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1 Introduction

The term “nonlinear electrodynamics” (NLED) is generally taken to mean the class of
field theories defined by a Lagrangian density that is some Lorentz scalar function of the
2-form field-strength F = dA for an abelian 1-form gauge potential on a four-dimensional
Minkowski spacetime; no derivatives of F are permitted since this would lead to addi-
tional (and unphysical) propagating modes. For Minkowski coordinates xµ = (t,x), all
Lorentz scalars constructed from F can be expressed as functions of the two (pseudo)scalar
quadratic Lorentz invariants1

S = −1
4FµνF

µν = 1
2
(
|E|2 − |B|2

)
,

P = −1
4FµνF̃

µν = E ·B ,
(1.1)

where F̃ is the Hodge dual of F and (E,B) are its electric and magnetic components. The
generic NLED Lagrangian density can therefore be written as L(S, P ). Maxwell electro-
dynamics is recovered by choosing L = S.

One solution of the field equations of any NLED is a constant uniform electromagnetic
field strength. If L is expanded about this ‘background’ solution, the term quadratic in

1Our metric signature is “mostly-plus”.
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the perturbation f of the background field strength F is

L(2) = LS
{
− 1

4f
µνfµν (1.2)

+ 1
8`SS(Fµνfµν)2 + 1

4`SP (Fµνfµν)(F̃µνfµν) + 1
8`PP (F̃µνfµν)2

}
,

where
`SS = LSS

LS
, `SP = LSP

LS
, `PP = LPP

LS
. (1.3)

We may assume that LS 6= 0 because otherwise the linearized field equation does not
propagate two independent polarisation wave modes; this linear field equation is

∂µf
µν − 1

2A
µνρσ∂µfρσ = 0 , (1.4)

where
Aµνρσ = (`SSFµν + `SP F̃

µν)F ρσ + (`SPFµν + `PP F̃
µν)F̃ ρσ . (1.5)

Here we are following [1], where it was observed that a constant uniform electromagnetic
background can be interpreted as an anisotropic optical medium provided that there is a
frame in which the background Poynting vector is zero; this is the rest-frame of the medium.
A typical property of anisotropic optical media is a polarisation-dependent dispersion re-
lation for electromagnetic plane waves. This phenomenon, known as birefringence, is also
a typical property of wave solutions of the equation (1.4), but there is no birefringence in
a few exceptional cases:

• Born-Infeld electrodynamics, for which

LBI = T −
√
T 2 − 2TS − P 2 , (1.6)

where T is a constant with dimensions of energy density (and an interpretation as
3-brane tension in string-theory applications). Maxwell electrodynamics is recovered
in the T →∞ limit; i.e. the weak field limit. Like Maxwell’s equations, the (source-
free) BI field equations have an SO(2) electromagnetic duality invariance. Reality of
LBI for all B requires

|E|2 < T , (1.7)

which was part of the original motivation for the theory [2].

• “Plebanski” electrodynamics, for which

LPl = κS

P
, (1.8)

where κ is another constant with dimensions of energy density (but one that does
not appear in the Lagrangian field equations). There is no weak-field limit as both
E and B must be nowhere zero (to avoid P = 0) but we show here that there is a
strong-field limit.
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• “Reverse Born-Infeld” electrodynamics:

LrBI = α
√
P 2 + 2TS − T 2 + βP + const. (1.9)

for dimensionless constants (α, β). Reality for all B now requires |E|2 > T but a
more useful inequality, which is both necessary and sufficient for reality, is

T − 2S < P 2/T . (1.10)

Despite the similarity to BI, the rBI field equations are not duality invariant (a fact
that becomes manifest in the Hamiltonian formulation). Another difference to BI is
the absence of a weak-field (T →∞) limit; there is a strong-field (T → 0) limit with
L ∝ |P |, but this has no wave solutions.
For the choice of dimensionless constants α = β = κ/T , where κ is another parameter
with dimensions of energy density, the rBI Lagrangian density is

LrBI = κ

T

[√
P 2 + 2TS − T 2 − P

]
. (1.11)

The field equations are independent of κ, so T remains the only natural scale for
energy density. However, if we assume that P is everywhere positive then we can
take the T → 0 limit, for fixed κ, to recover (1.8) (which provides an a posteriori
justification for the assumption of positive P ). Thus, rBI electrodynamics can be
viewed as a generalisation of Plebanski electrodynamics.

The first two of these zero-birefringence cases were initially found by Boillat [3, 4] and Ple-
banski [5] from studies of shock waves, but the zero-birefringence conditions on L(S, P ) also
follow from a study of wave solutions in constant uniform electromagnetic backgrounds [1].
The third (rBI) case was also found by Plebanski but in a particular Lorentz frame, which
may explain why it is rarely (if ever) mentioned in citations to his 1970 lecture notes.2 Both
Boillat and Plebanski showed how the general solution to the zero-birefringence equations
may be found, and they also showed that Born-Infeld is the unique zero-birefringence
electrodynamics with a weak-field limit.3

Here we follow the method of Boillat, which involves an interchange of the dependent
and independent variables of the zero-birefringence conditions, leading to what we shall
call the “Boillat equations” [4]. The general solution to these equations, which is easily
found, depends on integration constants, and all choices that allow a weak-field limit lead
to Born-Infeld. However, there are other solutions. In particular, allowing the constant T
to be zero leads to the “Plebanski” case. What we call “reverse-Born-Infeld” arises as a
T 6= 0 subcase in which a sign choice that leads to Born-Infeld is reversed.

At the boundary between Born-Infeld and reverse-Born-Infeld, there is one other case
that was not noticed by either Boillat or Plebanski. It corresponds to a solution of the
“Boillat equations” that leads to a quadratic constraint on the Lorentz invariants (S, P ),
rather than to a Lagrangian density. This ‘extremal’ case leads to what we shall call:

2Eq. (10.37a) of [5] coincides with (1.11) in a frame for which |E × B| = 0 if one sets Plebanski’s
constants (µ̃, ν̃) to (κ, T/(2κ)). His eq. (10.37b) is the “Plebanski” case.

3This can also be established by straightforward power-series solution of the no-birefringence condition
[6]. Born-Infeld is also the unique duality invariant electrodynamics with “good propagation” properties [7].
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• “Extreme Born Infeld” (eBI) electrodynamics. The Lagrangian constraint is P 2 +
2TS − T 2 = 0. If this constraint is imposed by a Lagrange multiplier, one finds a
Lagrangian density that can be interpreted as a non-conformal scaling limit of either
BI or rBI. Because this limit takes us outside the NLED framework initially assumed,
we discuss this case separately.

We have not yet mentioned the strong-field (T → 0) limit of BI electrodynamics.
This is because it cannot be taken in (1.6). As we shall show later, it can be taken in
a Lagrangian reformulation that includes auxiliary fields, but it was first found in the
context of the Hamiltonian formulation of BI electrodynamics, where the strong-field limit
leads to the conformal Bialynicki-Birula (BB) electrodynamics, with an enhanced Sl(2;R)
electromagnetic duality and other unusual properties [1, 8]. This example suggests that
strong-field limits of Plebanski and reverse-BI electrodynamics might similarly become
possible in their Hamiltonian formulation, and that extreme-BI electrodynamics might
have a standard Hamiltonian formulation. These suggestions are all realized!

For any NLED for which L is a convex function of E, the Hamiltonian density is defined
by the Legendre transform

H(D,B) = sup
E
{E ·D− L(E,B)} , (1.12)

where D is the (electric displacement) 3-vector field conjugate to E. By construction, this
Hamiltonian density is a convex function of D. The convexity condition on L is satisfied
by LBI, and the corresponding Hamiltonian density is

HBI =
√
T 2 + T (|D|2 + |B|2) + |D×B|2 − T . (1.13)

Ultimately, convexity is important because non-convexity implies the existence of a negative
birefringence index for small amplitude waves in constant magnetic backgrounds [9], which
in turn implies a violation of causality for any NLED with a weak-field limit, as we show
here by generalising a result of [1] for Born-Infeld. However, exceptions may occur for
NLEDs that do not have a weak-field limit, so we do not wish to impose convexity ab
initio.

In principle, NLEDs could be defined in terms of a Hamiltonian density H, which then
gives us a first-order (phase-space) Lagrangian density

L̃ = D ·E−H(D,B) . (1.14)

Variation of D typically yields an algebraic equation for D. If this equation has a unique
solution then the Hamiltonian field equations will be equivalent to the Euler-Lagrange
equations of the Lagrangian density that we find by back-substitution. A unique solution
is guaranteed if H is a (strictly) convex function of D, and then L is guaranteed to be
a convex function of E. However, the D-field equation may have a unique solution for
D even if H is not a convex function of D, in which case elimination of D from (1.14)
will still yield an equivalent second-order Lagrangian density. In this way, one can find an
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equivalent Hamiltonian formulation for some NLEDs whose Lagrangian density is not a
convex function of E.

An example is Plebanski electrodynamics. The Hessian matrix of LPl has eigenvalues

κ

P
,

κ|B|2

P 3

[
S +

√
S2 + P 2

]
,

κ|B|2

P 3

[
S −

√
S2 + P 2

]
, (1.15)

and at least one is negative for any non-zero B. However, there is an equivalent first-order
formulation with Hamiltonian density

HPl =
√
|D×B|2 + 2κ(D ·B)− κ2 . (1.16)

Provided that κ 6= 0, the D-field equation of L̃ can be solved uniquely for D in terms
of (E,B), and the resulting (second-order) Lagrangian density is LPl. This Hamiltonian
formulation of Plebanski electrodynamics still has no weak-field (κ → ∞) limit but the
strong-field limit (κ→ 0) is now possible:

lim
κ→0
HPl = HBB := |D×B| . (1.17)

This is the Hamiltonian density of BB electrodynamics. Although HPl is not a convex
function of D for κ 6= 0 (as expected since we could otherwise obtain a convex Lagrangian
density by a Legendre transform) it is convex for κ = 0.

Similarly, the Hamiltonian density for the particular reverse-Born-Infeld theory defined
by (1.11) is

HrBI =
√
|D×B|2 + T |D|2 + 2κ(D ·B)− κ2 . (1.18)

We see directly from this result that the Plebanski case is recovered by taking the T → 0
limit for fixed κ, but it is now also possible to take the κ→ 0 limit at fixed T . This yields
the Hamiltonian density of extreme-Born-Infeld (eBI) electrodynamics:

HeBI =
√
|D×B|2 + T |D|2 . (1.19)

Equivalence to the Lagrangian formulation of eBI with a Lagrange multiplier field may be
established by a Legendre transform, as we shall show later.

The above-mentioned interpretation of eBI as a non-conformal scaling limit of Born-
Infeld is particularly clear in the Hamiltonian formulation. First we make the following
SL(2;R) transformation with constant scaling parameter γ

(D,B)→ (γ−1D, γB). (1.20)

The BI Hamiltonian density (1.13) now depends on γ, but if we rescale T → γ2T we can
then take the γ → 0 limit to find the eBI Hamiltonian density (1.19). We could also rescale
T → γ−2T and take the γ →∞ limit to find the following “magnetic” version of eBI with

HmeBI =
√
|D×B|2 + T |B|2 . (1.21)

This NLED does not appear as zero-birefringence case in our Lagrangian classification,
but this could be because its Lagrangian formulation (which we shall give later) is ‘non-
standard’ (i.e. not expressible purely as a function of S and P ).

– 5 –
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Our starting point for this route to eBI and meBI could equally well have been the
reverse-BI Hamiltonian density of (1.11), but the route from BI correctly suggests that
the Hamiltonian densities of both eBI and meBI are convex functions of D, and that
the small amplitude waves propagating disturbances of constant background fields are
never superluminal. These two electrodynamics theories are therefore physical, at least
theoretically, and we comment in the conclusions on a possible application.

The organisation of the remainder of this paper is as follows. We first review the
calculation in [1] of the birefringence indices associated with the two polarisations of
small-amplitude plane-wave solutions in a constant electromagnetic background, but with a
streamlined notation and a few minor improvements. For example, the rather complicated
expression for the birefringence indices presented in [1] can be simplified significantly by
noticing that its denominator factorises, and we extend to all NLEDs an argument of [1]
for BI that shows why positive birefringence indices are required to avoid superluminal
propagation. We also review the elegant method of Boillat for solving the zero birefrin-
gence conditions [4], relaxing restrictions that he imposed to obtain a classification of all
zero-birefringence NLEDs (within the assumed Lagrangian context).

We then move on to Hamiltonian formulations (and some alternative Lagrangian for-
mulations). This allows a much better understanding of the relationships between the
various zero-birefringence NLEDs, in addition to allowing their conformal strong-field lim-
its to BB-electrodynamics. The “extreme-Born-Infeld” case and its ‘magnetic’ variant are
then introduced and analysed, and their interpretation as non-conformal scaling limits of
Born-Infeld is detailed. We conclude with a brief summary and discussion of our main
results.

2 Birefringence preliminaries

If we seek plane-wave solutions of (1.4) with wave 4-vector k, we find that{
kνkµ +

[
`SSG

νGµ + `SP (G̃νGµ +GνG̃µ) + `PP G̃
νG̃µ

]}
εµ = k2εν , (2.1)

where
Gµ = Fµνkν , G̃µ = F̃µνkν . (2.2)

Note the identities
k ·G ≡ 0 , k · G̃ ≡ 0 , (2.3)

and
G · G̃ ≡ −Pk2 , G̃2 = G2 + 2Sk2 . (2.4)

In the case that k2 6= 0, equation (2.1) tells us that ε ∈ span{k,G, G̃} but gauge
invariance allows us to choose k · ε = 0, so that

ε = α(k)G+ β(k)G̃ . (2.5)

In the case that k2 = 0 we may expand ε on the basis {k, k̃, G, G̃}, where k̃ is another null
4-vector orthogonal to G and G̃ but with k · k̃ = −1; now (2.1) implies that the coefficient
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of k̃ in the expansion of ε is zero, while the k term is irrelevant because of gauge invariance,
so we again have (2.5). Substitution of (2.5) into (2.1) yields two equations for the two
amplitudes (α, β), and after using the identities (2.4) to eliminate the G̃ dependence in
these equations we find the matrix equation(

(1 + P`SP )k2 − `SSG2 (P`SS − 2S`SP )k2 − `SPG2

P`PP k
2 − `SPG2 (1 + P`SP − 2S`PP )k2 − `PPG2

)(
α

β

)
= 0 . (2.6)

The only solution is α = β = 0 unless the matrix has zero determinant, and this happens
when

J(k2)2 − 2(Ξ− SΓ)G2k2 + Γ(G2)2 = 0 , (2.7)

where
Ξ = 1

2 (`SS + `PP ) , Γ = `SS`PP − `2SP , (2.8)

and
J = 1− P 2Γ + 2(P`SP − S`PP ) . (2.9)

This quadratic equation for k2 has the solutions

k2 = G2λ± , (2.10)

where the “birefringence indices” are

λ± = Q±
J

, Q± = Ξ− SΓ±
√

Ψ , Ψ = (Ξ− SΓ)2 − ΓJ . (2.11)

An equivalent formula for Ψ is

Ψ = (Ξ− `PP − SΓ)2 + (`SP − PΓ)2 . (2.12)

This is the formula given in [1], which we have so far been following (in a slightly different
notation) but the formula (2.11) for the birefringence indices can be simplified, for Γ 6= 0,
by making use of the identity

Q+Q− ≡ JΓ . (2.13)

This allows us to rewrite the birefringence indices in the form

λ± = Γ
Q∓

(Γ 6= 0). (2.14)

For Γ = 0 we have Q− = 0, and hence λ− = 0. This applies to conformal NLEDs [10],
in particular the unique duality invariant ModMax case [11], since conformal invariance
implies Γ = 0 (but not vice versa).

Let us now apply these results to the zero-birefringence cases of most interest here:4

• Born Infeld. In this case
λ± = λBI = 1

T − 2S , (2.15)

which is positive because the BI inequality |E|2 < T implies T − 2S ≥ 0.
4The eBI and meBI cases must be dealt with separately as their Lagrangian formulations are non-

standard.
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• Reverse Born-Infeld. In this case

λ± = λrBI = 1
T − 2S , (2.16)

as for the BI case but the rBI inequality (1.10) allows λrBI to have either sign.

• Plebanski. In this case
λ± = λPl = − 1

2S . (2.17)

This is the T → 0 limit of the rBI result, as might be expected from the discussion
following (1.11). Since S may be positive or negative the same is true of λPl.

Of these cases, BI is the only one for which the birefringence index is necessarily
positive. This is significant because (as mentioned in the Introduction) positive indices are
necessary for causality. This was demonstrated for the BI case in [1], but it is true more
generally, as we shall now explain.

2.1 Causality constraints on birefringence

From the definition of G in (2.2), and setting kµ = (ω,k), we find that

G2 = −(k ·E)2 + ω2|E|2 + 2ωk ·E×B + |k×B|2 . (2.18)

Using this in the relation k2 = G2λ, we find the dispersion relation

(1 + λ|E|2)ω2 + 2λ(k · S)ω = (1 + λ|E|2)|k|2 − λ|k×E|2 − λ|k×B|2 , (2.19)

where S = E × B. The term linear in ω is present because the background behaves like
an anisotropic optical medium in motion when S is non-zero, so this term is absent if we
choose a reference frame in which the medium is at rest. In this rest frame we may orient
the coordinate axes such that

E = E e3 , B = B e3 , (2.20)

for unit 3-vector e3; the dispersion relation is then

ω2 = |k|2 − λ(E2 +B2)
1 + λE2 |k× e3|2 ≡ A(k2

1 + k2
2) + k2

3 , (2.21)

where

A =
(

1− λB2

1 + λE2

)
. (2.22)

We might expect A > 0 since otherwise ω is real only when k2
3 > |A|(k2

1 + k2
2); this is

certainly true in a weak-field limit since then λ ≈ 0, so A ≈ 1. For BI electrodynamics one
finds that

ABI = T − E2

T +B2 , 0 < ABI ≤ 1 , (2.23)

– 8 –
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where the upper and lower bounds are consequences of the BI bound |E|2 < T . In this
case we see from (2.22) that ω < |k|, so the phase-velocity is subluminal. However, it is
the group velocity dω/dk that is relevant for causality; its magnitude is

vg =
√
A2(k2

1 + k2
2) + k2

3
A(k2

1 + k2
2) + k2

3
, (2.24)

which is less than or equal to unity for all k and all background fields iff 0 < A ≤ 1, a
condition that is satisfied for BI electrodynamics [1].

The result (2.24) applies to all NLEDs, on the assumption that there exists a small-
amplitude wave with real angular frequency ω. A sufficient condition for this is that
A > 0, in which case the group velocity will never be superluminal iff λ ≥ 0, which is
therefore necessary for causality. For NLEDs with a weak-field limit the condition A > 0
places bounds on the electric and magnetic fields, which may be satisfied naturally as a
consequence of the Lagrangian, as in the BI case.

Those NLEDs without a weak-field limit, such as Plebanski and reverse-BI, must be
considered separately. Using the results obtained above for their birefringence indices, we
find the following results for A in these two cases:

• Reverse Born-Infeld. As λrBI = λBI we have ArBI = ABI but now |E|2 > T , so
ArBI < 0. Wave propagation is still possible for k2

3 > |ArBI|(k2
1 + k2

2), but it is always
superluminal except when k2

1 + k2
2 = 0 (in which case vg = 1).

• Plebanski. As λPl = −1/(2S), we have

APl = −E2/B2 ≤ 0 . (2.25)

Wave propagation is possible only for k2
3B

2 > (k2
1 + k2

2)E2, and then vg ≥ 1, with
equality holding only when k2

1 +k2
2 = 0. We conclude that wave propagation is generi-

cally superluminal, as might be expected from the connection to rBI electrodynamics,
and the fact that LPl is not a convex function of E.

We thus conclude that Plebanski and reverse-BI electrodynamics are unphysical be-
cause (in contrast to BI electrodynamics) they allow superluminal propagation. This con-
clusion leaves open the possibility of physical strong-field limits because these are not
included in the class of NLEDs defined by a Lagrangian density expressible only in terms
of the Lorentz invariants (S, P ), but this possibility is best explored via the Hamiltonian
formulation of NLEDs that we consider later.

First we conclude our Lagrangian analysis with a proof that BI, reverse-BI and Pleban-
ski are the only NLEDs with Lagrangian densities L(S, P ) for which there is no birefrin-
gence. However, we shall also find one ‘extremal’ case as a Lagrangian constraint rather
than as a Lagrangian. This is the “extreme-BI” electrodynamics which, as we shall see
later, does not allow superluminal propagation.

– 9 –
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2.2 The zero birefringence conditions

For generic NLEDs the two birefringence indices λ± differ. The difference λ+ − λ− is a
measure of birefringence; i.e. the polarisation dependence of plane-wave dispersion rela-
tions. Zero birefringence occurs when λ+ = λ−, and we see from (2.11) that this occurs
when Q+ = Q−; equivalently, when Ψ = 0. From the expression (2.12) for Ψ we see that
NLEDs with zero birefringence are those for which the following two equations hold:

Ξ− `PP = SΓ , `SP = PΓ . (2.26)

These are equivalent to the two equations

LS(LSS − LPP ) = 2S(LSSLPP − L2
SP )

LSLSP = P (LSSLPP − L2
SP ) .

(2.27)

We recall that LS is assumed to be non-zero. We shall also assume that Γ is non-zero
because zero birefringence for Γ = 0 yields only the free-field Maxwell case.

To solve the equations (2.27) we shall, following Boillat [4], convert them into equations
for which the independent variables are (LS ,LP ) rather than (S, P ). For presentational
purposes, it is convenient to make the replacements

(S, P )→ (x, y) , (LS ,LP )→ (u, v) . (2.28)

The equations (2.27) now become

u(ux − vy) = 2x$ ,

uuy = y $ ,
(2.29)

where
$ = uxvy − uyvx . (2.30)

Notice that symmetry of mixed partial derivatives of L implies

uy ≡ vx . (2.31)

Notice too that $ is the Jacobian for a change of the independent variables from (x, y) to
(u, v), so that (

xu xv
yu yv

)
= 1
$

(
uy −vy
−vx ux

)
. (2.32)

In particular,
ux − vy
$

= yv − xu ,
uy
$
≡ vx
$

= −yu , (2.33)

which allows us to rewrite the zero birefringence conditions (2.29) as the following equiva-
lent “Boillat equations”

u(yv − xu) = 2x , u yu = −y . (2.34)

– 10 –



J
H
E
P
0
1
(
2
0
2
3
)
0
3
9

2.3 General solution of the Boillat equations

The general solution of the second of the Boillat equations can be written as

y = f ′(v)
u

⇒ yu = −f
′(v)
u2 , yv = f ′′(χ)

u
. (2.35)

for some function f(v). As yu ≡ xv, we also have

xv = −f
′(v)
u2 ⇒ x = −f(v)

u2 + g(u) , (2.36)

for some function g. Now we have (x, y) as expressions involving the two functions f(v)
and g(u). Substituting these expressions into the first of the Boillat equations (2.34), we
find that

f ′′(v) = ug′(u) + 2g(u) . (2.37)
This requires both sides to equal the same constant, which we call T . Thus,

f ′′(v) = T , ug′(u) + 2g(u) = T , (2.38)

and hence
f(v) = T

2 v
2 + κv + c , g(u) = T

2 + c′

u2 , (2.39)

where (κ, c, c′) are the additional integration constants. This gives us the complete solution
for (x, y):

x = T

2 −
1
2Tv

2 + κv + (c− c′)
u2 , y = Tv + κ

u
. (2.40)

There are two cases (and their subcases) to consider:

• T 6= 0. In this case the second of the equations (2.40) can be written as

Tv = uy − κ . (2.41)

Using this in the first of equations (2.40) we find that

u2(T 2 − 2Tx− y2) = 2T (c− c′)− κ2 . (2.42)

The right hand side of this equation is an arbitrary constant, which may be positive,
negative or zero. We shall discuss these three subcases in turn.

1. u2(T 2 − 2Tx− y2) = (Ta)2 for non-zero dimensionless constant a. In this case

u = aT√
T 2 − 2Tx− y2 , v = ay√

T 2 − 2Tx− y2 −
κ

T
. (2.43)

These are equations for LS and LP that are easily integrated to give

L = −a
√
T 2 − 2TS − P 2 − κP

T
+ const. (2.44)

The term linear in P is a total derivative that does not contribute to the field
equations. If we choose a = 1 and the constant term such that L(0, 0) = 0, we
have the Born-Infeld Lagrangian density:

LBI = T −
√
T 2 − 2TS − P 2 . (2.45)

We now assume T > 0 to ensure convexity.
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2. u2(T 2 − 2Tx − y2) = −(κa′)2 for non-zero dimensionless constant a′. In this
case

u = a′κ√
y2 + 2Tx− T 2 , v = κ

T

[
ay′√

y2 + 2Tx− T 2 − 1
]
. (2.46)

Integration now yields

L = κ

T

[
a′
√
P 2 + 2TS − T 2 − P

]
+ const. (2.47)

This is the reverse BI Lagrangian density, parametrized by dimensionless con-
stants a′ and κ/T instead (α, β). Setting a′ = 1, we recover the specific rBI case
of (1.11); it can be shown that convexity does not hold in this case for either
sign of T .

3. u2(T 2 − 2Tx− y2) = 0. As u = LS , which is assumed to be non-zero, we get a
Lagrangian constraint equivalent to

T 2 − 2TS − P 2 = 0 . (2.48)

If this constraint is imposed with a Lagrange multiplier field then we get the La-
grangian density for what we call “extreme Born-Infeld” (eBI) electrodynamics.
Because of the dependence on an additional scalar field (the Lagrange multiplier)
this lies outside the class of NLEDs defined by Lagrangian densities L(S, P ), al-
though we shall see later that its Hamiltonian is a non-conformal scaling limit
of the BI Hamiltonian.

• T = 0. In this case
u2x = −κv − (c− c′) , uy = κ . (2.49)

The second of these equations is just PLS = κ, which is trivially integrated to

L = κ

(
S

P

)
+ h(P ) , (2.50)

for some function h. We then have

LP = −κ S
P 2 + h′(P )

(
⇔ v = −κx

y2 + h′(y)
)
. (2.51)

Using these results in the first of equations (2.49), and assuming that κ 6= 0 (since
otherwise we are led to conclude that LS = 0) we find that h is linear in P , and hence
a constant plus a total derivative term which we can ignore. We thus find that

L = κS

P
, (2.52)

which is the Plebanski case.5
5Using the complex Riemann-Silberstein variables, a Lagrangian for Born-Infeld similar in form to the

Plebanski Lagrangian was found by Schrödinger in 1935 [12]. We thank Karapet Mkrtchyan for bringing
this to our attention.
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3 Hamiltonian and strong-field limits

The Hamiltonian density of BI electrodynamics can be obtained by the Legendre transform,
as defined in (1.12). The result is

HBI =
√
T 2 + T (|D|2 + |B|2) + |D×B|2 − T . (3.1)

Lorentz invariance is not manifest but electromagnetic duality is manifest because this acts
by a phase-rotation of the complex 3-vector field D + iB. In the weak-field limit (T →∞)
we recover Maxwell electrodynamics, with HMax = 1

2(|D|2 + |B|2). In the strong-field limit
we find Bialynicki-Birula electrodynamics, with

HBB = |D×B| , (3.2)

which has an Sl(2;R)-duality invariance.
We now aim to find the Hamiltonian formulations of the other zero-birefringence the-

ories of electrodynamics, and investigate the relations between them and their conformal
limits. A useful check on results is the condition for a Hamiltonian density to define a
Lorentz invariant theory. If we express H as a function of the three rotation invariants

s = 1
2(|D|2 + |B|2) , ξ = 1

2(|D|2 − |B|2) , η = D ·B , (3.3)

then the field equations will be Lorentz invariant iff [1]

H2
s −H2

ξ −H2
η = 1 . (3.4)

Moreover, H will be electromagnetic duality invariant iff it can be written as a function of
the two duality invariants s and ξ2 + η2 (or p2 = s2 − ξ2 − η2 ≡ |D×B|2).

We shall also show in this section that the inclusion of auxiliary scalar fields allows
us to find equivalent Lagrangian formulations that allow strong-field limits to be taken in
a manifestly Lorentz invariant way. In the BI case, an appropriate starting point is the
following Roček-Tseytlin (RT) Lagrangian density in which two auxiliary scalar fields (u, v)
are introduced in order to linearize the dependence of the BI Lagrangian density on the
Lorentz scalars (S, P ) [13]:

LRT = −T2
{
v + v−1(1 + u2)

}
+ vS + uP . (3.5)

The equations found from varying (u, v) may be solved for (u, v) (uniquely up to an overall
sign), and back-substitution yields

LRT → ∓
√
T 2 − 2TS − P 2 , (3.6)

which is the standard BI Lagrangian density for the upper sign choice after addition of
the constant T . However, we may now take the T → 0 limit to arrive at the Lagrangian
formulation of BB electrodynamics proposed in [8] in which the scalar fields (u, v) now
impose two Lagrangian constraints:

LBB = vS + uP . (3.7)
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Equivalence to the Hamiltonian formulation was verified at the level of the field equations
in [8]. It may also be verified by a Legendre transform of the BB Hamiltonian density [14];
although the “canonical” Lagrangian density found in this way is identically zero, its domain
is restricted by the Lagrangian constraints S = 0 and P = 0, so a solution of the variational
problem defining the Legendre transform by the method of Lagrange multipliers yields
precisely (3.7).

We shall see that similar alternative Lagrangian formulations can be found for other
NLEDs discussed here, allowing the strong-field limit to be taken; in every case this yields
the BB Lagrangian density of (3.7).

3.1 Plebanski electrodynamics

As explained in the introduction, the closest that one can get to a Hamiltonian formulation
of Plebanski electrodynamics is a first-order Lagrangian of the form

L̃Pl = D ·E−HPl , (3.8)

where D is an auxiliary field, and HPl is given by (1.16); i.e.

HPl =
√
|D×B|2 + 2κ(D ·B)− κ2 . (3.9)

There is still no weak-field (κ→∞) limit. However, we can take the strong-field (κ→ 0)
limit to arrive at the Hamiltonian density of BB electrodynamics:

HBB = |D×B| . (3.10)

An expression equivalent to (3.9) is

HPl = κ
√
−detM , (3.11)

where M is the 3× 3 symmetric matrix with entries

Mij = δij − κ−1(DiBj +DjBi) . (3.12)

This matrix has eigenvalues

λ± = 1− κ−1 [B ·D∓ |B||D|] , λ3 = 1 , (3.13)

and we can use this to show that

HPl =
√
|B|2|D|2 −

(
κ−B ·D

)2
, (3.14)

which is indeed equivalent to (3.9).
The equivalence of the first-order Lagrangian density L̃Pl to the original Plebanski

Lagrangian density of (1.8) may be established by elimination of D by means of its field
equation, which is

HPl E = |B|2D + (κ−D ·B) B . (3.15)
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Contracting this equation with B we find that

P = κ|B|2

HPl
. (3.16)

As |B|2 6= 0, we conclude that P 6= 0 (for nonzero κ) and that its sign is fixed to be the
sign of κ. Next, we take the norm squared of both sides of (3.15) to deduce that

|E|2 = |B|
2

H2
Pl

[
|D×B|2 + κ2

]
, (3.17)

which shows that E cannot be zero, again as expected because the Plebanski Lagrangian
density is also singular for zero E. Using this result, we obtain an expression for S:

S = κ(κ−D ·B)|B|2
H2

Pl
. (3.18)

Combining this with (3.16) we find that

κ−D ·B = κS|B|2

P 2 , (3.19)

which we may use in (3.15) to deduce that

D = κ

P

[
E−

(
S

P

)
B
]
. (3.20)

This is the unique solution of the D field equation, so back-substitution into (3.8) yields
a classically equivalent Lagrangian density. It is straightforward to verify that this is the
Plebanski Lagrangian density κS/P , restricted to P > 0 (given κ > 0) because of (3.16).

It might appear from this result that the strong-field limit of Plebanski to BB can only
be taken in the Hamiltonian formulation. However, it is possible to introduce auxiliary
fields into the Lagrangian formulation in a way that allows the strong-field limit to be
taken in a manifestly Lorentz invariant way, as we showed above for the BI case. Consider
the following Lagrangian density involving a scalar field ϕ and a pseudoscalar χ:

L = ϕS + χϕP − κχ . (3.21)

The field-equations for (ϕ, χ) are

S = −χP , ϕP = κ , (3.22)

which we can solve for (ϕ, χ) on the assumption that P 6= 0 and κ 6= 0. Back-substitution
then yields the Plebanski Lagrangian density κS/P .

Notice that parity is broken only by the last term in (3.21). As this is proportional to
κ, we get a parity-invariant theory by setting κ = 0. This yields the Lagrangian density

LBB = ϕS + ςP (ς = χϕ) , (3.23)

which is the BB Lagrangian density of (3.7) with (u, v) = (ς, ϕ). Thus, the new La-
grangian formulation of Plebanski electrodynamics provided by (3.21) not only linearizes
the dependence on the Lorentz scalars (S, P ) but also makes manifest the strong-field limit
to BB-electrodynamics.
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3.2 Reverse Born-Infeld

The reverse-Born-Infeld theory defined by the Lagrangian density LrBI of (1.9) has a first-
order formulation:

L̃rBI = D ·E−HrBI , (3.24)

where
HrBI =

√
|D×B|2 + T [|D− βB|2 − α2T (T + |B|2)] + const. (3.25)

Not surprisingly, the only effect of the term linear in P in LrBI is to shift D by βB. One
may see from this result that rBI electrodynamics is not invariant under SO(2) ‘duality’
rotations of (D,B), in contrast to the BI case.

By choosing the coefficients (α, β) as we did in (1.11) we find the Hamiltonian density
corresponding to the particular rBI Lagrangian density of (1.11):

HrBI =
√
|D×B|2 + T |D|2 + 2κ(D ·B)− κ2 . (3.26)

Notice that the T → 0 limit, for fixed κ, yields the Plebanski Hamiltonian density of (3.14),
in agreement with the Lagrangian analysis of this limit in the Introduction.

To verify equivalence of the first-order and second-order Lagrangian formulations of
rBI we must eliminate D from (3.24) using the D field equation. This is straightforward but
can be simplified by introducing an auxiliary field; we explain this here for the particular
rBI Hamiltonian density of (3.26). The first step is to notice that this Hamiltonian density
is equivalent to

H′rBI = 1
2
{
e−1

[
(T + |B|2)|D|2 − (κ−D ·B)2

]
+ e

}
, (3.27)

where e is an auxiliary field. Elimination of e yields HrBI, but we may now eliminate e
after elimination of D by means of its field equation:

D = 1
(T + |B|2) {eE− (κ−D ·B)B} . (3.28)

Contracting this with B (and subtracting κ from both sides) we find that

(D ·B)− κ = eP

T
− κ(T + |B|2)

T
. (3.29)

Contracting (3.28) with E yields

D ·E = 1
(T + |B|2)

[
e|E|2 − (κ−D ·B)P

]
, (3.30)

and taking the norm-squared on both sides of (3.28) yields

e−1
[
(T + |B|2)|D|2 − (κ−D ·B)2

]
=

1
(T + |B|2)

[
e|E|2 − 2(κ−D ·B)P − e−1T (κ−D ·B)

]
. (3.31)
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Combining these results yields

L′rBI = 1
2(T + |B|2)

{
e(2S − T ) + e−1T (D ·B− κ)2

}
, (3.32)

where (D ·B− κ) is the expression given in (3.29); this reduces to

L′rBI = κ

2T
{
ẽ−1[P 2 + 2TS − T 2] + ẽ

}
− κP

T
, (3.33)

where
ẽ = e

κ(T + |B|2) . (3.34)

Elimination of ẽ now yields

LrBI = κ

T

[√
P 2 + 2TS − T 2 − P

]
, (3.35)

which is the rBI Lagrangian density of (1.11).

4 Extreme Born-Infeld

If we rescale the electromagnetic fields,

(E,B)→ γ(E,B) , (4.1)

and set T = γ2T̃ , for some positive constant γ, we find that

LBI → γ2
{
T̃ −

√
T̃ 2 − 2T̃ S − P 2

}
, (4.2)

In other words, the BI Lagrangian density is rescaled as expected but with T → T̃ . The
γ → 0 limit is one in which LBI → 0, but we may first replace LBI by the equivalent
Lagrangian density involving an auxiliary scalar field e:

L′BI = γ2
{
T̃ − 1

2

[ 1
γ2e

(T̃ 2 − 2T̃ S − P 2)± γ2e

]}
. (4.3)

For the upper sign, elimination of e returns us to (4.2), while the same procedure for the
lower sign yields a similar rescaling of the rBI Lagrangian density for particular parameters.
Irrespective of this sign choice, the γ → 0 limit now yields the Lagrangian density of
“extreme BI” electrodynamics; after setting e = −1/` and renaming T̃ as T , this is

LeBI = 1
2` (T 2 − 2TS − P 2) . (4.4)

What was an auxiliary field is now a Lagrange multiplier for the Lagrangian constraint
of the ‘extremal’ case in our classification of solutions to the Boillat equations in subsec-
tion 2.3; this was the T 6= 0 subcase ‘between’ BI and rBI, so it is not surprising that it
can be found as a limit of both BI and rBI.

As stated in subsection 2.3, the eBI case is one that takes us beyond the initial definition
of NLEDs in terms of Lagrangian densities that can be written as a function of the Lorentz
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invariants (S, P ) only. However, its Hamiltonian formulation is standard. To pass to the
Hamiltonian formulation we define

D := ∂LeBI
∂E = `(TE + PB) . (4.5)

Contracting with B, we deduce that

P = D ·B
`(T + |B|2) . (4.6)

A contraction with E yields

D ·E = 1
`T (T + |B|2)

[
|D|2(T + |B|2)− (D ·B)2

]
. (4.7)

Finally, by taking the norm-squared of both sides of (4.5) and using (4.6) we find that

T 2E2 = 1
`2(T + |B|2)

[
|D|2(T + |B|2)− (D ·B)2

]
, (4.8)

and hence (by subtracting T 2|B|2 from both sides) an expression for S in terms of (D,B).
Using these results and then defining

˜̀ := `T (T + |B|2) , (4.9)

we find that

H′eBI = D ·E− LeBI = 1
2
{

˜̀−1
[
|D|2(T + |B|2)− (D ·B)2

]
+ ˜̀
}
, (4.10)

where the prime reminds us that we have still to eliminate ˜̀by its algebraic field equation.
This last step gives the result

HeBI =
√
|D×B|2 + T |D|2 . (4.11)

Notice that this reduces to the BB Hamiltonian density when T = 0, so eBI could be
viewed as a non-conformal deformation of BB electrodynamics. As we shall see, BB and
eBI electrodynamics have significant features in common that are not shared with other
zero-birefringence NLEDs.

We pause here to consider how the rescaling of (4.1) is realized in the Hamiltonian
formulation. The definition of D in (4.7) is preserved by the rescaling (with a rescaled
T ) if D → γ−1D, so the Lagrangian rescaling of (E,B) becomes the following Sl(2;R)
transformation of (D,B):

(D,B)→ (γ−1D, γB) . (4.12)

It is obvious that this transformation reproduces HeBI with T replaced by T̃ = T/γ2.
It is also obvious that HeBI is not duality-invariant, which tells us that the limit from

BI to eBI must break this symmetry. This is easily verified in the Hamiltonian formulation.
After the rescaling (4.12) the BI Hamiltonian density becomes√

|D×B|2 + T̃ |D|2 + γ4
[
T̃ |B|2 + T̃ 2

]
− γ2T̃ . (4.13)
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For any finite non-zero γ, this is duality invariant with rescaled SO(2) duality transfor-
mations. However, the limit γ → 0, with T → 0 for fixed T̃ (which can then be renamed
as T ) breaks duality invariance and yields the eBI Hamiltonian density. Further rescaling
just reproduces the eBI Hamiltonian density with a rescaled T , as we have already seen.

If we had chosen to view eBI as a limit of rBI rather than BI then the above discussion
of how and why eBI breaks duality invariance would not have arisen, and this might suggest
that the limit to eBI from rBI is more natural. However, there is an important feature of
HBI, not shared with HrBI, that is preserved by the limit to HeBI, and that is convexity as
a function of D. The Hessian matrix of HeBI has eigenvalues

0 , T + |B|2
HeBI

,
T |D|2(T + |B|2)

(HeBI)3 . (4.14)

For T > 0, there is one zero eigenvalue but the other two are positive, implying convexity;
not “strict convexity” because the Hessian matrix has zero determinant, and this is because
HeBI is a homogeneous function of D of unit degree; i.e. D ·E = HeBI, where

E := ∂HeBI
∂D . (4.15)

A corollary is that the ‘canonical’ Lagrangian density, defined by Legendre transform of
HeBI, is zero. Nevertheless, we can still recover the eBI Lagrangian density of (4.4) by a
Legendre transform because (4.15) restricts the domain of the zero ‘canonical’ Lagrangian
by imposing a constraint on E, which is

P 2 + 2TS − T 2 = 0 . (4.16)

The variational problem inherent in the definition of the Legendre transform may then be
solved by the method of Lagrange multipliers, and this leads directly to the Lagrangian
density LeBI of (4.4), following steps spelled out for the BB case (i.e. T = 0) in [14].
Whereas the Hessian matrix has two zero eigenvalue for T = 0, which leads to the two
Lagrangian constraints of (3.7), now we have only one zero eigenvalue and hence only one
Lagrangian constraint.

4.1 Birefringence for eBI

We have seen that the eBI theory is a non-conformal scaling limit of the BI theory. We
can use this result to deduce the birefringence index of eBI from the BI index.

From the definition of birefringence indices in (2.10) we see that the scaling (4.1),
which implies S → γ2S, requires λ → γ−2λ. Taking this into account, the BI index
equation λBI = 1/(T − 2S) is reproduced by the scaling but with T → T̃ , as one would
expect. Taking the γ → 0 limit for fixed T̃ , which we can then rename as T , we get the
eBI birefringence index:

λeBI = 1
T − 2S = T

P 2 > 0 , (4.17)

where the second equality follows from the eBI constraint T 2 − 2TS = P 2.
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We are now able to investigate possible violations of causality via superluminal prop-
agation in constant electromagnetic backgrounds. If (4.17) is used to compute the factor
A appearing in the dispersion relation of (2.22), we find that

AeBI = E2 − T
B2 + T

, (4.18)

where we have used the fact that P 2 = E2B2 in the rest-frame of the background; recall
that this was assumed in the derivation of the dispersion relation. However, in this frame
the constraint P 2+2TS−T 2 = 0 implies E2 = T , and hence AeBI = 0. This implies lightlike
wave propagation, although waves can only propagate in a direction that is (anti)parallel to
the co-linear background electric and magnetic fields. Recalling the inequality 0 < ABI ≤ 1,
and the fact that ABI ≈ 0 when T 2−2TS−P 2 ≈ 0 (which is E2 ≈ T in the background rest-
frame) we see that eBI is (as the name indicates) an extreme limit of BI. It is presumably
for this reason that we find no evidence of causality violation in eBI electrodynamics.

The strong-field (T → 0) limit of eBI is BB, so one might wonder whether we could use
this fact to determine the birefringence index of BB electrodynamics. Naively, we would
simply take the T → 0 limit of λeBI = T/P 2, to get λBB = 0, but P = 0 is a Lagrangian
constraint of the BB theory, so the limit is ill-defined.

4.2 Magnetic eBI

The BI Hamiltonian density of (4.13) with rescaled fields can also be written as√
|D×B|2 + Ť |B|2 + γ−4

[
Ť |D|2 + Ť 2

]
− γ−2Ť , (4.19)

where
Ť = γ2T = γ4T̃ . (4.20)

We may now take the γ → ∞ limit, with T → 0 for fixed Ť . This yields a ‘magnetic’
version of eBI; after renaming Ť as T , the Hamiltonian density is

HmeBI =
√
|D×B|2 + T |B|2 . (4.21)

This is also a convex function of D because the eigenvalues of the Hessian matrix are

0 , |B|2

H
,

T |B|4

H3 .

The reason for the zero eigenvalue in this case is that the Hamiltonian depends only on
two of the three components of D.

To pass to the Lagrangian formulation we first introduce the electric field:

E := ∂HmeBI
∂D = |B|2D− (D.B)B√

|D×B|2 + T |B|2
. (4.22)

The contraction with B yields the constraint P = 0. The ‘canonical’ Lagrangian density is

L(can)
meBI = D ·E−HmeBI = −

√
−2TS , (4.23)
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which restricts its domain to |E| ≤ |B|. Incorporating the constraint P = 0 with a Lagrange
multiplier field `, we arrive at the meBI Lagrangian density:

LmeBI = −
√
−2TS + `P (S < 0). (4.24)

To verify that the Hamiltonian density is recovered by a Legendre transform, it is
convenient to rewrite (4.24) in the form

L′meBI = e−1S + `P − T

2 e , (4.25)

where e is an auxiliary field; its elimination returns us to (4.24). We note, in passing, that
T → 0 yields the BB Lagrangian density of (3.23), as we should expect since the T → 0
limit of (4.21) yields the BB Hamiltonian density. As a check, we can take the Legendre
transform of L′meBI to arrive at the following Hamiltonian density:

H′meBI = 1
2
{
e−1|B|2 + e

[
|D− `B|2 + T

]}
, (4.26)

where the prime reminds us that we must now eliminate the auxiliary fields (e, `). This
yields the result of (4.21).

Using the same logic that allowed us to deduce λeBI, we similarly deduce that

λmeBI = lim
γ→∞

(γ−4Ť − 2S)−1 = − 1
2S , (4.27)

as for the Plebanski case. However, to apply this result to wave propagation in the back-
ground rest frame (zero Poynting vector) we must set E to zero because there is no non-zero
E in this frame that satisfies both S < 0 and P = 0. We then find that AmeBI = 0, and
hence lightlike propagation, but only in a direction (anti)parallel to the background mag-
netic field, exactly as for eBI.

5 Summary and discussion

The Born-Infeld (BI) theory of electrodynamics has many remarkable features. One is its
relevance to the dynamics of D3-branes of IIB superstring theory, in which context the con-
stant with dimensions of energy density introduced by Born and Infeld can be interpreted
as the D3-brane tension T . The feature of most relevance to this paper is the absence of
birefringence in constant electromagnetic backgrounds. It is surprising that there is any
nonlinear electrodynamics theory (NLED) with identical dispersion relations for the two
polarizations of all small-amplitude plane-wave disturbances of such backgrounds because
the background breaks rotational symmetry. This makes it of interest to understand bet-
ter the conditions that imply zero birefringence. Potentially, they are linked to other very
special features of physical theories in which zero-birefringence NLEDs arise; e.g. super-
symmetry in the case of the D3-brane.

A natural question in this context is whether there are NLEDs other than Born-Infeld
without birefringence. For the class of NLEDs defined by a Lagrangian density that is a
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function of the two Lorentz invariants S (a scalar) and P (a pseudoscalar) constructible
from the electric and magnetic fields (E,B), this question has been investigated previously,
notably by Boillat and Plebanski. In particular, Boillat showed that the zero-birefringence
conditions on L(S, P ) are equivalent to a very simple pair of differential equations, here
called the “Boillat equations”, and that natural assumptions on integration constants,
essentially equivalent to the requirement of a weak-field limit, leads uniquely to Born-
Infeld.

All other solutions to the Boillat equations yield electrodynamics theories that, in con-
trast to BI, have no weak-field limit; they are also not duality invariant. One solution
yields a zero-birefringence NLED found by Plebanski that has generally been discarded as
unphysical; we agree with this assessment because we have shown that it permits superlumi-
nal propagation of small amplitude disturbances of constant electromagnetic backgrounds.
Another case that we have called “reverse-Born-Infeld”, is similarly unphysical.

There remains one ‘extremal’ solution to the Boillat equations that leads to a La-
grangian constraint rather than a Lagrangian. This case is best understood in the Hamil-
tonian formulation because a Legendre transformation of the Hamiltonian density yields
a “canonical” Lagrangian density that is identically zero, but simultaneously imposes a
constraint on the domain of this zero function; this constraint is the one arising from the
‘extremal’ solution of the Boillat equations. Incorporating this constraint using a Lagrange
multiplier field, we find a ‘non-standard’ Lagrangian density for what we have called “ex-
treme Born-Infeld” (eBI) electrodynamics. The name derives from the fact that eBI is a
non-conformal scaling limit of BI, as can be most easily seen in the Hamiltonian formula-
tion. As this relation to BI suggests, eBI is a physical theory with a convex Lagrangian
density and no superluminal propagation in a constant electromagnetic background. We
have also found a ‘magnetic’ analog of eBI electrodynamics, which is similarly obtainable
as non-conformal scaling limit of Born-Infeld, and has similarly good physical properties.

In general, the class of NLEDs defined by a Hamiltonian density H(D,B), where
D is conjugate to the electric field E, is larger than the class of NLEDs defined by a
Lagrangian density L(E,B), even after the conditions required for H to define a Lorentz
invariant theory have been imposed. All of the zero-birefringence NLEDs on the list just
summarised have a Hamiltonian formulation, and this greatly clarifies the relationships
between them. It also shows that all NLEDs of the list have a strong-field limit to the
conformal Bialynicki-Birula (BB) electrodynamics, which was first found as a strong-field
limit of Born-Infeld electrodynamics.

Although the strong-field limit to BB electrodynamics is most easily seen in the Hamil-
tonian formulation, one can find alternative Lagrangian densities depending on additional
auxiliary scalar fields for which this strong-field limit is manifest. We have presented such
Lagrangian densities for several of the NLEDs considered here, including BI. A common
feature is that auxiliary fields serve to linearize the dependence on (S, P ) and the strong-
field limit then leaves a Lagrangian density that consists only of two Lagrange multipliers
that impose the constraints S = 0 and P = 0, but this is a Lagrangian formulation of
BB electrodynamics [8]. A Legendre transform of the BB Hamiltonian density yields a
“canonical” Lagrangian density that is identically zero, but with a domain restricted by
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the Lagrangian constraints S = 0 and P = 0 [14]. The eBI case is similar, but with only
one Lagrangian constraint; it is naturally viewed as a deformation of BB electrodynamics,
as well as a scaling limit of BI electrodynamics.

Finally, let us recall that one of the principal applications of Born-Infeld electrody-
namics is to the dynamics of Dp-branes in string theory, in particular the D3-brane of
IIB superstring theory. The physics of open strings in a constant electric background ex-
hibits interesting features as the background electric field approaches its “critical” value:
|E|2 → T , for zero magnetic field. Open strings, which may be viewed as dipoles carrying
opposite electric charges at their ends, are stretched along the direction of the electric field
until, at the critical value, the ‘effective’ string tension vanishes. This effect has been ex-
ploited in the past to construct non-commutative open-string theories [15–17]. We expect
that the extreme-BI theory constructed in this paper, and perhaps its ‘magnetic’ variant
too, is relevant to the description of open strings in this “critical” regime. We hope to
explore this possibility in the future.
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