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Current data on baryon acoustic oscillations and Supernovae of Type Ia (SNIa) cover up to 𝑧 ∼ 2.5. These low-

redshift observations play a very important role in the determination of cosmological parameters and have been 
widely used to constrain the ΛCDM and models beyond the standard, such as the ones with open curvature. To 
extend this investigation to higher redshifts, Gamma-Ray Bursts (GRBs) stand out as one of the most promising 
observables. In spite of being transient, they are extremely energetic and can be used to probe the universe up 
to 𝑧 ∼ 9.4. They exhibit characteristics that suggest they are potentially standardizable candles and this allows 
their use to extend the distance ladder beyond SNIa. The use of GRB correlations is still a challenge due to the 
spread in their intrinsic properties. One of the correlations that can be employed for the standardization is the 
fundamental plane relation between the peak prompt luminosity, the rest-frame end time of the plateau phase, 
and its corresponding luminosity, also known as the three-dimensional Dainotti correlation. In this work, we propose 
an innovative method of calibration of the Dainotti relation which is independent of cosmology. We employ state-

of-the-art data on Cosmic Chronometers (CCH) at 𝑧 ≲ 2 and use the Gaussian Processes Bayesian reconstruction 
tool. To match the CCH redshift range, we select 20 long GRBs in the range 0.553 ≤ 𝑧 ≤ 1.96 from the Platinum 
sample, which consists of well-defined GRB plateau properties that obey the fundamental plane relation. To ensure 
the generality of our method, we verify that the choice of priors on the parameters of the Dainotti relation and 
the modeling of CCH uncertainties and covariance have negligible impact on our results. Moreover, we consider 
the case in which the redshift evolution of the physical features of the plane is accounted for. We find that 
the use of CCH allows us to identify a sub-sample of GRBs that adhere even more closely to the fundamental 
plane relation, with an intrinsic scatter of 𝜎𝑖𝑛𝑡 = 0.20+0.03−0.05 obtained in this analysis when evolutionary effects are 
considered. In an epoch in which we strive to reduce uncertainties on the variables of the GRB correlations in 
order to tighten constraints on cosmological parameters, we have found a novel model-independent approach to 
pinpoint a sub-sample that can thus represent a valuable set of standardizable candles. This allows us to extend 
the cosmic distance ladder presenting a new catalog of calibrated luminosity distances up to 𝑧 = 5.
1. Introduction

Standard candles constitute a well-established tool to measure cos-

mic distances in our universe, which in turn are used to constrain cos-

mological parameters of fundamental importance. They played a pivotal 
role in the discovery of the late-time cosmic acceleration (Riess et al., 
1998; Perlmutter et al., 1999) and in the last years have proved also 
relevant in the discussion of the Hubble tension (Riess et al., 2022). 
Nowadays, the mismatch between Hubble parameter values estimated 
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independently by late- and early-time probes through the direct and 
inverse distance ladders has reached the ≈ 4𝜎 − 6𝜎 level depending 
on the particular data set used (see Verde et al., 2019; Di Valentino 
et al., 2021a; Dainotti et al., 2021; Perivolaropoulos and Skara, 2022; 
Abdalla et al., 2022; Dainotti et al., 2022e; Riess and Breuval, 2022; 
Verde et al., 2023 for dedicated reviews). There exists a large redshift 
gap between measurements of Baryon Acoustic Oscillations (BAO) and 
Supernovae of Type Ia (SNIa), which cover up to 𝑧 ∼ 2.5, and CMB obser-

vations, which also encode information from the last-scattering surface 
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(𝑧 ∼ 1100) and beyond. Data in that gap could enhance our understand-

ing about the underlying physical mechanism responsible for the expan-

sion of the universe. They might be crucial to understand the origin of 
the cosmological tensions (see e.g. Gómez-Valent et al., 2024), including 
the anomalous existence of very massive galaxies in the early universe 
(Labbe et al., 2023). Moreover, recently a mismatch has been found be-

tween ΛCDM predictions and the Hubble diagram built out from high-𝑧

quasars (QSOs) (Risaliti and Lusso, 2019; Lusso et al., 2019; Bargiacchi 
et al., 2021; Signorini et al., 2023), which have been employed as stan-

dardizable candles (Risaliti and Lusso, 2015, 2017; Lusso et al., 2020; 
Dainotti et al., 2022f; Colgáin et al., 2022; Lenart et al., 2023; Dain-

otti et al., 2023; Bargiacchi et al., 2023). Therefore, it has now become 
necessary to extend the research to new cosmological probes at inter-

mediate redshifts, which can come to our aid, widening the unexplored 
range of redshifts and serving as distance indicators. Exploring higher 
𝑧 requires observing more luminous objects than SNIa. This can be the 
case not only of QSOs, which reach up to 𝑧 ∼ 7.5 (Banados et al., 2018), 
but also of Gamma-Ray Bursts (GRBs), the most intense explosions in 
the universe after the Big Bang. These objects have been detected up 
to 𝑧 ∼ 9.4 so far (Cucchiara et al., 2011), but their observation might 
reach 𝑧 ∼ 20 (Lamb, 2003). The great advantage of the use of GRBs is 
their coverage at much higher redshifts than SNIa and BAO. Hence, it is 
important to improve their calibration in the range where other sources 
are present.

To standardize GRBs and use them as cosmological tools, it is nec-

essary to find tight and intrinsic relationships, not induced by selection 
biases, between parameters of their light curves (or spectra) and their 
luminosity (or energy). In particular, in this work, we will focus on the 
relation involving the features of the plateau emission phase, that is, the 
luminosity at the end of the plateau emission and its rest frame duration 
(Dainotti et al., 2008, 2010, 2011a, 2013a, 2017b, 2020b, 2022d). This 
two-dimensional (2D) relation has been used as a cosmological tool for 
15 years (Cardone et al., 2009, 2010; Dainotti et al., 2013b). However, 
considering three or more parameters could lead to tighter correlations. 
One of these correlations is the so-called three-dimensional (3D) Dain-

otti relation. It relates the peak prompt luminosity, the rest-frame end 
time of the plateau, and its corresponding luminosity (Dainotti et al., 
2008, 2016, 2017a). The main advantages of using the Dainotti relation 
are that it is supported by a fundamental physical process, the magne-

tar emission (Rowlinson et al., 2014; Bernardini, 2015; Rea et al., 2015; 
Stratta et al., 2018; Dall’Osso et al., 2023), and it overcomes selection 
biases that could invalidate the reliability of the relations themselves 
(Dainotti et al., 2013a, 2017b). Moreover, prompt-afterglow relations 
present a reduced scatter in the afterglow features compared to more 
varied prompt emission properties (Dainotti et al., 2022b). This is yet 
another reason why using the plateau emission for standardizing GRBs 
might be more recommended. There are many correlations that help 
broaden our understanding of GRBs and their possible application as 
a cosmological tool. For instance, the 𝐸𝑝 −𝐸𝑖𝑠𝑜 Amati correlation con-

nects the spectral peak energy in the GRB cosmological rest frame and 
the isotropic equivalent radiated energy (Amati et al., 2002, 2008). Yo-

netoku et al. (2004) correlated 𝐸𝑝 instead with the peak luminosity, 𝐿𝑝 ; 
this is called in the literature the Yonetoku relation. Norris et al. (2000)

has also established a relation between 𝐿𝑝 and the spectrum lag, the 
so-called 𝐿𝑝− 𝜏𝑙𝑎𝑔 relation, and the bulk Lorentz factor in the context of 
the GRB fireball scenario is also found to correlate with 𝐸𝑖𝑠𝑜 (Liang et 
al., 2010) or with 𝐿𝑖𝑠𝑜 (Ghirlanda et al., 2012). However, the issue with 
many of these correlations is that they have not been demonstrated to be 
reliable after the truncation and selection effect tests, and when these 
corrections are applied, the dispersion of the relation itself increases 
(Collazzi et al., 2012; Heussaff et al., 2013; Petrosian et al., 2015). The 
source of this scatter is due to both instrumental biases and the underly-

ing mechanism that governs the GRB emission, such as the energy and 
frequency at which it occurs. Indeed, the physical meaning of many of 
these relations is still under debate after many years since more than 
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that rule GRBs still need further investigations. All these aspects might 
significantly limit the applicability of such relations for cosmological 
purposes. We refer the reader to Dainotti and Amati (2018) for a discus-

sion on selection and instrumental biases and to Dainotti et al. (2018)

or Parsotan and Ito (2022) for a comprehensive review of the several 
correlations existing in the literature and their possible physical expla-

nation.

So far, GRBs data and their correlations have been used for many 
applications in cosmology, such as the investigation of the components 
of our universe, the nature of dark energy, and the Hubble constant 
tension (see, e.g., Amati et al., 2019; Khadka and Ratra, 2020; Khadka 
et al., 2021; Cao et al., 2022a). However, if a cosmological model is 
assumed when calibrating GRBs (or other standardizable objects, like 
SNIa), the so-called circularity problem (Ghisellini et al., 2005; Ghirlanda 
et al., 2006; Wang et al., 2015) can be encountered if the resulting cor-

relations are then used to constrain parameters of models different from 
the one employed in the calibration. Up to now, two solutions have 
been proposed to overcome this problem. One is to fit simultaneously 
the correlation parameters and the parameters of a cosmological model 
of interest using GRB data (Ghirlanda et al., 2004; Li et al., 2008; Amati 
et al., 2008; Postnikov et al., 2014; Cao et al., 2022a,b; Dainotti et al., 
2022a). In this way, cosmological constraints are uniquely determined 
by GRBs.

On the other hand, based on the idea of the distance ladder, one 
can calibrate GRBs with low-redshift probes, such as calibrated SNIa 
(Liang et al., 2008; Postnikov et al., 2014), given that objects at the same 
redshift should have the same luminosity distance regardless of the un-

derlying cosmology if the latter respects the cosmological principle (CP). 
The distance ladder measurement is basically model-independent since 
it only relies on the CP and the assumption that SNIa are good standard-

izable objects, i.e., with a standardized absolute magnitude that remains 
constant from our vicinity to the far end of the cosmic ladder. One uses 
other standard candles, such as Cepheids (Riess et al., 2021) or the Tip 
of the Red Giant Branch (Freedman et al., 2020; Freedman, 2021; Freed-

man and Madore, 2023) in the lower rungs of the ladder to calibrate the 
SNIa, and then uses SNIa to calibrate GRBs in a model-independent way. 
Most of the calibrated-GRB cosmological analyses are based on this idea. 
They make use of cosmographical methods (Luongo and Muccino, 2020; 
Mu et al., 2023) or Gaussian Processes (GP) as in Liang et al. (2022). 
The calibration occurs at 𝑧 ≲ 2.5 (i.e. below the maximum redshift in the 
SNIa samples) and then the calibrated GRB relations can be employed 
to build an extended Hubble diagram up to the high-𝑧 region covered 
by the GRBs. In doing so, analogously to the calibration of SNIa, it is 
usually assumed that the GRB correlation does not evolve with redshift, 
although this evolution could actually have a non-negligible impact (Ku-

mar et al., 2023). For a discussion on how different is the calibration of 
GRBs on SNIa or independent from SNIa and how the evolution im-

pacts the outcome see Dainotti et al. (2013a); Dainotti and Del Vecchio 
(2017); Dainotti et al. (2022a). Another possible caveat of this method 
is that some unaccounted-for systematic biases of SNIa may propagate 
into the calibration results. Avoiding these biases might be important in 
light of the Hubble tension.

Looking for alternative calibrators becomes thus fundamental. In the 
future, the use of standard sirens up to 𝑧 ∼ 4 appears to be a promising 
route (Wang and Wang, 2019). As of now, data on galaxy clusters in the 
redshift range 0.14 ≤ 𝑧 ≤ 0.89 have, for instance, already been employed 
in the calibration of GRBs (Govindaraj and Desai, 2022). Moreover, Am-

ati et al. (2019) recently introduced the use of Observational Hubble 
Data (OHD) to calibrate the Amati relation, something that has been fur-

ther exploited using GP (Li et al., 2023; Kumar et al., 2023) and other 
techniques, such as the Bézier parametric curve obtained through the 
linear combination of Bernstein basis polynomials (Montiel et al., 2020; 
Luongo and Muccino, 2020, 2021, 2022). All these analyses aim to build 
an extended Hubble diagram through the calibration of GRBs, and then 
combine them with other data sets (e.g., SNIa, BAO) to study and con-
strain different cosmological models. There are several works related 
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to the application of the 3D Dainotti relation as a cosmological tool to-

gether with other probes (Dainotti et al., 2022a, 2023; Bargiacchi et al., 
2023). In the last two papers, a discussion on the most appropriate like-

lihood assumptions must be made since while the Gaussian is the most 
appropriate assumption for GRBs it is not for the other probes including 
SNIa (Dainotti et al., 2024).

In this work, we aim to present a novel model-agnostic method to 
understand whether low-redshift calibrators can univocally determine 
the correlation parameters of GRBs, in order to use them as distance in-

dicators. It is even more powerful than previous methods. In particular, 
we focus on the role played by the data on the Hubble function obtained 
from Cosmic Chronometers (CCH) (Jiménez and Loeb, 2002) in calibrat-

ing the Dainotti correlations using a specific data set of GRBs, called the 
Platinum sample. Recently, the 2D Dainotti relation has been calibrated 
with GP and OHD by Hu et al. (2021) and Wang et al. (2022), whose ap-

proach has been extended by Tian et al. (2023) also for the 3D relation. 
However, these authors adopt different OHD and GRB data sets from 
those considered by us in this work. Tian et al. (2023), in particular, 
use a combination of 31 𝐻(𝑧) measurements from CCH and 5 from BAO 
data, after calibrating the latter assuming standard pre-recombination 
physics. The GRBs that they analyze are collected according to a dif-

ferent sample selection (radio plateau phases instead of X-ray plateau 
phases) and at different redshifts with respect to the Platinum sample. 
In addition, they do not take into account correlations between differ-

ent CCH data points and, for the fitting analysis, they use a slightly 
different likelihood based on the D’Agostini method (D’Agostini, 2005). 
In our work, we employ the GP-reconstruction of the luminosity dis-

tance to calibrate the Dainotti relations, varying all the quantities that 
define the plane. We test the robustness of our results by selecting dif-

ferent priors on the parameters of the Dainotti relations and studying 
the impact of the covariance of the reconstructed luminosity distance. 
We do not use data on 𝐻(𝑧) from BAO to avoid the need to make model-

dependent assumptions about the physics at the decoupling time in the 
calibration process. Moreover, we provide and justify a suitable set-

up for the GP training and extend our methodology to account for the 
redshift-evolution corrections of the Dainotti relation, showing how this 
is actually of fundamental importance for the extension of the distance 
ladder.

This paper is organized as follows: in Sec. 2, we present and describe 
the two- and three-dimensional Dainotti relations, the latter defines the 
fundamental plane of GRBs; in Secs. 3 and 4, we describe the data sets 
and methodology employed in this work, respectively; in Sec. 5 we 
present our results, discussed in detail in Sec. 6. Finally, we draw our 
conclusions in Sec. 7.

2. The Dainotti correlations

The three-dimensional fundamental plane correlation, also known as 
3D Dainotti correlation, reads (Dainotti et al., 2016, 2017a, 2020a)

log𝐿X = 𝐶𝑜 + 𝑎 log𝑇 ∗
X + 𝑏 log𝐿peak , (1)

where

𝐿X = 4𝜋𝐷2
𝐿
𝐹X𝐾plateau (2)

is the X-ray source rest-frame luminosity,

𝐿peak = 4𝜋𝐷2
𝐿
𝐹peak𝐾prompt (3)

is the peak prompt luminosity (both luminosities are in units of erg s−1) 
and 𝑇 ∗

X is the characteristic time scale which marks the end of the 
plateau emission (in units of 𝑠).1 In the above equations, 𝐹X is the mea-

sured X-ray energy flux at 𝑇 ∗
X, 𝐹peak is the measured gamma-ray energy 

1 All the quantities appearing in the logs of Eq. (1) are made dimensionless, 
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flux at the peak of the prompt emission over a 1𝑠 interval (both fluxes 
are in units of erg cm−2 s−1), 𝐾plateau = (1 + 𝑧)𝛼plateau−2 is the power-

law plateau 𝐾 -correction with 𝛼plateau being the X-ray photon index of 
the plateau phase. The 𝐾 -correction for the prompt emission, 𝐾prompt , 
depends instead on the X-ray photon index (𝛼prompt ), energy and differ-

ential spectrum. Only the GRBs for which the spectrum calculated at 1 
second has a smaller 𝜒2 for a single power-law (PL) fit than for a cut-off 
power-law (CPL) are considered. In particular, following Sakamoto et al. 
(2011), when Δ𝜒2 = 𝜒2

PL − 𝜒2
CPL > 6, the CPL model is preferred over 

the PL to compute 𝐾prompt (see also Dainotti et al., 2016 for details).

The correlation parameters in Eq. (1) are identified by 𝑎, 𝑏, and 𝐶𝑜, 
where the 𝑎 parameter denotes the anti-correlation between log𝐿𝑋 and 
log𝑇 ∗

X possibly driven by the magnetar (Rowlinson et al., 2014; Rea et 
al., 2015), 𝑏 the relation between log𝐿peak and log𝐿𝑋 , and 𝐶𝑜 is the 
normalization of the plane. When dealing with GRBs, one has also to 
consider that these data suffer from an unknown source of scatter on the 
plane, 𝜎𝑖𝑛𝑡, which cannot be neglected since it specifies the tightness of 
the relation. This tightness relies on the spin period and magnetic field 
variations of a fast millisecond magnetar. Indeed, the plateau emission 
can be ascribed to the magnetar model (Dall’Osso et al., 2010; Rowlin-

son et al., 2014; Rea et al., 2015; Stratta et al., 2018), which describes 
that the X-ray plateaus are caused by a fast-spinning neutron star. In 
this case, the slope of the correlation, which is identified by 𝑎, is equal 
to -1. Other physically motivated interpretations have been discussed. 
For instance, in van Eerten (2014) it is shown that both 𝐿peak − 𝐿𝑋

and 𝐿𝑋 − 𝑇⋆
𝑋

correlation can be recovered within the standard forward 
shock model for GRB afterglows, with the addition of the microphysical 
parameters. We will see that our results are fully compatible with the 
magnetar model predictions.

While 𝑇 ∗
X, 𝐹X, 𝛼plateau, 𝐹peak , 𝛼prompt are measurable quantities, 𝑎, 𝑏,

𝐶𝑜, and 𝜎𝑖𝑛𝑡 can only be determined through a proper calibration, which 
requires the use of cosmological luminosity distances. It is immediate 
to notice in Eqs. (2) and (3) that both 𝐿X and 𝐿peak depend on the 
background cosmology since the luminosity distance 𝐷𝐿 requires the 
knowledge of the functional form of the Hubble expansion rate. Assum-

ing a flat Universe,2

𝐷𝐿(𝑧) = 𝑐(1 + 𝑧)

𝑧

∫
0

𝑑𝑧′

𝐻(𝑧′)
, (4)

where the theoretical formulation of 𝐻(𝑧) is defined in Eq. (6). In 
this work, we leverage the availability of data on 𝐻(𝑧) from cosmic 
chronometers, which do not rely on very strong cosmological assump-

tions. We propose to use these measurements together with GP to recon-

struct the shape of 𝐻(𝑧) and obtain agnostic estimates of the luminosity 
distance at the redshifts of the GRB data, 𝑧GRB .

As we will see later on, the model-independent analysis performed 
with the 3D Dainotti relation only sets an upper bound on the value 
of 𝑏, being our constraint on this parameter compatible with 𝑏 = 0 at 
already 68% C.L. This is possibly pointing out that the contribution of the 
peak luminosity in the prompt emission is not needed for the use of the 
correlation as a viable cosmological tool, which reduces therefore to an 
X-ray time-luminosity relation, i.e. the 2D Dainotti correlation (Dainotti 
et al., 2008). Neglecting 𝑏 in Eq. (1), this relation is then defined as

2 The TT, TE, EE CMB likelihood from Planck prefers a closed universe at 
the ≳ 2𝜎 level in the context of ΛCDM (Aghanim et al., 2020; Handley, 2021; 
Di Valentino et al., 2019). However, when data on BAO, SNIa, the full-shape 
galaxy power spectrum or CCH are also considered in the fitting analysis, the 
compatibility with spatial flatness (i.e., with Ω𝑘 = 0) is recovered (Aghanim et 
al., 2020; Efstathiou and Gratton, 2020; Vagnozzi et al., 2021a,b; de Cruz Pérez 
et al., 2023, 2024). Model-independent studies with low-𝑧 data reach also this 
conclusion, but with a larger uncertainty (Collett et al., 2019; Dhawan et al., 
2021; Favale et al., 2023; Qi et al., 2023). See Di Valentino et al., 2021b for a 

review.
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log𝐿X = 𝐶𝑜 + 𝑎 log𝑇 ∗
X . (5)

The 2D Dainotti relation rules out basic thin shell models but not the ba-

sic thick shell model (van Eerten, 2014). In the latter case, both forward-

and reverse shock-dominated outflows are shown to be consistent with 
this relation. When a slope of -1.2 is observed, it means that accretion 
onto the black hole is favored, as discussed in Cannizzo and Gehrels 
(2009); Cannizzo et al. (2011).

We will apply our methodology to the calibration of both, the 3D 
and 2D Dainotti relations.

3. Data

In this section, we describe the data sets employed in this work.

3.1. The Platinum sample

Observations of 50 long GRBs (i.e., with a burst phase that lasts > 2𝑠) 
in the redshift range 0.553 ≤ 𝑧 ≤ 5.0 constitute the so-called Platinum 
sample, defined for the first time in Dainotti et al. (2020a). It is a sub-

sample of the larger Gold Sample (Dainotti et al., 2016). The Platinum 
sample collects well-defined morphological features of GRBs that show 
plateaus with an inclination < 41◦ and that last > 500𝑠 and with no 
flares. In terms of measured quantities at a given redshift 𝑧, we find 
five properties: 𝑇 ∗

X, 𝐹X, 𝐾plateau, 𝐹peak , 𝐾prompt . These quantities can be 
related together to form a fundamental plane for the GRBs which finds 
its expression in the 3D Dainotti correlation in Eq. (1), or the 2D Dain-

otti correlation in Eq. (5) if one removes the contribution of the peak 
prompt luminosity. For details about the physical meaning of the GRBs 
properties and the correlations, we refer the reader to Sec. 2.

In Fig. 1, we present the 2D projection of the fundamental plane for 
both the full Platinum sample (50 GRBs) and the sub-set of 20 GRBs 
that fall within the redshift range covered by the CCH data, which are 
used in our calibration of the Dainotti relations (see Secs. 3.2 and 4, 
and Tables A.1 and A.2). Here we fix the parameters 𝑎, 𝑏, and 𝐶𝑜 that 
enter the 3D relation to the values obtained from the fundamental plane 
fitting analysis. This is the standard procedure, widely used in the con-

text of GRB cosmology. The likelihood is built by making use of the 
D’Agostini and Kelly method (D’Agostini, 2005; Kelly, 2007), and an 
underlying cosmological model is assumed to compute the luminosity 
distances entering Eqs. (2) and (3). An example of its application can be 
found in Dainotti et al. (2022b), where a flat ΛCDM model with 𝐻0 = 70
km/s/Mpc is considered, while Ω𝑀 is free to vary. We follow the same 
approach as in that reference in Fig. 1, just to visualize where the GRBs 
that constitute the Platinum sample are located in the plane accord-

ing to the 3D Dainotti relation. The results obtained with 50 GRBs read 
𝑎 = −0.88 ±0.12, 𝑏 = 0.54 ±0.12, 𝐶𝑜 = 23.04 ±6.23 and 𝜎𝑖𝑛𝑡 = 0.36 ±0.04. 
For the results obtained with 20 GRBs, we refer instead the reader to the 
constraints listed in Table 1. We will use them later in the analysis to 
test the impact of the prior choice on the parameters themselves. As a 
last note, we add here that in order to check whether the sub-sample 
of 20 GRBs is representative of the full Platinum sample, we perform a 
Kolmogorov-Smirnov (KS) test (Kolmogorov, 1933; Smirnov, 1939) for 
all the variables of the Platinum sample used in this work, i.e. log𝑇⋆

𝑋
, 

𝐹peak , 𝐾prompt , log𝐹𝑋 and 𝐾plateau. We also cross-check the results with 
the Anderson-Darling (AD) test (Anderson and Darling, 1952). These 
statistical analyses allow us to estimate the significance level for reject-

ing or not rejecting the null hypothesis that the two samples come from 
the same parent distribution. The results of both tests show that we can-

not reject the null hypothesis at 95% C.L., as we find a 𝑝 value greater 
than 0.05 in all the tested variables. This supports the choice of the GRBs 
sub-set used in the calibration analysis and this does not introduce any 
bias in this choice as no statistical difference in the sample is shown. We 
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Fig. 1. 2D projections of the fundamental plane for the Platinum sample (in 
orange) and for the sub-sample of 20 GRBs used in this work (in green), both 
obtained taking the mean values of 𝑎, 𝑏, and 𝐶𝑜 from the related fundamental 
plane fitting analyses. The error bars represent the 1𝜎 uncertainty.

3.2. Cosmic chronometers

With the minimal assumption that the Universe is described by a 
Friedmann-Lemaître-Robertson-Walker metric, where the scale factor 
𝑎(𝑡) is directly related to the redshift as 𝑧 = 𝑎−1 − 1, the expansion rate 
of the universe can be written as follows

𝐻(𝑧) = �̇�

𝑎
= − 1

1 + 𝑧

𝑑𝑧

𝑑𝑡
, (6)

that is, the Hubble function is related to the differential ageing of the 
universe 𝑑𝑡 as a function of 𝑧. However, the ratio 𝑑𝑧∕𝑑𝑡 is not directly 
observable and one needs to identify objects in the Universe whose 
time evolution across redshift ranges can be accurately determined, 
i.e. cosmic chronometers. This can be done with the help of differen-

tial age techniques (Jiménez and Loeb, 2002). The best candidates for 
CCH are massive, passively evolving galaxies formed at 𝑧 ∼ 2 − 3 over 
a brief period, typically 𝑡 ∼ 0.3 Gyr. These galaxies are homogeneous 
over cosmic time, meaning that they have formed at the same time in-

dependently of the redshift at which they are observed. Indeed, they 
evolve on timescales much longer than their differential ages. This al-

lows us to use the difference in their evolutionary states to reveal the 
time elapsed between the redshifts, i.e. how much time has passed since 
they have run out of their gas and stopped star formation. This is done 
assuming an underlying stellar population synthesis (SPS) model and an-

alyzing their spectral energy distributions (SED). Indeed, while redshift 
measurements can be obtained with quite high accuracy through the 
spectral line analysis, the age is not directly observable and one has to 
adopt particular techniques such as photometry, single spectral regions 
(e.g. D4000 (Moresco et al., 2020)) or the full-spectral fitting. Within 
these galaxies, old stellar populations have minimal star formation rates 
and this ensures low contamination from young components. However, 
such measurements are not immune to systematics and various crite-

ria have been considered to minimize contamination from factors like 
photometry, spectroscopy, stellar velocity and mass dispersion. Poten-

tial degeneracies between physical parameters of the galaxy SED (e.g., 
age-metallicity) also contribute to the error budget. The reconstruction 
of the star formation history of age-dating galaxies is very challeng-

ing. Nevertheless, a strength of CCH lies in estimating the quantity 𝑑𝑡
rather than the absolute age 𝑡. This approach minimizes the impact of 
systematic errors in absolute age estimation when measuring the differ-

ential age. All the possible sources of errors discussed above are taken 
into account in the covariance matrix provided by Moresco et al. (2020), 
which includes the contribution of both statistical and systematic errors, 

𝐶CCH
𝑖𝑗

= 𝐶stat
𝑖𝑗

+ 𝐶
sys
𝑖𝑗

. In particular, in addition to the statistical error, 
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the diagonal component of this matrix takes into account several sys-

tematics related to the estimate of the physical properties of a galaxy 
(e.g. stellar metallicity and the contamination by a younger stellar pop-

ulation), which are uncorrelated for objects at different redshifts. The 
non-null correlations arise from factors that instead rely on the com-

mon SPS model which, as explained above, is involved in studying the 
evolving galaxies. Beyond General Relativity and the assumption that 
standard physics applies in the environment of the galaxy stars, CCH are 
devoid of additional cosmological assumptions. For this reason, in the 
last years, they emerged as suitable candidates for model-independent 
analyses. They can be employed in the calibration of BAO and SNIa 
(Heavens et al., 2014; Verde et al., 2017; Yu et al., 2018; Gómez-Valent 
and Amendola, 2018; Haridasu et al., 2018; Gómez-Valent, 2022; Dinda, 
2023; Favale et al., 2023; Mukherjee et al., 2024) or other objects like 
GRBs or QSOs (see, e.g., Amati et al., 2019; Montiel et al., 2020; Luongo 
and Muccino, 2021, 2022; Dinda, 2023; Kumar et al., 2023).

In this work, we use state-of-the-art data on CCH, constituted of 33 
data points in the redshift range 0.07 < 𝑧 < 1.965, to calibrate the GRB 
Dainotti correlations. The complete list of CCH and the corresponding 
references can be found in Appendix A. The covariance matrix of the 
data is computed as explained in Moresco et al. (2020), using the codes 
provided in.3

4. Methodology

One can use measurements of the Hubble function to reconstruct 
the universe expansion history and solve the integral in Eq. (4) at the 
GRB redshifts. For this purpose, we employ GP. It is a machine learn-

ing tool that offers means of deriving cosmological functions through 
data-driven reconstructions under minimal model assumptions, keeping 
track of the correlations between them. Because of that, this algorithm 
has gained significant prominence in the context of model-agnostic re-

gression techniques within the field of cosmology.

Being a generalization of a multivariate Gaussian, a Gaussian Process 
can be written by specifying its mean function �̄�(𝑧) and the covariance 
matrix 𝐷(𝑧, ̃𝑧), i.e., 𝑓 (𝑧) ∼ GP(�̄�(𝑧), 𝐷(𝑧, ̃𝑧)) (Rasmussen and Williams, 
2006). If we denote 𝑍 as the exact locations of the input data points, 
the covariance matrix 𝐷 takes the following form

𝐷(𝑧, �̃�) ≡
{

𝐾(𝑧, �̃�) +𝐶(𝑧, �̃�) if 𝑧 and �̃� ∈𝑍

𝐾(𝑧, �̃�) otherwise , (7)

where 𝐶 is the covariance matrix of the data and 𝐾(𝑧, ̃𝑧) the kernel func-

tion. Indeed, although GP allow for agnostic (cosmology-independent) 
reconstructions, a specific kernel has to be chosen for the training. The 
latter is in charge of controlling the correlations between different points 
of the reconstructed function. Kernels depend on a set of hyperparame-

ters, which follow a likelihood that is set by the probability of the GP to 
produce our data set at every point of the hyperparameter space. Before 
the reconstruction can take place, it is essential to determine the shape 
of this distribution. In many cases, this likelihood is sharply peaked 
and using the best-fit values of the hyperparameters becomes a good 
approximation (Seikel et al., 2012). However, from a Bayesian perspec-

tive, the correct approach involves obtaining the complete distribution 
of the hyperparameters to account for their correlations and propagate 
their uncertainties to the final reconstructed function (Gómez-Valent 
and Amendola, 2018; Hwang et al., 2023). This is the approach followed 
in this work.

From every set of hyperparameters drawn from the hyperparameter 
distribution one can construct the GP at the locations 𝑍⋆ ≠𝑍 , which is 
characterized by the mean function

𝑓⋆ = �̄�⋆ +𝐾(𝑍⋆,𝑍)[𝐾(𝑍,𝑍) +𝐶(𝑍,𝑍)]−1(𝑌 − �̄�) (8)
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and covariance matrix

cov(𝑓⋆) =𝐾(𝑍⋆,𝑍⋆) −𝐾(𝑍⋆,𝑍)[𝐾(𝑍,𝑍) +𝐶]−1𝐾(𝑍,𝑍⋆) , (9)

where 𝑌 are the data points located at 𝑍 and �̄�⋆ ≡ �̄�(𝑍⋆) is the a priori 
assumed mean of the reconstructed function at 𝑍⋆ . From this GP, one 
can then produce a sufficiently large sample of the function of interest 
at 𝑍⋆ to ensure convergence.

In this work, we reconstruct 𝐻(𝑧) at the redshifts 𝑧GRB(= 𝑍⋆) of 
the 𝑛GRB = 20 GRBs of the Platinum sample that fall below the high-

est CCH redshift, 𝑧 = 1.965, employing an a priori zero mean function, 
i.e. �̄�(𝑍⋆) = 0. The GRBs of our sub-sample lie therefore in the same 
redshift range of the calibrators. From the GP we obtain 𝑁real = 5 ⋅ 104
realizations of 𝐻(𝑧) at each 𝑍⋆ and the same number of luminosity dis-

tances, by solving the integral in Eq. (4). We ensure that the number 
of points in which we evaluate this integral is enough to have an accu-

rate determination of the reconstructed function. This test is especially 
important in the region of redshifts below the GRB data point with the 
lowest redshift in our sample. To this purpose, we repeat the GP recon-

struction of 𝐻(𝑧) by increasing the number of 𝑍∗ in 0 < 𝑧 < 0.553 and 
find that the resulting shape of log𝐷𝐿(𝑧) remains stable. Thus, we are 
allowed to use the result obtained at 𝑍∗ = 𝑧GRB to calibrate the Dain-

otti relations, Eqs. (1) and (5). Indeed, combining Eq. (1) and (3) one 
can easily obtain the following quantity

log𝐷th
𝐿
=𝑎1 log𝑇 ∗

X + 𝑏1(log𝐹peak + log𝐾prompt ) + 𝑐1+

+ 𝑑1(log𝐹X + log𝐾plateau) ,
(10)

which we denote as the theoretical value for the log-luminosity distance, 
with 𝐷th

𝐿
written in units of cm. Here, 𝑎1 = 𝑎∕2(1 − 𝑏), 𝑏1 = 𝑏∕2(1 − 𝑏), 

𝑐1 = ((𝑏 − 1) log(4𝜋) +𝐶𝑜)∕(2(1 − 𝑏)) and 𝑑1 = −(1 − 𝑏)∕2.

On the other hand, the GP+CCH result can be used to compute the 
logarithm of the luminosity distances, which we treat as our observed 
value, log𝐷obs

𝐿
(𝑧). We have checked that its distribution is Gaussian in 

very good approximation. The corresponding covariance matrix can be 
obtained as follows,

𝐶obs,ij =
1

𝑁real

𝑁real∑
𝜇=1

(𝑥𝜇,𝑖 − �̄�𝑖)(𝑥𝜇,𝑗 − �̄�𝑗 ) , (11)

where 𝑥𝜇,𝑖 is the value of log𝐷obs
𝐿

(𝑧) at the 𝑖-th redshift for each real-

ization 𝜇 = 1, ..., 𝑁real.
If we first consider uncorrelated errors, 𝜎obs,i, i.e., if we consider a 

diagonal covariance matrix, we can build a chi-squared which takes the 
following form,

𝜒2(𝑎, 𝑏,𝐶𝑜, 𝜎𝑖𝑛𝑡) =
𝑁∑
𝑖=1

[log𝐷obs
𝐿

(𝑧𝑖) − log𝐷th
𝐿
(𝑧𝑖, 𝑎, 𝑏,𝐶𝑜)]2

(𝜎2obs,i + 𝜎2
𝑖𝑛𝑡
)

, (12)

where 𝑁 = 𝑛GRB. We sample the parameters of interest of the Dainotti 
relations 𝑎, 𝑏, 𝐶𝑜, and 𝜎𝑖𝑛𝑡 through a Monte Carlo Markov Chain (MCMC) 
analysis, making use of the Python public package emcee4 (Foreman-

Mackey et al., 2013), an implementation of the affine invariant MCMC 
ensemble sampler by Goodman and Weare (2010). The log-likelihood 
to be evaluated at each step of the Monte Carlo is

ln = −1
2

[
𝑁∑
𝑖=1

ln{2𝜋(𝜎2obs,i + 𝜎2
𝑖𝑛𝑡
)} + 𝜒2

]
=

= −1
2

𝑁∑
𝑖=1

ln{2𝜋(𝜎2obs,i + 𝜎2
𝑖𝑛𝑡
)}−

− 1
2

𝑁∑
𝑖=1

[log𝐷obs
𝐿

(𝑧𝑖) − log𝐷th
𝐿
(𝑧𝑖, 𝑎, 𝑏,𝐶𝑜)]2

𝜎2obs,i + 𝜎2
𝑖𝑛𝑡

.

(13)
4 https://emcee .readthedocs .io /en /stable/.

https://gitlab.com/mmoresco/CCcovariance
https://emcee.readthedocs.io/en/stable/


A. Favale, M.G. Dainotti, A. Gómez-Valent et al.

In comparison to previous studies, we also allow the five parameters 
defining the fundamental plane (log𝑇 ∗

X, 𝐹peak , 𝐾prompt , log𝐹X, 𝐾plateau, 
cf. Table A.1) to vary freely in the Monte Carlo. We treat them as 
nuisance parameters. These parameters are specific for each GRB. This 
means that, in the end, if we employ the 3D Dainotti relation (Eq. (1)) 
we have 5 × 𝑛GRB = 100 nuisance parameters. Of course, in the case 
of the 2D Dainotti relation (Eq. (5)), we only sample {log𝑇 ∗

X, log𝐹X, 
𝐾plateau}, so we deal with 3 × 𝑛GRB = 60 nuisance parameters. The pos-

terior distribution is given by the product of the above likelihood and 
the Gaussian priors, and the constraints for the parameters of interest 
𝑎, 𝑏, 𝐶𝑜, and 𝜎𝑖𝑛𝑡 are derived after performing the marginalization over 
the nuisance parameters.

Due to the high dimensionality of the problem, to ensure conver-

gence we choose to use a sufficiently large number of walkers (∼ 220
for the 3D relation and ∼ 140 for the 2D one) as well as a large num-

ber of steps in the parameter space 𝑛steps = 6 ⋅ 105. We make use of the

Python package GetDist (Lewis, 2019) to obtain all the 1D posteri-

ors and 2D contour plots shown in this paper, as well as the constraints 
for each parameter.

Given the novelty of our approach and in anticipation of future appli-

cations, in this work we evaluate the proposed methodology by assessing 
the impact of:

1. The prior choice in the Monte Carlo analyses. Given our aim to 
develop a method that is as model-independent as possible, we ex-

tensively test both Gaussian and flat priors to verify the robustness 
and compatibility of the results obtained with each.

First, we use Gaussian priors on the parameters of interest 𝑎, 𝑏, 𝐶𝑜 , 
and 𝜎𝑖𝑛𝑡. To build the priors we use the mean values and the 1𝜎 un-

certainties from the fundamental plane fitting analysis for the X-ray 
Platinum sample with 20 GRBs (see Sec. 3.1). Their values are listed 
in Table 1. Then, we gradually increase the standard deviation of 
the Gaussian to 2-, 3- and 5𝜎, to reduce the informative imprint of 
the prior. Nonetheless, it is important to mention that to preserve 
the physical meaning of these parameters, we impose bounds on 𝑎, 𝑏
and 𝜎𝑖𝑛𝑡. In particular, imposing 𝑎 < 0 ensures that there is an anti-

correlation between 𝐿𝑋 and 𝑇 ∗
𝑋

and when the value of 𝑎 is close to 
−1 this implies that the energy reservoir of the plateau remains con-

stant (see Sec. 2). However, we will show that this anti-correlation 
is indeed maintained regardless of the physical cut 𝑎 < 0, as posi-

tive values of 𝑎 are consistently distant from the region preferred 
by the data in all the calibration results presented in this work. Re-

garding the 𝑏 parameter, we impose the prior 𝑏 > 0, which is driven 
by observational evidence and theoretical predictions. A negative 
𝑏 is not physically supported, as it would mean that the higher the 
peak luminosity, the less bright the plateau. Indeed, as shown in, 
e.g., Dainotti et al. (2011b); Hascoet et al. (2014); Dainotti et al. 
(2015b, 2017a), there is observational evidence that the more ki-

netic energy there is in the prompt, the more is transferred in the 
afterglow phase. Thus, there is a positive correlation between 𝐿𝑋

and 𝐿peak , which supports the choice of the prior. In addition, we 
will see that the use of this prior is also motivated by the strong 
degeneracy between 𝑏 and 𝐶0, which cannot be broken with cur-

rent data within this model-independent approach. Imposing 𝑏 > 0
allows us to break this degeneracy and thus avoid ending up in un-

physical regions of the parameter space. Finally, the intrinsic scatter 
has to be greater than zero by definition. Lastly, we adopt flat priors 
on the parameters of interest, by transforming the previous Gaus-

sian priors into uniform distributions. This conversion can be done 
in several ways and by applying different definitions. We decided to 
use the same approach employed by Dainotti et al. (2022a),5 which 
requires

5 Therein the authors test the impact of the prior choice in a similar way but 
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𝜇 =
𝑥1 + 𝑥2

2
,

𝜎 =

√
(𝑥2 − 𝑥1)2

12
.

(14)

These are the relations to transform a Gaussian distribution with 
mean 𝜇 and standard deviation 𝜎 to a uniform distribution 
 (𝑥1, 𝑥2) with the same mean and standard deviation.

2. The covariance matrix of the reconstructed function log𝐷obs
𝐿

(𝑧) at 
the GRB redshifts, 𝐶obs, as defined in Eq. (11). The total covari-

ance matrix, 𝐶T, incorporates also the contribution of the intrin-

sic scatter 𝜎int , which is the same for all the GRB data points. 
Its elements read 𝐶T,ij = 𝐶obs,ij + 𝛿𝑖𝑗𝜎

2
𝑖𝑛𝑡

. Hence, if we define Δ𝑖 ≡
log𝐷obs

𝐿
(𝑧𝑖) − log𝐷th

𝐿
(𝑧𝑖), generalizing Eq. (13), we can write the 

new log-likelihood

ln = −𝑁

2
ln(2𝜋) − 1

2
lndet(𝐶T) −

1
2

𝑁∑
𝑖,𝑗=1

Δ𝑇
𝑖
(𝐶−1

T )𝑖𝑗Δ𝑗 , (15)

which duly takes into account the correlations.

5. Results

In this section, we present the results of the calibration of the GRB 
correlation parameters with CCH. Specifically, in Sec. 5.1, we show 
how we can obtain the luminosity distance at the GRB redshifts with-

out adopting any cosmological model, making use of the GP algorithm. 
Then, in Secs. 5.2 and 5.3, we use this result to perform the calibration 
of the 3D Dainotti correlation, without considering and considering the 
redshift evolution of the coefficients, respectively. These results lead us 
to study, in Sec. 5.4, the 2D Dainotti correlation, defined in terms of the 
X-ray time and luminosity at the end of the plateau emission. In all the 
aforementioned analyses, we investigate the impact of the prior choice 
on our results, drawing interesting conclusions about the calibrating role 
of the CCH, which we then discuss in detail in Sec. 6. In Sec. 5.5, we 
finally present the extension of the distance ladder obtained from the 
calibrated GRBs.

5.1. GRB luminosity distance from CCH and Gaussian processes

We first reconstruct the Hubble function using the CCH data and the 
associated covariance matrix described in Sec. 3.2, making use of the 
public package Gaussian Processes in Python (GaPP),6 first developed by 
Seikel et al. (2012). We adopt the Matérn32 kernel and obtain the full 
distribution of its hyperparameters with emcee, as explained in Sec. 4. 
This is something that has not been done in previous works that em-

ploy the GP technique to calibrate GRB correlations (either with SNIa 
or CCH), and this is certainly important to properly compute the un-

certainty of the reconstructed function. This also applies to the use of 
the CCH covariance matrix. Neglecting the CCH correlations in the GP 
reconstruction has a modest impact on the final shape of 𝐻(𝑧), as we 
have explicitly checked. The relative difference in units of 𝜎 between the 
correlated and uncorrelated CCH reconstructions is at most 15%, drop-

ping at 1% in the data-poor region, for 𝑧 ≳ 1 (with 𝜎 being the largest 
uncertainties of the two reconstructions, i.e. the CCH-correlated one). 
Regarding the selection of the kernel, in Favale et al. (2023), it is shown 
that different (stationary) kernels provide very similar results when the 
same CCH data set is used to reconstruct 𝐻(𝑧) and also that the most 
conservative choice is the Matérn32 covariance function, since it is the 
one that leads to the largest error budget, see the aforesaid reference 
for details. Supported by these previous results, we follow the same ap-

proach here. We reconstruct the Hubble function within the CCH data 
redshift range, i.e. 𝑧 ≤ 1.96. The resulting shape of 𝐻(𝑧) is shown in 
6 https://github .com /carlosandrepaes /GaPP.

https://github.com/carlosandrepaes/GaPP
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Fig. 2. Top panel: Reconstruction at 2𝜎 C.L. of 𝐻(𝑧) with GP. We show the CCH 
data (in black) and the individual values of 𝐻(𝑧) at the various GRB redshifts (in 
blue), both at 1𝜎 C.L. Bottom panel: The corresponding shape of log𝐷𝐿(𝑧). The 
argument of the log is made dimensionless by dividing the luminosity distance 
by 1 Mpc.

Table 1

Priors adopted for the 3D relation analysis. In the first col-

umn, we report the mean values and the corresponding 1𝜎
uncertainties obtained from the GRB fundamental plane 
fitting (FPBF) analysis, from which we take the Gaussian 
priors at n-𝜎. In the second and third columns, we list, 
respectively, the uniform prior ranges at 3- and 5𝜎 C.L., 
computed using Eq. (14). We impose physical cuts on the 
parameters (𝑎 < 0, 𝑏 > 0, 𝜎𝑖𝑛𝑡 > 0). This is why some of the 
boundaries in the last two columns coincide.

FPBF 3𝜎 5𝜎

𝑎 −0.81 ± 0.17 (-1.68, 0) (-2.26, 0)

𝑏 0.50 ± 0.17 (0, 1.37) (0, 1.95)

𝐶𝑜 24.65 ± 8.91 (-22,71) (-53,102)

𝜎𝑖𝑛𝑡 0.35 ± 0.07 (0, 0.72) (0, 0.97)

Fig. 2, together with the corresponding result for 𝐷𝐿(𝑧), obtained by 
using the GP-shapes of 𝐻(𝑧) and Eq. (4).

5.2. Calibration of the 3D Dainotti relation

Once obtained the reconstruction of log𝐷obs
𝐿

(𝑧) together with its un-

certainties, we can constrain the correlation parameters in Eq. (1) as 
well as the intrinsic scatter of the plane, by means of the likelihood in 
Eq. (13). As already mentioned in Sec. 4, to ensure the efficiency of the 
method and cross-check the stability of the results, we need to quan-

tify the impact of the prior choice on the parameters of interest 𝑎, 𝑏, 𝐶𝑜 , 
and 𝜎𝑖𝑛𝑡 in the Monte Carlo sampling. We thus employ Gaussian priors 
with a mean equal to that obtained in the fundamental plane (FP) fitting 
analysis and a standard deviation equal to 1, 2, 3 or 5 times the one ob-

tained in the FP analysis (cf. Table 1). We present our results in Fig. 3. 
We then repeat the analysis making use of flat priors. We apply the con-

version from Gaussian to flat priors of Eq. (14). However, in Table 1, we 
only report the results of this conversion for the 3- and 5𝜎 cases since 
they lead to the most conservative results. We show the corresponding 
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Fig. 3. 1D posteriors and 2D contours at 68% and 95% C.L. obtained in the 
analyses of the 3D Dainotti relation, assuming the n-𝜎 progression for Gaussian 
priors and the physical cuts 𝑎 < 0, 𝑏 > 0, 𝜎𝑖𝑛𝑡 > 0. Results obtained in the different 
cases are all consistent with each other. However, the 2𝜎, 3𝜎 and 5𝜎 priors are 
more conservative and allow for more model-independent results.

Fig. 4. 1D posteriors and 2D contour plots at 68% and 95% C.L. obtained in the 
analysis of the 3D Dainotti relation using Gaussian priors and the corresponding 
flat priors from Eq. (14) at 3- and 5𝜎. We use dashed lines for the results obtained 
with flat priors. They match almost perfectly with those obtained with Gaussian 
priors.

• Fig. 3 shows that results obtained with different Gaussian priors 
are all compatible with each other within errors. The largest dif-

ferences are found with the 1𝜎 prior. This difference can be easily 
understood. In the 1𝜎 prior case, we only let the walkers explore a 
very limited region of the parameter space around the fundamental 

plane mean values.
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Table 2

Constraints on the parameters of interest for the 3D and 2D Dainotti relations 
sampled assuming the baseline set-up, i.e. uniform priors at 5𝜎 C.L., which leads 
to the most conservative results in this paper (see also Figs. 4 and 8). We report 
for each parameter the mode and mean value together with its associated un-

certainty at 68% C.L., except for 𝑏, for which we give an upper bound at 95% 
C.L.

𝑎 𝑏 𝐶𝑜 𝜎int

3D relation Mode values −1.03 < 0.21 50.17 0.20
Mean −1.00 ± 0.16 < 0.21 47.05+4.21−1.35 0.21+0.03−0.05

2D relation Mode values −1.07 51.19 0.19
Mean −1.04 ± 0.16 51.16 ± 0.53 0.21+0.03−0.05
• Interestingly, as soon as we move away from the 1𝜎 prior and the 
priors become less informative, the posteriors for 𝑎, 𝑏, 𝐶𝑜 , and 𝜎𝑖𝑛𝑡
do not significantly change between different prior choices. This 
suggests that the method is stable. This is even more evident if we 
look at Fig. 4, which shows that passing from Gaussian to uniform 
priors does not alter the posteriors significantly. Given the stability 
of the results, hereafter, we will consider the set-up with flat priors 
at 5𝜎 as our baseline, being this the most conservative choice. We 
report the mode and mean values of the one-dimensional marginal-

ized distributions for each of the parameters of interest in Table 2.

• We find no preference for a non-zero value of 𝑏, suggesting that 
this parameter is not playing a major role in the evaluation of 
the cosmological results and hence we can use the 2D relation in-

stead. Actually, its upper bound at 95% C.L. stands around 0.2 in 
all the analyses presented so far. From a Bayesian perspective, we 
are therefore motivated to consider the 2D Dainotti relation, given 
by Eq. (5). We will study this scenario in Sec. 5.4.

• There is a strong degeneracy between 𝐶𝑜 and 𝑏. The one-dimens-

ional posterior of the normalization factor exhibits a cut-off around 
𝐶𝑜 ∼ 52, which is due to the aforementioned correlations and the 
physical bound 𝑏 > 0 employed in our analysis of the 3D Dainotti 
relation (see Sec. 4). Indeed, in the 2D case we consistently find 
𝐶𝑜 ∼ 51, since we are essentially saturating the prior by setting 𝑏 =
0, cf. Sec. 5.4.

Finally, in order to quantify the impact of correlations between dif-

ferent redshifts in log𝐷obs
𝐿

(𝑧) obtained from GP+CCH, we perform an 
additional analysis in which we also include the contribution of the non-

diagonal terms of the covariance matrix 𝐶obs (Eq. (11)) by making use 
of the log-likelihood in Eq. (15). We compare the results obtained in 
this new analysis with those discussed above, obtained when we only 
consider a diagonal covariance matrix. Moreover, we also investigate 
the scenario in which we neglect the uncertainties of the reconstructed 
luminosity distances and only consider the effect of the intrinsic scat-

ter, 𝐶T,ij = 𝛿𝑖𝑗𝜎
2
𝑖𝑛𝑡

. The results are presented in Fig. 5, illustrating that 
the posteriors for the parameters 𝑎, 𝑏, 𝐶𝑜, and 𝜎𝑖𝑛𝑡 are insensitive to the 
GP+CCH uncertainties. In Sec. 6, we will provide two interpretations of 
this conclusion.

5.3. Calibration of the 3D Dainotti relation including redshift evolution 
corrections

To ensure the generality of our treatment, it is worth discussing the 
role of the corrections due to evolutionary effects. Indeed, each phys-

ical feature of the three-dimensional GRB fundamental plane, 𝐿X , 𝑇 ∗
X

and 𝐿peak , is affected by selection biases due to instrumental thresh-

olds and redshift evolution of the variables involved in the correlations. 
It is shown in (Dainotti et al., 2013a, 2015a,b, 2020a, 2022b,c) that 
in order to correct for these effects, one can employ the Efron & Pet-

rosian method (Efron and Petrosian, 1992), which tests the statistical 
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dependence among 𝐿X, 𝑇 ∗
X and 𝐿peak . For details, see also Dainotti et 
Fig. 5. 1D posteriors and 2D contour plots at 68% and 95% C.L. for the param-

eters of the 3D Dainotti relation, obtained assuming flat priors at 5𝜎. We study 
the impact of accounting for correlations between redshifts in the luminosity 
distance estimates reconstructed with GP+CCH (dotted green), neglecting those 
correlations (dotted red) and completely ignoring the uncertainties in the recon-

struction (in pink). Differences are derisory.

al. (2017b, 2022a). Once one introduces this correction, the expression 
for the GRB fundamental plane takes the following form:

log𝐿X − 𝑘𝐿𝑥
log(1 + 𝑧) =𝑎𝑒𝑣(log𝑇 ∗

X − 𝑘𝑇 ∗
X
log(1 + 𝑧))+

+ 𝑏𝑒𝑣(log𝐿peak − 𝑘𝐿peak
log(1 + 𝑧))+

+𝐶𝑜,𝑒𝑣 .

(16)

The subscript ev is employed here to distinguish the relation parameters 
from those employed in the non-evolutionary case, while 𝑘𝐿𝑥

, 𝑘𝑇 ∗
X

and 
𝑘𝐿peak

represent the evolutionary coefficients related to each physical 
feature.

Starting from Eq. (16), one can derive the new likelihood, which now 
accounts for redshift evolution effects, thus assessing how they can af-

fect the correlation parameters. We evaluate the impact of flat priors on 
𝑎𝑒𝑣, 𝑏𝑒𝑣, 𝐶𝑜,𝑒𝑣, 𝜎𝑖𝑛𝑡,𝑒𝑣 but only at 3- and 5𝜎, motivated by our previous re-

sults. To use the transformation in Eq. (14), we started from the results 
obtained from the analysis of the Platinum sample presented in (Dainotti 
et al., 2022a), which, at 1𝜎, read: 𝑎𝑒𝑣 = −0.85 ± 0.12, 𝑏𝑒𝑣 = 0.49 ± 0.13, 
𝐶𝑜,𝑒𝑣 = 25.4 ± 6.9, and 𝜎int,ev = 0.18 ± 0.09. For the evolutionary coeffi-
cients entering Eq. (16), we take advantage of two results obtained for 
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Fig. 6. 1D posteriors and 2D contour plots at 68% and 95% C.L. for the evolu-

tionary coefficients 𝑘𝐿X
and 𝑘𝐿peak

, sampled assuming Gaussian priors at 3𝜎 C.L. 
from the Platinum sample (in green) or from the Whole sample (in magenta). 
For the parameters 𝑎𝑒𝑣, 𝑏𝑒𝑣, 𝐶𝑜,𝑒𝑣 (not shown here) we impose flat priors at 5𝜎, 
cf. the main text and Fig. 7 for details.

the full Platinum sample (50 GRBs) and also for the Whole sample (222 
GRBs) in (Dainotti et al., 2022a). At 68% C.L. they read, respectively:

𝑘𝐿𝑥
= 1.37+0.83−0.93, 𝑘𝑇 ∗

X
= −0.68+0.54−0.82, 𝑘𝐿peak

= 0.44+1.37−1.76 ,

𝑘𝐿𝑥
= 2.42+0.41−0.74, 𝑘𝑇 ∗

X
= −1.25+0.28−0.27, 𝑘𝐿peak

= 2.24 ± 0.30 .
(17)

The above constraints are obtained assuming a flat ΛCDM model. 
We decide to proceed in two ways:

• Keep them fixed (Case 1);

• Let them vary in the Monte Carlo analysis, treating them as nuisance 
parameters (Case 2).

In Case 1), we just fix the 𝑘’s to the central values reported above. In 
Case 2), we also use their uncertainties to build the corresponding pri-

ors. This is equivalent to propagating them to the parameters of interest 
in the MCMC analysis. This additional case is indeed performed to coher-

ently reduce the model dependency level with this work’s investigation 
line. Notice, though, that since 𝑘𝑇 ∗

𝑋
does not depend on cosmology (be-

ing related to a measure of a characteristic time scale for the end of the 
plateau emission), we keep it fixed while we treat as nuisance param-

eters 𝑘𝐿X
and 𝑘𝐿peak

. Since, as one can appreciate from Eq. (17), the 
Platinum constraints already come with large errors due to the small 
sample size and a large number of parameters, we decide to set Gaus-

sian priors (instead of uniform priors) at 3𝜎 on both 𝑘𝐿X
and 𝑘𝐿peak

to 
avoid non-physical results for these parameters. We also tested what 
happens if we consider uniform priors at 3𝜎. We have checked that the 
results for 𝑎𝑒𝑣, 𝑏𝑒𝑣, and 𝐶𝑜,𝑒𝑣 are not affected by this choice.

In Fig. 6, we show the corresponding posteriors of the evolution-

ary coefficients. At 68% C.L., we obtain 𝑘𝐿X
= 2.50+1.06−1.05 and 𝑘𝐿peak

=
0.20+4.67−4.66 when we employ priors from the Platinum sample, while we 
find 𝑘𝐿X

= 3.12 ± 0.90 and 𝑘𝐿peak
= 2.23 ± 0.89 from the Whole sample. 

As expected, the uncertainties for the latter case are smaller since the 
fundamental plane fitting analysis for the Whole sample has more con-
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straining power (see Eq. (17)), being the data set larger. We here notice 
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Table 3

Priors adopted for the 2D relation analysis. The 
first column reports the mean values and the 
corresponding 1𝜎 uncertainties obtained from 
the GRB fundamental plane fitting analysis. In 
the next two columns, we report uniform prior 
ranges at 3- and 5𝜎 C.L., respectively, computed 
from Eq. (14).

FPBF 3𝜎 5𝜎

𝑎 −1.03 ± 0.16 (-1.85, -0.2) (-2.39, 0)

𝐶𝑜 51.2 ± 0.52 (48, 54) (47,56)

𝜎𝑖𝑛𝑡 0.43 ± 0.08 (0.01, 0.85) (0, 1.13)

that from our analysis, similarly to the analysis performed by Dainotti et 
al. (2022a) the parameters of the evolution are compatible within 1𝜎 for 
both 𝑘𝐿X

, 𝑘𝐿peak
showing the reliability of this analysis as well. For what 

concerns the parameters of interest, we prefer to show their constraints 
in a whisker plot in Fig. 7, to compare the results throughout all the 
different cases described above (i.e., Cases 1 and 2, and considering no 
evolution), using flat priors at 5𝜎 C.L.7 It is remarkable to notice, again, 
that different settings provide very stable results on the correlation pa-

rameters, even when redshift evolution corrections are accounted for. 
Additionally, despite very small differences, all the scenarios lead to a 
tight relation, especially when the 𝑘’s vary freely. Indeed, in this case we 
find 𝜎𝑖𝑛𝑡 = 0.20+0.03−0.05 instead of 𝜎𝑖𝑛𝑡 = 0.22+0.03−0.05 (with mode values 0.18 
instead of 0.20, respectively). If we consider that 𝜎𝑖𝑛𝑡 is a measure of the 
scatter, which can depend on the spin period and magnetic field vari-

ability in each GRB, values so close to each other mean that the system 
has similar values of these parameters, with small variations.

5.4. Calibration of the 2D Dainotti relation

As seen in Secs. 5.2 and 5.3, the CCH calibration leads to a result for 
𝑏 that is compatible with 0 at 68% C.L. Thus, it is worth analyzing the 2D 
relation, which incorporates the properties of the end time of the plateau 
emission and the X-ray luminosity. The parameters to sample are, in this 
case, 𝑎, 𝐶𝑜, and 𝜎int . Starting from Eq. (5), the same reasoning used to 
obtain the log-luminosity distance in Eq. (10) applies here, where we 
drop the contribution of log𝐿peak . It is straightforward to see that Eq. 
(10) reduces to

log𝐷th
𝐿
= 𝑎1 log𝑇 ∗

X + 𝑐1 + 𝑑1(log𝐹X + log𝐾plateau) , (18)

where now 𝑎1 = 𝑎∕2, 𝑐1 = (− log(4𝜋) + 𝐶𝑜)∕2 and 𝑑1 = −1∕2. On the 
same line of Sec. 5.2, we assess the impact of the different priors in 
the MCMC analysis. Their values are listed in Table 3 while the MCMC 
results are shown in Fig. 8.

We report both the mode values and the means of the one-

dimensional marginalized distributions in Table 2. The constraint we 
obtain for 𝑎 resonates well with the expectations: a slope of ≈ −1 im-

plies a constant energy reservoir during the plateau phase (Dainotti et 
al., 2013a; Stratta et al., 2018). In particular, we can ascribe this phase to 
energy injection by newly born neutron stars (Dai and Lu, 1998; Zhang 
and Meszaros, 2001), and this result supports that the rotational energy 
of the latter is constant, indicating that they can be treated as a standard 
candle (Wang et al., 2022). Here, however, we clarify that the construc-

tion of the Platinum sample starts from phenomenological choices of the 
flatness of the plateau, the absence of flares, etc. and therefore, in our 
approach, we can independently obtain the magnetar-driven parame-

ters. Indeed, the 𝑎 slope is independent of the initial priors.

7 We have also tested the case with uniform priors at 3𝜎 on 𝑎𝑒𝑣, 𝑏𝑒𝑣, 𝐶𝑜,𝑒𝑣, 𝜎𝑖𝑛𝑡,𝑒𝑣. 
However, for a specific set of 𝑘’s (Whole or Platinum), the posteriors from 3- or 
5𝜎 do not change. Therefore, we prefer to show only the comparison between 

the analyses for a specific prior range choice (in this case, 5𝜎).



Journal of High Energy Astrophysics 44 (2024) 323–339A. Favale, M.G. Dainotti, A. Gómez-Valent et al.

Fig. 7. Whisker plot for the parameters of interest evaluated at 68% and 95% C.L. (for 𝑏 we only show its upper bounds), with the dots indicating the mode values of 
the one-dimensional marginalized distributions. The orange line passes through the No Evo (no evolution) mode values, obtained from the analysis with flat priors 
at 5𝜎 in Sec. 5.2. With W we denote the results obtained considering the evolutionary coefficients from the Whole sample, the Platinum is instead indicated with P. 
The label 𝑘𝑓𝑖𝑥𝑒𝑑 refers to the analyses in which the 𝑘’s are fixed, whereas 𝑘3𝜎 refers to those analyses in which the 𝑘’s are allowed to vary within 3𝜎. For details, we 
refer the reader to the main text in Sec. 5.3. In the cases with evolution, 𝑎, 𝑏, 𝐶𝑜, 𝜎𝑖𝑛𝑡 become, respectively, 𝑎𝑒𝑣, 𝑏𝑒𝑣, 𝐶𝑜,𝑒𝑣, 𝜎𝑖𝑛𝑡,𝑒𝑣.
Fig. 8. 1D posteriors and 2D contour plots at 68% and 95% C.L. from the MCMC 
carried out for the 2D Dainotti relation assuming flat priors at 3- and 5𝜎, in cyan 
and blue, respectively. The results match each other, showing also in the case 
of the 2D relation the insensitivity of the analysis to the prior choice.

In the 2D Dainotti relation, we essentially set 𝑏 = 0, so we break 
the strong degeneracy between this parameter and 𝐶𝑜 (see Sec. 5.2 and 
Fig. 9). This explains why the uncertainty on 𝐶𝑜 decreases by 80% com-

pared to the baseline constraint obtained in Sec. 5.2. This fact may 
enhance our ability to constrain cosmology.

Finally, we assess the impact of the correlations in the values of 
log 𝐷obs

𝐿
obtained from the GP reconstruction by applying to the 2D 

relation the procedure explained at the end of Sec. 5.2. We find that our 
conclusions remain valid within this framework as well.

5.5. The extension of the distance ladder with and without evolution

Supported by the stability of the results achieved in the previous 
sections, it becomes natural to ask how such results can be leveraged 
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in cosmological applications. As already mentioned, the advantage of 
Fig. 9. Comparison between the MCMC results for the 3D and 2D Dainotti rela-

tions obtained with the baseline set-up in Secs. 5.2 and 5.4, respectively.

using probes such as GRBs lies in their ability to extend the ladder be-

yond SNIa and BAO redshifts. This is the reason why we now employ 
the calibration results obtained making use of the GRB data at 𝑧 ≲ 2 to 
obtain luminosity distances from the remaining GRBs contained in the 
Platinum sample and cover the region up to 𝑧 = 5 (we refer the reader 
to Table A1 of Cao et al. (2022a) for these additional GRBs data). We 
first check that the correlation coefficients between the calibration and 
nuisance parameters of the 20 GRBs involved in the calibration process 
are negligible and also that the posterior distributions of the nuisance 
parameters are highly in accordance with the corresponding prior dis-

tributions. Indeed, we find that the posterior and prior distributions are 
almost indistinguishable, with only a couple of exceptions (one nuisance 
parameter in two out of the 20 redshift points) in which we find notice-

able changes, which remain in any case small (≲ 1.9𝜎). This allows us to 
sample the nuisance parameters of the GRBs at 𝑧 > 2 together with the 

nuisance and calibration parameters of those GRBs at 𝑧 < 2 to finally 
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Fig. 10. Upper plot: The extended distance ladder. The GP+CCH reconstruction 
of the logarithm of the luminosity distance as a function of the redshift is shown 
in light green. The calibrated GRB data obtained with and without evolution 
effects are presented in gray and light red, respectively. The dotted vertical line 
at 𝑧 = 2 is used to mark the border between the data employed in the calibration 
process and those used only in the extension of the ladder. The error bars of 
the calibrated GRB distances stand at 1𝜎 C.L., while for the GP result we show 
both the 1𝜎 and 2𝜎 bands. The luminosity distance is given in Mpc; Middle 
plot: Weighted mean of the bias between the GP+CCH reconstruction and the 
calibrated GRB data with its uncertainty, as given in Eq. (19), when the evolution 
effects are neglected. Lighter-colored boxes are obtained when correlations are 
accounted for, see Sec. 5.5 for details; Bottom plot: The same as in the middle 
plot, but considering the evolution effects.

obtain the luminosity distances and build the extended distance ladder. 
In this way, we make sure to propagate the errors from the MCMC anal-

ysis to the final result. In particular, on top of these errors, we add the 
contribution of the intrinsic scatter to obtain the final uncertainties on 
the GRB luminosity distances.

In the upper plot of Fig. 10, we present the extended distance lad-

der obtained with our baseline calibration without considering evolution 
effects and compare it with the one obtained when the latter are also 
taken into account. In particular, for the latter, we employ the results 
obtained when the evolutionary coefficients, 𝑘𝐿X

and 𝑘𝐿peak
, are left 

free to vary according to the priors from the Whole sample since they 
lead to the tightest results and the smallest 𝜎𝑖𝑛𝑡 for the Dainotti rela-

tions (see Sec. 5.3). To quantify possible deviations from the GP+CCH 
distances, for each calibration result, we compute the bias between 
their mean and the mean of the GP+CCH reconstruction at each red-

shift, 𝛽 = log𝐷GRB
𝐿

− log𝐷GP+CCH
𝐿

. In the calibrated GRB data points 
of log𝐷𝐿(𝑧) obtained without evolution effects, displayed in the upper 
plot of Fig. 10, one can already see a trend towards negative values of 
𝛽 in the region 𝑧 > 2. The latter behavior was already found in previous 
works; see, e.g., Postnikov et al. (2014). To keep track of this trend in a 
more precise way, we compute a binned bias. More concretely, we opt 
to bin the redshift range, composed of 50 points, in 10 equi-populated 
redshift bins. In order to account for the existing correlations between 
the various data points in each bin, we compute the weighted mean and 
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its uncertainty as follows:
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𝛽𝑘 =

∑𝑓𝑘
𝑖,𝑗=𝑒𝑘

𝛽𝑖𝜔𝑖𝑗∑𝑓𝑘
𝑖,𝑗=𝑒𝑘

𝜔𝑖𝑗

, �̃�𝑘 =
√√√√ 1∑𝑓𝑘

𝑖,𝑗=𝑒𝑘
𝜔𝑖𝑗

, (19)

with 𝜔𝑖𝑗 = (𝐶−1)𝑖𝑗 the elements of the inverse of the covariance matrix 
of the GRB luminosity distances, 𝑒𝑘 = 1 + 5(𝑘 − 1), and 𝑓𝑘 = 5𝑘. This is 
an accurate computation since the distribution of the GRB luminosity 
distances is Gaussian in very good approximation, as we have explicitly 
checked and in accordance with a recent work of Dainotti et al. (2023). 
We present our results in the middle and bottom panels of Fig. 10, ne-

glecting and considering the evolution corrections, respectively. In each 
of these two plots, we also show the weighted bias obtained when we ne-

glect the off-diagonal terms of 𝐶 . By comparing the middle and bottom 
plots, one can see that accounting for redshift evolution corrections is 
very important to decrease the bias in the region 𝑧 > 2. In fact, when no 
evolution effects are considered, there is a clear trend towards smaller 
luminosity distances, as already noted in the upper plot of Fig. 10. We 
show now that correcting for evolutionary effects enables us to cure this 
trend, and this is even more true when we consider the existing corre-

lations between the various GRB luminosity distances. Indeed, it is a 
well-known result that the physical properties of astrophysical objects 
at high 𝑧 are more affected by the Malmquist bias (Malmquist, 1922) 
due to the difficulty of observing faint events at larger distances. This 
proves that if one wants to exploit probes at higher 𝑧 for cosmological 
purposes, it is of utmost importance to use correlations in which possi-

ble biases and effects of redshift evolution have been properly evaluated 
and corrected.

6. Discussion

All the analyses presented in Secs. 5.2-5.4 share a common result. 
Our method is stable under the choice of the priors on the parameters 
that characterize the plane 𝑎, 𝑏, 𝐶𝑜, 𝜎𝑖𝑛𝑡. Even when using Gaussian priors 
at 1𝜎, the posteriors on the parameters are compatible within ∼ 1 −2𝜎 to 
the other cases with wider priors. The differences between all the cases 
analyzed are very small, although we achieve the tightest constraints 
for the 3D relation parameters when flat priors at 5𝜎 are employed (see 
for clarity Fig. 4). In addition, we find that the contribution of the peak 
luminosity in the prompt emission to the 3D Dainotti relation is not par-

ticularly favored from a Bayesian perspective, but cannot be excluded 
either. Our results only set an upper bound on 𝑏. More specifically, we 
find that 𝑏 ≲ 0.2 at 95% C.L. This result differs from what has been pre-

viously derived in analyses in which, to avoid the circularity problem, 
the parameters of the correlations are varied together with the cosmo-

logical parameters in a simultaneous fitting. In that case, the 3D relation 
is strongly preferred over the 2D one. This preference is supported by 
the analysis in (Cao et al., 2022a), which considers six different flat 
and non-flat dark energy models and different GRBs data sets, which 
also include the full Platinum sample. However, our findings are not 
only fully independent of cosmological models but are also in agree-

ment with theoretical predictions and reach a level of accuracy suitable 
for constraining cosmological parameters (see, in particular, the results 
in Sec. 5.4). Since we find 𝑏 to be compatible with 0 at 68% C.L. when 
we employ priors at 3 and 5𝜎, we feel motivated to also study the 2D 
relation in this work.

The baseline calibration both for the 2D and 3D Dainotti relations 
leads to an intrinsic scatter of the order of ≈ 0.2 with a relative preci-

sion of ∼ 20%. Specifically, for the 3D relation we obtain 𝜎𝑖𝑛𝑡 = 0.21+0.03−0.05. 
If compared with standard analyses, such as the fundamental plane fit-

ting result with the same number of GRBs (see Table 1), we obtain a 
decrease of ∼ 40% in its central value, outlining the achievement of a 
tighter relation. In particular, we can also quantify the compatibility of 
the two aforementioned results by calculating the relative difference of 
𝜎𝑖𝑛𝑡,FP compared to 𝜎𝑖𝑛𝑡 normalized by the maximum of the two uncer-

tainties which reads as: (𝜎𝑖𝑛𝑡,FP − 𝜎𝑖𝑛𝑡)∕𝛿, with 𝛿 =max(𝛿𝜎𝑖𝑛𝑡 , 𝛿𝜎𝑖𝑛𝑡,FP ). We 
find it to be 1.99, showing that the calibration result is consistent within 

2𝜎 with the standard (model-dependent) analysis results. As a term of 
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comparison, employing a different OHD data set and thus a different set 
of 23 GRBs, Tian et al. (2023) calibrate the 3D Dainotti relation with the 
D’Agostini method and obtain a very large scatter, 𝜎𝑖𝑛𝑡 = 0.70 ±0.10. In 
general, a lower dispersion is expected when GRBs are employed closer 
to the plane. One example can be found in (Dainotti et al., 2022b), where 
the 10 GRBs closest to the plane are selected from the Platinum sample, 
leading to 𝜎𝑖𝑛𝑡 = 0.05 ±0.05 (assuming a flat ΛCDM model). This analy-

sis has the scope to show how many of these GRBs should be used in the 
future once more data is available in order to achieve the same precision 
of the SNIa standard candles in constraining cosmological parameters. 
In this regard, we can ask ourselves what impact the intrinsic scatter of 
the GRBs has on the calibration with CCH. At the end of Sec. 5.2, we 
actually perform an analysis to answer this question. Indeed, we have 
seen that our results remain unchanged whether or not we include the 
uncertainties on the reconstruction of the luminosity distance in the like-

lihood. This result holds for both the 2D and 3D relations and has two 
main implications. First, it confirms even more the stability of all the 
results obtained throughout this work. It establishes the CCH as a reli-

able calibrator for pinpointing a specific GRB sub-set with low intrinsic 
scatter. This is remarkable if one considers that this result holds even 
when the redshift evolution corrections are accounted for, thus making 
the relation and the results themselves more robust if also compared 
with previous results in the literature. Indeed, we obtain a mode value 
for 𝜎𝑖𝑛𝑡 which stands between 0.18 and 0.20, the lowest being obtained 
when also the evolutionary coefficients are left free in the analysis. As a 
comparison, Dainotti et al. (2022c) find 𝜎𝑖𝑛𝑡 = 0.22 ± 0.10, and most re-

cently this value has been better constrained in (Dainotti et al., 2022a), 
where they find 𝜎𝑖𝑛𝑡 = 0.18 ±0.07. Both results are obtained using the full 
Platinum sample and assuming a flat ΛCDM model. When we compare 
the uncertainty on this latter result including the correction for evo-

lution, 𝛿𝜎𝑖𝑛𝑡 = 0.07, with our result, 𝛿𝜎𝑖𝑛𝑡 = 0.04, we obtain a decrease 
of 43%. This result makes this method competitive with standard ap-

proaches, especially for using GRBs for cosmological purposes in light 
of the already discussed circularity problem. Additionally, there is still 
a non-negligible dispersion on the GRB plane compared to other probes. 
As it stands, this dispersion is sufficiently large to prevent a better cali-

bration regardless of the potential increase in the amount of CCH data at 
𝑧 ≲ 2 through dedicated galaxy surveys in the future (see, e.g., Moresco 
et al. (2022)).

Fig. 10 is exactly telling us that, although GRB data alone cannot 
achieve yet the same constraining power as other low-redshift probes 
(see the difference in the error bars with respect to GP+CCH at the low-

est redshifts), their strength lies precisely in their capability of extending 
the ladder to higher redshifts. We remark here that this has motivated 
in the last two decades the effort to build several correlations that can 
be used in this context, provided that understanding of their physical 
meaning and reliability regardless of selection biases do hold. However, 
these two aspects have not yet been fully addressed in many of the cor-

relations. These correlations have been similarly calibrated with low-𝑧

anchors, and their intrinsic scatter ranges from ∼ 0.2 to 0.55. For in-

stance, the Amati relation has been widely calibrated with SNIa using 
GP or simultaneous fitting analyses. The former approach was followed, 
for example, by Liu et al. (2022) and Liang et al. (2022), who found an 
intrinsic scatter between 0.46 and 0.52. The last authors further con-

ducted simultaneous fitting with 31 OHD within the ΛCDM and 𝑤CDM 
models, yielding central values ranging from 0.39 to 0.46, depending on 
whether the A220 or A118 sample is used (Khadka et al., 2021). Kumar 
et al. (2023) calibrated the Amati relation using GP and 32 CCH, along 
with the A220. They determined the scatter to be 0.289+0.015−0.014. To men-

tion a few others, Li et al. (2023) used SNIa with GP in the A118 GRB 
sample at redshift less than 1.4, finding central values of 0.49 to 0.55, de-

pending on the likelihood employed, whereas Mu et al. (2023) obtained 
a dispersion of 0.54 with SNIa in conjunction with the A220 sample. 
Alfano et al. (2024) found a scatter around 0.36 employing a simultane-

ous fitting for the Yonetoku relation. In light of these mentioned results, 
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it is evident that a common low dispersion is not still reached for re-
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lations based solely on the prompt emission phase. The result achieved 
in this work represents so far, and at the best of our knowledge, one of 
the tightest correlations present in the literature. One possible explana-

tion could be related to the fact that the plateau phase is less varied in 
its intrinsic properties with respect to the prompt emission. The scatter 
we find is robust to corrections for selection biases and redshift evolu-

tion, in contrast with other correlations, in which these effects still play 
a non-negligible role. If these corrections significantly affect the corre-

lations, the correlations will no longer exist intrinsically in a reliable 
way. Also, the physical explanation of a relation meant to be used as 
a standard candle should be clear. For the correlations analyzed in this 
work, the most accredited theoretical scenario is the magnetar emission, 
and we actually found our results to support this model as the slope of 
the correlation is compatible with -1. These aspects make the extended 
ladder, which can be regarded as the final product of this calibration, 
even more robust and powerful to be employed in future cosmological 
applications.

7. Summary and conclusions

In this work, we have calibrated the Dainotti relations through a 
model-independent method that makes use of cosmic chronometers as 
calibrators. Thanks to the stability of our results across all the analyses 
presented, we can conclude that these low-redshift data are capable of 
identifying a valuable set of standardizable candles. Indeed, through the 
CCH calibration, the 20 GRBs we analyzed in 0.553 ≤ 𝑧 ≤ 1.96 are found 
to adhere tightly to the fundamental plane. In particular, we achieved 
one of the lowest levels of intrinsic scatter observed to date, and we de-

rived constraints on the 2D and 3D Dainotti relations. These constraints 
are compatible with the physics of the relation itself, thus supporting, 
even more, its theoretical interpretation. This set can, therefore, be a 
promising candidate for future use in cosmological applications, as we 
have already demonstrated in this work by extending the distance lad-

der up to 𝑧 = 5 through an unbiased GRB correlation.

Finding novel distance indicators that can be both less affected by 
biases and systematics and capable of extending the range of applicabil-

ity of the cosmic distance ladder method to larger redshifts has become 
an important challenge in cosmology and astrophysics. However, if we 
aim to obtain unbiased cosmological distances, the calibration proce-

dure cannot be subject to strong model-dependent assumptions. This is 
particularly relevant in light of the existing cosmological tensions, such 
as the one on 𝐻0. This prospect further motivates ongoing efforts to 
achieve increasingly precise measurements, enhancing the statistics at 
low redshifts and in regions where objects like GRBs or QSOs can be 
crucial. On the other hand, the spread in the GRBs observed luminosi-

ties is still a non-negligible issue due to the not yet well-defined nature 
of their origin (core collapse of a massive star, merger of two neutron 
stars in a binary system or a neutron star-black hole system merger). 
Therefore, it becomes essential to investigate the reliability of these al-

ternative probes and the relations that govern their intrinsic properties, 
possibly taking advantage also of the improvement both in data quality 
and quantity with upcoming surveys, e.g., SVOM (Atteia et al., 2022) or 
THESEUS (Amati et al., 2021) missions. In this way, model-independent 
calibration methods could play a significant role in standardizing these 
probes effectively, thereby further extending the cosmic distance lad-

der and broadening our ability to probe the fundamental cosmological 
parameters.
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Table A.1

Sub-sample of the 20 GRBs from the Platinum data set (Dain

2D Dainotti relations. 𝑇 ∗
𝑋

has units of 𝑠, while the fluxes 𝐹peak
dimensionless. For all the quantities we also report the associate

GRB Catalog (Lien et al., 2016), except for the 091018 and 13

(Evans et al., 2010). We refer the reader to Table A1 of Cao et a
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Table A.2

In this table, we present the 33 CCH data points used in 
uncertainties are evaluated at 68% C.L. and, in the case o
of 𝐻(𝑧) are computed by performing the arithmetic mean 
and Charlot, 2003) and MaStro (Maraston and Strombac

incorporate in the analysis also the correlations through th
𝑧 𝐻(𝑧) [Km/s/Mpc] References

0.07 69.0 ± 19.6 (Zhang et al., 2014)

0.09 69.0 ± 12.0 (Jiménez et al., 2003)

0.12 68.6 ± 26.2 (Zhang et al., 2014)

0.17 83.0 ± 8.0 (Simon et al., 2005)

0.1791 78.0 ± 6.2 (Moresco et al., 2012)

0.1993 78.0 ± 6.9 (Moresco et al., 2012)

0.2 72.9 ± 29.6 (Zhang et al., 2014)

0.27 77.0 ± 14.0 (Simon et al., 2005)

0.28 88.8 ± 36.6 (Zhang et al., 2014)

0.3519 85.5 ± 15.7 (Moresco et al., 2012)

0.3802 86.2 ± 14.6 (Moresco et al., 2016)

0.4 95.0 ± 17.0 (Simon et al., 2005)

0.4004 79.9 ± 11.4 (Moresco et al., 2016)

0.4247 90.4 ± 12.8 (Moresco et al., 2016)

0.4497 96.3 ± 14.4 (Moresco et al., 2016)

0.47 89.0 ± 49.6 (Ratsimbazafy et al., 2017)

0.4783 83.8 ± 10.2 (Moresco et al., 2016)
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Appendix A. Data sets

In this appendix, we present the tables with the GRBs and the CCH 
data employed in this work and described in Secs. 3.1 and 3.2, respec-

tively.
otti et al., 2020a) used in the calibration of the 3D and 
and 𝐹X are given in erg cm−2 s−1. The 𝐾 -corrections are 
d 1𝜎 error. All these objects are provided by the third Swift 
1105A GRBs, which are from the Swift BAT burst analyser

l. (2022a) for the remaining GRBs of the Platinum sample.

𝐾prompt 𝜎𝐾prompt
log𝐹𝑋 𝜎log𝐹𝑋 𝐾plateau 𝜎𝐾plateau

0.662 0.053 -10.012 0.049 0.991 0.175

0.868 0.036 -11.172 0.028 3.459 2.059

0.637 0.031 -9.935 0.022 0.956 0.021

0.570 0.032 -9.161 0.011 0.868 0.012

0.653 0.016 -10.911 0.035 0.982 0.036

0.664 0.105 -9.904 0.055 0.938 0.136

1.140 0.030 -9.627 0.024 0.941 0.041

0.416 0.041 -9.294 0.025 0.775 0.017

0.451 0.008 -10.030 0.013 0.958 0.037

0.632 0.309 -9.971 0.704 0.750 0.037

2.100 0.903 -9.897 0.036 1.187 0.295

0.633 0.031 -9.793 0.049 0.982 0.122

0.639 0.408 -11.274 0.034 0.857 0.040

0.508 0.082 -10.047 0.029 0.981 0.083

0.582 0.064 -10.911 0.033 0.942 0.093

0.443 0.033 -9.713 0.034 0.901 0.067

0.297 0.033 -8.610 0.015 0.760 0.015

0.614 0.073 -10.432 0.029 2.675 2.089

0.467 0.563 -10.869 0.061 1.682 0.803

0.822 0.136 -11.173 0.069 1.022 0.161

this work, with the corresponding references. All the 
f Refs. Moresco et al. (2012, 2016), the central values 
of the measurements obtained with the BC03 (Bruzual 
k, 2011) SPS models. We remind the reader that we 
e covariance matrix from Moresco et al. (2020).

𝑧 𝐻(𝑧) [Km/s/Mpc] References

0.48 97.0 ± 62.0 (Stern et al., 2010)

0.5929 107.0 ± 15.5 (Moresco et al., 2012)

0.6797 95.0 ± 10.5 (Moresco et al., 2012)

0.75 98.8 ± 33.6 (Borghi et al., 2022)

0.7812 96.5 ± 12.5 (Moresco et al., 2012)

0.8754 124.5 ± 17.4 (Moresco et al., 2012)

0.88 90.0 ± 40.0 (Stern et al., 2010)

0.9 117.0 ± 23.0 (Simon et al., 2005)

1.037 133.5 ± 17.6 (Moresco et al., 2012)

1.26 135.0 ± 65.0 (Tomasetti et al., 2023)

1.3 168.0 ± 17.0 (Simon et al., 2005)

1.363 160.0 ± 33.8 (Moresco, 2015)

1.43 177.0 ± 18.0 (Simon et al., 2005)

1.53 140.0 ± 14.0 (Simon et al., 2005)

1.75 202.0 ± 40.0 (Simon et al., 2005)

1.965 186.5 ± 50.6 (Moresco, 2015)
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Table B.1

𝑝-values obtained from the KS and the AD tests performed to 
test if the sub-sample of 20 GRBs at 𝑧 ≲ 2 used to calibrate the 
Dainotti relations with CCH and the 50 GRBs from the full Plat-

inum sample are likely to be obtained from the same parent 
distribution. This is our null hypothesis. All the 𝑝-values dis-

played in the table allow us not to reject the null hypothesis, 
since 𝑝 ≥ 0.05.

log𝑇 ⋆
𝑋

𝐹peak 𝐾prompt log𝐹𝑋 𝐾plateau

𝑝-value (KS) 0.949 0.504 0.254 0.391 0.074

𝑝-value (AD) 0.250 0.250 0.116 0.250 0.052

Appendix B. Kolmogorov-Smirnov and Anderson-Darling tests for 
the Platinum sample

In this appendix, we show the results of the KS and AD tests per-

formed to ensure that the sub-sample of 20 GRBs used to calibrate the 
Dainotti relations with CCH at 𝑧 ≲ 2 are fairly representative of the 
entire population of GRBs (see Sec. 3.1). This is our null hypothesis. 
We apply the KS and AD tests to each variable of the Platinum sample 
employed in this work: log𝑇⋆

𝑋
, 𝐹peak , 𝐾prompt , log𝐹𝑋 and 𝐾plateau. We 

decide to not reject the null hypothesis if the 𝑝-value 𝑝 ≥ 0.05 and reject 
it if 𝑝 < 0.05. The results of both the KS and the AD test are displayed in 
Table B.1. The 𝑝-values listed in the table show that we cannot reject the 
null hypothesis in all cases, regardless of the variable in the Platinum 
sample employed in the test.

Data availability

The data employed in this article are reported in the corresponding 
tables (see Appendix A and references therein).
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