of these parameters, the higher
the model’s privacy and the harder it is for an attacker to retrieve information
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about any training data point. DP-SGD [1] is the DP variant of the well-known
SGD algorithm, and facilitates the training of a model under DP conditions. In
particular, a model trained under (ε, δ)-DP is robust to post-processing, meaning
only using its output for further computations also satisfies (ε, δ)-DP. Moreover,
the choice of these parameters is application-dependent and normative [5] and
varies strongly across real-world deployments [7]. In the case of mammography,
multiple lesions of the same patient are available in the datasets, i.e. one from
the CC view and one from the MLO view. Therefore, to preserve the privacy
of one patient it is necessary to protect all their data points (i.e. all images).
In such a case, DP group privacy is used to estimate a patient’s DP privacy
guarantee. However, for simplicity, in our subsequent experiments, we provide
image-level privacy guarantees rather than per patient.

3 Experiments and Results

Experimental Setup Metrics

Dataset 1 Dataset 2 FIDImg ↓ FIDRad ↓ FRD ↓
SynMCGAN RealDDSM 58.00±0.72 0.81±.013 18.12±1.01
RealDDSM RealDDSM 29.25±0.82 0.31±.019 3.48±.352
SynMCGAN SynMCGAN 20.90±0.16 0.32±.012 0.57±.094
RealDDSM RealBCDR 156.43±14.3 3.88±.351 277.63±39.0

Fig. 2: Qualitative and quantitative synthesis results: Images are randomly se-
lected malignant and benign real (CBIS-DDSM [16]) and MCGAN-generated
masses. ImageNet [6] and RadImageNet [26,22] based FID [14] and FRD [25]
scores are reported as mean ± standard deviation based on 3 subsets randomly
sampled per patient (Nreal ≈ 360, Nsyn ≈ 3240). Row 4 indicates an BCDR-
based[19] upper bound for comparison with synthetic data metrics in row 1.

Synthetic Data Evaluation Qualitatively assessing the synthetic images in
Fig. 2, it is not readily possible to distinguish synthetic from real masses in terms
of image fidelity or diversity. We note the absence of clear visual indicators to
distinguish between malignant and benign images for both real and synthetic
images. This is in line with the difficulty of determining the malignancy of a
mammographic lesion shown by high clinical error rates and inter-observer vari-
ability [8]. However, results for training our malignancy classification model on
only synthetic data (see Syn and SynPre in Table 1) show that the synthetic data
captures the conditional distribution effectively generating either malignant or
benign masses. Both, vanilla ImageNet-based Fréchet Inception Distance (FID)
[14,6] and radiology domain-specific RadImageNet-based FID [26,22], concur
that the synthetic data (FIDImg=58±.72) is substantially closer to the real CBIS-
DDSM [16] distribution compared to BCDR [19] (FIDImg=156.43±1.43). This
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Table 1: Results for within-domain (CBIS-DDSM [16]) and out-of-domain
(BCDR [19]) breast cancer malignancy classification masses extracted from
mammograms. Syn indicates 3k synthetic images being part of the fine-tuning
training data, while SynPre represents pretraining all trainable model params
with those 3k synthetic images (without DP guarantee), before fine-tuning the
last two layers on real data with DP guarantee (RealFT ). AUROC and AUPRC
are reported as mean ± std based on 3 random seed runs. Best results in bold.

Experimental Setup CBIS-DDSM [16] BCDR [19]

Model ε δ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑
SwinTReal ∞ ∞ 0.778±.001 0.85±.001 0.695±.002 0.726±.003

SwinTSyn ∞ ∞ 0.597±.011 0.696±.011 0.566±.064 0.602±.048

SwinTSynPre ∞ ∞ 0.639±.016 0.733±.001 0.622±.032 0.660±.017

SwinTReal 1 1e−4 0.525±.043 0.640±.030 0.487±.020 0.549±.020
SwinTReal+Syn 1 1e−4 0.553±.040 0.665±.025 0.521±.023 0.573±.024

SwinTSynPre+RealFT ∞|1 ∞|1e−4 0.661±.018 0.741±.007 0.637±.026 0.67±0013

SwinTReal 6 1e−4 0.572±.031 0.679±.019 0.532±.031 0.579±.029
SwinTReal+Syn 6 1e−4 0.617±.013 0.708±.015 0.609±.027 0.647±.024

SwinTSynPre+RealFT ∞|6 ∞|1e−4 0.677±.014 0.752±.009 0.647±.022 0.679±.009

SwinTReal 12 1e−4 0.596±.023 0.702±.013 0.559±.033 0.600±.030
SwinTReal+Syn 12 1e−4 0.624±.010 0.704±.012 0.625±.020 0.663±.012

SwinTSynPre+RealFT ∞|12 ∞|1e−4 0.688±.012 0.758±.011 0.654±.019 0.685±.007

SwinTReal 20 1e−4 0.611±.018 0.715±.012 0.581±.028 0.618±.026
SwinTReal+Syn 20 1e−4 0.630±.003 0.699±.008 0.641±.018 0.685±.012

SwinTSynPre+RealFT ∞|20 ∞|1e−4 0.697±.012 0.763±.012 0.659±.017 0.689±.006

SwinTReal 60 1e−4 0.622±.014 0.721±.110 0.605±.019 0.640±.017
SwinTReal+Syn 60 1e−4 0.629±.002 0.694±.005 0.650±.013 0.696±.007

SwinTSynPre+RealFT ∞|60 ∞|1e−4 0.712±.013 0.776±.013 0.671±.014 0.697±.004

is even more pronounced when comparing the variation of extracted radiomics
features for CBIS-DDSM to synthetic (FRD=18.12) and BCDR (FRD=277.63)
images using the Fréchet Radiomics Distance (FRD) [25]. While this indicates de-
sirable synthetic data fidelity, we also observe good diversity. The latter is shown
by comparing subsets of the same datasets with each other, where the variation
within the synthetic data (e.g., FIDRad=0.32±.12) closely resembles the vari-
ation within the real CBIS-DDSM dataset (e.g., FIDRad=0.31±.19). Notwith-
standing less variation in radiomics imaging biomarkers within the synthetic
data (FRDSyn=0.57 vs. FRDReal=3.48), this overall points to a valid coverage
of the distribution and an absence of mode collapse.

Mass Malignancy Classification As shown in Table 1, we conduct experi-
ments with and without formal privacy guarantees. For scenarios where a formal
privacy guarantee is not strictly required and, thus, synthetic data suffices as



8 R. Osuala et al.

privacy mechanism, we compare the results of training SwinT on synthetic data
(Syn) and on real data (Real) with DP-SGD. Kaissis et al. [15] defined ε = 6 as
suitable privacy budget for their medical imaging dataset. Compared to DP-SGD
with ε = 6, synthetic data achieves better AUPRCs for within-domain tests on
CBIS-DDSM (SwinTSyn=0.696 vs SwinTReal(ε=6)=0.679) and is on par for out-
of-domain (ood) tests on BCDR (SwinTSyn=0.602 vs SwinTReal(ε=6)=0.600).
However, training all SwinT layers using synthetic data (SynPre), achieves sub-
stantially better performance only approximated by DP results for ε = 60 for
within-domain (SwinTSynPre=0.733 vs SwinTReal(ε=60)=0.721) and ood (SwinTSynPre

=0.66 vs SwinTReal(ε=60)=0.64) tests. Further fine-tuning SwinTSynPre on real
data using DP-SGD results in additional improvement across all privacy parame-
ters for within-domain and ood testing. For instance, training SwinTSynPre+RealFT

with ε = 1 results in an AUPRC of 0.74 and 0.67 for CBIS-DDSM and BCDR,
respectively. To assess scenarios where a formal guarantee is required, we further
compare DP-SGD training of SwinT on real data (Real) with DP-SGD training
on a mix of real and synthetic data (Real+Syn). To this end, our experiments
show that such synthetic data augmentation can improve the privacy-utility
tradeoff. This is exemplified by SwinTReal+Syn(ε=6) accomplishing an AUPRC
of 0.708 within-domain and 0.647 ood, while SwinTReal(ε=6) achieved 0.679 and
0.579, respectively. We further observe the trend that stricter privacy budgets
(i.e., smaller ε) can be associated with more added performance of synthetic
data as additional classification model training data.

4 Discussion and Conclusion

We introduce a privacy preservation framework based on differential privacy
(DP) and synthetic data and apply it to the diagnostic task of classifying the
malignancy of breast masses extracted from screening mammograms. We further
propose, train, and evaluate a malignancy-conditioned generative adversarial
network to generate a dataset of benign and malignant synthetic breast masses.
Next, we train a swin transformer model on mass malignancy classification and
assess, compare and combine training under DP and training on synthetic data.
This analysis revealed that when training with DP, synthetic data augmentation
can notably improve classification performance for within-domain and out-of-
domain test cases. Apart from that, we show, across privacy mechanisms and
across domains, that the performance of models pretrained on synthetic data
can be further improved by DP fine-tuning on real data.

This finding is particularly important considering that synthetic data, if not
directly attributable to any specific patient, can become a valid, legally compli-
ant alternative to strict DP guarantees in clinical practice. Consequently, it is to
be further investigated where and when deterministic mechanisms without for-
mal DP guarantees can suffice to shield against different privacy attacks [4]. In
particular, we motivate future work to analyse the extent to which the inherent
properties of synthetic data generation algorithms can provide empirical protec-
tion against attacks. In this regard, a comparison of generation algorithms such



Enhancing Privacy-Preserving Cancer Classification using Synthetic Data 9

as GANs [12] and denoising probabilistic diffusion models (DDPMs) [28] can
provide insights towards further improving tconditional mass synthesis, while
also enabling to quantify and compare the extent and effect of training data
memorization in these models. A methodological alternative to our approach
is to assess privacy-utility tradeoffs when training the generative model itself
using DP-SGD [10,24], resulting in formal privacy guarantees of the generated
synthetic datasets. Thus, a further avenue to explore then lies within the ques-
tion whether randomness inherent in randomised data synthesis algorithms (e.g.,
based on the noise in DDPMs or GANs) can be used to amplify the privacy of the
DP versions of such synthesis algorithms, thereby potentially further enhancing
privacy-utility tradeoffs. To this end, our study constitutes a crucial first step
leading towards the clinical adoption of diagnostic deep learning models, en-
abling practical privacy-utility tradeoffs all while anticipating respective legal
obligations and clinical requirements.
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