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Abstract
We solve the Ein–Lazarsfeld–Mustopa conjecture for the blow up of a projective space along
a linear subspace. More precisely, let X be the blow up of P

n at a linear subspace and let L
be any ample line bundle on X . We show that the syzygy bundle ML defined as the kernel
of the evalution map H0(X , L) ⊗OX → L is L-stable. In the last part of this note we focus
on the rigidness of ML to study the local shape of the moduli space around the point [ML ].
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1 Introduction

Let (X , L) be a polarized smooth projective variety with L a globally generated line bundle.
The syzygy bundle ML is the kernel of the evaluation map ev : H0(X , L) ⊗OX � L . Thus,
ML is a vector bundle of rank h0(X , L) − 1 sitting in the following exact sequence:

0 → ML → H0(X , L) ⊗ OX → L → 0.

Arising in a variety of geometric and algebraic problems, the syzygy bundles ML have
been extensively studied from different points of view. In particular, many efforts have been
invested on knowing whether ML is a stable vector bundle with respect to some polarization,
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and in [10] L. Ein, R. Lazarsfeld and Y. Mustopa conjecture that ML is L-stable for a smooth
polarized variety (X , L), when L is very positive (see Conjecture 2.2).

As far as we know, the stability of ML has been proved in the following cases:

(1) (X , L) = (Pn,OPn (d))with n > 1 (see [1, 15] if char(k) = 0 and [2, 5] if char(k) > 0),
(2) (X , L) where X is a smooth projective curve of genus g ≥ 1 and deg(L) ≥ 2g + 1 (see

[9, Proposition 1.5]),
(3) (X , L)where X is a simple abelian variety and L an ample globally generated line bundle

(see [4, Corollary 2.1]),
(4) when (X , L) is a sufficiently positive polarization of an algebraic surface X (see [10,

Theorem A]),
(5) (X , L)where X is anEnriques (resp. bielliptic) surface and L an ample globally generated

line bundle if char(k) �= 2 (resp. if char(k) �= 2, 3) (see [20, Theorem 3.5]), and more
in general

(6) (X , L) where X is a smooth minimal projective surface of Kodaira dimension zero, and
L an ample globally generated line bundle if char(k) �= 2, 3 (see [20, Corollary 3.6], [3,
Theorem 1] and [21, Theorem p.2]).

More in general, in [17, Question 7.8],M. Hering,M.Mustaţă and S. Payne asks for which
choices of polarizations of a projective toric variety (X , L), the syzygy the syzygy bundle
ML is semistable (see Question 2.3).

In this paper we contribute to this conjecture for the blow-up BlZ (Pn) of a projective space
P
n along a linear subspace Z ⊂ P

n . We assume that the base field K has characteristic 0, and
we prove that for any very ample line bundle L on BlZ (Pn), the syzygy bundleML is L-stable
(Theorem 3.3). To prove this result we identify BlZ (Pn) with a suitable projective bundle,
which endows a toric variety structure. The theory of toric varieties deploys a correspondence
between multigraded commutative algebra and geometry. We use this dictionary to give
information about the geometric structure of the syzygy bundle ML by using the syzygies of
monomial ideals over non-standard bigraded polynomial rings. This allows us to strengthen
Coandă’s argument (Lemma 2.4) proving that ML is L-stable.

One remarkable consequences ofML being L-stable is that it can be seen as a point [ML ] in
its correspondingmoduli spaceM = MX (N−1; c1, . . . , cmin{N−1,n})where N = h0(X , L)

and ci = ci (ML) for 1 ≤ i ≤ min{N −1, n}. Many few properties, either local or global, are
known for the moduli spaces, however in the last part of this note we are able to find that for
n > 2 the syzygy bundle ML is infinitessimally rigid and hence [ML ] is an isolated point in
M. Furthermore, for n = 2 ML is always unobstructed and we can compute the dimension
of the tangent space of M at [ML ].

This short note is organized as follows. In Sect. 2, we collect all the preliminary results
needed to prove our main result. We have subdivided this section into two subsections. First,
in Sect. 2.1, we state the basic notions on stability of syzygy bundles. In Sect. 2.2, we recall
the relation between blow-ups of projective spaces along linear subspaces and projective
bundles, and its toric variety structure. In order to give a more self-contained exposition, we
also gather in this subsection the basic definitions and results on toric varieties to establish the
algebraic-geometric dictionary used in the sequel. Finally, the core of this note is presented
in Sect. 3. A first algebraic result on the syzygies of a monomial ideal yields information on
the minimal locally free resolution of the syzygy bundle ML (Corollary 3.2). Together with
Coandă’s Lemma (Lemma 2.4), it allows us to prove our main result, namely that ML is
L-stable for any ample line bundle L on BlZ (Pn) (Theorem 3.3). Finally, we end this note
by studying in Sect. 4 the rigidness of the syzygy bundles ML and the local properties of the
moduli space M around the point [ML ] (Theorem 4.1).
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2 Preliminaries

Let (X , L) be a polarized smooth variety defined over an algebraically closed field k of
characteristic zero and let L be a globally generated line bundle. The syzygy bundle ML

associated to L is defined as the kernel of the evaluation map ev : H0(X , L) ⊗ OX −→ L .
Thus,ML is a vector bundle of rank h0(X , L)−1 fitting in the following short exact sequence

0 −→ ML −→ H0(X , L) ⊗ OX −→ L −→ 0. (1)

In particular we have:

• c1(ML) = −c1(L),
• rk(ML) = h0(X , L) − 1,
• μL(ML) = −Ln

h0(X ,L)−1
.

where for any vector bundle E on the polarized variety (X , L), we recall that μL(E) :=
c1(E)·Ln−1

rk(E)
is the so-called slope of E .

2.1 Stability of syzygy bundles

In this paper we are interested in determining the stability of syzygy bundles. Let us recall
the basic definitions and the key results.

Definition 2.1 Let (X , L) be a polarized smooth variety of dimension n. A vector bundle E
on X is L-stable (resp. L-semistable) if for any subsheaf F ⊂ E with 0 < rk(F) < rk(E),
we have

c1(F)Ln−1

rk(F)
<

c1(E)Ln−1

rk(E)

(
resp.

c1(F)Ln−1

rk(F)
≤ c1(E)Ln−1

rk(E)

)
.

In [10,Corollary 2.6], L.Ein,R.Lazarsfeld andY.Mustopaposed the following conjecture:

Conjecture 2.2 Let A and P be two line bundles on a smooth projective variety X. Assume
that A is ample and set Ld := d A + P for any positive integer d. Then, the syzygy bundle
MLd is A-stable for d � 0.

Related to this conjecture, in [17, Question 7.8], M. Hering, M. Mustaţă and S. Payne
consider the following question:

Question 2.3 Let L be an ample line bundle on a projective toric variety X . Is the syzygy
bundle ML semistable, with respect to some choice of polarization?

Note that the (semi)stability of ML with respect to L is equivalent to the (semi)stability
of the pull back ϕ∗

LTP of the tangent bundle of P := P(H0(X , L)∨), where ϕ|L| : X −→
P(H0(X , L)∨) is the morphism associated to L . The goal of this paper is to answer posi-
tively this last question for the blow up of a projective space along a linear subspace (see
Theorem 3.3).

We end this subsection by stating a preliminary result on which our proof rests, it is a well
known cohomological characterization of the stability.
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Lemma 2.4 [5, Lemma 2.1] Let (X , L) be a polarized smooth variety of dimension n. Let E
be a vector bundle on X. Suppose that for any integer q and any line bundle G on X such
that

0 < q < rk(E) and (G · Ln−1) ≥ qμL(E)

one has H0(X ,
∧q E ⊗ G∨) = 0. Then, E is L-stable.

2.2 Blow-ups of projective spaces and toric varieties

In this work we focus on proving the stability of the syzygy bundle ML for any ample line
bundle L on a blow-up BlZ (Pn) of a projective space P

n along a linear subspace Z ⊂ P
n . In

this subsection, we recall how the blow up BlZ (Pn) endows a toric structure. We start with
the following classical result

Proposition 2.5 Let Z ⊂ P
n be a linear subspace of dimension r − 1. Then, the blow-up of

P
n along Z is isomorphic to the projective bundle P(Or

Ps
⊕ OPs (1)), where s = n − r .

Proof See [11, Proposition 9.11]. �

Remark 2.6 There is a conflicting notation in the literature on projective bundles. We use the
definition of P(E) := Proj(Sym E) as found in [7]. It is worthwhile noticing, to avoid any
confusion, that in some texts like [11], some authors define a projective bundle: “P(E) =
Proj(Sym E∨)” that would be, in our notation, P(E∨).

Moreover, the projectivization of a decomposable vector bundle on a projective space P
s

can be seen as a toric variety. In the following section, we make use of this structure to study
the syzygy bundles ML on BlZ (Pn). For the sake of completeness, the remaining part of this
subsection gathers the basic notions of toric varieties needed in the sequel. For further details
on the geometry of toric we refer to [7].

Let X be a toric variety of dimension n associated to the fan� ⊂ N⊗R ∼= R
n , where N ∼=

Z
n is a lattice. IfT ∼= (K∗)n is the algebraic torus acting on X , letM = Hom(T, K

∗) ∼= Z
n be

the lattice of characters and, so, we have N = Hom(M, Z). For any cone σ ∈ �, we denote
σ∨ ⊂ M ⊗ R its dual cone. We set Sσ := σ∨ ∩ M and K[Sσ ] the corresponding semigroup
and semigroup algebra, and Uσ := Spec(K[Sσ ]) is the corresponding affine toric variety. If
τ is a face of σ , we write τ ≺ σ . There is a character m ∈ M such that Sτ = Sσ + Z〈m〉.
Thus, localizing by χm we have K[Sτ ] ∼= K[Sσ ]χm . In particular, there is an inclusion of
affine toric varietiesUτ ↪→ Uσ , and X is recovered from the fan � by glueing all affine toric
varieties Uσ for σ ∈ � along their intersections. �(s) denotes the set of all s-dimensional
cones in �. There is a one to one correspondence between T-invariant orbits of codimension
s and cones σ ∈ �(s). In particular, T-invariant Weil divisors correspond to rays ρ ∈ �(1).
Moreover, if X has no torus factors then the class group of X , Cl(X), is presented as

0 → M
φ−→

⊕
ρ∈�(1)

ZDρ → Cl(X) → 0, (2)

where for any character m ∈ M , φ(m) = ∑
ρ〈m, ρ〉.

The Cox ring of X is the polynomial ring S = K[xρ | ρ ∈ �(1)] endowed with a grading
by Cl(X):

deg(xρ) = [Dρ] ∈ Cl(X), for any ray ρ ∈ �(1).
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For any cone σ ∈ �, we consider the squarefree monomial x σ̂ := ∏
ρ /∈σ(1) xρ , and we define

the irrelevant ideal B = (x σ̂ | σ ∈ �). The localization of S at x σ̂ is also a Cl(X)-graded
algebra Sx σ̂ , and there is an isomorphism K[Sσ ] ∼= (Sx σ̂ )0, sending χm to the monomial

x 〈m,ρ1〉
1 · · · x 〈m,ρr 〉

r for any m ∈ Sσ .
Keeping this definitions in mind, we have a correspondence between Cl(X)-graded S-

modules and quasi-coherent sheaves on X (see for instance [7, Chapter 5]). By [7, Proposition
5.3.7], for any α ∈ Cl(X) and for any Weil divisor D = ∑

ρ aρDρ such that α = [D], there
is a natural isomorphism Sα

∼= �(X ,OX (D)). Namely, we have the following result:

Proposition 2.7 (i) If E is a Cl(X)−graded S-module, there is a quasi-coherent sheaf Ẽ
on X such that �(Uσ , Ẽ) = (Ex σ̂ )0, for any σ ∈ �.

(ii) Conversely, if E is a quasi-coherent sheaf on X, there is a Cl(X)−graded S−module
E such that Ẽ = E . In particular, Ẽ is coherent if and only if E is finitely generated.

(iii) Ẽ = 0 if and only if Bl E = 0 for all l � 0.
(iv) There is an exact sequence of Cl(X)−graded modules

0 → H0
B(E) → E → H0∗(X , Ẽ) → H1

B(E) → 0.

Where Hi
B(E) is the i th local cohomology module of E with respect to the irrelevant ideal

B, and Hi∗(X , E) := ⊕
α∈Cl(X) H

i (X , E(α)).
In particular, for any quasi-coherent sheaf E on X and any α ∈ Cl(X) we identify

H0(X , E(α)) with the degree α−piece of the S−module H0∗(X , E).

Proof See, for instance, [7, Proposition 5.3.3, Proposition 5.3.6 and Proposition 5.3.10] for
(i)–(iii); and [12, Proposition 2.3] for (iv). �


We end this preliminary subsection by presenting the projectivization of a decomposable
bundle over P

s as a toric variety and computing all intersection numbers needed later.
Recall that the only smooth projective toric variety with Picard group Z is the projective

space P
n and, when n > 1, the stability of the syzygy bundle associated to ample line bundles

OPn (d) was established in [5, 8, 19]. Now we turn to smooth projective toric varieties with
Picard group Z

2. They were classified by Kleinschmidt in [18] who proved that if X is
a smooth projective toric variety with Pic(X) ∼= Z

2, then there are integers r , s ≥ 1 with
s+r = dim X and integers 0 ≤ a1 ≤ · · · ≤ ar such that X = P(OPs ⊕OPs (a1)⊕· · ·OPs (ar ))
(where P(E) := Proj(Sym E), see Remark 2.6). To describe the fan of X in the lattice
N = Z

s×Z
r wefix the standard basis {e1, . . . , es} and { f1, . . . , fr }ofZs andZ

r , respectively
(see [7, Proposition 7.3.7]). We set

ρ0:= cone(−e1 − · · · − es + a1 f1 + · · · + ar fr ) η0 := cone(− f1 − · · · − fr )
ρi := cone(ei ) 1 ≤ i ≤ s η j := cone( f j ) 1 ≤ j ≤ r ,

and for 1 ≤ i ≤ s and 1 ≤ j ≤ r we define the r + s−dimensional cones

σi j := cone(ρ0, . . . , ρ̂i , . . . , ρs, η0, . . . , η̂ j , . . . , ηr ).

Then �(1)={ρ0, . . . , ρs, η0, . . . , ηr } and �max = {σi j | 1 ≤ i ≤ s, 1 ≤ j ≤ r}. From the
exact sequence (2) we obtain the class group of X :

Cl(X) = coker φ ∼= Z
2 ∼= Z〈[Dρ0 ], [Dη0 ]〉.

Moreover, we have:

[Dρi ] = [Dρ0 ] for 1 ≤ i ≤ s and [Dη j ] = −a j [Dρ0 ] + [Dη0 ] for 1 ≤ j ≤ r .
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In particular, the Cox ring of X is the polynomial ring K[x0, . . . , xs, y0, . . . , yr ] with
deg(xi ) = (1, 0) for 0 ≤ i ≤ s, deg(y0) = (0, 1) and deg(y j ) = (−a j , 1) for 1 ≤ j ≤ r .

Finally, a line bundle OX (a, b) := OX (a[Dρ0 ] + b[Dη0 ]) is ample (respectively, nef) if
and only if a, b > 0 (respectively, a, b ≥ 0). The anticanonical divisor is given by

−KX = Dρ0 + · · · + Dρs + Dη0 + · · · + Dηr = (s + 1 − a1 − · · · − ar )Dρ0 + (r + 1)Dη0 .

In particular, X is Fano (i.e. −KX is ample) if and only if a1 + · · · + ar < s + 1.
In this setting, [Dρ0 ] represents the class of the projective fiber π∗OPs (1) and [Dη0 ]

represents the class of the tautological line bundle OX (1). On the other hand, using the
intersection theory of toric varieties, we know that [Dρ0 ] · · · [Dρs ] = [Dη0 ] · · · [Dηr ] = 0.
In particular, we have [Dρ0 ]k = 0 for k ≥ s + 1, and [Dη0 ]([Dη0 ] − a1[Dρ0 ]) · · · ([Dη0 ] −
ar [Dρ0 ]) = 0. From this we deduce that

[Dρ0 ]s− j [Dη0 ]r+ j =

⎧⎪⎪⎨
⎪⎪⎩

0 j < 0
s0 = 1 j = 0
s j = σ1s j−1 − σ2s j−1 + · · · + (−1) j+1σ j s0 1 ≤ j ≤ min{r , s}
s j = σ1sr−1 − σ2s j−1 + · · · + (−1)r+1σr s0 r < j ≤ s

where σk = σk(a1, . . . , ar ) = ∑
1≤i1<···<ik≤r ai1 · · · aik are the elementary symmetric poly-

nomials.

3 Stability of syzygy bundles on blow-ups of the projective space

We devote this section to prove our main result (Theorem 3.3). From now on, we restrict our
attention to blow up BlZ (Pn) of P

n along a linear subspace Z ⊂ P
n of dimension r − 1. We

set s := n − r , and by Proposition 2.5, BlZ (Pn) is identified with X := P(Or
Ps

⊕ OPs (1)).
We fix an arbitrary ample line bundle L = OX (a, b) := OX (a[Dρ0 ] + b[Dη0 ]) on X , with
a, b > 0. Our goal is to prove that the syzygy bundle ML fitting into the exact sequence

0 −→ ML −→ H0(X , L) ⊗ OX −→ L −→ 0

is L-stable. We start with an algebraic result which plays an important role in the structure
of ML .

Proposition 3.1 Let S = K[x0, . . . , xs, y0, . . . , yr ] be the Z
2−graded polynomial ring with

deg(xi ) = (1, 0) for 0 ≤ i ≤ s, deg(yi ) = (0, 1) for 0 ≤ i ≤ r − 1 and deg(yr ) = (−1, 1).
For any integers a, b > 0 we consider the syzygy module KL of the monomial ideal

Ia,b = (xa00 · · · xass yb00 · · · ybrr | a0 + · · · + as = a + br , b0 + · · · + br = b).

Then, KL is minimally generated by elements of degree (a + 1, b) and (a, b + 1).

Proof Since Ia,b is amonomial ideal generated by formsof degree (a, b), then KL is generated
by syzygies of degree (a + p, b + q) of the form f w1 − gw2 = 0 with f , g monomials of
degree (p, q) (with q ≥ 0 and p ≥ −q), and w1, w2 ∈ Ia,b monomials of degree (a, b).
First of all notice that if p = −q , then f and g would be monomials of degree (−q, q), so
f = g = yqr . In particular, f w1 − gw2 = yqr (w1 − w2) which cannot be a syzygy, being
w1 and w2 different monomials. Therefore we can assume from now on that q ≥ 0 and
p ≥ −q + 1. Let us write

f = xl00 · · · xlss ym0
0 · · · ymr

r w1 = xa00 · · · xass yb00 · · · ybrr
g = xλ0

0 · · · xλs
s yμ0

0 · · · yμr
r w2 = xα0

0 · · · xαs
s yβ0

0 · · · yβr
r .
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Let us consider any syzygy f w1 − gw2 = 0 with deg( f ) = deg(g) = (−q + 1+ z, q) with
either z ≥ 1 or q ≥ 1.Wewill see that f w1−gw2 = w( f ′w′

1−g′w′
2) for somemonomialw

of degree either (1, 0) or (0, 1), and monomials f ′, g′ of degree either (−q + 1+ (z− 1), q)

(assuming z ≥ 1) or degree (−q + 1 + z, q − 1) (assuming q ≥ 1), and w′
1, w

′
2 ∈ Ia,b. We

distinguish two main cases:
Case 1 there is 0 ≤ i ≤ s such that li ≥ 1.
Case 2 l0 = · · · = ls = 0.

We start analyzing Case 1 and we distinguish two subcases (A) and (B) as follows:

(A) There is an index 0 ≤ i0 ≤ s such that both li0 ≥ 1 and λi0 ≥ 1. Then, we have

f w1 − gw2 = xi0

(
f

xi0
w1 − g

xi0
w2

)
= 0,

and f ′ = f
xi0

, g′ = g
xi0

are monomials of degree (−q + 1 + (z − 1), q).

(B) Otherwise, we may assume without loss of generality (permuting {x0, . . . , xs} if nec-
essary), that l0 ≥ 1, λ0 = 0 and for any 1 ≤ i ≤ s, liλi = 0. In particular, we have
α0 = a0 + l0 ≥ 1. In this case, we have two options:

(B.1) there is an index j with 1 ≤ j ≤ s such that λ j ≥ 1, or else
(B.2) λ0 = · · · = λs = 0.

If (B.1) holds, then we may write

f w1 − gw2 = x0

(
f

x0
w1 − g

x j

w2x j
x0

)
.

If w1 �= w2x j
x0

, then we may set f ′ = f
x0
, w′

1 = w1, g′ = g
x j

and w′
2 = w2x j

x0
. Otherwise, we

would have f = gx0
x j

, so f w1 − gw2 = g
x j

(x0w1 − x jw2) would be a multiple of a syzygy
of degree (a + 1, b).

On the other hand, if (B.2) holds it implies that q ≥ 1. Indeed, if q = 0 then μ0 = · · · =
μr = 0 and we would have 0 = 1 + z, which cannot occur since in this case z ≥ 1. We
distinguish four more subcases:

(B.2.1) There is 0 ≤ j ≤ r − 1 such that m j ≥ 1 and μ j ≥ 1
(B.2.2) There is 0 ≤ j0 ≤ r − 1 such that m j0 ≥ 1 and m jμ j = 0 for all 0 ≤ j ≤ r − 1.
(B.2.3) There is 0 ≤ j0 ≤ r − 1 such that μ j0 ≥ 1 and m jμ j = 0 for all 0 ≤ j ≤ r − 1.
(B.2.4) m0 = · · ·mr−1 = μ0 = · · · = μr−1 = 0.

If case (B.2.1) holds, then we may write

f w1 − gw2 = y j

(
f

y j
w1 − g

y j
w2

)
,

and we have deg( f
y j

) = deg( g
y j

) = (−q + 1 + z, q − 1).
On the other hand, in both cases (B.2.2) and (B.2.3) we may assume without loss of

generality (permuting {y0, . . . , yr−1} if necessary) that j0 = 0. If (B.2.2) holds, thenm0 ≥ 1
and μ0 = 0. In particular, β0 = b0 + m0 ≥ 1 and we distinguish two situations:

• There is 1 ≤ k ≤ r − 1 such that μk ≥ 1. We have

f w1 − gw2 = y0

(
f

y0
w1 − g

yk

w2yk
y0

)
.
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If w1 �= w2 yk
y0

, then we take f ′ = f
y0
, w′

1 = w1, g′ = g
yk

and w′
2 = w2 yk

y0
. If not, we

have f = gy0
yk

, so f w1 − gw2 = g
yk

(y0w1 − ykw2) is a multiple of a syzygy of degree
(a, b + 1).

• Otherwise we may suppose μ0 = · · · = μr−1 = 0, but then deg(g) = (−q, q) which is
a contradiction.

In the case (B.2.3), we havem0 = 0 andμ0 ≥ 1, which in particular gives b0 = β0+μ0 ≥
1. We have two subcases:

• There is 1 ≤ k ≤ r − 1 such that mk ≥ 1, then we have

f w1 − gw2 = y0

(
f

yk

w1yk
y0

− g

y0
w2

)

and it follows as before.
• Otherwise, m0 = · · · = mr−1 = 0, in particular we have mr = μ0 + · · · + μr ≥ 1.

Since we are assuming that l0 ≥ 1, there is 0 ≤ i ≤ s such that ai ≥ 1. Hence, we have

f w1 − gw2 = y0

(
f

x0yr

w1yr x0
y0

− g

y0
w2

)

and this subcase follows as before, since deg(yr x0) = (0, 1).

Finally, if (B.2.4) holds, then we would have deg(g) = (−μr , μr ), which is a contradiction.
To finish the prove, we have to analyze Case 2, that is we assume l0 = · · · = ls = 0.

Moreover, we may assume by symmetry that λ0 = · · · = λs = 0, otherwise if λi ≥ 1 for
some 0 ≤ i ≤ s, changing the role of f and g we would be again in Case 1. We distinguish
two cases (A) and (B) as follows.

(A) There is 0 ≤ j ≤ r − 1 such that m j ≥ 1 and μ j ≥ 1. Then, we have

f w1 − gw2 = y j

(
f

y j
w1 − g

y j
w2

)
.

(B) Otherwise, we assume that for any 0 ≤ j ≤ r − 1, m jμ j = 0. Then, there are indices
0 ≤ j, ν ≤ r − 1 such that m j ≥ 1 and μν ≥ 1. Indeed, if either m0 = · · · = mr−1 = 0
or μ0 = · · · = μr−1 = 0 we would have deg( f ) = (−mr ,mr ) or deg(g) = (−μr , μr ),
which is a contradiction. Thus, without loss of generality we may suppose j = 0 and
ν = 1. Hence,

f w1 − gw2 = y0

(
f

y0
w1 − g

y1

w2y1
y0

)
.

As before, if w1 �= w2 y1
y0

the result follows directly. Otherwise, w1y0 = w2y1 and
f w1 − gw2 is a multiple of a syzygy of degree (a, b + 1). Now the proof is complete.

�

This result has a geometric consequence on the structure of the syzygy bundle ML :

Corollary 3.2 Let X = P(Or
Ps

⊕ OPs (1)) be a blow-up of P
s+r at a linear subspace of

dimension r − 1. Let a, b > 0 be two integers and L = OX (a, b) be an ample line bundle on
X. Then, the minimal graded free resolution of the syzygy bundle ML associated to L begins
as

O(−1, 0)λ ⊕ O(0,−1)μ → ML → 0,
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for some integers λ,μ > 0.
In particular, for any q ≥ 1 we have the beginning of the minimal graded free resolution

of
∧q ML:

⊕
q1+q2=q

O(−q1,−q2)
βq1,q2 →

q∧
ML → 0,

for some integers βq1,q2 .

Proof Notice that the Cox ring of X is the Z
2−graded polynomial ring S = K[x0,

. . . , xs, y0, . . . , yr ] with deg(xi ) = (1, 0) for 0 ≤ i ≤ s, deg(yi ) = (0, 1) for 0 ≤ i ≤ r − 1
and deg(yr ) = (−1, 1) and ML(−L) ∼= K̃L is the sheaffification of the syzygy module of
the monomial ideal

Ia,b = (xa00 · · · xass yb00 · · · ybrr | a0 + · · · + as = a + br , b0 + · · · + br = b).

By Proposition 3.1, we have the minimal free resolution of KL begins as:

S(−a − 1,−b)λ ⊕ S(−a,−b − 1)μ → KL → 0.

Hence, the result follows by sheaffifying and then twisting this presentation by OX (a, b). �

Finally, we are able to establish the main result of this note.

Theorem 3.3 Let X = P(Or
Ps

⊕ OPs (1)) be the blow-up of P
r+s along a linear subspace of

dimension r − 1. Fix any ample line bundle L = OX (a, b) on X, with a, b > 0. Then, the
syzygy bundle ML is L-stable.

Proof Let us denote N = N (s, r , a, b) = h0(X ,OX (L)). By Lemma 2.4, it is enough to see
that for any 0 < q < N−1 and any line bundleG = OX (x, y) such thatG ·Lr+s−1 ≤ q Lr+s

N−1 ,

we have H0(X ,
∧q ML(x, y)) = 0. Notice that G needs to be effective, thus we may assume

that x + y ≥ 0 and y ≥ 0. Moreover, by Corollary 3.2, if x + y < q then we have already
H0(X ,

∧q ML(x, y)) = 0. Indeed, recall that
∧q ML(x, y) corresponds to an S−module �

presented as ⊕
q1+q2=q

S(x − q1, y − q2)
βq1,q2 → � → 0.

By Proposition 2.7, we obtain that H 0(X ,
∧q ML(x, y)) ∼= �0 (the degree 0 ∈ Cl(X) piece

of�). On the other hand, for any pair of non-negative integers (q1, q2) such that q1+q2 = q ,
we have that S(x − q1, y − q2)0 = S(x−q1,y−q2). Assume by contradiction that there is a

monomial xa00 · · · xass yb00 · · · ybrr ∈ S(x−q1,y−q2). Then

a0 + · · · + as = x − q1 + br , and b0 + · · · + br = y − q2.

Since we assume that x + y < q = q1 + q2, we get a contradiction 0 ≤ a0 + · · · + as =
x − q1 + br ≤ x − q1 + y − q2 < 0. Therefore, S(x − q1, y − q2)0 = 0 and we obtain that
�0 = 0 as wanted.

As a consequence, we may also assume that G satisfies x + y ≥ q , and next we see that
in this case we have the inequality:

G · Lr+s−1 > q
Lr+s

N − 1
(3)
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finishing the proof.
We use the description of the intersection products on X given before to express both sides

of (3):

G · Lr+s = (x[Dρ0 ] + y[Dη0 ])
s∑

i=0

(
r + s − 1

i

)
aibr+s−1−i [Dρ0 ]i [Dη0 ]r+s−1−i

= (x + y)
s−1∑
i=0

(
r + s − 1

i

)
aibr+s−1−i +

(
r + s − 1

s

)
asbr−1y

= br−1

(
(x + y)

s−1∑
i=0

(
r + s − 1

i

)
aibs−i +

(
r + s − 1

s

)
as y

)
.

Similarly, we have

Lr+s−1 = br
(

(a + b)
s−1∑
i=0

(
r + s − 1

i

)
aibs−1−i +

(
r + s − 1

s

)
as

)
. (4)

Thus (3) is equivalent to

(x + y)
s−1∑
i=0

(
r + s − 1

i

)
aibs−i +

(
r + s − 1

s

)
as y

> q
b

(
(a + b)

∑s−1
i=0

(r+s−1
i

)
aibs−1−i + (r+s−1

s

)
as

)
N − 1

. (5)

Since x + y ≥ q and y ≥ 0 we can bound the left hand side of (5) as

(x + y)
s−1∑
i=0

(
r + s − 1

i

)
aibs−i +

(
r + s − 1

s

)
as y ≥ qb

s−1∑
i=0

(
r + s − 1

i

)
aibs−1−i . (6)

Thus, reducing the proof of (5) into seeing

(N − 1 − a − b)
s−1∑
i=0

(
r + s − 1

i

)
aibs−i >

(
r + s − 1

s

)
as . (7)

Let now S = K[x0, . . . , xs, y0, . . . , yr ] be the Cox ring of X . Then, the vector space
H0(X ,OX (a, b)) is isomorphic to the degree−(a, b) homogeneous piece of S. In partic-
ular,

N =
b∑

i=0

(
r − 1 + b − i

r − 1

)(
s + a + i

s

)

=
(
r − 1 + b

r − 1

)(
s + a

s

)
+

b−1∑
i=1

(
r − 1 + b − i

r − 1

)(
s + a + i

s

)
+

(
s + a + b

s

)

≥
(
r − 1 + b

r − 1

)(
s + a

s

)

+ (a + b)(a + b + 1)
∑s

i=2(2 + a + b) · · · ̂(i + a + b) · · · (s + a + b)

s! + 1 + a + b
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≥
(
r − 1 + b

r − 1

)(
s + a

s

)
+ 1 + a + b.

Applying this inequality and the fact that b ≥ 1 we can finally show (7), ending the proof:

(N − 1 − a − b)
s−1∑
i=0

(
r + s − 1

i

)
aibs−i ≥ r

(
s + a

s

) s−1∑
i=0

(
r + s − 1

i

)
ai

≥ r

(
s + a

s

)(
r + s − 1

s − 1

)
as−1 = r

(s + a)(s − 1 + a) · · · (1 + a)

s(s − 1) · · · 1
s

r

(
r + s − 1

s

)
as−1

> (s + a)

(
r + s − 1

s

)
as−1 >

(
r + s − 1

s

)
as .

�


4 Rigidness of syzygy bundles

In Sect. 3 we have seen that the syzygy bundle ML , corresponding to an ample line bundle L
on a blow-up X = BlZ (Pn) of P

n along a linear subspace Z ⊂ P
n of codimension r − 1, is

L-stable. Thus, wemay consider the moduli spaceM = MX (N−1; c1, . . . , cmin{N−1,n}) of
stable vector bundles E withChern classes ci (E) = ci := ci (ML) for 1 ≤ i ≤ min{N−1, n}.
In general, few structural results about moduli spaces are known. In this section we use the
stability of ML to study locally around [ML ] the moduli spaceM, and we see that the syzygy
bundles ML are infinitesimally rigid unless n = 2 and L = OX (a, b) with a ≥ 1 and b ≥ 2.
In this particular case we prove that ML is unobstructed, so [ML ] is a smooth point in M,
and we compute the dimension of the Zariski tangent space T[ML ]M of the moduli spaceM
at [ML ].

Let us recall that the Zariski tangent space of M at a point [E] is canonically given by

T[E]M ∼= Ext1(E, E) ∼= H1(X , E ⊗ E∨).

If [E] is a smooth point, the dimension of T[E]M tells us the dimension of the irreducible
component in M containing [E]. In particular, we say that E is infinitesimally rigid if [E]
is an isolated point, or equivalently dim T[E]M = 0. We have the following result:

Theorem 4.1 Let X = P(Or
Ps

⊕ OPs (1)) be the blow-up of P
r+s along a linear subspace of

dimension r − 1. Fix any ample line bundle L = OX (a, b) on X, with a, b > 0. Then, the
syzygy bundle ML is infinitesimally rigid, unless r + s = 2 and b ≥ 2. In this case, ML is
unobstructed and we have

dimK T[ML ]M =
[
b−2∑
i=0

(a + i)

]h0(X ,L)

.

Proof Let us start studying H1(X , ML ⊗ M∨
L ). We consider the exact sequence

0 → ML → O⊕N
X → L → 0. (8)

taking the long exact sequence of cohomology we obtain that Hi (X , ML) = 0 for all i ≥ 0.
On the other hand, twisting byOX (−L)we have the following description of the cohomology
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of ML(−L):

H0(X , ML(−L)) = 0
H1(X , ML(−L)) ∼= H0(X ,OX ) ⊕ H1(X ,OX (−L))⊕N

Hi (X , ML(−L)) ∼= Hi (X ,OX (−L))⊕N , for i ≥ 2

On the other hand, dualizing the exact sequence (8) and tensoring it by ML , we obtain:

0 → ML(−L) → M⊕N
L → ML ⊗ M∨

L → 0.

Taking again the long exact sequence of cohomology and using the above vanishings, we
obtain that

Hi (X , ML ⊗ M∨
L ) ∼= Hi+1(X , ML(−L)), for all i ≥ 0. (9)

In particular H1(X , ML ⊗M∨
L ) ∼= H2(X ,OX (−L))⊕N , and by Kodaira’s vanishing we have

that, if dim(X) > 2, H2(X ,OX (−L)) = 0 and hence ML is infinitesimally rigid.
It only remains to study the case X = P(OP1 ⊕OP1(1)). For any integers a

′ and b′, using
the projection formula we obtain that,

Hi (X ,OX (a′, b′)) = Hi (P(E), π∗OP1(a
′) ⊗ OP(E)(b

′))

∼=
⎧⎨
⎩
Hi (P1,Symb′ E ⊗ OP1(a

′)), b′ ≥ 0
0, b′ = −1
H2−i (P1,Sym−b′−2 E ⊗ OP1(−1 − a′))∨, b′ ≤ −2.

(10)

Hence for any ample of the form L = OX (a, 1) in X , we already have that ML is infinites-
imally rigid. Now, we consider an ample line bundle L = OX (a, b), with a ≥ 1 and
b ≥ 2. Using that E = OP1 ⊕ OP1(1), so Sym� E ∼= ⊕�

i=0 Sym
�−i OP1 ⊗ Symi OP1(1) ∼=⊕�

i=0 OP1(i), by (10) we have

H2(X ,OX (−L)) ∼= H0(P1,Symb−2 E ⊗ OP1(−1 + a))∨

∼=
b−2⊕
i=0

H0(P1,O(a + i − 1))∨. (11)

Thus, we have that H2(X ,OX (−L)) = 0 if and only if a + b < 3 which cannot happen.
Hence, to finish the proof, we ought to see that if L = OX (a, b) is an ample line bundle on
X with b ≥ 2, then ML is unobstructed. Indeed, recall that the obstruction space at [ML ] is a
subspace of Ext2(ML , ML) ∼= H2(X , ML ⊗ M∨

L ). By (9) we have that H2(X , ML ⊗ M∨
L ) ∼=

H3(X , ML(−L) = 0 since dim(X) = 2, therefore ML is unobstructed. In this case we may
use (11) to compute the dimension of the Zariski tangent space T[ML ]M of the moduli space
M at [ML ]:

dimK T[ML ]M = h1(X , ML ⊗ M∨
L ) = h2(X ,OX (−L))N =

[
b−2∑
i=0

(a + i)

]N

.

�

Remark 4.2 For general results about the deformation of generalized syzygy bundles (not
necessarily stable) the reader can look at [13, 14].

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

123



Ein–Lazarsfeld–Mustopa conjecture for the blow-up of a… 233

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ballico, E.: On the stability of certain higher rank bundles on P
N . Rend. Circ. Mat. Palermo 41, 309–314

(1992)
2. Brenner, H.: Looking out for stable syzygy bundles. With an appendix by Georg Hein. Adv. Math. 219,

401–427 (2008)
3. Camere, C.: About the stability of the tangent bundle of P

n restricted to a surface. Math. Z. 271(1–2),
499–507 (2012)

4. Caucci, F., Lahoz, M.: Stability of syzygy bundles on abelian varieties. Bull. Lond. Math. Soc. 53(4),
1030–1036 (2021)

5. Coanda, I.: On the stability of syzygy bundles. Int. J. Math. 22, 515–534 (2011)
6. Cox, D.: The homogeneous coordinate ring of a toric variety. J. Algebr. Geom. 4(1), 17–50 (1995)
7. Cox, D., Little, J., Schenck, H.: Toric Varieties, Graduate Studies in Mathematics, vol. 124. American

Mathematical Society, Providence (2011)
8. Costa, L., Macias Marques, P., Miró-Roig, R.M.: Stability and unobstructedness of syzygy bundles. J.

Pure Appl. Algebra 214, 1241–1262 (2010)
9. Ein, L., Lazarsfeld, R.: Stability and restrictions of Picard bundles, with an application to the normal

bundles of elliptic curves. In: Complex Projective Geometry (Trieste, 1989/Bergen, 1989), LondonMath.
Soc. Lecture Note Ser., vol. 179, pp. 149–156. Cambridge Univ. Press, Cambridge (1992)

10. Ein, L., Lazarsfeld, R., Mustopa, Y.: Stability of syzygy bundles on an algebraic surface. Math. Res. Lett.
20(1), 73–80 (2013)

11. Eisenbud, D., Harris, J.: 3264 and All That: A Second Course in Algebraic Geometry. Cambridge Uni-
versity Press, Cambridge (2016)
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