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Syzygy Bundles of Non-complete Linear
Systems: Stability and Rigidness

Rosa M. Miró-Roig and Mart́ı Salat-Moltó

Abstract. Let (X,L) be a polarized smooth projective variety. For any
basepoint-free linear system LV with V ⊂ H0(X,OX(L)), we consider
the syzygy bundle MV as the kernel of the evaluation map V ⊗ OX →
OX(L). The purpose of this article is twofold. First, we assume that
MV is L-stable and prove that, in a wide family of projective varieties,
it represents a smooth point [MV ] in the corresponding moduli space M.
We compute the dimension of the irreducible component of M passing
through [MV ] and whether it is an isolated point. It turns out that
the rigidness of [MV ] is closely related to the completeness of the linear
system LV . In the second part of the paper, we address a question posed
by Brenner regarding the stability of MV when V is general enough. We
answer this question for a large family of polarizations of X = P

m ×P
n.
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1. Introduction

Given a smooth projective variety X and a very ample line bundle L on X, let
V ⊂ H0(X,OX(L)) be a subspace such that the corresponding linear system
LV is basepoint-free. The projective morphism

φV : X −→ P(V ∗)

is a central object of study in algebraic geometry. In particular, the syzygies
of φV are encoded in the so-called syzygy bundle MV , whose study has been
of increasing interest in the last decades. Namely, we define the syzygy bundle
MV as the kernel of the evaluation map ev : V ⊗ OX → OX(L), which is
surjective. In particular, we have the following short exact sequence

0 −→ MV −→ V ⊗ OX −→ OX(L) −→ 0,
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which describes MV as a vector bundle of rank dimV − 1. The syzygy bun-
dles MV have been studied from many perspectives in the last decades. In
particular when V = H0(X,OX(L)), the linear system LV is complete and
the morphism φV coincides with the embedding

φL : X ↪→ P(H0(X,OX(L))∗),

given by the very ample line bundle L. In this case, the syzygy bundle is
denoted by ML := MV , and it is behind many geometric properties of the
embedding φL. For instance, the properties (Np) in the sense of Green [14],
or the stability of the pullback φ∗

LT
P
NL of the tangent bundle of P

NL , which is
related to the stability of ML and has been studied thoroughly in the recent
years [2,7,8,15,17–19] and has led to the so-called Ein–Lazarsfeld–Mustopa
Conjecture (see Conjecture 4.14). In this work, we focus our attention on the
stability of the syzygy bundles MV arising from linear systems LV which are
non-necessarily complete.

In [1], motivated by the theory of tight closure, the systematic study of
L-stable syzygy bundles on P

n was considered. In particular, in [1, Question
7.8], Brenner asked the following question:

Question 1.1. Let us consider integers n, d ≥ 1. For which integers r such
that n+1 ≤ r ≤ (

n+d
d

)
there exist r monomials m1, . . . ,mr with no common

factors such that the syzygy bundle MV corresponding to the subspace V =
〈m1, . . . ,mr〉 ⊂ H0(Pn,OPn(d)) is semistable?

The case r =
(
n+d

n

)
had been previously proved in [12], and a complete

answer was given in [4] and [3]. Moreover, in [4], the authors studied the
local geometry of the moduli space M in which an L-stable syzygy bundle
may be represented. In [4, Theorem 4.4], they proved that apart from few
exceptions, an L-stable syzygy bundle MV corresponds to a smooth point in
M and they computed the dimension of the irreducible component containing
it. From their result, one can see that if n ≥ 4, then MV is infinitesimally
rigid if and only if r =

(
n+d

n

)
and the linear system is complete. As we show in

Theorem 3.1, this is not a particular feature of syzygy bundles on projective
spaces, and we can generalize this fact to a large family of smooth projective
varieties.

In this paper, we consider the analogous of Brenner’s Question 1.1 for
any smooth projective variety:

Question 1.2. Let us fix an ample line bundle L on a smooth projective va-
riety X of dimension d. For which integers dim(X) + 1 ≤ r ≤ dim H0(X,L),
is there a basepoint-free linear system LV associated to a subspace V ⊂
H0(X,L) of dimension r, such that the syzygy bundle MV is L-stable?

Since stability is an open property, we notice that positively answering
Question 1.2 for a certain integer r, we obtain that the syzygy bundle MV

corresponding to a general subspace V ⊂ H0(X,OX(L)) of dimension r is
L-stable. Notwithstanding, the implications of Question 1.2 go beyond this
fact. It sheds new light on the geometry of certain moduli spaces of L-stable
vector bundles on a projective variety. To be more precise, in Sect. 3, we
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consider a large family of polarized smooth projective varieties (X,L) of any
dimension. In this setting, we show (see Theorem 3.1) that a positive answer
to Question 1.2 automatically yields smooth points on a suitable moduli
space. Even more, we show that in this case, the dimension of the irreducible
component containing these points is fully described by only using the very
ample line bundle L. It is worthwhile to mention that this family of projective
varieties include smooth complete projective toric varieties, Grassmannians,
flag varieties among others. On the other hand, Theorem 3.1 works under well
understood assumptions on the very ample line bundle L, which are actually
very mild hypothesis when dim(X) 	= 3.

Motivated by these facts, we devote the second half of this paper to
answer Question 1.2 for the product of two projective spaces X = P

m × P
n,

which is an example of a smooth complete projective toric variety. In this
case, we can use the Cox ring of X which is the standard-bigraded polynomial
ring K[x0, . . . , xm, y0, . . . , yn] and we examine the possible degrees of syzygies
among r forms {f1, . . . , fr} of degree (a, b) with a, b > 0. This allows us to
give a positive answer to Question 1.2 in a large amount of cases (see Theorem
4.7).

This work is organized as follows—In Sect. 2, we gather the basic results
regarding stability of vector bundles on polarized projective varieties (X,L)
and the theory of syzygy bundles of linear systems needed in the sequel.
Afterwards, the paper is divided in two main sections. In Sect. 3, we consider
a large family of polarized projective varieties (X,L), which include, but is
not limited to, smooth complete projective toric varieties, Grassmannians
or flag varieties. We prove (Theorem 3.1) that in this setting, an L-stable
syzygy bundle of a non-necessarily complete linear system corresponds to a
smooth point in its moduli space, and we give explicitly the dimension of
the irreducible component containing that point. The second part of this
work is found in Sect. 4, where we aim to answer Question 1.2 for products
of projective spaces. Our main results in this regard are Theorem 4.7 and
Corollary 4.10 which answers Question 1.2 in a large number of cases. In
Theorem 4.12, we apply these results to give insight on the moduli spaces of
syzygy bundles on P

m × P
n. Finally, we end this section posing some open

questions regarding the stability of syzygy bundles of non-complete linear
systems.

2. Basic results

Let (X,L) be a polarized smooth projective variety of dimension d, defined
over an algebraically closed field K of characteristic zero and let L be a
globally generated line bundle. For any vector subspace V ⊂ H0(X,L), we
denote by LV the corresponding linear system. If LV is base point-free, we
define the syzygy bundle MV as the kernel of the evaluation map

ev : V ⊗ OX −→ OX(L).
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Notice that MV is a vector bundle fitting in the following short exact se-
quence

0 −→ MV −→ V ⊗ OX −→ OX(L) −→ 0. (1)

In particular, we have
• c1(MV ) = −c1(L),
• rk(MV ) = dim(V ) − 1,

• μL(MV ) = −Ld

dim(V )−1 .

The goal of this paper is to study the stability of the vector bundle MV

for appropriate subspaces V ⊂ H0(X,OX(L)) and to obtain local information
on the geometry of their corresponding moduli spaces. Let us first recall the
definition and some key result about the stability of vector bundles.

Definition 2.1. Let (X,L) be a polarized smooth variety of dimension d. A
vector bundle E on X is L-stable (resp. L-semistable) if for any subsheaf
F ⊂ E with 0 < rk(F ) < rk(E), we have

μL(F ) :=
c1(F )Ld−1

rk(F )
< μL(E) :=

c1(E)Ld−1

rk(E)

(resp. μL(F ) :=
c1(F )Ld−1

rk(F )
≤ μL(E) :=

c1(E)Ld−1

rk(E)
).

The following result is a cohomological characterization of the stability,
and it will play a central role in the proof of our main result.

Lemma 2.2. [3, Lemma 2.1] Let (X,L) be a polarized smooth variety of di-
mension d. Let E be a vector bundle on X. Suppose that for any integer q
and any line bundle G on X such that

0 < q < rk(E) and (G · Ld−1) ≥ qμL(E)

one has H0 (X,
∧q

E ⊗ G∨) = 0. Then, E is L-stable.

Remark 2.3 A vector bundle E satisfying the hypothesis of Lemma 2.2 is
said to be cohomologically stable. It is worthwhile to point out that any
cohomological stable vector bundle on a polarized variety (X,L) is L-stable
but not vice versa.

The stability of syzygy bundles associated to complete linear systems
(i.e. when V = H0(X,OX(L))) on polarized varieties (X,L) has received a
lot of attention on the last decades (see, for instance, [2,7,8,12,18,19]). Our
goal is to answer the following much more general question:

Question 2.4. Let us fix an ample line bundle L on a smooth projective va-
riety X of dimension d. For which integers r ≤ dim H0(X,L), is there a
base point-free linear system LV associated to a subspace V ⊂ H0(X,L) of
dimension r, such that the syzygy bundle MV is L-stable?

Question 2.4 is a generalization of a question raised by Brenner in [1,
Question 7.8], regarding the stability of syzygy bundles of non-complete linear
systems in P

N . This problem has been further studied in [3,4,16], where a
complete answer for the case (X,L) = (PN ,OPN (d)) is given.
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Remark 2.5. (i) Since the L-stability is an open property, Question 2.4 is
equivalent to ask for which integers r ≤ H0(X,L), the syzygy bundle
MV corresponding to a general base point-free linear system LV given
by a subspace V ⊂ H0(X,L) of dimension r, is L-stable.

(ii) In the case V = H0(X,L), there is a conjecture by Ein, Lazasferld and
Mustopa (see [8, Conjecture 2.6] or Conjecture 4.14), which addresses
the stability of the syzygy bundle MV .

Remark 2.6. As shown in Sect. 3, answering Question 2.4, and thus providing
general syzygy bundles which are L-stable, shed new light on the geometry
of the moduli spaces where the syzygy bundles are represented as a point.

3. Rigidness of the syzygy bundles

In this section, we focus on a polarized projective variety (X,L) of dimension
d and we consider a syzygy bundle MV associated to a base point-free linear
system LV with V ⊂ H0(X,L) a subspace of dimension r ≤ h0(X,OX(L)). In
general, it is not known if MV is L-stable (see Conjecture 4.14 and Question
4.15). Notwithstanding, if MV is L-stable, then it represents a point inside
a suitable moduli space M = MX(r − 1; c1, . . . , cmin{r−1,d}) of rank r − 1
L-stable vector bundles with Chern classes ci = ci(MV ) for 1 ≤ i ≤ min{r −
1, d}. In this section, we assume that MV is L-stable, and we study the
geometry of this moduli space M around [MV ].

Recall that the Zariski tangent space of M at a point [E] is canonically
given by

T[E]M ∼= Ext1(E,E) ∼= H1(X,E ⊗ E∨),

and we say that E is infinitesimally rigid if [E] is an isolated point, or equiv-
alently if dimT[MV ]M = 0. We have the following result:

Theorem 3.1. Let (X,L) be a polarized projective variety such that H1(X,OX)
= H2(X,OX) = H3(X,OX) = 0 and H1(X,OX(L)) = 0. For any base point-
free linear system LV with V ⊂ H0(X,L), denote by MV the corresponding
syzygy bundle. If MV is L-stable and either
(a) dim(X) ≥ 4,
(b) dim(X) = 3 and the linear system LV is complete (V = H0(X,OX(L))).
(c) dim(X) = 3, the linear system LV is non-complete and H3(X,OX(−L))

= 0, or
(d) dim(X) = 2,
then

(i) [MV ] ∈ M is a smooth point.
(ii) The dimension of the irreducible component in M containing [MV ] is

either
dimK T[MV ]M = r(h0(X,OX(L)) − r), in Cases (a), (b), (c); or
dimK T[MV ]M = r(h0(X,OX(L))−r)+r h2(X,OX(−L)), in Case
(d).
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In particular, when dim(X) ≥ 3, MV is infinitesimally rigid if and only if
V = H0(X,OX(L)).

Proof. Let us start studying H2(X,MV ⊗ M∨
V ). We consider the exact se-

quence

0 −→ MV −→ Or
X −→ OX(L) −→ 0. (2)

Dualizing the exact sequence (2) and tensoring it by MV , we obtain

0 −→ MV (−L) −→ MV ⊗ Or
X −→ MV ⊗ M∨

V −→ 0. (3)

From the exact sequence of cohomology of (3), we have

· · · −→ H2(X,Mr
V ) −→ H2(X,MV ⊗ M∨

V ) −→ H3(X,MV (−L)) −→ · · ·
(4)

To see that H2(X,MV ⊗ M∨
V ) = 0, it is enough to see that H2(X,MV ) =

H3(X,MV (−L)) = 0. From the exact sequence of cohomology of (2) and the
hypothesis H1(X,OX(L)) = H2(X,OX) = 0, we get

H2(X,MV ) = 0. (5)

Let us compute H3(X,MV (−L)). From the exact sequence (2) tensored
by OX(−L), we have

· · · −→ H2(X,OX) −→ H3(X,MV (−L)) −→ H3(X,OX(−L)r) → H3(X,OX) −→ · · · .
(6)

Since we assume that H2(X,OX) = H3(X,OX) = 0, we have that

H3(X,MV (−L)) ∼= H3(X,OX(−L)). (7)

We leave Case (b) to the end of the proof. In any other case we have
H3(X,OX(−L)) = 0 and it follows that

H2(X,MV ⊗ M∨
V ) = 0.

Therefore, [MV ] is a smooth point in M. Let us compute T[MV ]M∼=H1(X,MV

⊗ M∨
V ).
Since V ⊂ H0(X,OX(L)), the map (H0(ev) : H0(X,Or

X) → H0(X,OX

(L))) is injective. Hence,

H0(X,MV ) = 0, (8)

From (3) and using (5), we have that

0 −→ H0(X,MV ⊗ M∨
V ) −→ H1(X,MV (−L)) −→ H1(X,Mr

V )

−→ H1(X,MV ⊗ M∨
V ) −→ H2(X,MV (−L)) → 0. (9)

Since MV is L-stable, in particular, it is simple. So we have

H0(X,MV ⊗ M∨
V ) ∼= K. (10)

On the other hand, twisting (2), we obtain

0 −→ H0(X,OX) −→ H1(X,MV (−L)) −→ H1(X,OX(−L)r) −→ H1(X,OX)

−→ H2(X,MV (−L)) −→ H2(X,OX(−L)r) −→ H2(X,OX) −→ · · ·
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Since H1(X,OX) = H2(X,OX) = 0 and by Kodaira’s vanishing theorem
H1(X,OX(−L)) = 0, we have that

H1(X,MV (−L)) ∼= H0(X,OX)
H2(X,MV (−L)) ∼= H2(X,OX(−L)r).

(11)

Finally, from (2), we have that

0 −→ H0(X,MV ) −→ H0(X,Or
X) −→ H0(X,OX(L)) −→ H1(X,MV ) −→ 0.

(12)

Since H0(X,MV ) = 0 (see 8), we obtain that

H0(X,OX(L)) ∼= H1(X,MV ) ⊕ H0(X,Or
X),

which yields

h1(X,MV ) = h0(X,OX(L)) − h0(X,Or
X) = h0(X,OX(L)) − r. (13)

Finally, from (9) and using (10), (11) and (13), we get

h1(X,MV ⊗ M∨
V ) = h2(X,MV (−L)) + r h1(X,MV ) − h1(X,MV (−L))

+ h0(X,MV ⊗ M∨
V )

= h2(X,OX(−L)r) + r(h0(X,OX(L)) − h0(X,Or
X))

− h0(X,OX) + 1

= r h2(X,OX(−L)) + r(h0(X,OX(L)) − r).

In particular, for Case (d) (dim(X) = 2), the proof is finished.
On the other hand, notice that if dim(X) ≥ 3, by Kodaira’s vanishing

theorem, we have H2(X,OX(−L)) = 0. Thus, we have

h1(X,MV ⊗ M∨
V ) = r(h0(X,OX(L)) − r) (14)

the proof now follows for Case (a) (dim(X) ≥ 4 and Case (c) (dim(X) = 3,
V � H0(X,OX(L)) and H3(X,OX(−L)) = 0).

To finish the proof, we need to tackle Case (b), that is when dim(X) = 3
and V = H0(X,OX). In this case, we have not seen that [MV ] is a smooth
point in M, so we cannot deduce directly that dimK T[MV ] gives the dimension
of the irreducible component of M containing [MV ]. However, from (14), we
obtain that

h1(X,MV ⊗ M∨
V ) = r(h0(X,OX(L)) − r) = 0

since in this case r = h0(X,OX(L)). Therefore, dimK T[MV ] = 0, so MV is
infinitesimally rigid and so [MV ] is smooth.

Remark 3.2. (i) There is a wide range of projective varieties X satisfying
that H1(X,OX) = H2(X,OX) = H3(X,OX) = 0. For instance, we have
Grassmannians and flag varieties ([20, Chapter 4], complete smooth pro-
jective toric varieties ([6, Chapter 9]) or arithmetically Cohen-Macaulay
varieties.
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(ii) On the other hand, when dim(X) = 3, the condition H3(X,OX(−L)) =
0 is not always satisfied even in the case of complete smooth toric va-
rieties, as the following example shows—take X = P

3 and L = OP3(i)
with i ≥ 4. When X is a complete toric variety of dimension n, this
technical condition can be tackled using the Batirev–Borisov vanishing
theorem. Indeed, for any Cartier nef divisor D on X, there is a lattice
polytope PD such that

H0(X,OX(D)) = |PD|
and

hi(X,OX(−D) =
{

0, i 	= dim(PD)
|Relint(PD)|, i = dim(PD),

where |PD| is the number of lattice points of PD and |Relint(PD)| is
the number of lattice points in the relative interior of the polytope PD

(see [6, Section 5 and Theorem 9.2.7]).

Theorem 3.1 has been recently generalized in [10] and [11] where us-
ing generalized syzygy bundles, we construct recursively open subspaces of
moduli spaces of simple sheaves on X that are smooth, rational, and quasipro-
jective varieties.

At the end of Sect. 4, we will apply the results of this section (see Theo-
rem 4.12) to general syzygy bundles on P

m ×P
n associated to linear systems.

4. Stability of syzygy bundles of non-complete linear systems

The aim of this section is to answer Question 2.4 for X = P
m × P

n. Notice
that X may be viewed as the smooth complete toric variety toric variety with
Cox ring

R = K[x0, . . . , xm, y0, . . . , yn]

graded by

deg(xi) = (1, 0) 0 ≤ i ≤ m

deg(yi) = (0, 1) 0 ≤ i ≤ n.

Any line bundle on X is of the form OX(a, b) := π∗
1OPm(a) ⊗ π∗

2OPn(b) for
some integers a, b. A line bundle OX(a, b) is ample if and only if it is very
ample, if and only if a, b > 0; and it is effective if and only if a, b ≥ 0.
Moreover, we have the following identification of vector spaces:

H0(X,OX(a, b)) ∼= R(a,b) := 〈xα0
0 · · · xαm

m yβ0
0 · · · yβn

n | α0 + · · · + αm = a, β0

+ · · · + βn = b〉.
In particular, for all integers a, b ≥ 0, we have

dim H0(X,OX(a, b)) =
(

m + a

m

)(
n + b

n

)
.

In this setting, Lemma 2.2 can be rephrased as follows:
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Lemma 4.1. Take X = P
m × P

n and L = OX(a, b) a very ample line bundle.
Let V ⊂ H0(X,L) be a vector space such that LV is a base point-free linear
system. The syzygy bundle MV is L-stable if for any 0 < q < r − 1 and any
line bundle G = OX(x, y), then

H0

(

X,

q∧
MV (x, y)

)

	= 0 implies bmx + any >
qab(m + n)

r − 1
.

Proof. It follows from Lemma 2.2 using that

Lm+n = ambn

(
m + n

m

)
= ambn

(
m + n − 1

n

)
(
m

n
+ 1)

and

G · L = am−1bn−1

(
m + n − 1

m

)
(b

m

n
x + ay).

Notice that if G = O(x, y) is a line bundle we have, from (1), the
following inclusion of vector spaces

H0

(

X,

q∧
MV (x, y)

)

↪→ H0

(

X,

q∧
(V ⊗ OX)(x, y)

)

= H0

(

X,

(
q∧

V

)

⊗ OX(x, y)

)

.

Hence, if H0 (X,
∧q

MV (x, y)) 	= 0, then G = OX(x, y) is effective. Therefore,
we have x, y ≥ 0.

Our first goal is to prove that the syzygy bundle MV associated to
any sufficiently large vector space V ⊂ H0(X,L) is always L-stable. More
precisely, we show that for any base point-free linear system LV associated
to an r-dimensional vector space V ⊂ H0(X,L) such that

a(m + n)
min(m,n)

< r ≤
(

a + m

m

)(
b + n

n

)
, (15)

the syzygy bundle MV is L-stable. To this end, the following Lemma is
needed.

Lemma 4.2. Take X = P
m × P

n and L = OX(a, b) a very ample line bun-
dle. Let V ⊂ H0(X,L) be a vector space such that LV is a base point-free
linear system. For any 0 < q < r − 1 and any line bundle G = OX(x, y), if
H0 (

∧q
MV (x, y)) 	= 0, then x + y ≥ q.

Proof. We have that

MV (−L) = K̃V ,

where KV = syz(f1, . . . , fr) is the syzygy module of the forms {f1, . . . , fr} ⊂
R(a,b) corresponding to a basis of V . Then, KV lies in the following exact
sequence:

0 −→ KV −→ R(−a,−b)r (f1,...,fr)−−−−−−→ R −→ 0.
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In particular, if
μ⊕

i=1

R(−a − αi,−b − βi) −→ KV −→ 0

is a minimal presentation of KV , then we have for any 1 ≤ i ≤ μ that

(αi, βi) ∈ {(x, y) ∈ N
2 | x + y ≥ 1}.

As a consequence, we have a minimal presentation
μ⊕

i=1

O(−αi,−βi) −→ MV −→ 0 (16)

such that αi + βi ≥ 1 for 1 ≤ i ≤ μ. Taking exterior powers in (16), we have

⊕

1≤i1<···<iq≤μ

O(−αi1 − · · · − αiq ,−βi1 − · · · − βiq ) −→
q∧

MV −→ 0.

(17)

Notice that for any q-uple 1 ≤ i1 < . . . < iq ≤ μ, it holds that

αi1 + · · · + αiq + βi1 + · · · + βiq ≥ q.

Thus, if H0 (X,
∧q

MV (x, y)) 	= 0, then we have that x + y ≥ q.

Proposition 4.3. Take X = P
m × P

n and L = OX(a, b) a very ample line
bundle such that a ≥ b. Let LV be any basepoint-free linear system associated
to a vector subspace V ⊂ H0(X,L) with dim(V ) = r. If

a(m + n)
min(m,n)

+ 1 < r ≤
(

a + m

m

)(
b + n

n

)
,

then the syzygy bundle MV associated to LV is L-stable.

Proof. We apply Lemma 4.1. Let us consider an integer 0 < q < r − 1 and
G = OX(x, y) a line bundle such that H0 (X,

∧q
MV (x, y)) 	= 0. Since x, y ≥ 0

and a ≥ b, we have that bmx + any ≥ b min(m,n)(x + y). Therefore, it is
enough to see that it holds

bnx + amy >
qab(m + n)

r − 1
.

Since H0 (X,
∧q

MV (x, y)) 	= 0, then we have that there is some q-uple
(i1, . . . , iq) with 1 ≤ i1 < · · · < iq ≤ μ in (17), such that

(x, y) ∈ (αi1 + · · · + αiq , βi1 + · · · + βiq ) + Z
2
≥0.

Thus, we have that x + y ≥ q. Consequently,

bmx + any ≥ b min(m,n)q >
qab(m + n)

r − 1

since we assume that r > a(m+n)
min(m,n) + 1.
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The remaining of this section is devoted to show that for any integer r
such that

a(m + n)
b min(m,n)

+ 1 < r ≤ a(m + n)
min(m,n)

, (18)

there is a vector subspace V ⊂ H0(X,L) with dim(V ) = r such that the
associated linear system LV is base point-free and the corresponding syzygy
bundle MV is L-stable.

Notation 4.4. For any integer r satisfying (18), we denote by tr the only
integer such that

a(m + n)
tr min(m,n)

+ 1 < r ≤ a(m + n)
(tr − 1)min(m,n)

+ 1.

Notice that it holds 2 ≤ tr ≤ b.

The following lemma is in the core of the proof.

Lemma 4.5. Let R = K[x0, . . . , xm, y0, . . . , yn] be the Cox ring of X = P
m ×

P
n, and let a ≥ b ≥ 2 be two integers. For any integer r such that

a(m + n)
b min(m,n)

+ 1 < r ≤ a(m + n)
min(m,n)

,

there is a vector subspace W ⊂ R(a,b) of dimension

N = dimW ≥ a(m + n)
(tr − 1)min(m,n)

+ 1,

such that
(i) W admits a basis of monomials {f1, . . . , fN}.
(ii) We have that

{xa
i yb

j | 0 ≤ i ≤ m, 0 ≤ j ≤ n} ⊂ W.

(iii) If ξ = (g1, . . . , gN ) ∈ syz(f1, . . . , fN ) is a syzygy of degree (a+α, b+β),
then it holds that

α + β ≥ tr.

In particular, condition (ii) implies that the linear system LW associated to
W is base point-free.

Proof. We divide the proof in four cases:
(A) n = m = 1, and R = K[x0, x1, y0, y1].
(B) m = min(n,m) = 1 and n > 1, and R = K[x0, . . . , xm, y0, y1].
(C) n = min(n,m) = 1 and m > 1, and R = K[x0, x1, y0, . . . , yn].
(D) Otherwise.

Case (A). We consider the following two sets of monomials in R(a,b):

A =
{

x
a−(tr−1)
0 xtr−1

1 yb−1
0 y1, x

a−2(tr−1)
0 x

2(tr−1)
1 yb

0, . . . ,

x
a−(� a

tr−1 �−2)(tr−1)

0 x
(� a

tr−1 �−2)(tr−1)

1 y
b−(1−ε)
0 y1−ε

1 ,

x
a−(� a

tr−1 �−1)(tr−1)

0 x
(� a

tr−1 �−1)(tr−1)

1 yb−ε
0 yε

1

}
,
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and

B =
{

xa−1
0 x1y

b−(tr−1)
0 ytr−1

1 , xa−tr
0 xtr

1 yb−tr
0 ytr

1 , xa−2tr+1
0 x2tr−1

1 y
b−(tr−1)
0 ytr−1

1 ,

. . . , x
a−1−(� a

tr−1 �−2)(tr−1)

0 x
1+(� a

tr−1 �−2)(tr−1)

1 yb−tr+ε
0 ytr−ε

1 ,

x
a−1−(� a

tr−1 �−1)(tr−1)

0 x
1+(� a

tr−1 �−1)(tr−1)

1 yb+tr−1−ε
0 ytr−1+ε

1

}
,

where

ε = ε(a, tr) :=
{

0 if 
 a
tr−1� even

1 if 
 a
tr−1� odd.

We have that

|A| =
⌊

a

tr − 1

⌋
− 1

|B| =
⌊

a

tr − 1

⌋

We construct the vector space W from the sets of monomials A and B,
fulfilling conditions (i), (ii) and (iii). We consider two subcases:

Case (i): if 2(tr − 1) ≤ b.
If either it holds a

tr−1 /∈ Z or a
tr−1 ∈ Z is odd, we define

W = 〈A ∪ B〉 ⊕ 〈xa
i yb

j | 0 ≤ i, j ≤ 1〉.
We have dim W = 2
 a

tr−1� + 3. Otherwise, a
tr−1 ∈ Z is even, and we define

W = 〈(A \ {xtr−1
0 x

a−(tr−1)
1 yb

0}) ∪ B〉 ⊕ 〈xa
i yb

j | 0 ≤ i, j ≤ 1〉.
We have dim W = 2
 a

tr−1� + 2.
Case (ii): if tr ≤ b < 2(tr − 1).
If either it holds a

tr−1 /∈ Z or a
tr−1 ∈ Z is odd, we define

W = 〈A ∪ (B \ {xa−1
0 x1y

b−(tr−1)
0 ytr−1

1 })〉 ⊕ 〈xa
i yb

j | 0 ≤ i, j ≤ 1〉.
We have dim W = 2
 a

tr−1� + 2. Otherwise, a
tr−1 ∈ Z is even, and we define

W = 〈(A \ {xtr−1
0 x

a−(tr−1)
1 yb0}) ∪ (B \ {xa−1

0 x1y
b−(tr−1)
0 ytr−1

1 })〉 ⊕ 〈xa
i y

b
j | 0 ≤ i, j ≤ 1〉.

We have dim W = 2
 a
tr−1� + 1.

In any case, we have that dimW ≥ 2a
tr−1 + 1 and conditions (i), (ii) and

(iii) hold.
Case (B). We consider the following sets of monomials in R(a,b) for each

1 ≤ i ≤ m − 1:

Ai =
{

x
a−(tr−1)
i−1 xtr−1

i yb−1
0 y1, x

a−2(tr−1)
i−1 x

2(tr−1)
i yb

0, . . . ,

x
a−(� a

tr−1 �−2)(tr−1)

i−1 x
(� a

tr−1 �−2)(tr−1)

i y
b−(1−ε)
0 y1−ε

1 ,

x
a−(� a

tr−1 �−1)(tr−1)

i−1 x
(� a

tr−1 �−1)(tr−1)

i yb−ε
0 yε

1

}
,
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and

Bi =
{

x
a−(tr−1)
i xtr−1

i+1 yb−2
0 y2

1 , x
a−2(tr−1)
i x

2(tr−1)
i+1 yb−1

0 y1, . . . ,

x
a−(� a

tr−1 �−2)(tr−1)

i x
(� a

tr−1 �−2)(tr−1)

i+1 y
b−(2−ε)
0 y2−ε

1 ,

x
a−(� a

tr−1 �−1)(tr−1)

i x
(� a

tr−1 �−1)(tr−1)

i+1 y
b−(1+ε)
0 y1+ε

1

}
,

If a
tr−1 /∈ Z or a

tr−1 ∈ Z and it is odd, we define

W =
m⊕

i=1

〈Ai ∪ Bi〉 ⊕ 〈xa
i yb

j | 0 ≤ i ≤ m, 0 ≤ j ≤ 1〉,

and we have

dim W = 2(m − 1)
(⌊

a

tr − 1

⌋
− 1

)
+ 2(m + 1).

Otherwise, a
tr−1 ∈ Z and it is even, and we define

W =
m⊕

i=1

〈(Ai \ {xtr−1
i−1 x

a−(tr−1)
i yb

0}) ∪ Bi〉 ⊕ 〈xa
i yb

j | 0 ≤ i ≤ m, 0 ≤ j ≤ 1〉,

and we have

dim W = (m − 1)
(⌊

a

tr − 1

⌋
− 2 +

⌊
a

tr − 1

⌋
− 1

)
+ 2(m + 1).

In any case, we have dim W ≥ (m+1)a
tr−1 + 1 and conditions (i), (ii) and (iii)

hold.
Case (C). We consider the following sets of monomials in R(a,b) for each

1 ≤ i ≤ n − 1:

Ai =
{

x
a−(tr−1)
0 xtr−1

1 yb−1
i yi+1, x

a−2(tr−1)
0 x

2(tr−1)
1 yb

i , . . . ,

x
a−(� a

tr−1 �−2)(tr−1)

0 x
(� a

tr−1 �−2)(tr−1)

1 y
b−(1−ε)
i y1−ε

i+1 ,

x
a−(� a

tr−1 �−1)(tr−1)

0 x
(� a

tr−1 �−1)(tr−1)

1 yb−ε
i yε

i+1

}
,

and for i = n:

An =
{

x
a−(tr−1)
0 xtr−1

1 yb−1
n y0, x

a−2(tr−1)
0 x

2(tr−1)
1 yb

n, . . . ,

x
a−(� a

tr−1 �−2)(tr−1)

0 x
(� a

tr−1 �−2)(tr−1)

1 yb−(1−ε)
n y1−ε

0 ,

x
a−(� a

tr−1 �−1)(tr−1)

0 x
(� a

tr−1 �−1)(tr−1)

1 yb−ε
n yε

0

}
,

If a
tr−1 /∈ Z or a

tr−1 ∈ Z and it is odd, we define

W =
n⊕

i=1

〈Ai〉 ⊕ 〈xa
i yb

j | 0 ≤ i ≤ 1, 0 ≤ j ≤ n〉,

and we have

dim W = (n + 1)
(⌊

a

tr − 1

⌋
− 1

)
+ 2(n + 1).
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Otherwise, a
tr−1 ∈ Z and it is even, and we define

W =
n⊕

i=1

〈Ai \ {xtr−1
0 x

a−(tr−1)
1 yb

i }〉 ⊕ 〈xa
i yb

j | 0 ≤ i ≤ n, 0 ≤ j ≤ 1〉,

and we have

dim W = (n + 1)
(⌊

a

tr − 1

⌋
− 2

)
+ 2(n + 1).

In any case, we have dim W ≥ (n+1)a
tr−1 + 1 and conditions (i), (ii) and (iii)

hold.
Case (D). Let us consider now the vector space W constructed in Case

(B) (respectively Case (C)) taking the subring R′ = K[x0, . . . , xm, y0, y1] ⊂
R, if m = max(m,n) (respectively taking the subring R′ = K[x0, x1, y0, . . . , yn],
if n = max(m,n)). Thus, W is also a vector subspace in R(a,b) and conditions
(i), (ii) and (iii) are automatically satisfied. On the other hand, we have that

dim W ≥ a(max(m,n) + 1)
tr − 1

+ 1

=
max(m,n)a

tr − 1
+

a

tr − 1
+ 1

≥ max(m,n)a
min(m,n)(tr − 1)

+
a

tr − 1
+ 1

=
(m + n)a

min(m,n)(tr − 1)
+ 1.

Proposition 4.6. Take X = P
m × P

n and L = OX(a, b) a very ample line
bundle, such that a ≥ b ≥ 2. For any integer

a(m + n)
b min(m,n)

+ 1 < r ≤ a(m + n)
min(m,n)

+ 1,

let LV be general base point-free linear system associated to an r-dimensional
vector space V ⊂ H0(X,L). Then, the syzygy bundle MV corresponding to
LV is L-stable.

Proof. By Remark 2.5, it is enough to find an r-dimensional vector space
V ⊂ H0(X,L) such that the linear system LV is base point-free and its
corresponding syzygy bundle MV is L-stable. To this end, we use Lemma
4.5.

By Notation 4.4, let us consider the integer 2 ≤ tr ≤ b such that
a(m + n)

tr min(m,n)
+ 1 < r ≤ a(m + n)

(tr − 1)min(m,n)
+ 1.

We consider the N -dimensional vector subspace W given by Lemma 4.5. We
may write

W = 〈f1, . . . , fN 〉 = 〈xa
i yb

j | 0 ≤ i ≤ m, 0 ≤ j ≤ n〉 + 〈m1, . . . ,mN−(m+1)(n+1)〉,
where mi is a monomial for any 1 ≤ i ≤ N − (m + 1)(n + 1). Then we
construct the following r-dimensional vector space

V = 〈f1, . . . , fr〉 = 〈xa
i yb

j | 0 ≤ i ≤ m, 0 ≤ j ≤ n〉 + 〈m1, . . . ,mr−(m+1)(n+1)〉.



MJOM Syzygy Bundles of Non-complete Linear Systems Page 15 of 21 265

Notice that syz(f1, . . . , fr) ⊂ syz(f1, . . . , fN ). Thus, applying condition (ii)
of Lemma 4.5 to any syzygy ξ = (g1, . . . , gr) ∈ syz(V ) of degree (a+α, b+β),
we have that

α + β ≥ tr.

In particular, if KV := syz(f1, . . . , fr), we have the following minimal pre-
sentation

μ⊕

i=1

R(−a − αi,−b − βi) → KV −→ 0,

such that αi + βi ≥ tr for any 1 ≤ i ≤ μ.
On the other hand, since MV = K̃V , we have the following minimal

presentation
μ⊕

i=1

OX(−αi,−βi) −→ MV −→ 0,

which yields, taking the q-th exterior power, the minimal presentation of∧q
MV :

⊕

1≤i1<···<iq≤μ

OX(−αi1 − · · · − αiq ,−βi1 − · · · − βiq ) −→
q∧

MV −→ 0.

For any q-uple 1 ≤ i1 < · · · < iq ≤ μ, we have that

− αi1 − · · · − αiq − βi1 − · · · − βiq ≥ qtr. (19)

Now, we apply Lemma 2.2. Let us consider an integer 0 < q < r − 1 and a
line bundle G = OX(x, y) such that

H0

(

X,

q∧
MV (x, y)

)

	= 0.

We want to see that it holds

bmx + any >
qab(m + n)

r − 1
.

Since a ≥ b, we have that bmx+any ≥ b min(m,n)(x+y). On the other hand,
by (19), assuming that H0 (X,

∧q
MV (x, y)) 	= 0 we have that x + y ≥ qt.

Consequently, we obtain that

bmx + any ≥ b min(m,n)(x + y) ≥ bqtr >
qab(m + n)

r − 1

since we assume that

r >
a(m + n)

tr min(m,n)
+ 1.

Propositions 4.3 and 4.6 yield the main result of this note.
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Theorem 4.7. Let X = P
m × P

n and a, b ≥ 1 two integers and let L :=
OX(a, b) be a very ample line bundle on X. For any integer r such that

max(a, b)(m + n)
min(a, b)min(m,n)

+ 1 < r ≤
(

m + a

m

)(
n + b

n

)
= h0(X,L),

let LV be a general base point-free linear system associated to an r-dimensional
vector space V ⊂ H0(X,L). Then, the syzygy bundle MV corresponding to
LV is L-stable.

Proof. Exchanging the role of m and n in P
m × P

n if necessary, we may
assume that a ≥ b. On the other hand, if we assume b = 1, then we have

a(m + n)
b min(m,n)

+ 1 =
a(m + n)
min(m,n)

+ 1.

Therefore, the result follows directly from Proposition 4.3.
On the other hand, assume that a ≥ b ≥ 2. Then, the result follows

from Proposition 4.3 if

a(m + n)
min(m,n)

+ 1 < r ≤
(

m + a

m

)(
n + b

n

)
,

or from Proposition 4.6 if
a(m + n)

b min(m,n)
+ 1 < r ≤ a(m + n)

min(m,n)
+ 1.

We have the following remark:

Remark 4.8. (i) Let V ⊂ H0(X,OX(L)) be a vector space corresponding
to a base point-free linear system LV , then we have that

dim X = m + n < dim V ≤
(

m + a

m

)(
n + b

n

)
= h0(X,L).

By Theorem 4.7, we have seen that when V is general and

max(a, b)(m + n)
min(a, b)min(m,n)

+ 1 < dim V ≤
(

m + a

m

)(
n + b

n

)
= h0(X,L),

then, the corresponding syzygy bundle MV is L-stable. However, to solve
completely Question 2.4, it remains open the case of a general vector
space V such that

m + n + 1 ≤ dim V ≤ max(a, b)(m + n)
min(a, b)min(m,n)

+ 1. (20)

(ii) On the other hand, if we assume in addition that V is generated by
monomials, then being LV a base point-free linear system implies that

(m + 1)(n + 1) ≤ dim V ≤
(

m + a

m

)(
n + b

n

)
.

Therefore, Question 2.4 even when restricted to vector spaces V gener-
ated by monomials remains open when

(m + 1)(n + 1) ≤ dim V ≤ max(a, b)(m + n)
min(a, b)min(m,n)

+ 1. (21)
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However, we notice that the open range of cases expressed in (21) is
smaller than that of (20).

The following corollaries show that in some cases, Theorem 4.7 solves
already Question 2.4 for P

m × P
n.

Corollary 4.9. Let X = P
m × P

n and a, b ≥ 1 two integers and let L :=
OX(a, b) be a very ample line bundle on X. If

max(a, b) < min(m,n)min(a, b),

then the syzygy bundle MV corresponding to a general basepoint-free linear
system LV , is L-stable.

In particular, if m,n ≥ 2, for any integer t ≥ 1, we set Ht := OX(t, t).
Then, the syzygy bundle MV associated to a general basepoint-free linear
system LV with V ⊂ H0(X,Ht) is Ht-stable. Notice that then, MV is also
H1-stable.

Proof. In this case, we have

m + n + 1 >
max(a, b)(m + n)

min(a, b)min(m,n)
+ 1.

Since there is no base point-free linear system associated to a vector space V
satisfying (20), the result follows from Theorem 4.7.

Corollary 4.10. Let X = P
m × P

n and a, b ≥ 1 two integers and let L :=
OX(a, b) be a very ample line bundle on X. If

max(a, b) <
(mn + m + n)min(m,n)

m + n
min(a, b),

then the syzygy bundle MV corresponding to a general base point-free linear
system LV given by a general vector space V generated by monomials, is
L-stable.

Proof. In this case, we have

(m + 1)(n + 1) >
max(a, b)(m + n)

min(a, b)min(m,n)
+ 1.

Since there is no base point-free linear system associated to a vector space
V generated by monomials satisfying (21), the result follows from Theorem
4.7.

Remark 4.11. Let us consider a multiprojective space X = P
m1 × · · · × P

mk ,
polarized by a very ample line bundle L := OX(a1, . . . , ak), ai > 0. We notice
that one can use analogous techniques of the previous results to obtain an
integer B(m1, . . . ,mk; a1, . . . , ak) ≥ m1 + · · ·+mk +1 such that for a general
subspace V ⊂ H0(X,OX(L)) satisfying

B(m1, . . . ,mk; a1, . . . , ak) ≤ dim V ≤
(

m1 + a1

m1

)
· · ·

(
mk + ak

mk

)
,

the syzygy bundle MV is L-stable.
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As an application of Theorem 3.1 to this setting, we address now the
geometry of the moduli space M on which an L-stable syzygy bundle MV

can be represented (see Sect. 3).

Theorem 4.12. Let X = P
m × P

n, and a, b ≥ 1 two integers and let L :=
OX(a, b) be a very ample line bundle on X. For any integer r such that

max(a, b)(m + n)
min(a, b)min(m,n)

+ 1 < r ≤
(

m + a

m

)(
n + b

n

)
= h0(X,L),

and a general subspace V ⊂ H0(X,L) with dim V = r, we consider MV a
general syzygy bundle corresponding to the non-complete linear system LV .
Let [MV ] be the point representing MV inside the moduli space M. We have

(i) If either m + n ≥ 4, or m + n = 3 and r = h0(X,OX(L)), then [MV ] is
a smooth point and

dimK T[MV ]M = r(h0(X,OX(L)) − r).

(ii) If m + n = 2 then [MV ] is a smooth point and

dimK T[MV ]M = r(h0(X,OX(L)) − r) + r h2(X,OX(−L)).

In particular MV is infinitesimally rigid if and only if LV is a complete linear
system.

Proof. It follows straightforward from Theorem 4.7 and Corollary 3.1.

We finish this note with some examples and open problems. The fol-
lowing example shows that the bounds established in Theorem 4.7 are not
far of being optimal. Indeed, the following example shows that for small
positive integers a, b, we are not always able to produce a vector space
V ⊂ H0(X,OX(a, b)) generated by monomials such that

(i) The linear system LV is base point-free.
(ii) The dimension of V satisfies (21) i.e.

(m + 1)(n + 1) ≤ dim V ≤ max(a, b)(m + n)
min(a, b)min(m,n)

+ 1.

(iii) The corresponding syzygy bundle MV is L-stable.

Example 4.13. Let m = 1, n = 1 and X = P
1 × P

1. We consider a = 2 and
b = 1, and the very ample line bundle L = OX(2, 1) on X. We have the
identification of vector spaces

H0(X,L) ∼= K〈x2
0y0, x

2
0y1, x

2
1y0, x

2
1y1, x0x1y0, x0x1y1〉.

The open range (21) for the dimension of vector spaces V generated by mono-
mials associated to base point-free linear systems LV is

4 = (m + 1)(n + 1) ≤ dim(V ) ≤ max(a, b)(m + n)
min(a, b)min(m,n)

+ 1 = 5

We will see that there is no such subspace V with dimV = 5 such that
its corresponding syzygy bundle MV is L-stable. Indeed, we have only two
possibilities:
(a) V1 = 〈x2

0y0, x
2
0y1, x

2
1y0, x

2
1y1, x0x1y0〉.
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(b) V2 = x2
0y0, x

2
0y1, x

2
1y0, x

2
1y1, x0x1y1〉.

Notice that they are symmetric up to permutation of the variables {y0, y1}.
In any case, one can check that H0(X,MVi

(1, 0)) 	= 0, then we have an
inclusion of vector bundles

OX(−1, 0) ↪→ MVi
.

However, comparing the slopes, we have

μL(OX(−1, 0)) = −1 = − L2

dim Vi − 1
= μL(MVi

).

In particular OX(−1, 0) is a subbundle destabilizing both syzygy bundles
MV1 and MV2 .

Notwithstanding, one can check that the 4-dimensional subspace W1 =
〈x2

0y0, x
2
0y1, x

2
1y0, x

2
1y1〉, as well as the 6-dimensional subspace W2 = H0(X,L)

provides base point-free linear systems whose syzygy bundles MWi
are L-

stable. In summary, Example 4.13 shows that dealing only with monomials,
the lower bound established in Theorem 4.7 cannot always be improved.
Indeed, we have first seen that the case dim V = 5 cannot be covered.

As we pointed out in the introduction, it is a longstanding problem to
determine the stability of the syzygy bundle associated to a complete linear
system. More precisely, in [8, Conjecture 2.6] Ein, Lazarsfeld and Mustopa
posed the following conjecture.

Conjecture 4.14. Let A and P two line bundles on a smooth projective variety
X. Assume that A is very ample and set Ld := dA+P for any positive integer
d. Then, the syzygy bundle MLd

is A-stable for d � 0.

Related to this conjecture, Hering, Mustaţă and Payne considered the
following question:

Question 4.15. Let L be an ample line bundle on a projective toric variety
X. Is the syzygy bundle ML semistable, with respect to some choice of po-
larization?

Based on our results, we propose a generalization of the above conjecture
and question, to address the stability of syzygy bundles associated to non-
complete linear systems. We pose the following problem.

Problem 4.16. Let X be a projective variety of dimension d and L be a very
ample line bundle on X. Determine the integers d + 1 ≤ r ≤ h0(X,L) such
that for a general vector space V ⊂ H0(X,L) of dimension r, the linear
system LV is base point-free and the syzygy bundle MV is L-stable.
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[15] Hering, M., Mustaţă, M., Payne, S.: Positivity for toric vector bundles. Annales
de l’Institut Fourier 60, 607–640 (2010)
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