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The non-canonical functions of the transcription factor STAT3 have been

poorly studied in comparison to its canonical mechanisms of gene expres-

sion activation. Here, K€ohler et al. put the spotlight on a novel unconven-

tional repressing mechanism of STAT3 over the REDD1 gene, named

DDIT4. These findings are crucial to expand the knowledge of the stress-

induced short-lived REDD1 protein that inactivates mTOR and the conse-

quences of this fine-tuned regulation in the context of pathological condi-

tions such as cancer or neurodegenerative diseases.

Comment on: https://doi.org/10.1111/febs.16679

STAT3 canonical and non-canonical
functions in health and disease

Janus kinases (JAKs) are activated upon cytokine stim-

ulation and phosphorylate signal transducers and acti-

vators of transcription (STATs) at tyrosine (Y)

residues which results in dimerisation and translocation

of STAT to the nucleus. Once in the nucleus, these

transcription factors activate gene expression. Specifi-

cally, STAT3 is mainly known as an activator of gene

transcription that requires the phosphorylation of its Y
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residue 705 via JAKs to dimerise and translocate into

the nucleus, where it binds to acute phase response ele-

ments (APREs) within the promoters of its target

genes, such as suppressor of cytokine signaling 3

(SOCS3) (Fig. 1) (reviewed in Ref. [1]).

However, STAT3 has also non-canonical functions

that are numerous and diverse but much less studied.

In line with this, STAT3 has been shown to regulate

the mitochondrial OXPHOS via direct interactions

with components of the system [2]. Moreover, STAT3

negatively regulates the expression of some genes, such

as inducible nitric oxide synthase (iNOS) by directly

binding to nuclear factor kappa B (NFjB) [3]. K€ohler

et al. not only show that STAT3 can repress the

expression of REDD1 but also elegantly dissect the

elements of this novel gene repression function [4].

They identified the phosphorylation of residue Y705

and the N-terminal domain of STAT3 as essential for

REDD1 gene repression (Fig. 1).

The importance of this novel non-canonical regulation

of STAT3 upon REDD1 gene expression resides in the

fact that REDD1 protein inactivates mechanistic target of

rapamycin kinase (mTOR) kinase activities, a crucial hub

that orchestrates many cellular responses to extracellular

signals, such as nutrient levels, cytokine release or stress.

STAT3 is upregulated in carcinogenic processes [2].

As pointed out by K€ohler et al., the link of this novel

mechanism of REDD1 expression via STAT3 in can-

cer appears to be obvious since the upregulation of

STAT3 may explain the described downregulation of

REDD1 in such tumorigenic processes.

Interestingly, in neurodegenerative processes, the exact

status of JAK/STAT3 signalling is still not fully under-

stood. Some studies describe a reduction of STAT3

expression and Y705 phosphorylation in hippocampal

neurons of AD patients, and STAT3 inversely correlates

with Ab levels in this context (reviewed in Ref. [1]). On

the other hand, abnormal activation of STAT3 was also

Fig. 1. The JAK/STAT3 pathway canonical function as a coactivator (left) and the novel mechanism as a transcriptional repressor over DDIT4

described by K€ohler et al. (right). The canonical function of STAT3 requires phosphorylation of Y705 via JAKs and phosphorylation of serine

727 (S727) to dimerise and translocate into the nucleus and bind specific regions within the promoter of the target gene. It then requires

the recruitment of specific activating cofactors (CoFs) to show maximal activation of transcription. As reported by K€ohler et al., the

phosphorylation of Y705 is also necessary for its function as a repressor of DDIT4 expression. Moreover, one possibility is that STAT3 could

bind non-canonically to the promoter of DDIT4 via its N-terminal domain, which is necessary for the reduction of REDD1 expression.

Nonetheless, it can also be that STAT3 interacts and blocks other transcription factors via its N-terminal domain. Created in Biorender.com.
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associated with AD, due to its role in the induction of

astrocyte reactivity [5]. Therefore, the relevance of this

new non-canonical regulation of REDD1 via STAT3 is

not yet elucidated. Some studies have pointed to the

specific inhibition of STAT3 signalling as a therapeutic

target in neurodegeneration [6], whereas others suggest

diametrically opposite approaches (i.e. to activate JAK/

STAT3 signalling) [1]. In addition, other regulations may

apply to possibly explain this apparent contradiction in

the mechanism discovered by K€ohler et al. For instance,

STAT3 phosphorylation at Y705 is upregulated in sev-

eral tauopathies, pathologies composed by an accumula-

tion of hyperphosphorylated protein Tau, which include

Alzheimer’s Disease (AD) or frontotemporal dementia.

Indeed, overexpressing human P301L mutant tau

(P301L-hTau) increased the phosphorylated level of

STAT3 at Y705 by JAK2. Notably, STAT3 could not

translocate into the nucleus; rather, it was located mainly

in the cytoplasm via P301L-htau acetylation of STAT1,

which causes it to bind to STAT3 and sequester it in the

cytoplasm, thus disabling it from gene regulatory func-

tions [7]. In addition, even though the role of STAT3 in

astrocytes and neuroinflammation has been extensively

described, less work has been done on the regulation of

STAT3 in neurons. For instance, inactivation of the

JAK2/STAT3 axis causes cholinergic neuronal dysfunc-

tion, and it is linked to memory impairment in AD. This

suggests a differential regulation of the STAT3 phospho-

rylation in distinct cell types [1].

All in all, the specific contribution of the non-

canonical regulation of STAT3 upon DDIT4 transcrip-

tion needs to be addressed in other scenarios such as

tumorigenesis or neurological disorders to unravel its

physiopathological importance.

REDD1 role in physiological and
pathological conditions

Regulated in development and DNA damage response

1 (REDD1), also known as RTP801, is a stress-

responsive protein expressed at low levels in many tis-

sues, including neurons and astrocytes. It is encoded

by the stress-responsive gene DNA-damage-inducible

transcript 4 (DDIT4), whose transcription increases in

cases of hypoxia [8], DNA damage [9] and exposure to

dopaminergic neurotoxins such as 6-hydroxydopamine,

MPTP or rotenone [10]. Others manifest threats to cell

integrity as increased reactive oxygen species produc-

tion [8] or sustained ER stress [11] notably increases

DDIT4 expression. Nonetheless, REDD1 gene expres-

sion is upregulated when cells are exposed to mild

stresses related to the metabolic status, for instance,

under fasting [12] or glucose deprivation [13]

conditions. Overall, this suggests that REDD1 is not

only a stress-regulated protein but also a key regulator

of organism homeostasis.

REDD1 inhibits mTOR via the tuberous sclerosis

complex 1/2 (TSC1/TSC2) [14]. Even though it was

first proposed that REDD1 interacts with 14-3-3 pro-

tein to exert its function, crystallographic and func-

tional analysis of the protein revealed that mTORC1

inhibition via REDD1 is not dependent on 14-3-3 [13].

Nonetheless, the exact mechanism by which REDD1

acts has not been yet fully elucidated.

REDD1 is also an interesting target from a pathogenic

point of view. Expression of REDD1 is altered in a vast

range of pathologies, from inflammatory diseases to can-

cer and neurodegenerative disorders. For instance, we

have described that REDD1 is upregulated in post-

mortem brains of patients with Parkinson’s (PD) [9],

Huntington’s (HD) [15] and AD [16], and it has been

linked to increased neuroinflammation and cognitive def-

icits in both HD [17] and AD [16] mice models. Interest-

ingly, selective knockdown of REDD1 in hippocampal

neurons with shRNA-containing AAV particles amelio-

rates cognitive deficits as well as diminishes astrocytes-

and microglia-mediated neuroinflammation in a murine

model of HD [16] and AD [15].

Regarding cancer, it has been proposed that REDD1

constitutive and sustained expression may benefit tumour

cell survival and metastasis in hypoxic conditions as well

as resistance to chemotherapy or ionising radiation via

decreased energy consumption [18].

REDD1 is thereby an interesting target regarding the

control of cell growth, proliferation and survival via the

mTOR signalling pathway, arguably one of the central

cascades in cell biology. Remarkably, REDD1 stands out

among other negative mTOR regulators due to its ability

to efficiently shut down protein synthesis – a high energy-

consuming process under the control of mTORC1 – quite
early during acute metabolic stress.

To the best of our knowledge, only one publication

has shown a similar regulation on REDD1 expression

hitherto. YAP/TAZ oncogenic transcriptional co-

activators were shown to act as transcriptional co-

repressors of DDIT4, thereby promoting cell growth

and survival [19]. Therefore, the non-canonical role of

STAT3 in the negative regulation of REDD1 appears

not to be uncommon, and other non-canonical regula-

tions of the DDIT4 gene – whether reducing or not

REDD1 transcription – are also perfectly feasible.

Concluding remarks

The work presented by K€ohler et al. opens a new

paradigm regarding the expression of REDD1 and its
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modulation. Given the pivotal role of REDD1 in neu-

rodegenerative diseases as well as carcinogenesis, it is a

piece of worthwhile information that points to a speci-

fic regulatory target. This opens several research lines

linking the specific contribution of the STAT3/REDD1

axis in the regulation of pathogenic mechanisms in

neurodegenerative diseases, among others. Hence, this

novel mechanism paves the way for further studies

aimed at the discovery of novel regulatory pathways

for STAT3/REDD1 inhibition as potential disease-

modifying treatments.
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