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1 Introduction

In previous work [1] two of us revisited old results of Boillat, Plebański and Bialynicki-
Birula [2–5] on birefringence in nonlinear electrodynamics (NLED), which is the class of
theories conventionally defined by a Lagrangian density L (S, P ), with

S = 1
2(|E|2 − |B|2) , P = E · B , (1.1)

where (E, B) are the electric/magnetic field components of a 2-form field strength F = dA

on 4D Minkowski spacetime:

E = ∇A0 − Ȧ , B = ∇ × A . (1.2)

The best-known of these results is that Born-Infeld (BI) theory [6] is the unique zero-
birefringence NLED with a weak-field limit; a comparison of the different methods used to
obtain this result can be found in [7]. Other zero-birefringence cases (without a weak-field
limit) were found by Plebański, and a corollary of the complete catalog presented in [1] is
that none of them is electromagnetic-duality invariant, in contrast to BI. A further result
of [1] was that almost all zero-birefringence NLEDs other than Born-Infeld are unphysical
because they allow superluminal propagation.1

The qualification “almost” arises because the zero-birefringence conditions in a form found
by Boillat [3] have a solution that yields a Lagrangian constraint rather than a Lagrangian.

1This is presumably related to the earlier finding by other means that duality invariance and “good
propagation” single out Born-Infeld [8].

– 1 –



J
H
E
P
0
2
(
2
0
2
4
)
1
8
6

Imposing this constraint with a Lagrange multiplier provides a Lagrangian density for what
was called in [1] “extreme-Born-Infeld” electrodynamics:

LeBI = λ
(
T 2 − 2TS − P 2

)
, (1.3)

where T is the Born-Infeld constant with dimensions of energy density. This takes us outside
the class of NLEDs as conventionally defined by a Lagrangian density L (S, P ), but after
taking the Legendre transform with respect to E the field λ becomes an auxiliary field that
can be eliminated by its algebraic field equation to give the following Hamiltonian density [1]:

HeBI =
√
|D × B|2 + T |D|2 , (1.4)

where the (electric-displacement) field D is the Legendre dual to E. This can be viewed as a
particular scaling limit of the BI Hamiltonian density, and a similar scaling limit with the
roles of D and B reversed yields the Hamiltonian density for “magnetic-extreme-Born-Infeld”
(meBI) electrodynamics:

HmeBI =
√
|D × B|2 + T |B|2 . (1.5)

For both eBI and meBI, the strong-field limit (equivalent to T → 0 for fixed non-zero
energy density) yields

HBB = |D × B| , (1.6)

which is the Hamiltonian density of Bialynicki-Birula (BB) electrodynamics, originally found
as the strong-field limit of BI [5].

Although neither meBI nor BB electrodynamics were found in [1] from an analysis of the
“Boillat equations”, a re-examination of the general solution of these equations (eq. (2.40) of [1])
shows that all three BI limits are special cases once one allows for Lagrangian constraints.
In particular, both meBI and BB arise on the parameter-branch that yields the Plebański
case; on this branch the two Boillat equations (eq. (2.49) of [1]) involve two dimensionful
parameters. When the “Plebański” parameter (κ) is non zero we get the Plebański case; when
it is zero we get the constraint P = 0 from one Boillat equation, while the other equation
depends on the second dimensionful parameter (c− c′), which may be zero or non-zero. When
this second parameter is non-zero we find2 L = −

√
−2TS; this is the “canonical” part of

the meBI Lagrangian density found in [1]. If the second dimensionful parameter is zero we
get S = 0 as an additional constraint; this leads to the BB Lagrangian density of [9].

However, since Lagrangian densities for the BI limits all require constraints they are
not of the initially assumed form L (S, P ), which means that the birefringence status of the
BI limits was not settled beyond doubt in [1]. The obvious way to resolve this issue is to
reconsider birefringence from a Hamiltonian perspective.

In the case of 6D chiral nonlinear 2-form electrodynamics, where small-amplitude plane
wave solutions in a constant ‘magnetic’ background have three independent polarisations,
the Hamiltonian formulation was recently used to find and solve the conditions for zero

2The overall sign is required for H ≥ 0, and T = 2(c − c′) > 0 for convexity of H .
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trirefringence (the same dispersion relation for all three polarisation modes) [10]. As all 4D
NLEDs with an SO(2) electromagnetic duality invariance are the dimensional reduction of
some 6D chiral 2-form theory [11, 12], it was possible to deduce from these 6D results that
the only duality invariant 4D NLEDs without birefringence are BI and BB. This result is
consistent with the unique status of BI in Lagrangian analyses of 4D birefringence because
BB electrodynamics, like eBI and meBI, has no ‘standard’ Lagrangian formulation, but it
provides no information about eBI and meBI because these are not duality invariant. What
we need therefore is a Hamiltonian analysis of birefringence for 4D NLED that does not
assume duality invariance.

A convenient starting point is a ‘phase-space’ Lagrangian density of the form

L̃ = E · D − H (D, B) , (1.7)

which is a function of (E, B) and D. The gauge invariant Hamiltonian field equations and
Bianchi identities are the first-order “macroscopic Maxwell equations”

Ḋ = ∇ × H , ∇ · D = 0
Ḃ = −∇ × E , ∇ · B = 0 ,

(1.8)

which must be taken together with the “constitutive relations”

E = ∂H /∂D , H = ∂H /∂B . (1.9)

The first of these relations is obtained by variation of D in (1.7); the second defines H.
As we assume invariance under time and space translations, and space rotations, it must

be possible to express H as a function of the three rotation scalars:

x = 1
2 |D|2 , y = 1

2 |B|2 , z = D · B , (1.10)

in which case the constitutive relations become

E = HxD + HzB , H = HyB + HzD . (1.11)

Electromagnetic duality acts on the complex field (D + iB) by a constant shift of its phase,
and the Hamiltonian density H is duality invariant if D ·H = E ·B [5], which is equivalent to

z (Hx − Hy) = 2(x − y)Hz . (1.12)

However, as emphasised above, we do not impose this condition here. We do impose the
condition for H to define a Lorentz invariant theory, which is [5]

E × H = c2 D × B , (1.13)

where c is the speed of light. We shall set c = 1, in which case an equivalent condition is

I := HxHy − H 2
z = 1 . (1.14)
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This condition ensures the existence of a symmetric stress-energy tensor satisfying the usual
continuity conditions. The field momentum density p and its magnitude p are given by

p = D × B , p2 = 4xy − z2 . (1.15)

One solution of the Hamiltonian field equations is

(D, B) = (D̄, B̄) , (1.16)

where D̄ and B̄ are arbitrary constant and uniform 3-vector densities. By expanding the full
field equations to first order about such a background we obtain linear equations with plane
wave solutions that propagate in the homogeneous optical medium provided by the background.
This medium is “birefringent” if the two independent polarizations of the plane waves have
different dispersion relations. In general the medium is stationary rather than static because
its momentum density p̄ is non-zero. Generic stationary backgrounds are Lorentz boosts of
static backgrounds, although there may be special cases for which this is not true.

Of interest here are those special choices of H for which the optical medium provided by
any constant uniform electromagnetic background is one without birefringence. We restrict
the search to relativistic NLED, for which the condition I = 1 must be satisfied. Our main
result is that the Hamiltonian density

H =
√

p2 + 2(αx + βy + γz) + αβ − γ2 (1.17)

defines a three-parameter class of zero-birefringence relativistic NLEDs, where the parameters
(α, β, γ) have dimensions of energy density. However, many distinct choices of these parameters
yield theories that have equivalent field equations, and once this is taken into account we
arrive at a list of six distinct possibilities. In the nomenclature of [1], and including status
with respect to electromagnetic duality and convexity of the Hamiltonian density as a function
of D, these six cases (all of which have one free parameter with dimensions of energy density,
except the last which has no free parameters) are:

1. Born-Infeld (BI). O(2) duality invariant. Strictly convex.

2. Plebański (Pl). Not duality invariant. Not convex.

3. reverse-BI (rBI) Not duality invariant. Not convex.

4. extreme-BI (eBI). Not duality invariant. Convex.

5. magnetic-eBI (meBI). Not duality invariant. Convex,

6. Bialynicki-Birula (BB). Sl(2;R) duality invariant. Convex.

Remarkably, this list is precisely the list of all known, or previously suspected, NLEDs
with zero birefringence! The appearance of eBI and meBI on this list confirms their zero
birefringence status, and thus settles the issue raised by the Lagrangian analysis in [1]. As
BB is duality invariant, its status in this respect was settled in [10].

Another purpose of this paper is to further investigate the special properties of the limits
of BI, in particular the new “extreme” limits introduced in [1]. One special feature already
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noted above, is the necessity for Lagrangian constraints; the reader may be wondering how
this is compatible with equivalence of the Lagrangian and Hamiltonian formulations. Here it
should be appreciated that the condition guaranteeing equivalence is convexity, of L as a
function of E and of H as a function of D. For example, given H the Lagrangian density
is defined by the Legendre transform

L (E, B) := sup
D

[D · E − H (D, B)] , (1.18)

which implies convexity of L , and a further Legendre transform yields

H (D, B) := sup
E

[E · D − L (E, B)] , (1.19)

but this implies convexity of H , which is therefore required for the Legendre transform to
be involutive, and the same argument applies to L .

If H is not a convex function of D it is still possible to find a (formal) Lagrangian density
(with Euler-Lagrange equations that are equivalent to the Hamiltonian field equations) if the
independent D-field of the phase-space Lagrangian density L̃ of (1.7) is an auxiliary field that
can be eliminated by using its field equation. This is the case for both Plebański and reverse-BI
but the non-convexity of a NLED Hamiltonian density implies the existence of superluminal
plane-wave disturbances for some constant uniform electromagnetic background [1, 15]. For
this reason, the Plebański and rBI cases are unphysical. The remaining four cases, which are
BI and its limits to eBI, meBI and BB, are all physical in this respect.

Although BI and its three limits all have a convex Hamiltonian density, only for BI is it
“strictly convex”, and this distinction is crucial to understanding why a Hamiltonian analysis
yields more examples of zero-birefringence NLEDS than the (‘standard’) Lagrangian analyses.
A sufficiently differentiable function is convex if its Hessian matrix is positive; i.e. has no
negative eigenvalues. If all eigenvalues are positive the function is “strictly convex”; this is the
case for HBI and it implies that the equation E = ∂H /∂D has a unique solution for D as a
function of E, such that (1.18) yields LBI. In effect, D is an auxiliary field in the ‘phase-space’
Lagrangian density of (1.7), as it is for the Plebański and rBI cases but LBI is the value of
L̃ at a global maximum (with respect to variation of D) rather than a saddle point.

The limits of BI all have the property that one or more of the eigenvalues of the Hessian
matrix of H is zero, so that H is convex but not “strictly convex”. As a consequence, the
equation E = ∂H /∂D no longer has a unique solution for D. In addition, this equation
imposes one or more constraints on E; one for each zero eigenvalue. This is simply illustrated
by the BB Hamiltonian density of (1.6); this is a convex function of D but its Hessian
matrix has two zero eigenvalues; the corresponding Lagrangian constraints are S = 0 and
P = 0. If we impose these with Lagrange multipliers (v, u) we get the ‘non-standard’ BB
Lagrangian density [5]

LBB = vS + uP . (1.20)

Conversely, by taking the two Lagrangian constraints into account in an application of (1.19)
one recovers the BB Hamiltonian density [12]. For the “extreme” limits of BI the Hamiltonian
Hessian matrix has only one zero eigenvalue, and there is therefore only one Lagrangian
constraint, which was found for both eBI and meBI in [1].
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In the following section we present our analysis of birefringence in the Hamiltonian
formulation, focusing on relativistic NLED and the conditions for zero birefringence. In
section 3, we restrict to Hamiltonian densities for which H 2 is a quadratic function of the
rotation invariants (x, y, z), showing that the joint conditions for Lorentz invariance and no
birefringence restrict H to the form in (1.17), and we show how this leads to the above list
of six distinct zero-birefringence NLEDs, and why (extending the convexity/causality analysis
of [1] to generic stationary backgrounds) the only physical cases are BI and its three limits.

In section 4 we present further details of the “extreme” BI limits introduced in [1], where
wave propagation was analysed for static backgrounds. We extend those results to generic
stationary backgrounds, showing that the quadratic BI dispersion relation degenerates to a
pair of linear dispersion relations, which become identical in the conformal BB limit. Another,
but related, unusual feature of the “extreme” limits is that wave propagation is confined to a
plane (which is reduced to a line for a static background). We show how this is explained
by the unusual form of the extreme-BI stress-tensor. We also present a simplified derivation
of the Lagrangian formulations of the electric/magnetic extreme-BI theories.

It may not have escaped the reader’s attention that we not yet mentioned the possibility of
additional zero-birefringence relativistic NLEDs for which H is not of the special form (1.17).
We leave discussion of this point, and some others, to a final summary section.

2 Hamiltonian birefringence

Recall that any pair of constant uniform electromagnetic fields (D̄, B̄) solves the Hamiltonian
field equations of (1.8) and (1.9), and the homogeneous optical medium it provides is then
a background in which any small-amplitude inhomogeneity will propagate. To expand the
field equations about this background we write

D = D̄ + d , B = B̄ + b . (2.1)

To first order in the perturbations (d, b),

E = Ē + e , H = H̄ + h , (2.2)

where

e(d, b) = Hxd + Hzb +
[
HxxD̄ · d + HxyB̄ · b + Hxz

(
D̄ · b + B̄ · d

)]
D̄

+
[
HzxD̄ · d + HzyB̄ · b + Hzz

(
D̄ · b + B̄ · d

)]
B̄ ,

(2.3)

and
h(d, b) = Hyb + Hzd +

[
HyxD̄ · d + HyyB̄ · b + Hyz

(
D̄ · b + B̄ · d

)]
B̄

+
[
HzxD̄ · d + HzyB̄ · b + Hzz

(
D̄ · b + B̄ · d

)]
D̄ .

(2.4)

The linearized field equations for (d, b) are

ḋ = ∇ × h , ∇ · d = 0
ḃ = −∇ × e , ∇ · b = 0 ,

(2.5)
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where the constant coefficients involving derivatives of H are now functions of the constant
uniform background fields. For a plane wave with wave 4-vector (ω, k) the two dynamical
field equations reduce to

ω d0 + k × h0 = 0 , ω b0 − k × e0 = 0 , (2.6)

where (d0, b0) are uniform constant 3-vector amplitudes, and

e0 = e(d0, b0) , h0 = h(d0, b0) . (2.7)

The two constraint equations reduce to

k · d0 = 0 , k · b0 = 0 , (2.8)

but these are a consequence of (2.6) unless ω = 0; their only effect is to eliminate two
solutions of (2.7) with ω = 0.

We may rewrite (2.6) in the form(
K+ L

−L′ −K−

)(
d0
b0

)
= 0 , (2.9)

where (K±, L, L′) are 3 × 3 matrices with the following entries

K+
ij = ω δij − εijkkkHz + Hxz(k × D̄)iD̄j + Hyz(k × B̄)iB̄j

+ Hxy(k × B̄)iD̄j + Hzz(k × D̄)iB̄j

K−
ij = − ω δij − εijkkkHz + Hxz(k × D̄)iD̄j + Hyz(k × B̄)iB̄j

+ Hxy(k × D̄)iB̄j + Hzz(k × B̄)iD̄j

Lij = − εijkkkHy + Hyy(k × B̄)iB̄j + Hzz(k × D̄)iD̄j

+ Hyz

[
(k × D̄)iB̄j + (k × B̄)iD̄j

]
L′

ij = − εijkkkHx + Hxx(k × D̄)iD̄j + Hzz(k × B̄)iB̄j

+ Hxz

[
(k × D̄)iB̄j + (k × B̄)iD̄j

]
.

(2.10)

A non-zero solution for the wave amplitudes requires

det M = 0 , M =
(

K+ L

−L′ −K−

)
. (2.11)

At this point it is useful to simplify the matrices (K±, L, L′) by a suitable local choice
of 3-space axes. We may orient the axes such that

D̄ = (0, D2, 0) , D2 ≥ 0 ,

B̄ = (0, B2, B3) , B3 ≥ 0 .
(2.12)

The background field momentum is then

D̄ × B̄ = (p, 0, 0) , p = D2B3 ≥ 0 . (2.13)

– 7 –
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For this choice of axes,

K+ =

 ω −k3J + k2U k2Ĥz − k3V

k3Hz ω − k1U −k1Ĥz

−k2Hz k1J ω + k1V



K− =

 −ω −k3J + k2V k2Ĥz − k3U

k3Hz −ω − k1V −k1Ĥz

−k2Hz k1J −ω + k1U

 ,

(2.14)

and

L =

 0 −k3R + k2Z k2Ĥy − k3Z

k3Hy −k1Z −k1Ĥy

−k2Hy k1R k1Z



L′ =

 0 −k3R′ + k2Z ′ k2Ĥx − k3Z ′

k3Hx −k1Z ′ −k1Ĥx

−k2Hx k1R′ k1Z ′

 ,

(2.15)

where
J = Hz + D2

2Hxz + B2
2Hyz + B2D2 (Hxy + Hzz)

R = Hy + B2
2Hyy + D2

2Hzz + 2D2B2Hyz

R′ = Hx + B2
2Hzz + D2

2Hxx + 2D2B2Hxz

Ĥz = Hz + B2
3Hyz

Ĥx = Hx + B2
3Hzz

Ĥy = Hy + B2
3Hyy ,

(2.16)

and
U = B3 (B2Hyz + D2Hxy)
V = B3 (B2Hyz + D2Hzz)
Z = B3 (B2Hyy + D2Hyz)
Z ′ = B3 (B2Hzz + D2Hxz) .

(2.17)

We now have the 6 × 6 matrix M expressed in terms of ω and several sets of coefficient
functions for entries that include terms proportional to one or more components of the
wave-vector k. As we are principally interested in the determinant of M , it is convenient to
permute its rows and columns to arrive at the following matrix with the same determinant:

M ′ =



ω 0 −k3J +k2U k2Ĥz−k3V −k3R+k2Z k2Ĥy−k3Z

0 ω k3R′−k2Z ′ −k2Ĥx+k3Z ′ k3J−k2V −k2Ĥz +k3U

k3Hz k3Hy ω̃−k1X −k1Ĥz −k1Z −k1Ĥy

−k2Hz −k2Hy k1J ω̃+k1X k1R k1Z

−k3Hx −k3Hz k1Z ′ k1Ĥx ω̃+k1X k1Ĥz

k2Hx k2Hz −k1R′ −k1Z ′ −k1J ω̃−k1X


.

(2.18)
We have used here the fact that

ω − k1U = ω̃ − k1X , ω + k1V = ω̃ + k1X , (2.19)
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where
X = 1

2(U + V ) = B3 [B2Hyz + D2(Hxy + Hzz)] , (2.20)

and
ω̃ = ω − 1

2k1(U − V ) = ω − 1
2k1p (Hxy − Hzz) . (2.21)

Notice that M ′ takes the form

M ′ =
(
A B
C D

)
, (2.22)

where A = ωI2 and D is a 4 × 4 matrix that is independent of both k2 and k3, while the
rectangular matrices C and B are independent of both ω and k1. In addition, the submatrices
have the following properties:

(ω, k1) → −(ω, k1) ⇒ A → −A & D → −D ,

(k2, k3) → −(k2, k3) ⇒ B → −B & C → −C ,
(2.23)

It follows from these properties that det M ′ is invariant under both (ω, k1) → −(ω, k1) and
(k2, k3) → −(k2, k3); this can be seen from either of the following identities:∣∣∣∣∣

∣∣∣∣∣A B
C D

∣∣∣∣∣
∣∣∣∣∣ ≡

 (detD) det
(
A− BD−1C

)
(detD ̸= 0)

(detA) det
(
D−CA−1B

)
(detA ̸= 0)

. (2.24)

Although the matrix M of (2.11) is a 6×6 matrix only four of the six amplitudes (d0, b0)
are physical because two are eliminated by the two constraints (2.8), which apply only when
ω = 0. This means that det M , and hence det M ′, must be a 6th-order polynomial in ω

with two zero roots, and hence must take the form

det M ′ = ω2P4 , (2.25)

where P4 is some quartic polynomial in ω, or in ω̃. If we choose to write P4 as a polynomial
in ω̃ then the structure of M ′ implies that the cubic term is missing; it can only come
from the product of all six diagonal entries of M ′ but their product yields a term of P4
that is quadratic in ω̃2. Thus,

P4 = ω̃4 − 2Υω̃2 + 2Ξω̃ + Ω , (2.26)

where (Υ, Ξ, Ω) are expressions that are (quadratic, cubic, quartic) in the components of k,
subject to the above symmetries. In particular, Ξ is odd under k1 → −k1 and therefore zero
when k1 = 0; it is also zero for static backgrounds (for which ω̃ = ω) because the residual
rotational symmetry in the plane orthogonal to the background vector fields implies that
k1 appears only in the combination (k2

1 + k2
3).

For physical NLEDs we expect P4 = P2P ′
2 where P2 and P ′

2 are both real quadratic
polynomials in ω̃. The dispersion relations for the two independent polarisations are then
P2 = 0 and P ′

2 = 0. When P2 ̸= P ′
2 we have “birefringence”, so the condition for zero

birefringence is P4 = P 2
2 . When this occurs, P2 = ω̃2 − Υ, which implies that P4(ω̃) has
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no linear term. The zero-birefringence condition P4 = P 2
2 is therefore equivalent to the

two conditions

Ξ = 0 , Υ2 = Ω (zero birefringence). (2.27)

It is instructive to see how the above conclusions can be verified by consideration of
some special cases for which P4 is easily found (we recall that the condition (1.14) may be
used freely because of our restriction to relativistic theories):

• k1 = 0. In this case D = ωI4. The first of the identities (2.24) can now be used to show
that det M ′ = ω2P4(ω), where

P4 = det
(
ω2I2 − BC

)
. (2.28)

The 2 × 2 matrix BC is given by

BC = k2
2

(
(ĤyHx − ĤzHz) (ĤyHz − ĤzHy)
(ĤxHz − ĤzHx) (ĤxHy − ĤzHz)

)

+ k2
3

(
(RHx − JHz) (RHz − JHy)
(R′Hz − JHx) (R′Hy − JHz)

)

− 2k2k3

(
(ZHx − XHz) (ZHz − XHy)
(Z ′Hz − XHx) (Z ′Hy − XHz)

)
,

(2.29)

and this yields the result
P4 = ω4 − 2Υω2 + Ω , (2.30)

where

Υ = 1
2k2

2

(
ĤxHy + ĤyHx − 2ĤzHz

)
+ 1

2k3
3
(
RHx + R′Hy − 2JHz

)
− k2k3

(
ZHx + Z ′Hy − 2XHz

)
,

(2.31)

and

Ω = k4
2

(
ĤxĤy − Ĥ2

z

)
+ k4

3

(
RR′ − J2

)
+ k2

2k2
3

[
RĤx + R′Ĥy − 2JĤz + 4(ZZ ′ − X2)

]
− 2k3

2k3
(
Z ′Ĥy + ZĤx − 2XĤz

)
− 2k2k3

3
(
Z ′R + ZR′ − 2XJ

)
.

(2.32)
As expected, P4 is a quadratic function of ω because this is the only way that it can be
invariant under (ω, k1) → −(ω, k1) when k1 = 0.

• B3 = 0. In this case the background is static: p = 0. For k1 = 0 the result of (2.30)
applies, but the residual rotation invariance now allows the k1-dependence to be deduced
from the k3-dependence. Thus,

P4 = ω4 − 2Υω2 + Ω , (2.33)

but now with
Υ = k2

2 + 1
2(RHx + R′Hy − 2JHz)(k2

1 + k2
3) , (2.34)
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and

Ω = Υ2 − 1
4
[
(RHx + R′Hy − 2JHz)2 − 4(RR′ − J2)

]
(k2

1 + k2
3)2 . (2.35)

In this static case, the condition for zero birefringence is

(RHx + R′Hy − 2JHz)2 = 4(RR′ − J2) , (2.36)

where the expressions for (J, R, R′) may now be written as

J = Hz + 2xHxz + 2yHyz + z (Hxy + Hzz) ,

R = Hy + 2yHyy + 2xHzz + 2zHyz ,

R′ = Hx + 2yHzz + 2xHxx + 2zHxz .

(2.37)

This special case is sufficient for most choices of H that define a relativistic NLED
because it is generically possible to Lorentz boost to a frame in which the background
is static. It is therefore a useful necessary condition for the absence of birefringence
that we shall use in the following section.

• k2 = k3 = 0. In this case both rectangular matrices B and C are zero, so

det M = ω2 detD , (2.38)

and hence

P4 =

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
ω̃ − k1X −k1Ĥz −k1Z −k1Ĥy

k1J ω̃ + k1X k1R k1Z

k1Z ′ k1Ĥx ω̃ + k1X k1Ĥz

−k1R′ −k1Z ′ −k1J ω̃ − k1X

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
. (2.39)

A computation yields
P4 = ω̃4 − 2ω̃2Υ + 2ω̃Ξ + Ω , (2.40)

where
Υ = k2

1

{1
2
(
RĤx + R′Ĥy

)
− JĤz − (ZZ ′ − X2)

}
,

Ξ = k3
1

{
X[RĤx − R′Ĥy] − (RZ ′ − R′Z)Ĥz − (ZĤx − Z ′Ĥy)J

}
Ω = k4

1 (∆1 + ∆2) ,

(2.41)

with

∆1 =(ZZ ′ − X2)2 + (RR′ − J2)(ĤxĤy − Ĥ2
z )

− (ZĤx − XĤz)(ZR′ − XJ) − (Z ′Ĥy − XĤz)(Z ′R − XJ) ,

∆2 =X
[
Ĥx(JZ − XR) + Ĥy(JZ ′ − XR′)

]
+ Ĥz

[
X(RZ ′ + R′Z) − 2JZZ ′] .

(2.42)

The purpose of the decomposition of Ω in this last special case is that ∆2 = 0 for the
special class of relativistic NLED that we consider in the following section.
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Because symmetries prevent the appearance of k1k2 and k1k3 terms in Υ, we may deduce
the generic expression for Υ by combining the results found above for the k1 = 0 and
k2 = k3 = 0 special cases. This yields

Υ = 1
2k2

1

{
RĤx + R′Ĥy − 2JĤz − 2(ZZ ′ − X2)

}
+ 1

2k2
2

(
ĤxHy + ĤyHx − 2ĤzHz

)
+ 1

2k3
3
(
RHx + R′Hy − 2JHz

)
− k2k3

(
ZHx + Z ′Hy − 2XHz

)
,

(2.43)

which reduces to Υ of (2.34) in the case that B3 = 0. Given a solution of the zero-birefringence
conditions, this generic result for Υ determines the unique dispersion relation P2 = 0 since,
as noted above, P2 = ω̃2 − Υ whenever P4 = P 2

2 .

2.1 The stress-energy tensor

In the preceding subsection, we have considered wave perturbations of generic homogeneous
stationary backgrounds. The restriction to static backgrounds leads to many simplifications,
and we can expect almost all stationary backgrounds to be Lorentz boosts of some static
background. However, exceptional cases can occur and we now turn to an analysis of which
stationary backgrounds are not the boost of any static background. At first sight, this
appears to be a difficult problem to solve within a Hamiltonian framework because the
Lorentz transformations of the fields (D, B) are nonlinear. However, there is a simple way
around this problem via the stress-energy tensor.

For any relativistic NLED with Hamiltonian density H (D, B), the stress-energy tensor
has components [5]

Θ00 = H , Θ0i = Θi0 = (D × B)i , (2.44)

and
Θij = δij (E · D + H · B − H ) −

[
EiDj + H iBj

]
, (2.45)

which is symmetric because rotation invariance implies E × D + H × B = 0. Equivalently,
as a consequence of (1.11),

Θij = δij(2W − H ) −
[
HxDiDi + HyBiBj + 2HzD(iBj)

]
, (2.46)

where
W := 1

2 (D · E + B · H) ≡ xHx + yHy + zHz . (2.47)

At any given point in 3-space we may introduce an orthonormal basis {ei; i = 1, 2, 3} such that

p = p e1 , (p ≥ 0)
D = D2e2 , (D2 ≥ 0)
B = B2e2 + B3e3 , (B3 ≥ 0) .

(2.48)

The stress-energy tensor Θµν (for µ, ν = 0, 1, 2, 3) then takes block-diagonal form, and we
may diagonalize the lower 2 × 2 block (locally) by means of an orthogonal transformation
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in the space spanned by (e2, e3). We then have

Θ =


H p 0 0
p 2W − H 0 0
0 0 W− − H 0
0 0 0 W+ − H

 , (2.49)

where
W± = W ±

√
W 2 − p2 . (2.50)

This expression is valid for any H that defines a Lorentz invariant theory; it follows that
Lorentz invariance implies the inequality W 2 ≥ p2.

If we take the trace of Θ with the Minkowski metric η := diag.(−1, 1, 1, 1) we find that

Θµνηµν = 4(W − H ) , (2.51)

which is zero when W = H ; i.e. when H is a homogeneous degree-1 function of the rotation
invariants (x, y, z). This is the condition for conformal invariance.

In principle W may have either sign but if W < 0 then the pressure (W−−H ) is negative
with a magnitude greater than H , which violates the Dominant Energy Condition. We may
therefore expect a theory allowing W < 0 to be unphysical. This is confirmed by the fact
that convexity (of H as a function of D) implies W ≥ 0 (given Lorentz invariance) because
convexity is required for causality; we provide the details in subsection 3.3. Given W ≥ 0,
we may replace the inequality W 2 ≥ p2 by the stronger inequality

W ≥ p . (2.52)

In general, (2.49) is valid only at one chosen point in spacetime but it is globally valid
for uniform constant background fields, and in this case it is the stress-energy tensor for a
homogeneous stationary optical medium, which is static when p = 0. We wish to determine
which non-static stationary backgrounds are Lorentz boosts of static backgrounds. An
important fact about the stress-energy tensor is that it transforms linearly under Lorentz
transformations, despite the nonlinear action of the Lorentz group on the fields (D, B). If Θ
can be diagonalized by a Lorentz boost then the stationary background medium is a Lorentz
boost of a static medium. As the lower 2 × 2 block of Θ is already diagonal, we may focus
on the upper 2 × 2 block; call it Θup. In a boosted frame this becomes

Θ′
up = LΘupL , L =

(
cosh φ sinh φ

sinh φ cosh φ

)
, (2.53)

where φ is the boost parameter. This yields

Θ′
up =

(
H ′ p′

p′ −H + 2(sinh φ cosh φ)p + 2(cosh2 φ)W

)
, (2.54)

where
H ′ = H + 2(sinh φ cosh φ)p + 2(sinh2 φ)W ,

p′ = (2 cosh2 φ − 1)p + 2(sinh φ cosh φ)W .
(2.55)
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We need φ such that p′ = 0, which requires

p tanh2 φ + 2W tanh φ + p = 0 . (2.56)

This has the solution3

tanh φ = −W−
p

, (2.57)

which has the property that tanh φ = 0 when p = 0, as expected. The other solution does
not have this property, and is singular at p = 0, so we reject it. Using (2.57) in (2.54) we
arrive at the following diagonal stress-energy tensor

Θ′ =


H − W− 0 0 0

0 W+ − H 0 0
0 0 W− − H 0
0 0 0 W+ − H

 , (2.58)

but this result assumes that (2.57) has a solution for finite φ. This assumption is correct
only if W 2

− < p2, which is equivalent to

(W−)
√

W 2 − p2 > 0 . (2.59)

This condition can fail to be satisfied in only two ways: either W 2 = p2 or W− = 0, but the
latter option is possible only if W 2 = p2. Thus, the only backgrounds that are not Lorentz
boosts of some static background are those for which W = p, in which case

Θ =


H p 0 0
p 2p − H 0 0
0 0 p − H 0
0 0 0 p − H

 . (2.60)

As a check, we may return to (2.56) and set W = p to deduce that tanh φ = −1, which
corresponds to an infinite boost; correspondingly, an infinite boost of the stress-energy tensor
of (2.60) that takes p → 0 also takes H → ∞.

A case in which W = p necessarily is H = p; i.e. BB electrodynamics. As this is conformal,
W = H = p, and therefore W = p for all (homogeneous) backgrounds, which are intrinsically
stationary. This is of course a very special case. In the following section, we investigate
whether such backgrounds can occur in other models of interest that we now describe.

3 Relativistic ‘Quadratic’ NLED

Any non-negative rotation invariant Hamiltonian density H can be written in the form
H =

√
f(x, y, z) for some non-negative function f of the rotation scalars (x, y, z). In terms

of this function, the condition (1.14) for Lorentz invariance is

fxfy − f2
z = 4f . (3.1)

3Equivalently, tanh(2φ) = −p/W .
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A particularly simple class of relativistic NLEDs can be found by choosing f to be a quadratic
polynomial; setting (x, y, z) = (x1, x2, x3) we now have

f = aijxixj + bix
i + c (i, j = 1, 2, 3) (3.2)

for constant coefficients (a, b, c). The constants aij are dimensionless, while the bi have
dimensions of energy density. Lorentz invariance imposes the following algebraic conditions
on these coefficients:

a1ia2j + a2ia1j − 2a3ia3j = 2aij ,

b1a2i + b2a1i − 2b3a3i = 2bi ,

b1b2 − b2
3 = 4c .

(3.3)

Solutions of these equations yield what we shall call (relativistic) “quadratic” NLEDs, but not
all solutions yield distinct theories. The ‘geometric’ term E ·D in the phase-space Lagrangian
density L̃ is unchanged by the field redefinition

(A0, A) → ρ(A0, A) , D → ρ−1D , (3.4)

for any non-zero constant ρ; it is therefore a “canonical” transformation. In addition,
D → D + ϵB (for any constant ϵ) adds a total derivative to L̃ , so if we regard as equivalent
any two phase-space actions that differ by a canonical transformation and a possible total
derivative, then any two Hamiltonian densities H (D, B) that are related by

D → ρ−1D + ϵB , B → ρB , (3.5)

define equivalent NLEDs.
Notice that it is consistent to set bi = 0 and c = 0 in (3.3). The solutions for aij then yield

possible strong-field limits, which are conformal since the condition for conformal invariance
(given Lorentz invariance) is D · E + B · H = 2H [13], and this is equivalent to degree-2
homogeneity of f(x, y, z). Once account is taken of equivalences, there are only four distinct
possibilities, and the complete set of solutions to (3.3) may then be organised according to
which of these four strong-field limits applies:

1. f = (x + y)2. This yields the Maxwell Hamiltonian density: HMax = x + y. The
strong-field limit coincides with the weak-field limit. This remains true when we allow
for non-zero (bi, c) because this leads to f = (x + y + b)2, which just adds the constant
b to HMax.

2. f = (x + y)2 − z2. The corresponding Lagrangian density is

L =
√

S2 + P 2 , (3.6)

which is the interaction term of ModMax electrodynamics [13]. This is not a zero-
birefringent theory because it does not correspond to a solution of the Boillat equations
considered in [1].
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Allowing for non-zero (bi, c) we find in this case that (3.3) requires b1 = b2 = 2T for
some constant T . Setting b3 = 2gT for dimensionless constant g, we then find that

f = (x + y + T )2 − (z − gT )2 . (3.7)

The corresponding Lagrangian density is much more complicated. We will not need it
here.

3. f = 4xy. In this case the Hessian matrix of H has one zero eigenvalue; the correspond-
ing Lagrangian constraint is S = 0. As the ‘canonical’ Lagrangian density is identically
zero, the ‘non-standard’ Lagrangian density obtained by imposing the constraint with
a Lagrange multiplier λ is

L = λS . (3.8)

Because the Lagrangian density is ‘non-standard’ we cannot use the results of [1] to
determine its birefringence properties. We return to this point below.

Let us check the above result for L by using it to compute H . We first observe that

D := ∂L

∂E = λE (⇒ E = λ−1D) (3.9)

and hence
Hλ := D · E − L = λ−1x + λy . (3.10)

Eliminating λ, which is now an auxiliary field, we find that Hλ →
√

4xy.

Allowing for non-zero (bi, c) we find that

f = (2x + T )(2y + T ) . (3.11)

For T ≥ 0 the Hamiltonian is convex and the Hessian matrix has no zero eigenvalues if
T > 0. This tells us that there must be a standard Lagrangian; it is

L = −
√

T (T − 2S) , (3.12)

which is the first example of a nonlinear extension of Maxwell electrodynamics, intro-
duced by Born in 1933 [14]. This is not a zero-birefringence NLED. We shall soon see
that its conformal strong-field limit is also birefringent.

4. f = 4xy − z2 ≡ p2. In this case H = |D × B|, which defines BB electrodynamics.
Allowing for non-zero (bi, c) we find that (3.3) imposes no conditions on the bi. Thus,
after the relabelling (b1, b2, b3) = 2(α, β, γ), we find that

f = Q(x, y, z) := 4xy − z2 + 2(αx + βy + γz) + αβ − γ2 . (3.13)

We shall discuss this case in detail in most of what follows.

Our results of the previous section can be used to determine the birefringence properties
of all the above “quadratic” relativistic NLEDs. However, we begin by focusing on the
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four strong-field limits for which f is a homogeneous quadratic in (x, y, z). Because of the
homogeneity of f , the coefficient functions (J, R, R′) defined in (2.37) reduce to

J = 1
2H

[fz + z(fxy − fzz − 2)] ,

R = 1
2H

[fy − 2x(fxy − fzz − 2)] ,

R′ = 1
2H

[fx − 2y(fxy − fzz − 2)] ,

(3.14)

and this leads to the conclusion that the unique solution of (2.36) is f = 4xy − z2.
This settles the birefringence status of the third case above (f = 4xy): it is birefringent,

and hence so are the related non-conformal cases with f given by (3.11). This is also true for
the second case, as already noted. It does not settle the birefringence status of the fourth
case (f = p2) for two reasons. One is that, since W = H = p, all backgrounds with H ̸= 0
are stationary and not static, but (3.11) applies only for static backgrounds. The other is
that birefringence could disappear in the strong-field limit.

However, we can conclude from this test based on (3.11) that all interacting “quadratic”
relativistic NLEDs without birefringence have a Hamiltonian density of the form H =

√
Q,

where Q is the three-parameter family of functions defined in (3.13). For most of the remainder
of this section, we shall apply the general birefringence results of section 2 to the NLED
class defined by this Hamiltonian density.

3.1 Birefringence redux

A useful equivalent form of H =
√

Q is

H =
√

(2x + β)(2y + α) − (z − γ)2 . (3.15)

The first derivatives are

Hx = (2y + α)
H

, Hy = (2x + β)
H

, Hz = −(z − γ)
H

, (3.16)

and the second derivatives are

Hxx = −(2y + α)2

H 3 , Hyy = −(2x + β)2

H 3 ,

Hxz = (2y + α)(z − γ)
H 3 , Hyz = (2x + β)(z − γ)

H 3 , (3.17)

Hxy = H 2 − (z − γ)2

H 3 , Hzz = −H 2 + (z − γ)2

H 3 .

Using these formulae, we may compute expressions for the various coefficient functions
defined in (2.16) and (2.17):

(U − V )
2 = p

H
, (3.18)

and

X = CHz , Z = CHy , Z ′ = CHx ,

J = AHz , R = AHy , R′ = AHx , (3.19)
Ĥx = KHx , Ĥy = KHy , Ĥz = KHz ,
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where the constants (A, K, C) are

A = (αβ − γ2) + βB2
3

H 2 , K = 1 − [p2 + βB2
3 ]

H 2 , C = −(γp + βB2B3)
H 2 . (3.20)

Using these results in the matrix M ′ of (2.18) we have

M ′ =



ω 0 κHz + k2p
H τHz + k3p

H κHy τHy

0 ω −κHx −τHx −κHz + k2p
H −τHz + k3p

H

k3Hz k3Hy ω̃− −k1KHz −k1CHy −k1KHy

−k2Hz −k2Hy k1AHz ω̃+ k1AHy k1CHy

−k3Hx −k3Hz k1CHx k1KHx ω̃+ k1KHz

k2Hx k2Hz −k1AHx −k1CHx −k1AHz ω̃−


(3.21)

where
κ = Ck2 − Ak3 , τ = Kk2 − Ck3 , (3.22)

and
ω̃± = ω̃ ± k1CHz , ω̃ = ω − k1p

H
. (3.23)

It is now straightforward to show that P4 = P 2
2 for all of the special cases (of wave-vector

and background) considered in the previous section:

• k1 = 0. In this case4

Υ = Kk2
2 + Ak2

3 − 2Ck2k3 , Ω = Υ2 . (3.24)

It follows that P4 = P 2
2 .

• B3 = 0. In this (static) case p = 0, and

C = 0 , A = A0 ≡ αβ − γ2

H 2 , K = 1 , (3.25)

and this yields
Υ = k2

2 + A0(k2
1 + k2

3) , Ω = Υ2 . (3.26)

It again follows that P4 = P 2
2 .

• k2 = k3 = 0. In this case

Υ = (AK − C2)k2
1 , Ξ = 0 , Ω = Υ2 , (3.27)

where the result for Ω is a consequence of

∆1 = (AK − C2)2 , ∆2 = 0 . (3.28)

Again, P4 = P 2
2 .

4Care must be taken in using this result in the context of small-amplitude wave propagation because the
full dispersion relation has a term linear in k1 (unless p = 0) that contributes to the group velocity even
when k1 = 0.
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These results suggest that P4 = P 2
2 for all relativistic NLEDS with H =

√
Q, irrespective

of the choice of background (or wave-vector k). This must be true for those parameter choices
for which all stationary backgrounds are Lorentz boosts of some static background, but
we wish to allow for the possibility of intrinsically-stationary backgrounds that are not the
Lorentz boost of any static background. This is because of the a priori possibility of NLEDs
that exhibit birefringence only in such backgrounds.

We observed earlier that all backgrounds of BB electrodynamics are intrinsically stationary,
and we shall see later that some BI backgrounds are also of this type. In these two cases we
know from earlier work that P4 = P 2

2 even in these cases [5, 10], and we shall see later that
the “extreme” limits of BI do not allow intrinsically-stationary backgrounds. For present
purposes, therefore, there is no need for a detailed analysis of the many zero-birefringence
conditions for the stationary case. Using Mathematica, we have verified that all of them
are solved by H =

√
Q for all values of the parameters (α, β, γ). However, we give here the

explicit form of one of these conditions because of its simple structure:∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

Hz Hy Hx

Hxz Hzz Hxx

Hyz Hyy Hzz

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = 0 . (3.29)

This is very different from the condition (2.36), at least superficially, but it is easily verified
that it is solved by H =

√
Q. Its simplicity and form suggest an underlying geometrical inter-

pretation that might make possible an explicit solution of the Hamiltonian zero-birefringence
equations, as is possible if electromagnetic duality invariance is assumed [10].

To summarise: any Hamiltonian density of the form (1.17) defines a zero-birefringence
NLED. The unique dispersion relation is

ω̃2 = (AK − C2)k2
1 + Φ(k2, k3) , ω̃ = ω − k1p

H
, (3.30)

where Φ is the quadratic form

Φ := Kk2
2 + Ak2

3 − 2Ck2k3 . (3.31)

This is the specialisation to H =
√

Q of (2.43), and (2.21).
For future use we note here that Φ ≥ 0. This follows from the fact that the associated

2 × 2 matrix has trace (A + K) and determinant (AK − C2), and both are positive since

AK − C2 = A0 , A + K = 1 − p2

H 2 + A0 , (3.32)

where A0 is A for a static background:

A0 = (αβ − γ2)
H 2 . (3.33)

Using the first of the relations (3.32), we may rewrite the dispersion relation of (3.30)
in the form

ω̃2 = A0k2
1 + Φ(k2, k3) . (3.34)
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This equation will be the starting point for our analysis of properties of small-amplitude wave
propagation for the H =

√
Q class of NLEDs. For Born-Infeld, for example, it is the equation(

ω − k · p
HBI

)2
= 1

H 2
BI

{
T 2|k|2 + T

[
(k · D)2 + (k · B)2

]}
. (3.35)

For a static background, (3.34) reduces to

ω2 = k2
2 + A0(k2

1 + k2
3) (p = 0). (3.36)

3.2 Inequivalent zero-birefringence NLEDs

We have now seen that all members of the three-parameter class of Hamiltonian densities
H =

√
Q define a zero-birefringent NLED. In terms of the gauge-invariant Hamiltonian

fields (D, B),

H =
√
|D × B|2 + (α|D|2 + β|B|2 + 2γD · B) + (αβ − γ2) . (3.37)

However not all choices of the parameters (α, β, γ) yield physically distinct theories, for
reasons already explained. To investigate this we shall need to separate those cases for which
α is non-zero from those for which α is zero:

• α ̸= 0. In this case we may redefine D by a shift

D → D − ϵB . (3.38)

This shifts the E · D term in the phase-space Lagrangian by a multiple of E · B, but
this is a total derivative that we ignore. The shift of D also changes Q but not the
leading |D × B|2 term. For the choice ϵ = γ/α we find that

Q → |D × B|2 +
[
α|D|2 + (αβ − γ2)

α
|B|2

]
+ (αβ − γ2) . (3.39)

We now consider separately the three subcases for which the constant term in this
expression is positive, zero or negative:

1. αβ − γ2 > 0. In this subcase we perform the following rescaling:

(D, B) →
(
λ−1D, λB

)
, (3.40)

where the rescaling of B is induced by a rescaling A → λA, which leaves E · D
unchanged if we similarly rescale A0 → λA0. If the scaling parameter λ is chosen
such that

λ2 = |α|√
αβ − γ2 , (3.41)

then Q → QBI, where

QBI = |D × B|2 + T (|D|2 + |B|2) + T 2 ,

(
T = ±

√
αβ − γ2

)
. (3.42)

For T > 0 this yields the BI Hamiltonian.
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2. αβ − γ2 = 0. In this subcase Q → QeBI, where

QeBI = |D × B|2 + T |D|2 , (T = α) (3.43)

This yields, for T > 0, the Hamiltonian of the (electric) “extreme” limit of
Born-Infeld (eBI).

3. αβ − γ2 < 0. In this subcase we may perform the rescaling of (3.40) but now with

λ2 = |α|√
γ2 − αβ

. (3.44)

Now Q → QrBI, where

QrBI = |D × B|2 + 2T (|D|2 − |B|2) − T 2 ,

(
T = ±

√
γ2 − αβ

)
. (3.45)

This yields (one form of) the Hamiltonian density for “reverse Born-Infeld” (rBI).
Notice that positivity of Q, required for reality of H , imposes some lower limit on
|D| − |B|, assuming T > 0. If T < 0 then the lower limit is on |B| − |D| (so there
is an electric and magnetic version of rBI, according to the choice of sign for T ).
The rBI Hamiltonian density was given in [1] in an alternative but equivalent form.
To see the equivalence we return to (3.37) and perform the D-shift of (3.38) but
now choosing ϵ such that

αϵ = γ ±
√

γ2 − αβ . (3.46)

This eliminates the term in Q that is linear in y, and we now get

Q′
rBI = |D × B|2 + T |D|2 + 2κD · B − κ2 , (3.47)

where
T = α , κ = ±

√
γ2 − αβ . (3.48)

This yields the rBI Hamiltonian density in the form given in [1]; this form allows
an obvious limit to Plebański electrodynamics, which is one of the α = 0 subcases
to which we now turn our attention.

• α = 0. We again have three subcases to consider:

1. γ ̸= 0. In this subcase we may redefine D by the shift

D → D − β

2γ
B , (3.49)

which results in Q → QPl, where

QPl = |D × B|2 + 2κD · B − κ2 , (κ = γ). (3.50)

This yields the Hamiltonian of “Plebański” electrodynamics found in [1], by
Legendre transform of Plebański’s Lagrangian density LPl ∝ S/P [4]. Notice that
positivity of Q (required for reality of H ) imposes a restriction on the domain of
the function Q. Assuming (without loss of generality) that κ > 0, this restriction
is

z√
4xy

≥ −1 + κ√
4xy

. (3.51)
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2. γ = 0. In this subcase we have

Q = QmeBI = |D × B|2 + T |B|2 , (T = β) . (3.52)

For T > 0 this yields the Hamiltonian density proposed in [1] as a ‘magnetic’
extreme limit of Born Infeld (meBI).

3. γ = 0 and β = 0. In this case

Q = QBB = |D × B|2 . (3.53)

This yields the Hamiltonian density of the conformal, but interacting, electrody-
namics of Bialynicki-Birula [5].

We have now recovered the classification of zero-birefringence NLEDs found from the
Lagrangian approach to this problem, and we have extended it with proofs of the zero-
birefringence status of the three limits of BI, in particular the electric and magnetic “extreme”
limits for which this status was not previously settled.

The next step is to separate those zero birefringence NLEDs that are physical from
those that are unphysical.

3.3 Convexity and causality

The importance of convexity (of the Lagrangian density as a function of E and the Hamiltonian
density as a function of D) was summarized in the Introduction. It guarantees the equivalence
of the Lagrangian and Hamiltonian formulations. It is also required to eliminate the possibility
of superluminal propagation.

Convexity of the Hamiltonian density is equivalent to positivity of its 3 × 3 Hessian
matrix, which has entries

Hij := ∂2H

∂Di∂Dj
= Hxδij + HxxDiDj + 2HxzD(iBj) + HzzBiBj . (3.54)

As H is a symmetric matrix, all three eigenvalues are real, and if none of them is negative
then H is positive; zero eigenvalues are permissible but if all are positive then H is “strictly
positive”. The three eigenvalues of H are

h0 = Hx , h± = Hx + Λ ±
√

Λ2 − (HxxHzz − H 2
xz) p2 , (3.55)

where p2 = 4xy − z2, and

Λ = xHxx + yHzz + zHxz . (3.56)

It follows that convexity requires both Hx ≥ 0 and

H 2
x + 2ΛHx +

(
HxxHzz − H 2

xz

)
p2 ≥ 0 . (3.57)

These results apply for any Hamiltonian density, but if we insist on Lorentz invariance then
we also require (1.14), which can only be satisfied if HxHy > 0. Thus convexity combined
with Lorentz invariance requires, in addition to (3.57),

Hx > 0 , Hy > 0 . (3.58)
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We claimed in subsection 2.1 that convexity and Lorentz invariance combined imply
that the function W defined in (2.47) is non-negative. The proof is as follows. The inequali-
ties (3.58) allow us to rewrite the equation W ≥ 0 in the form

(xHx + yHy)2 ≥ (zHz)2 . (3.59)

By adding −4xyHxHy to both sides, and using (1.14) to eliminate Hz, we may rewrite
this inequality as

(xHx − yHy)2 + z2 + p2HxHy ≥ 0 , (3.60)

which is satisfied, because all terms on the left-hand side are non-negative, and saturated
only in the vacuum.

Now we turn to the special cases with H =
√

Q. This choice yields

Λ = − Hx

H 2

[
p2 + αx + βy + γz

]
,

(
HxxHzz − H 2

xz

)
= H 2

x

H 2 , (3.61)

and (3.57) reduces to

(αβ − γ2)H 2
x ≥ 0 . (3.62)

As H =
√

Q defines a Lorentz invariant NLED, (3.58) applies and the convexity conditions
for this case are

α ≥ 0 , β ≥ 0, αβ − γ2 ≥ 0 . (3.63)

For αβ > 0 we have BI. For αβ = 0 but γ ̸= 0 we have the extreme limits of BI. For
α = β = γ = 0 we have BB. To summarize, only the following four of the six zero-
birefringence NLEDs have a convex Hamiltonian density:

• BI. Hessian of H has no zero eigenvalues.

• eBI. Hessian of H has one zero eigenvalue

• meBI. Hessian of H has one zero eigenvalue

• BB. Hessian of H has two zero eigenvalues.

For the other two zero-birefringence NLEDs (Plebański and reverse-BI) the Hessian of H

has at least one negative eigenvalue, which allows superluminal propagation on some constant
electromagnetic backgrounds [1]. We now revisit this issue from a Hamiltonian perspective,
and extend previous results to include generic stationary backgrounds.

Recall that, for H =
√

Q, the dispersion relation for wave propagation in a static
background is given by (3.36), and the wave group-velocity vg is therefore given by

v2
g =

∣∣∣∣dω

dk

∣∣∣∣2 =
A2

0|k⊥|2 + k2
∥

A0|k⊥|2 + k2
∥

, (3.64)

where k⊥ is orthogonal to the direction picked out by the parallel D and B background fields.
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Recalling also that A0 = (αβ − γ2)/H 2, we see that A0 < 0 when (αβ − γ2) < 0 (the
rBI and Plebański cases) because H 2 must be non-negative for real H . We then have
v2

g > 1 for any choice of k for which vg is real and |k⊥| ̸= 0. For αβ − γ2 > 0 we have
A0 > 0 but A0 > 1 is still possible, which would imply v2

g > 1 for a static background with
(αx + βy + γz) < 0 and |k⊥| ̸= 0. To avoid both possibilities for superluminal propagation
we need precisely the convexity conditions (3.63), which restrict the possible causal theories
to BI and its extreme limits (the BB limit is excluded here as it has no static backgrounds).
In these cases 0 ≤ A0 ≤ 1, which ensures that v2

g ≤ 1. This extends a result of [5] for BI to
the extreme BI limits. As A0 = 0 for the extreme BI limits, vg = 1; this is a result of [1],
where it was also found that wave propagation in a static background is restricted to the
direction determined by the background fields.

We shall now generalise to a generic stationary background, assuming the convexity
conditions hold. As we have seen, the dispersion relation (3.34) is the unique one for the
entire three-parameter family of NLEDs defined by H =

√
Q; it is

ω̃2 = A0k2
1 + Φ(k2, k3) , (3.65)

where (we recall)

ω̃ = ω − k1
p

H
, Φ = Kk2

2 + Ak2
3 − 2Ck2k3 . (3.66)

From this we see that

vg ≡
dω

dk = H −1
(

p+ (αβ−γ2)k1
ω̃H

)
e1+ (Kk2−Ck3)

ω̃
e2+ (Ak3−Ck2)

ω̃
e3 . (3.67)

Using the fact that

(Kk2 − Ck3)2 + (Ak3 − Ck2)2 = (A + K)Φ − (AK − C2)(k2
2 + k2

3)

= Φ
(

1 −
[
p2 − (αβ − γ2)

]
H 2

)
− A0

(
k2

2 + k2
3

)
,

(3.68)

and the fact that
Φ
ω̃2 = 1 −

(
A0
ω̃2

)
k2

1 , (3.69)

we find that

v2
g = 1 + A0

ω̃2

[
ω2 − |k|2

]
. (3.70)

The formula (3.64), derived for static backgrounds, can be recovered by using the fact that
ω̃ = ω and ω2 = k2

2 + A0(k2
1 + k2

3) when p = 0.
We see immediately from (3.70) that vg = 1 when A0 = 0; i.e. for all three BI limits,

and in any stationary homogeneous background. What we do not see from this equation
is whether there are restrictions on the possible directions of wave propagation. We return
to this issue in the next section.

For A0 > 0; i.e the BI theory, we learn from eq. (3.70) that the group velocity is never
superluminal iff the phase velocity is never superluminal. We know (from the above review)
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that the phase velocity is never superluminal in a static background, and this will remain true
after a boost to a stationary background because (ω2 − |k|2) is Lorentz invariant. However,
there may be stationary backgrounds that are not obtainable in this way; they are intrinsically
stationary. We shall see in the next subsection that there are such backgrounds for BI: those
for which D · B = 0 and |D| = |B| = √

p. This means that the analysis of causality for
BI in [5] is not complete. We complete it now.

For an intrinsically-stationary BI backgrounds the BI dispersion relation (3.35) sim-
plifies to

(ω − k1)
[
ω +

(
T − p

T + p

)
k1

]
= T

(T + p)
(
k2

2 + k2
3

)
. (3.71)

The two solutions are ω = ω±, where

ω± = 1
T + p

{
p k1 ±

√
T 2k2

1 + T (T + p)(k2
2 + k2

3)
}

. (3.72)

Assuming (without loss of generality) that k1 > 0, then ω2
+ > ω2

− but

(T + p)2(ω2
+ − |k|2) = −p

(√
Tk1 −

√
Tk2

1 + (T + p)(k2
2 + k2

3)
)2

≤ 0 , (3.73)

and hence, from (3.70), vg ≤ 1.

3.4 Stress-energy tensor redux

The structure and properties of the stress-energy for a generic relativistic NLED defined by
its Hamiltonian density were discussed in subsection 2.1. Now we specialize to the class of
zero-birefringence NLEDs with H =

√
Q; i.e. (3.37).

We start with the BI case, for which

H =
√

p2 + 2T (x + y) + T 2 , W = p2 + T (x + y)
H

(3.74)

and hence

2W − H = H −1(p2 − T 2) ,

W± − H = −H −1
{

T 2 + T

[
(x + y) ∓

√
(x − y)2 + z2

]}
.

(3.75)

These results yield the following stress-energy tensor for a generic static (p = 0) background
solution:

Θstatic
BI =


H̄ 0 0 0
0 −T 2/H̄ 0 0
0 0 −H̄ 0
0 0 0 −T 2/H̄

 ,

(
H̄ =

√
T 2 + 2T (x + y)

)
. (3.76)

This is the stress-energy tensor of a tensile optical medium (since the pressures are negative).
It is anisotropic due the background vector fields in the e2 direction, and when these fields are
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absent it reduces to Θ = −Tη, where η is the Minkowski metric. Recalling (3.33) and (3.36),
we see that the dispersion relation for wave propagation in a static background is

ω2 = k2
∥ +

(
T

H̄

)2
|k⊥|2 , (3.77)

where k⊥ is the projection of k onto the plane orthogonal to e2. The anisotropy of the
stress-energy tensor is reflected in this dispersion relation,

Let us now consider the eBI case. We have

H =
√

p2 + 2Tx , W = p2 + Tx

H
, (3.78)

and hence

2W − H = p2

H
, W− − H = −2Tx

H
, W+ − H = 0 . (3.79)

For a generic static (p = 0) background we now find that the background stress-energy tensor is

Θstatic
eBI =


H̄ 0 0 0
0 0 0 0
0 0 −H̄ 0
0 0 0 0

 ,
(
H̄ =

√
2Tx

)
. (3.80)

The two pressures in the plane orthogonal to the background vector fields are now zero.
We might expect to find that waves cannot propagate in directions with zero pressure, in
which case we would predict that eBI waves in a static background can propagate only in the
direction of the background vector fields. Furthermore, we could predict that these waves
will be lightlike since the one non-zero pressure equals the energy density. These predictions,
based on the background stress-energy tensor are precisely what was found in [1] from a
direct computation: the dispersion relation is now ω2 = k2

∥.
It is important to appreciate here that any contribution to the stress-energy tensor

arising from the addition of a constant term to the Hamiltonian density is being excluded
because it has no effect on the NLED field equations. We could subtract H̄ from the BI
Hamiltonian in order to have zero vacuum energy; this would lead to a zero stress-energy
tensor for the NLED vacuum (x = y = 0). This might sound reasonable but only the intrinsic
value of the vacuum energy (T for BI) has any effect on the NLED physics. A change in T

changes the dispersion relation (3.77) but a change in the constant energy density added
to HBI to normalize the vacuum energy to some preferred value changes nothing (except
the cosmological constant in a gravitational context).

We now turn to stationary backgrounds. Since these are generically boosts of static
backgrounds, we need to know which stationary backgrounds are not of this type, and the
conclusion of subsection 2.1 was that W 2 = p2 for these “intrinsically stationary” backgrounds
(we do not assume for the moment that W > 0). Using (3.16) we have

W = p2 + (αx + βy + γz)
H

, (3.81)
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which yields

W 2 − p2 = H −2
{

(αx + βy + γz)2 − (αβ − γ2)p2
}

. (3.82)

We see that W 2 = p2 when

(αx + βy + γz)2 = (αβ − γ2)p2 (3.83)

Let us examine this for various special cases:

• (αβ − γ2) < 0; i.e. rBI or its Plebański limit. There are no non-vacuum configurations
satisfying (3.83). In addition, these cases allow W < 0 since either α < 0 or β < 0.
As we already seen, these are unphysical theories because they allow superluminal
propagation.

• (αβ − γ2) > 0; i.e. BI. We may choose α = β = T > 0 and γ = 0, in which case (3.83)
reduces to

(x − y)2 + z2 = 0 ⇒ x = y , z = 0 . (3.84)
In other words, a homogeneous stationary background in which D is orthogonal to B,
and |D| = |B| = √

p, is intrinsically stationary. For this background, we have

HBI = p + T , (3.85)

which yields the stress-energy tensor

ΘBI =


p + T p 0 0

p p − T 0 0
0 0 −T 0
0 0 0 −T

 . (3.86)

We again have planar isotropy but the plane is now that spanned by the background
vector fields.

• αβ − γ2 = 0 and α + β = T > 0. These are the extreme BI limits. We may solve the
constraint on parameters by setting

(α, β, γ) = T (cos2 θ, sin2 θ, sin θ cos θ) , (3.87)

for constant T and angle θ, in which case

αx + βy + γz = T |Dθ|2 , (3.88)

where
Dθ = cos θ D + sin θ B
Bθ = − sin θ D + cos θ B .

(3.89)

The equation (3.83) has no non-vacuum solution, so all stationary background solutions
are Lorentz boosts of a static background. The background stress-energy tensor is
therefore a Lorentz boost of (3.80) with H̄ → Hθ:

Θθ =


Hθ p 0 0
p p2

Hθ
0 0

0 0 −Hθ 0
0 0 0 0

 ,

(
Hθ =

√
p2 + T |Dθ|2

)
. (3.90)
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Notice that both eBI and meBI are now unified in a way that makes it manifest that one
is the electromagnetic dual of the other. The tension is now zero only in one direction,
which is the direction of Dθ, so we can expect wave propagation in all directions
orthogonal to Dθ. We shall verify this prediction in the next section.

• α = β = γ = 0. Now H = p. This is BB and the (intrinsically stationary) background
has the stress-energy tensor

ΘBI =


p p 0 0
p p 0 0
0 0 0 0
0 0 0 0

 . (3.91)

The pressure is now zero in the plane orthogonal to p, so we expect wave propagation
to be possible only in this direction. Again, we shall see in the following section that
this is true.

We have not yet mentioned Maxwell electrodynamics. This can be viewed as the infinite
tension limit of BI, although this limit can be taken only if the “intrinsic” vacuum energy
density T is first subtracted. However, this −T added to HBI has no effect on the NLED
field equations, and hence no effect on the dispersion relations, so the T → ∞ limit of (3.77)
should yield the usual Maxwell dispersion relation ω2 = |k|2, and it does.

4 The “extreme” limits of Born-Infeld

We now focus on the “extreme” limits of BI, with the Hamiltonian density Hθ of (3.90);
equivalently

Hθ =
√
|D × B|2 + T | cos θ D + sin θ B|2 (T > 0). (4.1)

The choices sin θ = 0 and cos θ = 0 correspond, respectively, to the electric and magnetic
“extreme” limits of Born-Infeld introduced in [1]: eBI and meBI.

As noted in section 3, a shift D → D − ϵB adds a total derivative to the phase-space
Lagrangian density L̃ , so Hamiltonians related by such redefinitions are therefore equivalent.
For cos θ ̸= 0 we can use this freedom to eliminate the sin θ B term. The (θ = 0) eBI
Hamiltonian can then be recovered by a rescaling of T . In contrast, for cos θ = 0, the
Hamiltonian is unchanged by a shift in D. These features will be explicit in the Lagrangian
densities given at the end of this section.

4.1 Hamiltonian field equations

In terms of the fields (Dθ, Bθ) defined in (3.89), the Hamiltonian field equations for the
extreme limits of BI simplify to

Ḋθ = ∇ × [nT × Dθ] , ∇ · Dθ = 0 ,

Ḃθ = ∇ ×
[
nT × Bθ −

T

H
Dθ

]
, ∇ · Bθ = 0 ,

(4.2)

where
nT = H −1

θ Dθ × Bθ . (4.3)
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These equations are just the macroscopic Maxwell equations for (D, B) with

Dθ + iBθ = eiθ (D + iB) , (4.4)

i.e. a duality rotation, but this is a field definition that can be made only in the field
equations, and not in the phase-space action because D is not divergence-free “off-shell”.
Notice that

|nT |2 = 1 − T |Dθ|2

H 2 ≤ 1 , (4.5)

with equality only for T = 0, for which the equations (4.2) reduce to the BB field equations [5]:

Ḋ = ∇ × [n × D] , ∇ · D = 0 ,

Ḃ = ∇ × [n × B] , ∇ · B = 0 ,
(4.6)

where n is now a unit vector field:

n = D × B
|D × B|

.

It is instructive to look for simple solutions of the equations (4.2) or (4.6).

• Extreme BI. For time-independent configurations satisfying |D × B| = 0 we have
Hθ =

√
T |Dθ|, and the field equations (4.2) reduce to

∇ ×
( Dθ

|Dθ|

)
= 0 , ∇ · D = ∇ · B = 0 , (4.7)

which are solved for any θ by

B = B(x1, x2) e3 , D = D(x1, x2) e3 . (4.8)

In the Lagrangian formulation, discussed at the end of this section, the electric field E
for this solution is

E =
{√

Te3 eBI
0 meBI

}
, (4.9)

which illustrates the fact that many functions D correspond to the same E, which is a
consequence of a zero-determinant Hessian matrix for the Hamiltonian density. It also
shows that a non-zero ∇ × B is compatible with a constant electric field, in contrast to
the Maxwell theory where (since D = E and H = B, and hence Ė = ∇ × B) it implies
a time-dependent electric field.

• BB electrodynamics. For any constant uniform unit vector n the field equations (4.6)
reduce to the linear equations

Ḋ = − (n · ∇) D , ∇ · D = 0 ,

Ḃ = − (n · ∇) B , ∇ · B = 0 .
(4.10)

Choosing n = e1 we have the solution

B = B(t − x1, x3) e2 , D = D(t − x1, x2) e3 , (4.11)
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provided that DB ̸= 0 (otherwise n is not defined). This is a wave in the 1-direction
with non-trivial profile; its Fourier components are solutions of the linearized BB
equations with ω = k1, where linearization is about the solution with non-zero constant
modes for D and B.

In general, the Hamiltonian field equations imply the continuity conditions

∂µT µν = 0 (µ, ν = 0, 1, 2, 3). (4.12)

This remains true in the T → 0 limit, for which we find the BB stress-energy tensor:

T µν
BB = nµnνHBB , nµ = (1, n := p/p) . (4.13)

Since n is now a unit 3-vector field, BB electrodynamics is a dynamical theory for a null
fluid [9].

4.2 Wave propagation

The dispersion relation of (3.65) simplifies considerably for Hθ because the quadratic form
Φ is now a perfect square:

Φ = T 2

H 2
θ

[(Dθ)2k2 + sin θB3k3]2 . (4.14)

Consequently, the quadratic dispersion relation (3.34) degenerates to a pair of linear relations;
written for our particular choice of axes they are

ω = H −1
θ {pk1 ± T [(Dθ)2k2 + sin θB3k3]} . (4.15)

For an arbitrary choice of axes these relations take the form

ω = v(±)
g · k , (4.16)

where5

v(±)
g = H −1

θ {p ± TDθ} . (4.17)

Using (4.1) and the fact that p · Dθ = 0, we confirm that vg = 1 for either choice of sign,
and this is also the phase velocity. In the T → 0 limit Hθ → HBB = p, and v

(±)
g = p/p = n.

Thus, all the limits of BI have the property that plane-wave perturbations of a stationary
homogeneous background are lightlike with a pair of linear dispersion relations, which
coincide in the BB limit.

As expected from our discussion of the stress-energy tensor at the end of the previous
section, there is no propagation in directions orthogonal to the plane spanned by the two
orthogonal 3-vectors (p, Dθ). The specific direction of propagation in this plane depends
on the ratio of k · p to k · Dθ. In the special case that p = 0 we recover the result of [1]
that propagation is necessarily parallel to Dθ.

Notice that there is no special case for which |Dθ| = 0 because then p = 0 too and
H = 0. However, in the T → 0 limit we get the BB theory, for which any constant

5We are omitting the bars on background fields here.
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uniform non-vacuum background has non-zero p because HBB = p; in this case propagation
is necessarily in the direction of p. This too can be understood from the stress-energy tensor
because the pressure of the background medium is zero in all directions orthogonal to p,
hence the “photon dust” interpretation of [9].

4.3 Lagrangian formulation

To pass to the Lagrangian formulation we return to the Hamiltonian density in the general
form of (3.37), but now with αβ ≥ 0 and γ = ±

√
αβ. We then introduce the electric

field via the definition

E = ∂H

∂D = 1
H

[(
|B|2 + α

)
D + (γ − D · B) B

]
, (4.18)

from which we deduce that

P := E · B = 1
H

(
αD · B + γ|B|2

)
(4.19)

and also that

2S := |E|2 − |B|2 = α − 1
H 2

[√
α(D · B) ±

√
β |B|2

]2
, (4.20)

where the sign choice corresponds to the sign choice made for γ. A consequence of these
relations is the identity

α2 − 2αS − P 2 ≡ 0 . (4.21)

This confirms that there cannot be a unique solution of (4.18) for D, as expected from the
fact that the Hessian matrix of H as a function of D has a zero eigenvalue.

Let us attempt to obtain a ‘canonical’ Lagrangian density in the standard way:

L(can) = D · E − H

= 1
H

[
|D × B|2 + (α|D|2 + γ(D · B)] − H

]
= − 1

H

[
β|B|2 + γD · B

]
.

(4.22)

To proceed, we shall now consider in turn the cases for which α ̸= 0 and α = 0:

• α ̸= 0. By comparing (4.19) with (4.22) we see that

L(can) = −(γ/α)P . (4.23)

Imposing the Lagrangian constraint with Lagrange multiplier λ yields

L = −(γ/α)P − λ
[
α2 − 2αS − P 2

]
. (4.24)

Setting (α, β) = (T, 0) (and hence γ = 0), we recover the eBI Lagrangian density found
in [1]:

LeBI = −λ(T 2 − 2TS − P 2) . (4.25)

For β ̸= 0 the only difference is the addition of a total derivative.
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• α = 0. In this case γ = 0 and we may set β = T . Eq. (4.20) now simplifies to

2TS = −
(

T |B|2

H

)2

= −L 2
(can) , (4.26)

which requires S ≤ 0 for T > 0, and yields

L(can) = −
√
−2TS . (4.27)

In addition, (4.19) becomes the Lagrangian constraint P ≡ 0, which is consistent with,
and replaces, (4.21). Imposing this constraint we recover the meBI Lagrangian density
found in [1]:

LmeBI = −
√
−2TS − λP . (4.28)

Note that in this case the addition of a total derivative term proportional to P has no
effect since it can be removed by a redefinition of λ.

It is instructive to check these results by an inverse Legendre transform.

• eBI Starting from (4.25) we define

D := ∂LeBI
∂E = λ (TE + PB) , (4.29)

from which we deduce that

E = (T + |B|2)D − (D · B)B
λT (T + |B|2)

[
⇒ P = D · B

λ (T + |B|2)

]
, (4.30)

and hence6

T 2|E|2 = |D × B|2 + T |D|2

λ2(T + |B|2) − TP 2 . (4.31)

Using these relations, we find that

H := D · E − LeBI = 1
2
{

ℓ−1
[
|D × B|2 + T |D|2

]
+ ℓ
}

, (4.32)

where
ℓ = λT (T + |B|2) . (4.33)

Notice that the Lagrange multiplier λ has now become the auxiliary field ℓ, with field
equation

ℓ =
√
|D × B|2 + T |D|2 = HeBI . (4.34)

Back-substitution in (4.32) yields H = HeBI.

• meBI It is convenient to start from the following equivalent Lagrangian density
involving an auxiliary field ℓ:

L ′
meBI = 1

2
{

ℓ(2TS) − ℓ−1
}
− λP . (4.35)

6This corrects eq. (4.8) of [1] in which the −T P 2 term is missing.
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Now we have
D := ∂L ′

meBI
∂E = ℓTE − λB , (4.36)

and hence
E = (ℓT )−1 (D + λB) . (4.37)

Using this to eliminate E we find that

H ′ = D · E − L ′
meBI = 1

2
{

e−1H 2
meBI + e

}
+ 1

2e

[
λ|B|2 + D · B

]2
, (4.38)

where
e = ℓT |B|2 . (4.39)

The Lagrange multiplier λ has become an additional auxiliary field e. Upon elimination
of both auxiliary fields, we get

λ = −D · B
|B|2

, e = HmeBI , (4.40)

so that H ′ → HmeBI.

It is evident from these results that the Lagrangian formulations of the two extreme limits
of BI greatly obscures the fact that they are related by discrete electic/magnetic duality.

5 Summary and outlook

This paper is a sequel to an earlier one in which the issue of birefringence in nonlinear
electrodynamics (NLED) was revisited with the aim of finding a complete list of those theories
for which constant uniform electromagnetic backgrounds provide a homogeneous optical
medium without birefringence [1]. It was well-known that Born-Infeld (BI) was the unique
zero-birefringence NLED given certain assumptions (the simplest being the assumption of a
weak-field limit) but another “pathological” case found by Plebański [4] had been frequently
mentioned in the literature. Were there more cases to be found?

By following a systematic method due to Boillat [3], another “reverse-Born-Infeld” (rBI)
was found in [1], and a solution of the “Boillat equations” at the parameter boundary between
BI and rBI was shown to lead to a Lagrangian constraint rather than a Lagrangian. It
was argued that the ‘non-standard’ Lagrangian found by imposing this constraint with a
Lagrange multiplier would define yet another zero-birefringence NLED, which was called
“extreme-Born-Infeld” (eBI); one of the arguments was that the eBI Hamiltonian was not only
‘standard’ but also a (non-conformal) scaling limit of the BI Hamiltonian. The electromagnetic
duality of the BI Hamiltonian is lost in this scaling limit, and this implies the existence of
a ‘dual’ scaling limit of BI with a reversed role for electric and magnetic fields; this was
called “magnetic-extreme-BI” (meBI) and it was shown that the meBI Lagrangian is also
‘non-standard’ because of a Lagrangian constraint.

As we have pointed out here, both “extreme” limits of BI and the conformal strong-field
BB limit are solutions of the Boillat equations for zero-birefringence once one allows solutions
involving Lagrangian constraints. Including them yields a list of six distinct zero-birefringence
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NLEDs, but as the derivation of the Boillat equations starts from a standard Lagrangian
density without constraints, the birefringence status of the three BI-limits on the list is not
settled by this observation. However, it is settled by our Hamiltonian birefringence analysis
(and, for the BB case, the previous Hamiltonian analysis of [10]).

An issue that we have passed over is whether our list of six zero-birefringence NLEDs is
complete. To address this issue one must first decide what “completeness” means; i.e. within
what class of NLEDs. We could choose the class for which the Hamiltonian density H (D, B)
is any (sufficiently differentiable) function but this would include many NLEDs that are not
Lorentz invariant. We have chosen to impose Lorentz invariance (but not electromagnetic
duality invariance, which would eliminate all but BI and BB from our list). It is also reasonable
to require H to be a convex function of the electric displacement vector field D, because this
guarantees the existence of an equivalent Lagrangian, and because it is required by causality.

Imposing “strict convexity” would eliminate all but BI from our list, and ensure its
unique zero-birefringence status; this is because “strict convexity” ensures the existence of a
‘standard’ manifestly Lorentz invariant Lagrangian without constraints) and in this context
the Boillat equations both apply and allow only BI. The BI limits would be excluded as the
Hessians of their Hamiltonian densities have zero eigenvalues, but there is no good physical
reason to exclude them. Any other zero-birefringent NLEDs within this larger class (satisfying
the weaker convexity condition) must have a Hamiltonian density for which the Hessian
matrix also has a zero determinant, but in some different way. We have not excluded this
possibility but we think it unlikely for two reasons. One is the fact that our “list of six” can
all be found as solutions of the Boillat equations, which suggests that these equations are
valid within the larger NLED class. The other is the fact that the Hamiltonian densities
of the “list of six” all have the same very simple form, which suggests that we have found
the exact solution of the zero-birefringence conditions found here, but that some further
insight is needed to prove it. This is plausible because it is also far from obvious how to
solve the standard Lagrangian zero-birefringence conditions; it only becomes obvious when
they are rewritten as the “Boillat equations”.

Another aim of this paper has been to explore further the novel “extreme” limits of
Born-Infeld. It was shown in [1] that perturbations of static homogeneous backgrounds always
propagate at light speed and only in a direction that is (anti)parallel to the background fields.
Here we have provided a physical explanation for this unusual feature: the optical medium
provided by the background has zero pressure in the directions in which the perturbations
cannot propagate. The same explanation applies to non-static but stationary backgrounds,
but now the medium has zero pressure in only one direction, and propagation is possible
only in the plane orthogonal to it.

This explanation of the unusual features of the limits of Born-Infeld relies on the fact
that we exclude from the Hamiltonian density any constant term, such as that conventionally
included to normalize the vacuum energy to zero. Whenever the resulting “intrinsic” stress-
energy tensor has zero pressure in a given direction there is no wave propagation in this
direction. While this is an expected feature in the context of a conventional optical medium, it
leads to the conclusion that the Born-Infeld vacuum is an optical medium with tension equal
to the Born constant T , but this vacuum is just Minkowski spacetime. The interpretation
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of Minkowski spacetime as a tensile medium becomes natural in the context of D3-brane
dynamics, which reduces on a planar static brane (and omitting fermionic fields) to Born-Infeld,
and it supports the interpretation put forward in [16] of the D3-brane as an electromagnetic
aether consistent with relativity.

A concomitant feature of the restrictions on directions of propagation is the linearization
of the quadratic dispersion relation, which becomes a pair of distinct linear dispersion relations
for the extreme limits of BI, which coincide in the further conformal limit to BB. We have
also confirmed, by a more unified calculation, the Lagrangian formulations of eBI and meBI
found in [1]. We have just alluded to the significant role of Born-Infeld theory in the dynamics
of D-branes in string theory, and we expect the limits of Born-Infeld to also play a role. A
possible role for the conformal strong field BB limit has been proposed by two of us [17], but
any role for the non-conformal “extreme” limits will likely be very different; one string-like
feature is that wave propagation in a static background is effectively reduced to left and
right movers in one space dimension.
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