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Many theories of nonlinear electrodynamics (NLED) that have been proposed in physical contexts
involving strong fields are causal for weak fields but acausal for strong fields. We show that for any such
theory there is a unique causal and self-dual (electromagnetic duality invariant) theory with the same
Lagrangian at zero magnetic field. This follows from a construction of the general causal self-dual NLED,
which shows that strong-field causality is implied by weak-field causality for self-dual theories. We
illustrate our results with explicit examples.
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Theories of nonlinear electrodynamics (NLED) are
interacting generalizations of Maxwell electrodynamics
that are traditionally defined (since the work of Born [1],
Born and Infeld [2], and later Boillat [3] and Plebanski [4])
by a Lagrangian-density function LðS; PÞ of the two
Lorentz scalars quadratic in the electric and magnetic
fields:

S ¼ 1

2
ðjEj2 − jBj2Þ; P ¼ E ·B: ð1Þ

For the linear case, L ∝ S, since P is a total derivative, and
positive energy requires a positive proportionality constant.
As the normalization depends on a choice of units, we
choose L ¼ S; this is the Maxwell case.
An interacting example arises in the context of the

effective action for quantum electrodynamics (QED) at
energy densities insufficient for electron-positron pair
production. The full effective action takes the form of an
expansion in powers of ðS; PÞ and their derivatives. As
derivative terms generally introduce additional unphysical
massive modes, they limit the applicability of effective field
theory to energies below the scale that they introduce.
However, the derivative terms are absent in the approxi-
mation of constant electric and magnetic fields, and the sum
of the expansion in powers of ðS; PÞ yields the 1936 NLED

of Heisenberg and Euler [5]. Its validity, within the
constant-field approximation, is not obviously limited to
weak fields because NLED interactions do not introduce
additional modes. For example, for specified wave-vector k
there are still only two independent polarizations of any
plane-wave perturbation of any constant uniform electro-
magnetic background.
The similarity of the Heisenberg-Euler theory to the

theories of Born and Infeld was noted at the time [6].
However, Born’s idea was that Maxwell electrodynamics is
already a weak-field approximation to an interacting rela-
tivistic classical field theory with a maximal electric field
strength determined by a new fundamental constant of
nature, the “Born constant.” Born’s motivations have since
been justified, to some extent, by the appearance of the
Born-Infeld (BI) theory as part of the effective world
volume dynamics of the D3-brane of IIB superstring theory
at weak string coupling; the 3-brane tension T plays the role
of the Born constant (see e.g. [7]). A Born scale in classical
electrodynamics is potentially relevant in contexts such as
black holes [8,9], magnetars [10,11], particle colliders
[12,13], and condensed matter via holography [14]; see
e.g. [15,16] for other references. An important consider-
ation in many of these applications is causality. In appli-
cations to classical black holes physics, for example,
causality is required for the existence of an event horizon.
The necessary and sufficient conditions for LðS; PÞ to

define a causal NLEDwere found by Schellstede et al. [17],
subject to an assumption that amounts to the existence of a
weak-field limit. A precondition is

LS > 0; ð2Þ
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where the subscript denotes a partial derivative; this is
partly a sign convention. Then we have the conditions

LSS ≥ 0; LPP ≥ 0; LSSLPP − L2
SP ≥ 0; ð3Þ

which are also the conditions for convexity of L, viewed
as a function of the electric field E [18]. We interpreted
them as weak-field causality conditions in [16] because
causality violation for weak fields requires a negative
birefringence index [19,20], which is excluded by con-
vexity [18]. For brevity and clarity, we shall refer here to the
inequalities of (3) as the “convexity conditions.”
Finally, we have the condition [17]

LS > 2ULSS þ 2VLPP − 2PLSP; ð4Þ
where

U ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P2

p
− S

�
; V ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P2

p
þ S

�
: ð5Þ

Notice that this condition implies (2) given (3), so (2) is
purely a convention for causal theories. A violation of (4)
requires strong fields. We have given an alternative deri-
vation of this strong-field causality condition in [16]; we
note here that it becomes the following much simpler
condition when L is regarded as a function of ðU;VÞ:

LU þ 2ULUU < 0: ð6Þ
In NLED theories with only a few parameters, the

convexity conditions (3) usually reduce to a few sign
choices, and most models considered in the literature
are physical in this respect, i.e. causal for sufficiently
weak fields. This is true of Born’s original theory, Born-
Infeld, and most other variants of Born’s theory considered
in applications mentioned above. It has typically been
assumed, implicitly, that this remains true for strong fields
(as is the case for Born-Infeld [19]). However, functions
LðS; PÞ chosen simply because they appear promising for
some phenomenological purpose are unlikely to satisfy
the strong-field causality condition (4); this was Born’s
approach and his original model is acausal [17]. In fact,
any NLED defined (like Born’s original theory) by a
Lagrangian density function LðSÞ (i.e. no P-dependence)
is acausal [17]. Many others more similar to the Born-
Infeld theory are also acausal [16].
The Heisenberg-Euler function LðS; PÞ is known only

in an implicit form that determines the expansion to any
order in powers of ðS; PÞ. The truncation to quadratic
order is acausal for strong fields but the truncated-
expansion approximation is then invalid [17]. It is unknown
whether the un-truncated theory is causal; it might be
expected to violate causality for electric fields strong
enough for pair production, but then it should be replaced
by QED. However, a similar escape from causality viola-
tion for strong magnetic fields would require magnetic

monopole/antimonopole pair production, and this is rel-
evant to Born’s theory (among many others) because it is
acausal for sufficiently strong magnetic fields even if the
electric fields are small.
Unfortunately, there is no known solution to the causality

conditions (3) and (4) that could shortcut the task of
determining whether they are satisfied on a case by case
basis. As we show here, however, there is a very simple
way of implementing these conditions for the special
subclass of NLED theories that are electromagnetic-duality
invariant. Following [21], but also for brevity, we shall use
the terminology “self-dual” for “electromagnetic-duality
invariant.” It should be understood that self-duality is never
an invariance of L, even for Maxwell. It is an invariance of
the Hamiltonian (and hence the field equations) under some
special linear transformation of the Hamiltonian fields
ðD;BÞ where D is the Legendre dual of E. Here, the term
“self-dual” will indicate invariance of the Hamiltonian
under an SOð2Þ “rotation” subgroup of Slð2;RÞ.
Self-dual theories include Maxwell and (as first observed

by Schrödinger [22]) Born-Infeld electrodynamics. They
also include the modified Maxwell (or “ModMax”) theory
with (source-free) Lagrangian density [23,24]

L ¼ ðcosh γÞSþ ðsinh γÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P2

p
; ð7Þ

where γ ≥ 0 is a dimensionless coupling constant (γ < 0 is
excluded by convexity, and Maxwell is recovered as the
free-field γ ¼ 0 case). All self-dual NLED theories that have
a weak-field limit must reduce in this limit to ModMax,
which we will take to include Maxwell, because this is the
most general conformal self-dual NLED with Lagrangian
density LðS; PÞ. One nonconformal self-dual NLED with
γ > 0 is theBI-type extensionofModMax [23,24],whichwe
called “ModMaxBorn” in [16].
Because self-duality is an invariance of the Hamiltonian,

it is not manifest in a Lagrangian formulation. The con-
dition on L required for self-duality was first found by
Bialynicki-Birula [19] and has been rediscovered several
times. It takes the following simple form when L is viewed
as a function of the Lorentz scalars ðU;VÞ [25]:

LULV ¼ −1: ð8Þ

The general solution to this equation has been known for a
long time [26], and was applied in a related context in [27].
It is given implicitly in terms of ðU;VÞ and an arbitrary real
function lðτÞ of a real variable τ:

L ¼ lðτÞ − 2U

½l̇ðτÞ� ; τ ¼ V þ U

½l̇ðτÞ�2 ; ð9Þ

where l̇ ¼ dl=dτ. For the NLED application of this result,
we see from (5) that τ ≥ 0 with equality for U ¼ V ¼ 0
(i.e. the vacuum).
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The formula (9) is the starting point for the results of this
paper. Using it, the conditions (3) and (4) can be converted
to conditions on the function l. Remarkably, because of the
assumption of a weak-field limit, we find that the convexity
conditions alone are both necessary and sufficient for
causality, and that they are equivalent to the very simple
inequalities l̇ ≥ 1 and l̈ ≥ 0.
We then show how any NLED that is causal for weak

fields but not for sufficiently strong-fields determines a new
causal, and self-dual, NLED with the same Lagrangian
density at zero magnetic field. The function lðτÞ for this
“new” causal NLED is found from the Lagrangian density
of the “old” acausal NLED at zero magnetic field. A simple
example is the Born theory, which is thus ‘converted’ into
Born-Infeld, but we use the example of “logarithmic
electrodynamics” to better illustrate the method.
To begin, we take the exterior derivative on both sides of

the two equations of (9) to get

l̇2dL ¼ Gdτ − 2l̇dU; Gdτ ¼ l̇ðl̇2dV þ dUÞ; ð10Þ
where we have defined

G ≔ l̇3 þ 2Ul̈: ð11Þ
Combining these two equations we have

dL ¼ l̇dV − l̇−1dU; ð12Þ
which gives us

LV ¼ l̇; LU ¼ −1=l̇: ð13Þ
Using this result, we verify that (8) is solved by (9), and we
find that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P2

p
LS ¼ VLV − ULU ¼ l̇V þU=l̇: ð14Þ

As ðU;VÞ are both non-negative, the “precondition” (2)
(which, we recall, is a convention) is equivalent to

l̇ > 0: ð15Þ

Taking exterior derivatives again in (13), and using the
second equation of (10) to eliminate dτ, we find expres-
sions for the second partial derivatives of LðU;VÞ:

LUU ¼ l̈

l̇G
; LUV ¼ l̇ l̈

G
; LVV ¼ l̇3l̈

G
: ð16Þ

This assumes that G is nowhere zero. With this understood,
we now have expressions for both LU and LUU in terms
of the first and second derivatives of l. Using them
in (6) yields the inequality l̇2=G > 0. As l̇ > 0, this is
equivalent to

G > 0; ð17Þ

which is therefore the strong-field causality condition for
self-dual NLED. As we now explain, it has a simple
geometric meaning.
From (9), we see that the curves of constant τ in the

positive quadrant of the ðU;VÞ-plane are straight lines that
intersect both axes, U ¼ 0 and V ¼ 0. From the equation
for Gdτ of (10) it follows that if the lines of constant τ and
τ þ dτ intersect thenG ¼ 0 at the intersection. Thus,G > 0
ensures that these lines never intersect, and therefore that
they foliate the region of the positive ðU;VÞ quadrant in the
domain of LðU;VÞ.
We now turn to the convexity conditions of (3). Although

these become complicated when expressed in terms of
second-derivatives of LðU;VÞ, they simplify for self-dual
NLEDs when the Eqs. (16) for these second derivatives
are used:

LSS ¼ l̇−1½Aðl̇2 − 1Þ þAðl̈=GÞ�;
LPP ¼ l̇−1½Bðl̇2 − 1Þ þ Bðl̈=GÞ�;
LSP ¼ l̇−1½Cðl̇2 − 1Þ þ Cðl̈=GÞ�; ð18Þ

where

A ¼ 2UV
ðV þUÞ3 ; A ¼ ðU − l̇2VÞ2

ðV þ UÞ2 ;

B ¼ ðV − UÞ2
2ðV þ UÞ3 ; B ¼ ðl̇2 þ 1Þ2UV

ðV þUÞ2 ;

C ¼
ffiffiffiffiffiffiffiffi
UV

p ðU − VÞ
ðV þUÞ3 ; C ¼

ffiffiffiffiffiffiffiffi
UV

p ðl̇2V −UÞðl̇2 þ 1Þ
ðV þ UÞ2 :

ð19Þ

The third convexity inequality of (3) now becomes

ðU þ Vl̇2Þ2
2ðU þ VÞ3l̇2

ðl̇2 − 1Þ l̈
G

> 0; ð20Þ

which requires ðl̇2 − 1Þ and ðl̈=GÞ to have the same sign.
Since the factors ðA;AÞ and ðB;BÞ are non-negative, and
generically positive, the first two convexity inequalities of
(3) reduce (taking (15) into account) to

l̇ ≥ 1; l̈=G ≥ 0: ð21Þ

If these equations are combined with the strong-field
causality constraint G > 0 then we arrive at the remarkably
simple result that a self-dual NLED with a weak-field limit
is causal if and only if

l̇ ≥ 1; l̈ ≥ 0: ð22Þ

However, this result is already a consequence of the
convexity constraints of (21) because of the assumption
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of a weak-field limit. This assumption ensures that jBj ¼ 0,
and henceU ¼ 0, is part of the physical domain. AtU ¼ 0,
one has V ¼ τ and G ¼ l̇3 > 0, and hence l̈ ≥ 0 as a
consequence of the second convexity condition of (21).
This holds for all τ for which lðτÞ is a real and nonsingular
function, and henceG > 0 for anyU in the domain of L. In
other words, weak-field causality implies strong-field
causality for any self-dual NLED with a weak-field limit.
We shall now illustrate these results with some known

self-dual NLED theories, and one new one:
(i) ModMax: lðτÞ ¼ aτ for constant a (the omission of

a constant term corresponds to a choice of zero
vacuum energy). This function yields

L ¼ aV − a−1U τ ¼ V þ a−2U: ð23Þ

The convexity condition l̇ ≥ 1 requires a ≥ 1, so we
may set a ¼ eγ for γ ≥ 0. This yields the ModMax
Lagrangian density of (7), and Maxwell for γ ¼ 0.

The fact that ModMax is the unique conformal weak-field
limit of any nonconformal causal self-dual NLED can now
be rephrased as a property of the function lðτÞ: it has a
power series expansion about τ ¼ 0 such that

lðτÞ ¼ eγτ þOðτ2Þ: ð24Þ

An example for γ ¼ 0 is the BI theory, but this is the γ ¼ 0
case of our next example.

(i) ModMaxBorn: lðτÞ ¼ T −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðT − 2eγτÞp

. Reality
of l requires τ ≤ e−γT=2 and we now have l̇ ≥ 1 for
γ ≥ 0, and l̈ > 0. All causality conditions are there-
fore satisfied for γ ≥ 0. The Lagrangian density is

L ¼ T −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT þ 2e−γUÞðT − 2eγVÞ

p
; ð25Þ

which is BI for γ ¼ 0. For γ > 0 it is the self-dual
generalization of BI found in [23,24].

Notice that an expansion of the ModMaxBorn function
lðτÞ in powers of 1=T is simultaneously a power-series
expansion in τ:

lðτÞ ¼ eγτ þ 1

2
e2γτ2=T þOðτ3Þ; ð26Þ

thus confirming that ModMax is the weak-field limit. Also,
since τ ¼ V atU ¼ 0, the maximum of τ allowed by reality
of lðτÞ is also the maximum value of V allowed for reality
of the ModMaxBorn Lagrangian density.
Recall that the curves of constant τ in the positive

quadrant of the ðU;VÞ-plane are always straight lines,
and for causal theories they foliate the region of this
quadrant in the domain of LðU;VÞ. From the above
examples we see that the lines are parallel for ModMax
and that they foliate the entire quadrant. More generally
the magnitude of the slope of the lines decreases with

increasing τ (since l̈ > 0) and the lines are never parallel.
There are then two possibilities. If the slope becomes zero
at a τ ¼ τmax then VðτmaxÞ ¼ Vmax and the lines of constant
τ foliate the V < Vmax subspace of the quadrant; this
possibility is illustrated by ModMaxBorn. The other
possibility is that there is no maximum of τ, or V, and
the lines of constant τ foliate the entire positive quadrant;
this is illustrated by the following new example:

(i) lðτÞ ¼ 2
3
eγTð1þ τ=TÞ32. We have l̈ > 0 for all τ but

the condition l̇ > 1 requires γ ≥ 0, so the theory is
causal for γ ≥ 0. The power-series expansion of lðτÞ
shows that the weak-field limit is ModMax, but in
contrast to ModMaxBorn there is no maximum
value of τ. The Lagrangian density is

L¼ 2

3
eγT

� ffiffiffi
2

p �
1þV

T
−
Δ
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þV

T
þΔ

r �
; ð27Þ

where Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ V

TÞ2 þ 4e−2γ U
T

q
. Notice that reality

of L imposes no constraint on either U or V.
We have now seen how the Lagrangian density L for a

self-dual NLED may be found from its associated one-
variable function lðτÞ, but how do we find the function
lðτÞ given L? To answer this question, we first observe that
L is a function only of E ¼ jEj when jBj ¼ 0; call this
function LðEÞ. Next, we observe that ðU;VÞ ¼ ð0; 1

2
E2Þ for

zero magnetic field, and hence, from (9),

LðEÞ ¼ lðτÞ; τ ¼ 1

2
E2 ðjBj ¼ 0Þ: ð28Þ

In other words, lðτÞ is the function found from the
Lagrangian density at jBj ¼ 0 by setting E ¼ ffiffiffiffiffi

2τ
p

(as is
easily verified for the above examples).
This suggests a categorization of NLED theories accord-

ing to the function LðEÞ that they define at jBj ¼ 0. For
each such function there is an infinite number of possible
Lagrangian densities LðS; PÞ but only one is self-dual. We
can exploit this observation to “convert” any nonself-dual
NLED into the self-dual NLED in its category, which will
be causal if the associated function lðτÞ satisfies the
conditions of (22).
This construction is well illustrated by the “logarithmic

electrodynamics” of [8], which (like all variants of it
analyzed in [16]) is acausal for strong fields. However,
the self-dual version is causal; its construction below allows
for its γ > 0 generalization:

(i) lðτÞ ¼ −eγT lnð1 − τ=TÞ. This is defined for τ < T,
and the causality conditions (22) are satisfied in this
range if γ ≥ 0. The power-series expansion of lðτÞ
shows thatModMax (Maxwell for γ ¼ 0) is theweak-
field limit. The equation for τ is quadratic in this case
but has only one positive solution, which yields

L ¼ −eγT lnðΞ=UÞ − 2e−γΞ; ð29Þ
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where

Ξ ¼ 1

2
e2γ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 4e−2γðT − VÞU

q
− T

i
: ð30Þ

The special (acausal) casewith γ ¼ − lnð2Þwas found
previously in [28] using a different method.

We conclude with the observation that the Lagrangian
density for general causal self-dual NLED can be written as

L ¼ lðτÞ − 2U

l̇ðτÞ − λ

�
τ − V −

U

½l̇ðτÞ�2
�
; ð31Þ

where λ is a Lagrange multiplier field. For a causal self-dual
NLED theory the fields ðλ; τÞ are an auxiliary pair because
the field equation of one yields an equation that uniquely
determines the other, as we now explain.
Variation of τ in (31) yields the equationG½λ− l̇ðτÞ� ¼ 0,

which is equivalent to λ ¼ l̇ðτÞ only if G ≠ 0 as is the case
for causal theories, since causality requires G > 0 (in the
domain of L). Similarly, variation of λ in (31) yields
the equation for τ of (9), which uniquely determines τ as a

function of ðU;VÞ as long as G ≠ 0. This is because the
only way that a point in the positive ðU;VÞ quadrant can
fail to have a definite value of τ is if it is an intersection
point of two (or more) distinct lines of constant τ, but this
can happen only at points for which G ¼ 0. The pair of
fields ðλ; τÞ is therefore a bona fide auxiliary-field pair for
all causal self-dual NLED theories, and their elimination
yields the Lagrangian density defined by (9).
In contrast to previously proposed auxiliary-field formu-

lations of generic self-dual NLED theories (e.g. [29,30]) the
implementation of causality in (31) is very simple: one has
only to choose the functionl such that the conditions (22) are
satisfied. In addition, (31) provides a natural starting point for
a generalization of causal self-dual NLED theories to
arbitrary spacetimes and hence for the inclusion of gravity,
but we leave this for future investigations.
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