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Abstract

We review different game-theoretical models of elections where voters incur
voting costs. In those models, we focus on the equilibrium equations and see how
these change with different assumptions on the fundamentals of the model. We
provide additional proofs and further detail some existing ones as well as ana-
lyze some interesting concepts such as self-defeating polls, handicaps and false-
consensus. All of the models focus on the concept of pivotal voter. By looking
into these models, we aim to deepen understanding of voting dynamics and their
implications.
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1 Introduction

Voting is the foundation of democracies, which have been around for over two
thousand years. The concept of democracy, derived from the Greek word "demos"
(people) and "kratos" (power), was first practiced in the Athenian democracy. Es-
tablished around the fifth century BC, in this system of government, only free
male citizens could vote. These citizens voted on legislation and executive bills
via hand-raising, shouting, or even using pebbles. They could also vote to ostra-
cize someone, which was a procedure in which any citizen could be expelled from
Athens for ten years, using a piece of pottery called Ostracon to write the name of
the person you wanted to exile.

Similarly, in the Roman Republic, famous for its Senatus, voting was also
present. Just like in Athens, it was reserved for free male citizens, and in this
case, votes were weighted according to the social class of the individuals. For
instance, they had the opportunity to participate in two types of legislative assem-
blies in which votes were cast: the comitia and the consilia, but both of these were
reserved for the optimo iure which literally means "having the greatest rights".

Later on, during the Medieval Period, nobles, landowners and sometimes
wealthy merchants participated in Feudal Assemblies, in which they voted by
voice or raising hands. It wasn’t until the French Revolution that voting really be-
came accessible to all male citizens and around that period, written ballots started
becoming more prevalent. This presents two other dimensions of voting that are
frequently studied in rational voting theory: Information and Coordination.

The accessibility and privacy of voting can be visualized as a wave. At its birth,
it was more accessible than during the Medial Period, but it wasn’t until the 19th
and 20th centuries that it started growing exponentially and massively surpassed
its previous peak. The universal suffrage movement ended up allowing all people
to vote, regardless of gender, race or social status. The philosophy behind this
movement, "one person, one vote", was that everyone bounded by a government’s
law should be able to vote. For some, even non-citizens and the youth, should
be able to vote. After this period, secret ballots became the norm, ensuring voter
privacy and reducing potential issues like bribery or coercion.
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2 Introduction

As we’ve seen, voting had always been perceived as a privilege reserved for the
elite, but it is often overlooked that it imposes various costs on individuals. While
some people vote because it simply feels right, others don’t because of these costs.
The time spent traveling to the polling station, the effort of gathering data to make
an informed decision, or even the money spent on transportation, are all examples
of costs that voters undergo.

Game theory offers an array of tools that allow analyzing models of elections
with voting costs. Some of the most common questions explored in costly voting
models include:

-Is voting rational in equilibrium?
-How does the distribution of voting costs affect overall voter turnout?
-How do voting costs influence the results of an election?
-Does the majority always win in an election?

To answer these questions, researchers employ different models grounded in Game
Theory, which is why we analyze various papers.

When one thinks of voting, he probably imagines an election. However, nowa-
days, there are many other types of voting, such as the ones that take place on
the board of directors or even in the blockchain. These systems also present some
flaws and difficulties. The blockchain, for instance, presents the inconvenience of
anonymity, which could potentially allow one person to cast more than one vote.

Following the preliminaries that will set a base in general Game Theory but
also in Incomplete Information games, we will dive deep into Taylor and Yildirim
(2010) of which we will do a comprehensive review. This review will give some
additional proofs and complement some results of the paper. Finally, we will give
a quick overview of various models, in order to get a richer understanding of
rational voting theory.



2 Preliminaries

Game Theory is a mathematical framework that studies multi-agent situations,
assuming that all agents are rational. It provides a systematic way of analyzing
these scenarios via a game-theoretical model. This section will mostly be based on
McCarty and Meirowitz (2007).

There are two types of games: Cooperative games and non-cooperative games.
In this study, we focus on non-cooperative games, in which, each agent’s objective
is maximizing his own utility. Games can be represented in normal form (a matrix)
but can also be represented in extensive form (a game tree). The most basic and
common non-cooperative games in Game Theory are static games of complete
information. These games are defined by a tuple (N, S, u) where:

• N = {1, 2, ..., n} is the set of players.

• S = S1 × ... × Sn is the set of strategy profiles and Si is the strategy set for
each player i ∈ N. s ∈ S is a strategy profile and si ∈ Si is a strategy for
player i. We denote by S−i := ∏j∈N\{i} Sj the space of the strategies for every
player except i.

• u = (u1, ..., un) is the utility vector. ui : S 7→ R denotes the utility function
for agent i ∈ N. ui(s) represents the payoff that player i will obtain with
strategy profile s ∈ S.

In these games, as is general in Game Theory, the goal is to predict which
element of S will be chosen by the agents. In order to do that, there are two main
tools that are used in complete information games: The elimination of Dominated
Strategies and the concept of Nash Equilibrium.

Definition 2.1. Given a player i ∈ N, we say that a strategy si is strictly dominated by
s′i if and only if ui(si, s−i) < ui(s′i, s−i) for all s−i ∈ S−i.

There is another type of domination between strategies, weak domination.
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4 Preliminaries

Definition 2.2. Given a player i ∈ N, we say that a strategy si is weakly dominated by
s′i if and only if ui(si, s−i) ≤ ui(s′i, s−i) for all s−i ∈ S−i and ui(si, s−i) < ui(s′i, s−i) for
atleast one s−i ∈ S−i.

There is a procedure called "Iterative Elimination of Strictly Dominated Strate-
gies" that involves repeatedly eliminating strictly dominated strategies (for all
players) to reduce the number of possible strategies (given that players are ra-
tional). The other concept used to study games is Nash Equilibrium.

Definition 2.3. A Nash Equilibrium (in pure strategies) of a normal form game is a
strategy profile s∗ satisfying that for every i ∈ N:

ui(s∗i , s∗−i) ≥ ui(si, s∗−i) for every s′i ∈ Si.

In simple terms, a Nash Equilibrium is a strategy profile in which no player
has an incentive to change his own strategy. Notice that we used the term "pure
strategies". We often discuss two types of strategies in Game Theory: pure strate-
gies and mixed strategies. Pure strategies refer to an agent’s plan of action in every
possible stage of the game. These strategies are certain and don’t involve any ran-
domization. On the other hand, in mixed strategies, agents choose to randomize
actions. For instance, a mixed strategy in rock-paper-scissors would be choosing
each of the options with a 1

3 probability whereas a pure strategy would be always
choosing rock.

Nash Equilibria and dominated strategies are the foundation of Game Theory.
However, they may need to be redefined in an Incomplete Information setting. An
incomplete information game, or also called Bayesian game, is a type of strategic
interaction where players have imperfect knowledge about the game’s parameters,
such as the preferences or strategies of other players. In these games, players need
to make assumptions because of this lack of information.

Harsanyi, one of the pioneers of incomplete information games, introduced a
novel concept to study these games. He added a player, called Nature, that assigns
the private information to each player (his type), following a random distribution
known by all agents. The presence of Nature and types is the main difference with
complete information games. Formally,

Definition 2.4. An incomplete information game is defined by a tuple (N, Ω, S, Θ, u, p)
where:

• N = {1, 2, ..., n} is the set of players.

• Ω corresponds to Nature.
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• S = S1 × ... × Sn is the set of strategy profiles. A strategy for player i with type θi

is a function ϕi(θi) → Si that selects a strategy si ∈ Si.

• Θ = Θ1 × ...× Θn is the set of types and Θi is the type space for each player i ∈ N.

• u =: S1 × S2 × ... × Sn × Θ1 × Θ2 × ... × Θn → R is the payoff function for each
player i ∈ N.

• p is the joint probability distribution over Θ, where p(θ) represents the probability
of type profile θ occurring, determined by Nature.

In some cases, Nature might select the "state of the world". According to the
definitions that we have given, this simply means that Nature is choosing player’s
types.

By definition, the strategy set is quite different in these games. Therefore, it is
logical to assume that the Nash Equilibrium concept might require a little tweak.
This is where the concept of Bayesian Nash Equilibria comes into play.

Definition 2.5. Let (N, Ω, S, Θ, u, p) be a normal form Bayesian game. A Bayesian Nash
Equilibrium is a profile of strategies, (ϕ∗

1(·), . . . , ϕ∗
n(·)) such that for every i ∈ N and each

θi ∈ Θi:
EUi(ϕ

∗
i (θi), ϕ∗

−i(·); θi) ≥ EUi(s′i, ϕ∗
−i(·); θi) for every s′i ∈ Si.

A type-symmetric Bayesian Nash Equilibrium is a Bayesian Nash Equilibrium
in which all agents of the same type follow the same strategy.

It is common practice in the costly voting literature to use Brouwer’s fixed
point theorem in order to prove the existence of equilibria. Therefore, we will give
a version of it.

Theorem 2.6. Every continuous function from a closed disk to itself has at least one fixed
point.

Some papers might talk about first-order stochastic domination which we will
define next.

Definition 2.7. Given two random variables A and B with respective distributions GA

and GB, we say that A stochastically dominates B if GA(x) ≤ GB(x) for all x.

Before ending the preliminaries, we would like to mention a few notation prac-
tices. Some papers use "type A agent" to refer to an agent who’s preferred alter-
native is A, even though his type contains more information. You will also notice
that we use different words to refer to agents: players, citizens... Finally, proba-
bilities will sometimes be denoted by P() and Pr{}. Let’s now jump into the first
and main paper that we will study.
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3 The Model

In costly voting research, the main goal is studying type-symmetric Bayesian
Nash Equilibria (BNE), in which agents adopt a cutoff strategy: an agent favoring
an alternative votes if and only if his cost is less than some critical level c∗r . In
order to understand the equations that characterizes these equilibria, we first need
to define the notation used on Taylor and Yildirim (2010), which is the main model
that we will work on. Before starting, we would like to mention that some of the
presented proofs are identical to the ones made by the authors, as we believe that
there’s nothing to add.

Assume that there are two parties that we will denote by r = A, B and a set
of potential voters n ≥ 2 that can either vote for one those parties or abstain.
Each agent i ∈ N has a type ti = (ri, ci), where ri ∈ {A, B} denotes his polit-
ical preference and ci denotes his voting cost. His political preference is drawn
independently from a Bernoulli distribution with parameter λr ∈ (0, 1).

Agents who favor alternative r pick their voting costs independently from a
differentiable distribution Gr, where gr(c) := G′

r(c) > 0, for all c ∈ [cr, cr] ⊂ R+.
The election is decided by a simple majority rule and ties are broken by a fair coin
toss. Agent i receives a gross payoff normalized to 1 if ri wins; and 0 otherwise.
To avoid trivial equilibria in which it is a dominant strategy for all agents in some
political group to abstain or for all to vote with certainty, we assume 0 < cr <

1
2 <

cr. All aspects of the environment are common knowledge.
Notice that we have given all of the information needed to define a Basyesian

Game. The presence of Nature is implicit in this paper.

The utility profile for player i is the following:

ri wins ri loses

Vote 1 − ci −ci

Abstain 1 0

This table, which is a copy of "Table 1" featured in Taylor and Yildirim (2010),
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8 The Model

showcases the utility obtained by a type ri agent in different scenarios. If he votes
and his alternative wins, he will get a payoff of 1− ci. If he votes and loses, he will
get a payoff of −ci. If he abstains and wins he will obtain a payoff of 1 whereas if
he abstains and loses he will we get utility of 0.

By looking at the table, one could think that Abstain is strictly better than Vote,
and thus, that every agent will abstain. However it is not the case, since by casting
a vote an agent changes the probability that each alternative is chosen. An agent
can cast a decisive vote, meaning that his vote would create a tie or break a tie.
In that scenario, agent i would obtain an expected payoff of 1

2 − ci instead of 0
if he creates a tie by voting, or an expected payoff of (1 − ci) instead of 1

2 if he
breaks a tie by voting. This is because in case of a tie, the probability of winning
is 1

2 for each party. This is why studying BNE is interesting in these models. An
agent favoring r will never vote for the other alternative, as doing so is weakly
dominated. Therefore, we will not consider equilibria with weakly dominated
strategies. Before investigating the existence of the other equilibria, we will define
a few terms more to simplify the notation and look into some properties regarding
the pivot probability.

Remember that c∗r is the cutoff cost, meaning that a player favoring r will vote
if and only if his cost is less than c∗r . We denote by ϕr := Gr(c∗r ) the ex ante
probability that an agent favoring r votes. This definition makes sense because Gr

is a distribution and an agent favoring r will vote if and only if his cost is less than
c∗r . We denote by αr := λrϕr the ex ante probability that an agent votes for r. This
definition is accurate since in this model we do not consider weakly dominated
strategies, such as voting for the alternative that you do not prefer. It is always
better for an agent to abstain instead of voting for his least favorite alternative.
There are other models, in which agents could vote for a different alternative than
their favorite. The ex ante probability that an agent will abstain is (1 − αr − αr′).

The number of ways k agents can vote for r, k′ can vote for r′, and n− 1− k− k′

can abstain is given by the trinomial coefficient:

( n−1
k,k′,n−1−k−k′) :=

(n − 1)!
k!k′!(n − 1 − k − k′)!

.

The probability that a type r agent casts a decisive vote when each of the other
n − 1 agents votes for r with probability αr, votes for r′ with probability αr′ and
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abstains with probability 1− αr − αr′ is given by P(αr, αr′ , n) which we define next:

P(αr, αr′ , n) :=
⌊ n−1

2 ⌋

∑
k=0

( n−1
k,k,n−1−2k)α

k
r αk

r′(1 − αr − αr′)
n−1−2k

+
⌊ n−2

2 ⌋

∑
k=0

( n−1
k,k+1,n−2−2k)α

k
r αk+1

r′ (1 − αr − αr′)
n−2−2k

for r = A, B, and r ̸= r′.

As we mentioned before, a vote can only be decisive in two scenarios: if it
breaks a tie, which corresponds to the first summation in the P(αr, αr′ , n) defi-
nition, or if it creates a tie, which corresponds to the second summation in the
P(αr, αr′ , n) definition.

We will now look into a few basic properties of the pivot probability before
giving the equilibrium equation.

Lemma 3.1. For (αr, αr′) ∈ (0, λr)× (0, λr′) where r, r′ = A, B and r ̸= r′

(i) (P(αr, αr′ , n)− P(αr′ , αr, n))(αr′ − αr) ≥ 0;

(ii) If n = 2 then ∂
∂αr′

P(αr, αr′ , n) = 0. If n > 2 then

(
∂

∂αr′
P(αr, αr′ , n))(αr − αr′) ≥ 0.

(iii) If αr ≥
(

1 − 1
⌊ n

2 ⌋

)
αr′ then ∂

∂αr
P(αr, αr′ , n) < 0.

(iv) P(αr, αr′ , n) > P(αr, αr′ , n + 2) and P(αr, αr, n) > P(αr, αr, n + 1).

We will prove the lemma mentioned above. First, we will start with (i). In
order to simplify the notation we define β := 1 − αr − αr′ .
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Proof. By definition,

P(αr, αr′ , n)− P(αr′ , αr, n)

=
⌊ n−1

2 ⌋

∑
k=0

( n−1
k,k,n−1−2k)α

k
r αk

r′ β
n−1−2k +

⌊ n−2
2 ⌋

∑
k=0

( n−1
k,k+1,n−2−2k)α

k
r αk+1

r′ βn−2−2k

−
⌊ n−1

2 ⌋

∑
k=0

( n−1
k,k,n−1−2k)α

k
r′α

k
r(1 − αr′ − αr)

n−1−2k

−
⌊ n−2

2 ⌋

∑
k=0

( n−1
k,k+1,n−2−2k)α

k
r′α

k+1
r (1 − αr′ − αr)

n−2−2k

=αr′

⌊ n−2
2 ⌋

∑
k=0

( n−1
k,k+1,n−2−2k)α

k
r αk

r′ β
n−2−2k − αr

⌊ n−2
2 ⌋

∑
k=0

( n−1
k,k+1,n−2−2k)α

k
r′α

k
r βn−2−2k

=(αr′ − αr)
⌊ n−2

2 ⌋

∑
k=0

( n−1
k,k+1,n−2−2k)α

k
r αk

r′ β
n−2−2k.

Since αr, αr′ and β are probabilities and the trinomial coefficient is positive by
definition, we obtain item (i). Next, we will prove part (ii):

If n = 2 then P(αr, αr′ , n) = β + αr′ = 1 − αr. So, d
dαr′

P(αr, αr′ , 2) = 0.

Now, if n > 2, computing the derivative of P(αr, αr′ , n) with respect to αr′ we
have:

d
dαr′

P(αr, αr′ , n)

=
⌊ n−1

2 ⌋

∑
k=1

(
n − 1

k − 1, k, n − 1 − 2k

)
αk

r αk−1
r′ βn−1−2k −

⌊ n−2
2 ⌋

∑
k=0

(
n − 1

k, k, n − 2 − 2k

)
αk

r αk
r′ β

n−2−2k

+
⌊ n−2

2 ⌋

∑
k=0

(
n − 1

k, k, n − 2 − 2k

)
αk

r αk
r′ β

n−2−2k −
⌊ n−3

2 ⌋

∑
k=0

(
n − 1

k, k + 1, n − 3 − 2k

)
αk

r αk+1
r′ βn−3−2k

=αr

⌊ n−3
2 ⌋

∑
k=0

(
n − 1

k, k + 1, n − 1 − 2k

)
αk

r αk
r′ β

n−3−2k

−αr′

⌊ n−3
2 ⌋

∑
k=0

(
n − 1

k, k + 1, n − 3 − 2k

)
αk

r αk
r′ β

n−3−2k

=(αr − αr′)
⌊ n−3

2 ⌋

∑
k=0

(
n − 1

k, k + 1, n − 3 − 2k

)
αk

r αk
r′ β

n−3−2k.

Using the same argument seen in (i), (ii) follows. We will now prove part (iii) of
the Lemma. Computing the derivative of P(αr, αr′ , n) with respect to αr we have:
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d
dαr

P(αr, αr′ , n) =
⌊ n−1

2 ⌋

∑
k=1

(
n − 1

k − 1, k, n − 1 − 2k

)
αk−1

r αk
r′ β

n−1−2k

−
⌊ n−2

2 ⌋

∑
k=0

(
n − 1

k, k, n − 2 − 2k

)
αk

r αk
r′ β

n−2−2k

+
⌊ n−2

2 ⌋

∑
k=1

(
n − 1

k − 1, k + 1, n − 2 − 2k

)
αk−1

r αk+1
r′ βn−2−2k

−
⌊ n−3

2 ⌋

∑
k=0

(
n − 1

k, k + 1, n − 3 − 2k

)
αk

r αk+1
r′ βn−3−2k.

The first and last term cancel out and thus,

d
dαr

P(αr, αr′ , n) = −
⌊ n−2

2 ⌋

∑
k=0

(
n − 1

k, k, n − 2 − 2k

)
αk

r αk
r′ β

n−2−2k

+
⌊ n−2

2 ⌋

∑
k=1

(
n − 1

k − 1, k + 1, n − 2 − 2k

)
αk−1

r αk+1
r′ βn−2−2k

= −(n − 1)βn−2

−
⌊ n−2

2 ⌋

∑
k=1

(
n − 1

k, k, n − 2 − 2k

)
αk

r αk
r′ β

n−2−2k

+
⌊ n−2

2 ⌋

∑
k=1

(
n − 1

k − 1, k + 1, n − 2 − 2k

)
αk−1

r αk+1
r′ βn−2−2k

=
⌊ n−2

2 ⌋

∑
k=1

k
k + 1

(
n − 1

k, k, n − 2 − 2k

)
αk

r αk+1
r′ βn−2−2k

−
⌊ n−2

2 ⌋

∑
k=1

(
n − 1

k, k, n − 2 − 2k

)
αk

r αk
r′ β

n−2−2k

− (n − 1)βn−2

=
⌊ n−2

2 ⌋

∑
k=1

(
k

k + 1
αr′ − αr

)
(n − 1)!

k!k!(n − 2 − 2k)!
αk−1

r αk
r′ β

n−2−2k

− (n − 1)βn−2.

Since αr ≥
(

1 − 1
⌊ n

2 ⌋

)
αr′ then k

k+1 αr′ − αr ≤ 0 for each k ∈ {1, ..., ⌊ n−2
2 ⌋}1. Together

with 1 − αr − αr′ ̸= 0, it follows that ∂
∂αr

P(αr, αr′ , n) < 0, which proves part (iii).

1Note that the cases n = 2 and n = 3 are not considered. They should be treated apart.
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Finally, we will now demonstrate (iv). We will first prove that P(αr, αr′ , n) >

P(αr, αr′ , n + 1). By definition,

P(αr, αr′ , n)− P(αr, αr′ , n + 1)

=
⌊ n−1

2 ⌋
∑
k=0

(n − 1)!
(k!)2(n − 1 − 2k)!

αk
r αk

r′ β
n−1−2k

+
⌊ n−2

2 ⌋
∑
k=0

(n − 1)!
k!(k + 1)!(n − 2 − 2k)!

αk
r αk+1

r′ βn−2−2k −
⌊ n

2 ⌋
∑
k=0

n!
(k!)2(n − 2k)!

αk
r αk

r′ β
n−2k

−
⌊ n−1

2 ⌋
∑
k=0

n!
k!(k + 1)!(n − 1 − 2k)!

αk
r αk+1

r′ βn−1−2k.

Supposing that n is odd, we can re-write the third summation:

⌊ n
2 ⌋

∑
k=0

n!
(k!)2(n − 2k)!

αk
r αk

r′ β
n−2k

=

n−1
2

∑
k=0

[
1 +

2k
n − 2k

]
(n − 1)!

(k!)2(n − 1 − 2k)!
αk

r αk
r′ β

n−2k

=β

n−1
2

∑
k=0

(n − 1)!
(k!)2(n − 1 − 2k)!

αk
r αk

r′ β
n−1−2k

+2

n−1
2

∑
k=1

(n − 1)!
(k − 1)!k!(n − 2k)!

αk
r αk

r′ β
n−2k.

Following the demonstration,

P(αr, αr′ , n)− P(αr, αr′ , n + 1)

=(αr + αr′)

n−1
2

∑
k=0

(n − 1)!
(k!)2(n − 1 − 2k)!

αk
r αk

r′ β
n−1−2k

+(1 − 2αr)

n−3
2

∑
k=0

(n − 1)!
k!(k + 1)!(n − 2 − 2k)!

αk
r αk+1

r′ βn−2−2k

−
n−1

2

∑
k=0

n!
k!(k + 1)!(n − 1 − 2k)!

αk
r αk+1

r′ βn−1−2k.

Now, noting that

n!
k!(k + 1)!(n − 1 − 2k)!

=

(
1 +

k
n − 1 − 2k

+
k + 1

n − 1 − 2k

)
(n − 1)!

k!(k + 1)!(n − 2 − 2k)!
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we re-write the last summation in three terms. Moreover, we expand the first
and second summations by multiplying with (αr + αr′) and (1− 2αr), respectively.
Canceling and collecting terms then reveal

P(αr, αr′ , n)− P(αr, αr′ , n + 1)

=

n−1
2

∑
k=0

(n − 1)!
k!(k + 1)!(n − 1 − 2k)!

αk
r αk+1

r′ βn−1−2k

+(αr − αr′)

n−1
2

∑
k=0

(n − 1)!
(k!)2(n − 1 − 2k)!

αk
r αk

r′ β
n−1−2k

−(αr − αr′)

n−3
2

∑
k=0

(n − 1)!
k!(k + 1)!(n − 2 − 2k)!

αk
r αk+1

r′ βn−2−2k.

For αr = αr′ , clearly P(αr, αr′ , n)− P(αr, αr′ , n + 1) > 0. For αr ̸= αr′ , note that

P(αr, αr′ , n)− P(αr, αr′ , n + 2) = [P(αr, αr′ , n)− P(αr, αr′ , n + 1)]

+ [P(αr, αr′ , n + 1)− P(αr, αr′ , n + 2)] .

Performing similar decompositions to those above, it follows that P(αr, αr′ , n)−
P(αr, αr′ , n + 2) > 0.

We will now explain the meaning behind the lemma. Part (i) showcases that
if the probability that an agent votes for r, αr, is larger than the probability that an
agent votes for r’, αr′ , then a type r agent is less likely to be pivotal than a type r′

voter.
As for part (ii), if n = 2, an increase, or equivalently a decrease, in αr′ won’t

change the probability of an agent favoring r being pivotal. Since there are only
two voters, he will be a pivotal voter, if he votes (and the other agent votes for r′

or abstains), by definition. Now, if there are more than two voters we have the
following cases:

If αr > αr′ , an increase in the probability of voting for r′, will make a vote for r
more likely pivotal, and a decrease in the probability of voting for r′, will make a
vote for r less likely pivotal.

If αr < αr′ on the other hand, an increase in the probability of voting for r′, will
make a vote for r less likely pivotal, and a decrease in the probability of voting for
r′, will make a vote for r more likely pivotal.

Part (iii) says that the probability of a type r agent being pivotal is reduced
when the probability that all other type r agents vote increases, if they vote with
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a higher probability than type r′ agents. However, if αr < αr′ , it is not necessarily
true that the vote of an isolated type r agent is more apt to be pivotal when αr

increases (i.e., the gap in voting probabilities decreases). Part (iii) implies that
an agent views his vote as a substitute to the voting probability of others who
share his political preference, so long as this probability is not too far behind the
probability for the competing alternative, and as a complement otherwise.

Finally, part (iv) shows that a vote for r becomes less apt to be pivotal when
the electorate size increases by two. However, what is less intuitive, is that it is
not necessarily true if the electorate size increases by 1 unless the probability of
voting for both alternatives is equal. This is a consequence of the different ways
ties can occur when n is odd or even, and seems to be especially relevant in small
electorates. For instance, we will prove a counterexample of it in the following
lemma.

Lemma 3.2. If n is even and αr + αr′ = 1, there exists αr such that P(αr, αr′ , n) <

P(αr, αr′ , n + 1).

Proof. Let n be even and αr + αr′ = 1. Again, we define β := (1 − αr − αr′) = 0 and
using the definition of the pivot probability,

P(αr, αr′ , n)− P(αr, αr′ , n + 1)

=
⌊ n−1

2 ⌋
∑
k=0

(
n − 1

k, k, n − 1 − 2k

)
αk

r αk
r′ β

n−1−2k +
⌊ n−2

2 ⌋
∑
k=0

(
n − 1

k, k + 1, n − 2 − 2k

)
αk

r αk+1
r′ βn−2−2k

−
⌊ n

2 ⌋
∑
k=0

(
n

k, k, n − 2k

)
αk

r αk
r′ β

n−2k −
⌊ n−1

2 ⌋
∑
k=0

(
n

k, k + 1, n − 1 − 2k

)
αk

r αk+1
r′ βn−1−2k

=

n−2
2

∑
n−2

2

(
n − 1

k, k + 1, n − 2 − 2k

)
αk

r αk+1
r′ βn−2−2k −

n
2

∑
n
2

(
n

k, k, n − 2k

)
αk

r αk
r′ β

n−2k

=

(
n − 1

n
2 − 1, n

2 , 0

)
α

n
2 −1
r α

n
2
r′ −

(
n

n
2 , n

2 , 0

)
α

n
2
r α

n
2
r′

=

(
n − 1

n
2

)
α

n
2 −1
r α

n
2
r′ −

(
n
n
2

)
α

n
2
r α

n
2
r′

=

(
n − 1

n
2

)
α

n
2 −1
r α

n
2
r′ − 2

(
n − 1

n
2

)
α

n
2
r α

n
2
r′

=

(
n − 1

n
2

)
α

n
2 −1
r α

n
2
r′ (1 − 2αr)

where in the first equality we used that βl = 0 if l ̸= 0 and that ( n−1
n
2 −1, n

2 ,0) = (n−1
n
2
),
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( n
n
2 , n

2 ,0) = (n
n
2
) and

( n
n
2
)

(n−1
n
2
)
= 2.

If αr >
1
2 then P(αr, αr′ , n) < P(αr, αr′ , n + 1).

We will now work on type-symmetric Nash Equilibria. In a type-symmetric
equilibrium, the net expected payoff of a type r agent with cutoff cost c∗r must
satisfy

1
2

P(α∗
r , α∗

r′ , n)− c∗r ≤ 0 and [
1
2

P(α∗
r , α∗

r′ , n)− c∗r ](c
∗
r − cr) = 0. (3.1)

To understand this equilibrium equation, if 1
2 P(α∗

r , α∗
r′ , n) − c∗r > 0, a type r

agent would vote with certainty, contradicting the definition of the cutoff cost c∗r .
And if 1

2 P(α∗
r , α∗

r′ , n) − c∗r < 0, a type r agent would abstain with certainty and
would have c∗r = cr. Finally, if c∗r > cr, then the agent would vote for some cost
realizations, but not for all costs since 1

2 < cr. In equilibrium, the agent will be
indifferent at the cutoff cost.

Notice that the expected payoff is 1
2 P(α∗

r , α∗
r′ , n)− c∗r because in case of breaking

a tie the probability of r winning rises from 1
2 to 1 and in case of creating a tie, that

probability increases from 0 to 1
2 , which accounts for the 1

2 factor.
We introduce the notation

Φr(αr, αr′) := Gr(
1
2

P(αr, αr′ , n))− αr

λr
,

which, given that ϕr = Gr(c∗r ) =
αr
λr

and using (3.1), yields

Φr(α
∗
r , α∗

r′) ≤ 0 and α∗
r Φr(α

∗
r , α∗

r′) = 0. (3.2)

Note that

1
2

P(α∗
r , α∗

r′ , n)− c∗r ≤ 0

⇔ 1
2

P(α∗
r , α∗

r′ , n) ≤ c∗r

⇔ Gr

(
1
2

P(αr, αr′ , n)
)
≤ Gr(c∗r ) =

αr

λr

because Gr is a differentiable distribution and thus, non-decreasing. Therefore,

1
2

P(α∗
r , α∗

r′ , n)− c∗r ≤ 0 ⇔ Φr(α
∗
r , α∗

r′) ≤ 0.

Also note that [
1
2

P(α∗
r , α∗

r′ , n)− c∗r

]
(c∗r − cr) = 0

⇔ Φr(α
∗
r , α∗

r′) = 0 or c∗r = cr.
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If Φr(α∗
r , α∗

r′) < 0, then the agent will abstain and α∗
r = 0, which gives

α∗
r Φr(α

∗
r , α∗

r′) = 0.

Finding an equilibrium is, therefore, finding a pair (α∗
A, α∗

B) ∈ [0, λA] × [0, λB]

satisfying (3.2).

Proposition 3.3. There exists a type-symmetric equilibrium, and every type-symmetric
equilibrium has the following properties:

(i) ϕ∗
r < 1 for all r; and ϕ∗

r > 0 for some r.
(ii) If ϕ∗

r = 0, then cr > cr‘

(iii) If GA = GB and λA > λB, then 0 < ϕ∗
A < ϕ∗

B; α∗
A > α∗

B > 0; and 1
2 < Pr{A

wins} < 1.
(iv) If λA = λB, and GA first-order stochastically dominates GB, then ϕ∗

A ≤ ϕ∗
B;

α∗
A ≤ α∗

B; and 0 < Pr{A wins} ≤ 1
2 .

Proof. We will first prove the existence of a type-symmetric equilibrium. Let
ψ(αA, αB) := (λAGA(

1
2 P(αA, αB, n)), λBGB(

1
2 P(αB, αA, n))). As we saw in (3.2), if

(αA, αB) is an equilibrium then αA(GA(
1
2 P(αA, αB, n))− αA

λA
) = 0. This means that

every equilibrium (αA, αB) such that αAαB ̸= 0, is a fixed point of ψ(αA, αB). That
is because if αA ̸= 0 (or equivalently αB ̸= 0) then

GA(
1
2

P(αA, αB, n)) =
αA

λA

which implies λAGA(
1
2 P(αA, αB, n)) = αA.

Gr is a differentiable distribution and thus Gr(c) ∈ [0, 1] for all c ∈ [cr, cr]

which gives ψ(αA, αB) ∈ [0, λA] × [0, λB]. ψ maps the convex and compact set
[0, λA] × [0, λB] into itself and is continuous in this region (because Gr is differ-
entiable) and therefore, by Brouwer’s fixed-point theorem, there exists a type-
symmetric

We will now prove each part of the proposition, starting with (i). Let’s suppose
that ϕ∗

r = 1. If ϕ∗
r = 1 then α∗

r = λr > 0 for some r. Since cr >
1
2 , Φr(λr, α∗

r′) < 0.
From (3.2), every equilibrium satisfies α∗

r Φr(α∗
r , α∗

r′) = 0, and therefore λr = 0
yielding a contradiction. As ϕ∗

r ∈ [0, 1] we have that ϕ∗
r < 1 for all r.

Suppose ϕ∗
r = 0. If ϕ∗

r = 0 then α∗
r = 0 for all r. By definition,

Φ∗
r (0, 0) = Gr(

1
2

P(0, 0, n)) = Gr(
1
2
) > 0

contradicting (3.2). Therefore, α∗
r > 0 for some r.
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We have proved (i), let’s prove (ii). Let’s suppose that ϕ∗
r = 0 for some r. By (i),

ϕ∗
r′ > 0. Using (3.1) this means that 1

2 P(0, α∗
r′ , n)− cr ≤ 0 and 1

2 P(α∗
r′ , 0, n)− c∗r′ = 0,

where c∗r′ > cr′ . By definition,

P(0, α∗
r′ , n) = (1 − α∗

r′)
n−1 + (n − 1)α∗

r′(1 − α∗
r′)

n−2 and P(α∗
r′ , 0, n) = (1 − α∗

r′)
n−1.

From above,

1
2

P(0, α∗
r′ , n)− cr − (

1
2

P(α∗
r′ , 0, n)− c∗r′)

=
1
2
((1 − α∗

r′)
n−1 + (n − 1)α∗

r′(1 − α∗
r′)

n−2)− cr −
1
2
(1 − α∗

r′)
n−1 + c∗r′

=c∗r′ +
n − 1

2
α∗

r′(1 − α∗
r′)

n−2 − cr ≤ 0

which implies c∗r′ < cr because α∗
r′ ∈ (0, 1) and therefore n−1

2 α∗
r′(1 − α∗

r′)
n−2 > 0.

Given that cr′ < c∗r′ and c∗r′ < cr, it follows that cr > cr′ .

We have proven part (ii). Next, we will demonstrate part (iii). Suppose GA =

GB = G and λA > λB. Suppose α∗
A ≤ α∗

B. Since GA = GB we have that cA = cB,
and thus α∗

A, α∗
B > 0 by part (ii)’s contraposition. As λA > λB we have 1

λA
< 1

λB

which implies α∗A
λA

<
α∗B
λB

because α∗
A ≤ α∗

B. Because of (3.2),

G(
1
2

P(α∗
A, α∗

B, n))− α∗
A

λA
= G(

1
2

P(α∗
B, α∗

A, n))− α∗
B

λB
= 0,

which, since α∗A
λA

<
α∗B
λB

, implies that G
( 1

2 P(α∗
A, α∗

B, n)
)
< G

( 1
2 P(α∗

B, α∗
A, n)

)
. Given

that G′ > 0, P(α∗
A, α∗

B, n) < P(α∗
B, α∗

A, n). By part (i) of Lemma 3.1 α∗
A > α∗

B, yielding
a contradiction. Hence, α∗

A > α∗
B.

Since α∗
A > α∗

B > 0, we have ΦA(α
∗
A, α∗

B) = ΦB(α
∗
B, α∗

A) = 0 by (3.2), and
P(α∗

A, α∗
B, n) < P(α∗

B, α∗
A, n) by Lemma 3.1. Together with G′ > 0, we have

G
(

1
2

P(α∗
A, α∗

B, n)
)
=

α∗
A

λA
< G

(
1
2

P(α∗
B, α∗

A, n)
)
=

α∗
B

λB

and given that ϕ∗
r := α∗r

λr
, ϕ∗

A < ϕ∗
B. To complete the proof of part (iii), note that

Pr{r wins} =
1
2

⌊ n
2 ⌋

∑
k=0

(
n

k, k, n − 2k

)
(α∗

r )
k(α∗

r′)
k(1 − α∗

r − α∗
r′)

n−2k

+
⌊ n+1

2 ⌋

∑
k=1

k−1

∑
k′=0

(
n

k, k′, n − k − k′

)
(α∗

r )
k(α∗

r′)
k′(1 − α∗

r − α∗
r′)

n−k−k′ .

Since either A or B will win the election, Pr{A wins}+ Pr{B wins} = 1 and thus,
given that α∗

A > α∗
B, it is clear that Pr{A wins} > Pr{B wins}, and Pr{A wins} >
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1
2 . Moreover, given α∗

A < 1, Pr{A wins} < 1.

We have proved (iii). We will finally demonstrate (iv). Suppose that λA = λB,
and GA first-order stochastically dominates GB, but, to the contrary, α∗

A > α∗
B. This

means that α∗
A > 0. By (3.2), we thus have

GB

(
1
2

P(α∗
B, α∗

A, n)
)
− α∗

B
λB

< 0 = GA

(
1
2

P(α∗
A, α∗

B, n)
)
− α∗

A
λA

.

Given that λA = λB and α∗
A > α∗

B, this implies that

GB

(
1
2

P(α∗
B, α∗

A, n)
)
< GA

(
1
2

P(α∗
A, α∗

B, n)
)

,

which, because GA first-order stochastically dominates GB, requires that

P(α∗
B, α∗

A, n) ≤ P(α∗
A, α∗

B, n).

Then, by Lemma 3.1, we have α∗
A ≤ α∗

B, yielding a contradiction. Hence, α∗
A ≤ α∗

B.
Since λA = λB, this implies ϕ∗

A ≤ ϕ∗
B. Finally, note from that 0 < Pr{A wins} ≤ 1

2
by the same reasoning that we used when we proved (iii).

We will comment the items of the proposition. Part (i) points out that in equi-
librium, no individual votes with certainty. This is because the maximum benefit
from voting is 1

2 and 1
2 < cr. Part (i) also indicates that the turnout will be strictly

positive. However, even though we have ruled out abstention from all agents in
some political group due to high costs, i.e., cr <

1
2 , it is possible that members of

some political group could abstain for strategic reasons.
Part (ii) reveals that if such abstention occurs, the main reason must be the

individuals with low costs of voting in the rival group. Another important im-
plication of part (ii) is that if cr = cr′ , then the expected probability of voting is
strictly positive for all individuals no matter the cost and political preference dis-
tributions. So, the knife-edge case of equal cost lower bounds, often assumed in
the literature, seems to rule out the interesting case of complete abstention by one
group. In the following analysis of large elections, this knife-edge case will also
be the source of a strong "neutrality" result.

Part (iii) formalizes the "underdog effect": given identical cost distributions,
an agent supporting the minority is strictly more likely to vote. This is due to the
possibility of an agent free-riding on his fellow group members. Nonetheless, part
(iii) shows that the underdog effect never outweighs the initial majority advantage,
and hence the majority is strictly more likely to win in a small electorate.
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Part (iv) examines the counterpart of (iii). When each agent is equally likely
to support either alternative, the group whose members are more likely to have
higher voting costs is less likely to win the election.

Proposition 3.3 puts a perspective on recent studies of the costly-voting model
with a small electorate. Like the article mentioned in the Introduction, Börgers
(2004) examines the symmetric setup in which GA = GB and λA = λB so that
the underdog effect does not emerge. Goeree and Großer (2007), and Taylor and
Yildirim in Public information and electoral bias (2010), allow for λA = λB, and show
that each group is equally likely to win the election. Part (iii) of Proposition 3.3
points out that their assumption of fixed and equal voting cost for all agents plays
a crucial role in this "neutrality" result, because when there is cost uncertainty, the
majority is strictly more likely to win even if the cost distributions are identical.

The underdog effect identified in Proposition 3.3 raises an important question:
Does an increase in population size necessarily improve the majority’s chances of
winning? To answer this question, suppose GA = GB and λA > λB.
Let Pr{A wins| n} := π(α∗

A(n), α∗
B(n), n) for a pair of equilibrium strategies

(α∗
A(n), α∗

B(n)). Then, by adding and subtracting the term π(α∗
A(n), α∗

B(n), n + 1),
the change in the majority’s probability of winning can be written

Pr{A wins| n + 1} − Pr{A wins | n}=π(α∗
A(n), α∗

B(n), n + 1)− π(α∗
A(n), α∗

B(n), n)︸ ︷︷ ︸
D(n)

+ π(α∗
A(n + 1), α∗

B(n + 1), n + 1)− π(α∗
A(n), α∗

B(n), n + 1)︸ ︷︷ ︸
S(n)

.

Lemma 3.4. Suppose GA = GB and λA > λB. Fix a pair of equilibrium voting strategies
(α∗

A(n), α∗
B(n)). Then D(n) > 0 for all n. Moreover, for an infinite subsequence of n,

S(n) < 0 and D(n) + S(n) < 0.

Proof. Suppose GA = GB and λA > λB. Fix a pair of equilibrium voting strategies
(α∗

A(n), α∗
B(n)). We define y(n) := π(α∗

A(n), α∗
B(n), n). By Proposition 3.3,

α∗
A(n) > α∗

B(n) > 0 and y(n) = Pr{A wins|n} >
1
2

for all n.

Thus,

D(n) =
1
2
(α∗

A(n)− α∗
B(n))

⌊ n
2 ⌋

∑
k=0

n!
(k!)2(n − 2k)!

[α∗
A(n)α

∗
B(n)]

k(1− (α∗
A(n)− α∗

B(n))
n−2k

is strictly greater than 0. Moreover, given GA = GB, we have y(n) −→ 1
2 as n −→ ∞

by Proposition 3.8. This means that there exists m such that for all n > m,

y(n + 1)− y(n) < 0.
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Or, equivalently, for an infinite subsequence of n,

y(n + 1)− y(n) = D(n) + S(n) < 0.

If n > m, D(n) > 0 and D(n) + S(n) < 0, and therefore S(n) < 0 for an infinite
subsequence of n.

Lemma 3.4 answers the question they posed: an increase in population size
does not improve the majority’s chances of winning. In fact, there is an infinite
subsequence of population sizes under which the probability of winning dimin-
ishes for the majority.

The next section of the paper focuses on equilibria in large electorates. Taylor
and Yildirim have three main objectives in this section.

Firstly, they want to determine if the limit turnout depends on the initial dis-
tribution of political preferences. Secondly, they wish to identify conditions (if
any) under which the advantage from being the majority group or the group with
stochastically lower cost vanishes as the population becomes large. Thirdly, they
would like to know if large elections with fixed population size can be interpreted
as Myerson’s Poisson games with an appropriately assigned distribution of polit-
ical preferences.

Let’s give some new definitions before proving a few results to try to answer
these questions.

Given n agents, let XA,n and XB,n be the number of votes for alternatives A and
B, respectively. Furthermore, let X0,n = n − XA,n − XB,n be the number of ab-
stentions. Using this notation, a type r agent’s vote will be pivotal if and only if
Xr′,n−1 = Xr,n−1 (he breaks a tie) or Xr′,n−1 = Xr,n−1 + 1 (he creates a tie). Hence,
the equilibrium probability that his vote is pivotal can be written

P(α∗
r (n), α∗

r′(n), n) = Pr{X∗
r′,n−1 = X∗

r,n−1}+ Pr{X∗
r′,n−1 = X∗

r,n−1 + 1}. (3.3)

Observe that

(X∗
r,n−1, X∗

r′,n−1, X∗
0,n−1) ∼ Multinomial(α∗

r (n), α∗
r′(n), 1 − α∗

r (n)− α∗
r′(n)|n − 1).

That is, because the political preference is drawn independently from a Bernoulli
distribution.

To prove Lemma 3.5, we will need an auxiliary result:

Lemma A1: Fix a pair (αA, αB) ∈ [0, λA] × [0, λB] such that (αA, αB) ̸= (0, 0).
Then, limn→∞ P(αA, αB, n) = P(αB, αA, n) = 0
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Proof. Fix a pair (αA, αB) ∈ [0, λA]× [0, λB] such that (αA, αB) ̸= (0, 0). Let XA,n

and XB,n be the number of votes for alternatives A and B, respectively, and X0,n =

n − XA,n − XB,n be the number of abstentions.
By definition, the probability of an agent favoring A being pivotal if there are n
agents is:

P(αA, αB, n) = Pr{WBA,n = 0}+ Pr{WBA,n = 1},

where WBA,n := XB,n − XA,n. The mean E[WBA,n] and the variance Var[WBA,n] are
both well defined. The mean is E[WBA,n] = n(αB − αA) because given two random
variables X and Y, E[X + Y] = E[X] + E[Y]. The variance on the other hand is
Var[WBA,n] = n[αA(1 − αA) + αB(1 − αB) + 2αAαB]. Therefore,

WBA,n − E[WBA,n]√
Var[WBA,n]

D−→ N(0, 1),

which implies Pr{WBA,n = 0} → 0 and Pr{WBA,n = 1} → 0 as n → ∞. Hence,
P(αA, αB, n) → 0. Re-labeling, it also follows that P(αB, αA, n) → 0.

Lemma 3.5. In equilibrium, limn−→∞ α∗
r (n) = 0 and limn−→∞[nα∗

r (n)] = m∗
r < ∞ for

r= A, B.

Proof. Suppose, to the contrary, limn→∞ α∗
r (n) > 0. Since α∗

r (n) ∈ [0, λr], by the
Bolzano-Weierstrass theorem, there is a subsequence α̂∗

r (n) that converges to some
ℓ > 0. This implies: α̂∗

r (n) > 0 for a sufficiently large n, and together with Lemma
A1, P(α̂∗

r (n), α∗
r′(n), n) → 0 as n → ∞. Using (3.2), the latter further implies

Φr(α̂∗
r (n), α∗

r′(n)) < 0 for a sufficiently large n because by definition,

Φr(αr, αr′) = Gr(
1
2

P(αr, αr′ , n))− αr

λr
and

αr

λr
> 0.

Therefore, by (3.2), α̂∗
r (n) = 0, yielding a contradiction and limn→∞ α∗

r (n) = 0
follows.

To prove the second part, suppose, to the contrary that limn→∞[nα∗
r (n)] = ∞.

Then, clearly α∗
r (n) > 0 for a large n and thus, by (3.2), Φr(α∗

r (n), α∗
r′(n)) = 0.

Moreover, for a fixed n, we can apply the same reasoning used in Lemma A1 to
find that P(α∗

r (n), α∗
r′(n), n) becomes arbitrarily small as n gets large. In particular,

1
2 P(α∗

r (n), α∗
r′(n), n) < cr which implies that Φr(α∗

r (n), α∗
r′(n)) < 0 for a sufficiently

large n, since c∗r ≥ cr, yielding a contradiction. Hence, limn→∞[nα∗
r (n)] < ∞.

As Palfrey and Rosenthal proved in 1985, Lemma 3.5 shows that the individual
probability of voting, and thus the turnout rate, becomes negligible in large elec-
tions. Additionally, the expected limit turnout for each alternative is finite. This
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lemma implies that in large elections, the equilibrium cutoff for each alternative
must be close to the lower bound of the cost distribution, which, together with
(3.1), leads to:

Lemma 3.6. limn−→∞[
1
2 P(α∗

r (n), α∗
r′(n), n] ≤ cr(= cr whenever c∗r (n) > cr) for r, r’=

A, B and r ̸= r.

This lemma immediately follows from Lemma 3.5 and (3.1).
In order to determine expected voter turnout in the limit, consider the situation

facing a representative agent favoring alternative r and suppose that the other
n− 1 agents vote if and only if their costs are less than the equilibrium cutoff c∗r (n).
Note that X∗

A,n−1 and X∗
B,n−1 are not independent for n < ∞, but the following

result establishes independence in the limit.

Lemma 3.7. The limiting marginal distributions, X∗
A,∞ and X∗

B,∞ are independent Poisson
distributions with means m∗

A and m∗
B, respectively. Hence the limiting distribution of

X∗
A,∞ + X∗

B,∞ is Poisson with mean m∗
A + m∗

B.

Proof. Note first that the marginal distribution of X∗
A,n−1 conditional on XB is

X∗
A,n−1|XB ∼ Binomial(n − 1 − XB, α∗A(n)

1−α∗B(n)
). That is because A can receive votes

from n − 1 − XB agents (all voters besides the ones that we know will vote for B).
Since, by Lemma 3.6, α∗

r (n) → 0 and nα∗
r (n) → m∗

r < ∞ as n → ∞, we have

lim
n→∞

E[X∗
A,n−1|XB] = m∗

A.

Hence,
X∗

A,n−1|XB
D−→ Poisson(m∗

A),

which is independent of XB. The same argument shows

X∗
B,n−1|XA

D−→ Poisson(m∗
B).

As a result, the limiting distributions, of X∗
A,∞ and X∗

B,∞ are independent Poissons,
and

(X∗
A,∞ + X∗

B,∞) ∼ Poisson(m∗
A + m∗

B).

Let f (k|µ) be the p.d.f. for a Poisson distribution with mean µ. Recall that

f (k|µ) = µke−µ

k! for k = 0, 1, . . .. Combining (3.3) and Lemma 3.7, it follows that
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lim
n→∞

P(α∗
r (n), α∗

r′(n), n) = Pr{X∗
r′,∞ = X∗

r,∞}+ Pr{X∗
r′,∞ = X∗

r,∞ + 1}

=
∞

∑
k=0

f (k|m∗
r ) f (k|m∗

r′) +
∞

∑
k=0

f (k|m∗
r ) f (k + 1|m∗

r′)

=: Q(m∗
r , m∗

r′)

Together with Lemma 3.6, the equilibrium limiting turnouts, m∗
A and m∗

B, must
then satisfy

1
2

Q(m∗
r , m∗

r′)− cr ≤ 0 and
1
2

Q(m∗
r , m∗

r′)− cr = 0 if m∗
r > 0. (3.4)

Proposition 3.8. Without loss of generality, suppose cB ≤ cA. Then,
(i) there is a unique cost dA ∈ (0, cA) such that

m∗
B > m∗

A = 0 if cB ≤ dA,

m∗
B > m∗

A > 0 if dA < cB < cA,

m∗
B = m∗

A > 0 if cB = cA.

(ii) Given cA, m∗
B is strictly decreasing and m∗

A is weakly increasing in cB.
(iii) Given cA, the limiting probability, limn→∞ Pr{B wins}, is strictly decreasing in cB,
and equal to 1

2 for cB = cA.

Proof. Suppose cB ≤ cA. Using the Poisson density,

Q(m∗
A, m∗

B) = e−(m∗
A+m∗

B)

[
∞

∑
k=0

(m∗
Am∗

B)
k

(k!)2 + m∗
B

∞

∑
k=0

(m∗
Am∗

B)
k

k!(k + 1)!

]
.

Hence, (3.4) implies m∗
B ≥ m∗

A. Given that Q(0, 0) = 1 and cr <
1
2 , (3.4) also implies

m∗
B > 0. Moreover, since Q(0, m∗

B) = e−m∗
B(1 + m∗

B) and Q(m∗
B, 0) = e−m∗

B ,

m∗
A = 0 ⇔ 1

2
Q(0, m∗

B)− cA ≤ 0 and
1
2

Q(m∗
B, 0)− cB = 0

⇔ 1
2

e−m∗
B(1 + m∗

B) ≤ cA and
1
2

e−m∗
B ≤ cB

⇔ 2cB[1 − ln(2cB)] ≤ 2cA,

because 2cB = e−m∗
B and m∗

B = − ln(2cB). Note that for x ∈ (0, 1), the function
φ(x) = x(1 − ln x) satisfies:

lim
x→0+

φ(x) = 0, lim
x→1−

φ(x) = 1, φ(x) > x and φ′(x) > 0.
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Hence, there exists a unique cost dA ∈ (0, cA) that solves 2d[1 − ln(2d)] = 2cA.
Clearly, 2cB[1 − ln(2cB)] ≤ 2cA for all cB ≤ dA, and m∗

A = 0 as a result. For
cB ∈ (dA, cA], we have m∗

A > 0, and by (3.4), m∗
B = m∗

A if and only if cB = cA,
proving part (i).

Next, if cB ≤ dA, then m∗
A = 0 and 1

2 e−m∗
B = cB by part (i). Thus, m∗

B is strictly
decreasing in cB. Now, suppose cB ∈ (dA, cA). Then, by part (i), m∗

B > m∗
A > 0 that

solve 1
2 Q(m∗

B, m∗
A) = cB and 1

2 Q(m∗
A, m∗

B) = cA. Simple algebra shows that

∂

∂mB
Q(m∗

B, m∗
A) < 0,

∂

∂mA
Q(m∗

B, m∗
A) > 0,

∂

∂mA
Q(m∗

A, m∗
B) < 0 and

∂

∂mB
Q(m∗

A, m∗
B) < 0.

From here it follows that m∗
B is strictly decreasing and m∗

A is strictly increasing in
cB. Finally, note that

lim
n→∞

Pr{B wins} =
∞

∑
k=0

∞

∑
k′=k+1

(k + 1) f (k′|m∗
B) f (k|m∗

A) +
1
2

∞

∑
k=0

f (k|m∗
B) f (k|m∗

A),

which is strictly increasing in m∗
B and strictly decreasing in m∗

A. Part (iii) then
follows from part (ii).

Proposition 3.8 presents key findings of this paper, demonstrating that the limit
turnouts and the probability of winning are determined by the individuals with
the lowest voting costs in each group, rather than by the overall distributions of
voting costs or political preferences. As electorate size grows, only those with the
lowest costs tend to vote due to the free-rider problem. As part (i) shows, one
group may completely abstain if their costs are much higher, yet there remains
a significant probability that the abstaining group could still win due to finite
turnouts. The group with the lowest costs is expected to turn out in larger num-
bers and have a higher likelihood of winning, especially as the cost differential
increases.

In large elections, the majority group’s initial advantage diminishes, and a
group’s benefit hinges on its lowest cost. When the lowest costs are equal be-
tween groups, the advantage of being in the majority disappears, making each
alternative equally likely to win. Large elections with evenly split electorates do
not necessarily produce higher turnouts, contrary to common belief.

Proposition 3.8 consolidates findings in the costly voting literature, showing
that a minority group with lower cost-benefit ratios can win large elections. This
aligns with Campbell’s (1999) findings on minority upsets and Krasa and Pol-
born’s (2009) results on voting subsidies or penalties. Equal cost lower bounds are
necessary for each alternative to have an equal chance of winning, highlighting the
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knife-edge nature of this result. If costs are not equal, the group with a cost advan-
tage is more likely to win. This proposition also connects the costly voting model
to Myerson’s Poisson games, where the number of voters is distributed according
to a Poisson distribution. In this context, the expected number of active voters is
determined by equilibrium strategies, and each voter’s probability of voting for
an alternative depends on these strategies.

Finally, in the last section, they establish a sufficient condition for the uniqueness
of type-symmetric equilibrium. Börgers (2004) showed that when all agents are ex
ante symmetric, i.e., λA = λB and GA = GB, then the type-symmetric equilibrium
is unique. Goeree and Grosser (2007) and Taylor and Yildirim in Public information
and electoral bias (2010) proved the uniqueness of type-symmetric equilibrium in
totally mixed strategies when λA = λB and each agent has a fixed and equal cost
of voting. However, due to the specificity of these assumptions, it is difficult to
understand what drives the uniqueness result and whether or not it is robust to
(at least) small perturbations. In particular, all of these studies have utilized two
observations: αA = αB = α at an equilibrium, and the pivot probability along this
path, namely P(α, α, n), is strictly decreasing in α. Neither of these observations
is true in general, as we now know from Lemma 3.1 and Proposition 3.3 above.
The uniqueness result should continue to hold if αA and αB are sufficiently close
in equilibrium.

Proposition 3.9. There is at most one type-symmetric equilibrium that satisfies: 1 −
1

⌊ n
2 ⌋

≤ α∗B
α∗A

≤ 1. Moreover, if GA = GB and 1 − 1
⌊ n

2 ⌋
≤ λB

λA
≤ 1, then there exists a unique

type-symmetric equilibrium.

Proof. We first make some preliminary observations. Fixing αr′ ∈ [0, λr], let

α̂r := Rr(αr′) ∈ [0, λr]

be a solution to Φr(αr, αr′) = 0. By definition, Φr(0, αr′) = Gr(
1
2 P(0, αr′ , n)) > 0

and Φr(λr, αr′) = Gr(
1
2 P(λr, αr′ , n)) − 1 < 0 because Gr is a distribution. Thus,

given that Φr is continuous, by the Mean Value Theorem, we can guarantee that
Rr(αr′) exists.

Next, note that if (1 − 1
⌊ n

2 ⌋
)αr′ ≤ Rr(αr′) for some region of αr′ , then Rr(αr′) is a

differentiable function in this region; because, by part (iii) of Lemma 3.1, Φr(αr, αr′)

is strictly decreasing in αr whenever (1 − 1
⌊ n

2 ⌋
)αr′ ≤ αr. More importantly,

R′
r(αr′)

∂

∂αr′
P(αr, αr′ , n) ≥ 0,

which, by part (ii) of Lemma 3.1, means that R′
r(αr′)(αr − αr′) ≥ 0.
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To prove the first part of the proposition, suppose there are two equilibria
(α∗

A, α∗
B) ̸= (α∗∗

A , α∗∗
B ) such that 1 − 1

⌊ n
2 ⌋

≤ α∗B
α∗A

≤ 1 and 1 − 1
⌊ n

2 ⌋
≤ α∗∗B

α∗∗A
≤ 1. By

definition of an equilibrium, α∗
r = Rr(α∗

r′) and α∗∗
r = Rr(α∗∗

r′ ) which implies that

(1 − 1
⌊ n

2 ⌋
)α∗

r′ ≤ Rr(α
∗
r′) and (1 − 1

⌊ n
2 ⌋

)α∗∗
r′ ≤ Rr(α

∗∗
r′ ).

This means that both equilibria are in the region of (αr, αr′) in which Rr(αr′) is a
differentiable function. Moreover, since both equilibria are also in the region with
αA ≥ αB, it follows that R′

A(αB) ≥ 0 and R′
B(αA) ≤ 0, where equalities hold only

when αA = αB.
Without loss of generality, suppose α∗

A > α∗∗
A . Then, RA(α

∗
B) > RA(α

∗∗
B ), im-

plying that α∗
B ≥ α∗∗

B . But, this means RB(α
∗
A) ≥ RB(α

∗∗
A ) and thus α∗

A ≤ α∗∗
A - a

contradiction. Hence, α∗
A = α∗∗

A . This implies α∗
B = α∗∗

B , because RB(αA) is decreas-
ing, yielding a contradiction to (α∗

A, α∗
B) = (α∗∗

A , α∗∗
B ). Hence, (α∗

A, α∗
B) = (α∗∗

A , α∗∗
B ).

To prove the second part, note that Proposition 3.3 guarantees the existence of
a type-symmetric equilibrium, (α∗

A, α∗
B). If, in addition,

GA = GB and
λB

λA
≤ 1,

then Proposition 3.3 reveals that 0 < ϕ∗
A ≤ ϕ∗

B and α∗
A ≥ α∗

B. Thus, for any type-
symmetric equilibrium, λB

λA
≤ λBϕ∗

B
λAϕ∗

A
=

α∗B
α∗A

≤ 1. If 1 − 1
⌊ n

2 ⌋
≤ λB

λA
, then we have

1 − 1
⌊ n

2 ⌋
≤ λB

λA
≤ α∗B

α∗A
≤ 1 for any type-symmetric equilibrium, which, by the first

part of the proposition, must be unique.

The potential source of multiple equilibria is that agents supporting an alter-
native view their votes as complements rather than substitutes. This vote comple-
mentarity can only happen in the group whose members’ ex ante probability of
voting is significantly lower than that of their rivals. In such cases, the free-rider
incentive is not strong enough to outweigh the coordination incentive.

The first part of Proposition 3.8 states that when equilibrium voting strategies
are sufficiently symmetric across groups, the free-rider incentive dominates for all
individuals.

The second part of Proposition 3.8 provides a condition under which a unique
type-symmetric equilibrium exists. In particular, it demonstrates that Börgers’
uniqueness result derived under complete symmetry, i.e., GA = GB and λA = λB,
is robust to (at least) small perturbations. That is, if agents are sufficiently sym-
metric, then their equilibrium strategies are sufficiently close for the free-rider
incentive to dominate, ensuring the uniqueness of the equilibrium.

There are many other costly voting models, aiming to be more representative
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of reality, from which more interesting findings can be derived. This model only
features two parties (alternatives) and has a very limited turnout. For instance in
Table 2 (see below) we can see that the turnout doesn’t even reach the thousands
on a population of n = 1, 000, 000. This raises questions about the applicability
of this model in real-world scenarios, in which the turnout rate is usually way
higher than 50% and not less than .1% on large samples. Therefore, it would be
interesting to see other models with slight variations.

Figure 3.1: Table displaying the likelihood of alternative A winning for a given
population size. The purpose of this table in the original paper is not to showcase
turnout but we’ve decided to use it that way.
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4 Alternative Models

4.1 Xefteris (2019)

One of those models with slight variations is Xefteris (2019), in which, unlike
the main model we worked on, there are three or more parties instead of two and,
in equilibrium, the Duverger’s law emerges: In a multiparty environment, some
agents will not vote for their preferred alternative and will instead vote for the
serious contender they dislike less. This law had been proven in costless and com-
pulsory voting models, which guarantee full participation. However, in a costly
voting framework there hadn’t been much research. The only research on the mat-
ter is Arzumanyan and Polborn (2017), which concluded that the Duverger’s "psy-
chological" effect couldn’t happen in equilibrium in costly voting models. That is,
nonetheless, not true in general. The assumptions taken on that paper were too
restrictive and found that in equilibrium all voted parties would tie.

Xefteris (2019), on the other hand, takes a much more general approach. In-
stead of having three parties, a homogeneous distribution of voting costs, and a
very particular utility distribution, this model features M = {1, 2, . . . , m} policies
and some other variations. There are k agents, where k is a random draw from a
Poisson distribution with parameter n > 0:

k ∼ e−n(n)k

k!
,

that have a utility vector and voting costs both drawn from independently and
identically distributed (i.i.d.) distributions.

The preferences of each individual are given by a vector of real numbers
v = (v1, v2, . . . , vm) ∈ V ⊆ [0, 1]m where given a ∈ M, va represents the utility
that individual i ∈ K derives from the implementation of policy a. The type-space,
V, is a finite subset of [0, 1]m with the following properties:

(i) All preferences are strict (i.e. for every v = (v1, v2, . . . , vm) ∈ V we have va ̸= vb

for all a ̸= b)

29
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(ii) Ordinal preferences are nonidentical (i.e. there exist v, ṽ ∈ V and h, q ∈ M
such that vh > vq and ṽq > ṽh).

Each voter’s preference vector is not publicly observed and is considered to be
the result of i.i.d. draws from a distribution F with support V, and a strictly posi-
tive probability mass function f : V → (0, 1). Thus, F is public information, while
the specific parameter draw for a given individual is his private information.

Each individual, i ∈ K, is also characterized by a cost, ci ≥ 0, that he has to pay
in case he decides to vote, which is also his private information. These costs are
results of i.i.d. draws from a differentiable distribution function, g : [0, c] → [0, 1],
with strictly positive density on [0, c] for some c ≥ 1.

For each individual, i ∈ K, there is si ∈ S = {a, 1, 2, . . . , m}: i decides if he
wishes to abstain (si = a) or to vote for a specific policy (si ∈ M). If a voter, i,
decides to vote for a policy, he incurs the cost ci.

The voting system, just like in the first model, is the plurality rule: the alterna-
tive that gets more votes than any other alternative wins the election and in case
of a tie it is broken with an equiprobable draw. The utility of an individual, i ∈ K,
in action profile s = (si, s−i) ∈ {a, 1, 2, . . . , m}k, is given by:

ui(si, s−i : vi, ci) =
∑j∈Ms vj

i

#Ms − ci1{si ̸=a},

where Ms ⊆ M is the set of plurality winners in strategy profile s with cardinality
#Ms ∈ M, and 1{si ̸=a} = 1 if si ̸= a, and 1{si ̸=a} = 0 otherwise.

Since there is incomplete information about certain aspects of the game and
decisions are taken simultaneously by all the players, it is interesting to look into
Bayesian Nash Equilibria. In particular, into Duvergian Equilibria.

In a Duvergerian equilibrium there are exactly two policies that are expected to
receive positive vote-shares, and a substantial number of voters engage in strategic
voting (i.e., voting for their less disliked serious contender rather than their pre-
ferred one). This paper proves that such equilibria exist in multiparty elections,
even when voting is costly.

To prove this, Xefteris first shows that, in a restriction of the model to two
alternatives, an equilibrium with partial participation always exists. Secondly, he
proves that the equilibrium of the restricted game remains an equilibrium of the
unrestricted version of it, for a sufficiently large number of voters k. In this equi-
librium, some voters are voting strategically.

In the restricted game, Xefteris studies the restriction of the game to {1, 2} ⊂ M.
This is possible because he assumes, without loss of generality, that there exist
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v, ṽ ∈ V such that v1 > v2 and ṽ2 > ṽ1) because preferences are nonidentical. Let
yj = v1

j − v2
j be the difference in utilities for agent j. Other agents believe that yj is

a random draw from F1,2 : [−1, 1] → [0, 1] with probability mass function, f1,2 that
takes positive values in Y1,2 ⊂ [−1, 1].

If σ̂n is a threshold BNE of this restricted game for a given n > 0 - that is,
if for every y ∈ [−1, 1] there exists wn(y) such that when ci > wn(v1

i − v2
i ), then

agent i prefers to abstain and otherwise votes for his preferred alternative (among
1 and 2). A voter, i, with utility difference yi > 0 is expected to vote for 1 with
probability g(wn(yi)) and to abstain with the remaining probability; and a voter,
i, with utility difference yi < 0 is expected to vote for 2 with probability g(wn(yi))

and to abstain with the remaining probability. Therefore, each voter believes that
a random fellow citizen will vote for 1 and 2 with probabilities

pn
1 = ∑

y∈Y1,2∩[0,1]
g(wn(y)) f1,2(y) and pn

2 = ∑
y∈Y1,2∩[−1,0]

g(wn(y)) f1,2(y)

respectively.
Agent i considers that the number of fellow citizens that will vote for 1 is

a draw from a Poisson distribution with parameter n × pn
1 and that the number

of fellow citizens that will vote for 2 is a draw from a Poisson distribution with
parameter n × pn

2 .
Hence, for an individual with yi ∈ [−1, 1] the expected utility from voting for

his preferred alternative

h(yi) =

{
1 if yi ≥ 0

2 if yi < 0

is

Ph(yi)(yi, ci, wn) = ∑
k∈N0

e−npn
h(yi)(npn

h(yi)
)k

k!

e
−npn

ĥ(yi)(npn
ĥ(yi)

)k

k!
|yi|
2

+ ∑
k∈N0

e−npn
h(yi)(npn

h(yi)
)k

k!

e
−npn

ĥ(yi)(npn
ĥ(yi)

)k+1

(k + 1)!
|yi|
2

− ci

=
|yi|
2 ∑

k∈N0

e−npn
h(yi)(npn

h(yi)
)k

k!

e
−npn

ĥ(yi)(npn
ĥ(yi)

)k

k!

(
1 +

npn
ĥ(yi)

k + 1

)
− ci

where

ĥ(yi) =

{
1 if h(yi) = 2

2 if h(yi) = 1.



32 Alternative Models

Since c > 1, wn is a threshold equilibrium if

Ph(y)(y, wn(y), wn) = 0

for all y ∈ [−1, 1].
After proving the existence of an equilibrium using Brouwer’s fixed point the-

orem, Xefteris goes on to prove that for a sufficiently large n, the threshold equi-
librium of the restricted game is an equilibrium even when voters are free to vote
among any of the m > 2 alternatives. He then demonstrates that the share of
strategic voters doesn’t converge to 0 as n grows, which finally allows him to con-
clude that:

"Theorem 1. When elections are held according to the plurality rule in large
societies, Duvergerian equilibria - i.e. two-party equilibria which involve a sub-
stantial level of strategic voting - exist both when voting is costless/compulsory,
and when voting is voluntary and costly."

4.2 Goeree and Großer (2007)

Another interesting concept, is the one presented in Goeree and Großer (2007):
Self-defeating polls. The model presented in this paper is different from the main
one because it introduces additional information, given by polls. There have been
multiple occasions in which pre-election polls have been wrong, such as the pre-
dicted Dewey defeat against Truman in the 1948 US presidential election. This
could be attributed to mistakes in polling methodology, such as choosing a non-
representative sample, but it could also be due to another cause. Some people
believe that pre-election polls may provoke overconfidence in the majority, reduc-
ing their participation, while simultaneously stimulating engagement from the
minority, leading to unexpected outcomes. This article not only touches on polls
but also on false consensus.

False consensus is a phenomenon in which "people who engage in a given
behavior estimate that behavior to be more common than people who engage in
alternative behaviors". In the case of voting, people who prefer a candidate tend
to overestimate how much others like that candidate. Goeree and Großer (2007)
mention a few studies regarding false consensus. For instance, they explain that
Brown in A false consensus bias in 1980 presidential preferences (1982) "reports the
choices of 179 psychology students who had to indicate their preferred candidate
in the 1980 US presidential election: Anderson, Carter, or Reagan. In addition,
they had to estimate the percentage of students in the class believed to prefer
each candidate. Supporters of all three candidates estimated significantly higher
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support for their own candidate compared to the predictions of the rest of the
class." We can see that false consensus, just like self-defeating polls, seem to exist.
Let’s look into the model that is used in this article in order to review these notions.

Just like in Taylor and Yildirim (2010), there are n ≥ 2 individuals labelled
i = 1, . . . , n that can cast a vote for one of two alternatives (candidates), B (blue)
or R (red). Voting has a cost, c > 0. The alternative that gets more votes than
any other alternative wins the election and in case of a tie it is broken with an
equiprobable draw.

In this model, the utility isn’t normalized and agents receive a utility of 1 if
their preferred alternative wins and a utility of -1 if it loses. Voting costs are
subtracted from that utility and individuals that abstain don’t incur a cost.

This paper also introduces a new concept, which is pretty common in Bayesian
games: Nature. Nature selects one of two states, 0 or 1, which are equally likely.
Individuals don’t know the state of the world but they receive their voting pref-
erences depending on that state. If the state is 0, individuals receive a b signal
with probability p ≥ 1

2 and an r signal with probability 1 − p. When the state
is 1, individuals receive an r signal with probability p ≥ 1

2 and a b signal with
probability 1 − p. An individual receiving a b signal will prefer candidate B and,
equivalently, an individual receiving an r signal will prefer candidate R.

Individuals don’t know the state of the world but are aware of its existence
and how it works. Therefore, they expect that others are more likely to favor their
same alternative which can be shown by Bayes’ rule. To prove it, let’s define a few
events:

• Ai = "Agent i prefers alternative B."

• Z = "The state of the world is 0."

• ¬Z = "The state of the world is 1."

The assigned probabilities are the following:

• P(Ai) =
1
2 p + 1

2 (1 − p) = 1
2

• P(Z) = 1
2

• P(Ai|Z) = p

• P(Z|Ai) =
P(Z∩Ai)

P(Ai)
, where P(Z ∩ Ai) = P(Ai|Z) P(Z)

=⇒ P(Z|Ai) =
P(Ai |Z) P(Z)

P(Ai)
= p

• P(¬Z|Ai) = 1 − p.
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Therefore, given j ∈ N, j ̸= i,

P(Aj|Ai) = p P(Z|Ai) + (1 − p) P(¬Z|Ai) = p2 + (1 − p)2.

Differentiating this as a function of p, we can see that it has a minimum at p =
1
2 where its value is 1

2 . Therefore, if an agent favors alternative B, the probability
that an other agent likes B as well is of at least 1

2 . As a result, it is rational for
that agent to anticipate that his alternative will be more likely favored by others.
Equivalently, if an agent favors alternative R, it is rational for that agent to assume
that his alternative will be more likely favored by others, because the probability
that another agent also likes R is of at least 1

2 .
Remember that the utility for player i ∈ N is 1 if his preferred alternative

wins and −1 if it loses. Assuming that costs aren’t too low (c ≤ c) nor too high
(c ≥ c = 1), the equation of the unique symmetric Bayesian Nash Equilibrium in
this model is the following:

n−1

∑
k=0

(
n − 1

k

)
(γ∗(n, c, p))k (1 − γ∗(n, c, p))n−1−k Ppiv(k) = c. (4.1)

Where Ppiv(n) denotes the probability of being pivotal given n other participants
and γ(n, c, p) denotes the probability that an individual will participate. Given
k ∈ N, Ppiv(2k) = (2k

k )pk(1 − p)k and Ppiv(2k + 1) = (2k+2
k+1 )pk+1(1 − p)k+1.

The authors note that this equation is extremely related to the ones given in
models where participation costs are privately known and distributed according
to a know distribution F. As we know, the cutoff cost c∗ appears in those equa-
tions and according to Goeree and Großer (2007) "The necessary condition that
determines the equilibrium threshold level c∗ is simply (4.1) with γ∗ replaced by
F(c∗).”
In the case of Taylor and Yildirim (2010) the F function is called Gr.

This article is the first and only, amongst those that we review, that studies
welfare. But what exactly is welfare? Welfare refers to the overall well-being or
utility of individuals within a society. Maximizing welfare is finding the strategy
for which the sum of all agent’s utility is maximal. The writers compare the
equilibrium level of participation with the socially optimal level that maximizes
welfare and find that:

"Proposition 2. Equilibrium participation is too high (low) when preferences
are independent (perfectly correlated). In equilibrium, expected welfare is zero
when preferences are independent (p = 1

2 ) and strictly positive when preferences
are correlated (p > 1

2 )."



4.2 Goeree and Großer (2007) 35

In order to reach this result they first look into the case n = 2 and pull the equi-
librium level of participation from (4.1).

1

∑
k=0

(
1
k

)
(γ∗(2, c, p))k (1 − γ∗(2, c, p))1−k Ppiv(k) = c

⇔ (1 − γ∗(2, c, p))Ppiv(0) + γ∗(2, c, p)Ppiv(1) = c

⇔ (1 − γ∗(2, c, p)) + γ∗(2, c, p)(2p(1 − p)) = c

⇔ γ∗(2, c, p)(−1 + 2p(1 − p)) = c − 1

⇔ γ∗(2, c, p) =
c − 1

−1 + 2p(1 − p)
(since p ≥ 1

2
=⇒ −1 + 2p(1 − p) ̸= 0 for all p)

⇔ γ∗(2, c, p) =
1 − c

1 − 2p + 2p2

⇔ γ∗(2, c, p) =
1 − c

p2 + (1 − p)2

They then compare it with the socially optimal level of participation: The level in
which the sum of players’ utility is maximal. Since expected welfare is
W(γ) = 2(γ2 + 2γ(1 − γ))(P2 + (1 − p)2)− 2γc, maximizing this expression with
respect to γ, gives the socially optimal level

γo(2, c, p) = 1 −
c
2

p2 + (1 − p)2 .

Next, they dig into the generalization of expected welfare for all n and maximize
it with respect to γ, the probability of participation.

W =
n

∑
k=0

(
n
k

)
γk(1 − γ)n−kW(k)− nγc,

where

W(k) =
⌊ k−1

2 ⌋
∑
l=0

n−k+l

∑
r=l

(
k
l

)(
n − k
r − l

)
pn−r(1 − p)r(n − 2r)

−
⌊ k−1

2 ⌋
∑
l=0

n−l

∑
r=k−l

(
k
l

)(
n − k

r + l − k

)
pn−r(1 − p)r(n − 2r)

is the electorate’s, benefit when k individuals vote. Differentiating W (not W(k))
with respect to γ yields the necessary condition for the socially optimal level of
participation, γo:

n−1

∑
k=0

(
n − 1

k

)
(γo)k(1 − γo)n−1−k(W(k + 1)− W(k)) = c.
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And working on this expression they reach the conclusion of Proposition 2.
Finally, Großer and Goeree investigate the effect of polls on turnout and wel-

fare. They introduce an observable signal, I that provides information about the
state of the world. They also define the likelihood-ratio α := P(I|0)/P(I|1) and
assume that α ≥ 1. Just like they did with welfare, they first analyze the case
n = 2 and prior to that, they note that the presence of the signal I changes the
preferences that agents expect from others. Using the same notation used by the
authors,

P(another agent prefers blue | I prefer blue, public signal I) = αp2 + (1 − p)2

αp + (1 − p)
,

while

P(another agent prefers red | I prefer red, public signal I)) = p2 + α(1 − p)2

p + α(1 − p)
.

Assuming that I am agent i, these probabilities are P(Aj|Ai, I) and P(¬Aj|¬Ai, I)
where j ̸= i and given k ∈ N, k ≤ n,¬Ak denotes the probability of agent k prefer-
ring alternative R.

When n = 2, the equilibrium levels of participation are

γ∗
B(2, c, p) =

1 − c
P(B | B, I) ,

and
γ∗

R(2, c, p) =
1 − c

P(R | R, I) .

A more precise information signal that raises the likelihood of the 0 state there-
fore reduces (raises) participation incentives for those that favor blue (red).

It is interesting to compare the impact of the public information release on
equilibrium versus socially optimal levels of participation. The welfare maximiz-
ing levels of participation after the public signal I is released become

γo
B(2, c, p) = 1 − c/2

P(B | B, I) ,

and
γo

R(2, c, p) = 1 − c/2
P(R | R, I) .

Therefore, the introduction of a public information affects equilibrium and optimal
levels in an opposite manner. "Information that makes blue more likely reduces
the participation-incentives for those that favor blue, but it raises the value of a
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vote for blue (since more people benefit), which is why the socially optimal level
of participation rises."

Given γ∗
B(2, c, p) and γ∗

R(2, c, p) the welfare is:

W = 2(1 − c)
(1 − 2p)2(p2 + (1 − p)2)

(αp2 + (1 − p)2)(p2 + α(1 − p)2)
,

which decreases with α, if p > 1
2 , since c < 1. That is because W is the product of

positive terms and therefore, as α grows, so does the denominator. Finally, they
generalize this finding for all n and conclude that:

"Proposition 4. The public release of information, which eliminates all correla-
tion in preferences, raises expected turnout but lowers expected welfare."

4.3 Gersbach, Mamageishvili, and Tejada (2021)

The last model that we will look into is Gersbach, Mamageishvili, and Tejada
(2021) in which the authors introduce a new concept: handicaps. This concept is
the main difference with the main model that we worked on and its definition is
the following: "A handicap is a difference in the vote tally between the available
alternatives that (i) strategic citizens take as predetermined when they decide,
first, whether to turn out and, second, what alternative to vote for, and that (ii) is
added to the vote tally generated by the (strategic) voters." Said simply, a handicap
is a difference in votes for the alternatives that is announced prior to voting. In
the case of two alternatives A and B, it could be an initial advantage of 5 votes in
favour of A.

This model is pretty similar, at its core, to the rest of models that we have seen.
Citizens, indexed by i or j (i, j ∈ N), have to vote for one of two alternatives A and
B. Agent i prefers alternative A with probability pA := p and B with probability
pB := 1 − p where 1

2 < p < 1. Each preference is private (and stochastically inde-
pendent by definition), unlike the value of p which is common knowledge. Utility
is normalized so that citizen i receives a utility of 1 if his preferred alternative wins
the election and of 0 if it loses. If a player i decides to vote, he incurs a cost c, such
that 0 < c < 1

2 , which is subtracted from his utility.
The main difference with all the other models is that there is also a handicap,

denoted by d ∈ Z, which after the collection of votes, is added to the number of
votes for A. Next, the alternative that has more votes is chosen and in case of a tie
it is broken with an equiprobable draw.

Citizens are aware of the value of d and how it works prior to voting. The
number of citizens of type t ∈ {A, B} follows a Poisson distribution with pa-
rameter n · pt, so that n is the expected size of the voting population. From the
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perspective of a voter of type t, thanks to the properties of the Poisson distribu-
tion and the stochastic independence of individual types, the number of voters of
the same type also follows a Poisson distribution with parameter n pt. As in the
other models, the authors study the existence and multiplicity of type-symmetric
Nash Equilibria in this game, in which if an agent decides to vote, he votes for his
preferred alternative.

The formal definition of a strategy for citizen i given d ∈ Z is a mapping

αi : {A, B} × {d} → [0, 1].

Therefore, if agent i is of type t and the handicap is d, αi(t, d) indicates the prob-
ability of agent i voting for his preferred alternative. They then assume that
for each d ∈ Z there are numbers αA(d) ∈ [0, 1] and αB(d) ∈ [0, 1] such that
αi(A, d) = αA(d) if ti = A and αi(B, d) = αB(d) if ti = B. Basically, citizens of the
same type vote with the same probability.

A strategy profile is denoted by α = (αA, αB). They also define dA := d,
dB := −d, nA as the number of votes for alternative A, nB as the number of votes
for alternative B, xA := npAαA as the expected number of votes for alternative A
and xB := npBαB as the expected number of votes for alternative B.

Note that, as in other models, an agent will vote in equilibrium if he creates
a tie or breaks a tie (provided that his costs are low enough). Assuming that
d ≥ 1, the mixed equilibria of the game are solutions to the following system of
equations:

c =
1
2
(P[nA = nB − d] + P[nA = nB − 1 − d])

=
1
2

∞

∑
k=0

xk
A

exA k!
xk+d

B
exB(k + d)!

+
1
2

∞

∑
k=0

xk
A

exA k!
xk+d+1

B
exB(k + d + 1)!

,

c =
1
2
(P[nA = nB − d] + P[nA = nB + 1 − d])

=
1
2

∞

∑
k=0

xk
A

exA k!
xk+d

B
exB(k + d)!

+
1
2

∞

∑
k=0

xk
A

exA k!
xk+d−1

B
exB(k + d − 1)!

.

If (xA, xB) is a solution of the system, since d ≥ 1, xA < xB. We also have that
pA > 1

2 and pB = 1 − pA ≤ pA. Therefore,

αA

αB
=

xA

xB

pB

pA
< 1.

This expression exposes two effects that are reducing the marginal value of voting
for A-supporters relative to B-supporters. The first one, captured by the term
pB/pA, corresponds to the already seen underdog effect. The second effect, is
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called handicap effect by H. Gersbach, A. Mamageishvili and O. Tejada, and is
captured by xA/xB. This effect exists because alternative B is handicapped with
respect to alternative A, as alternative A needs fewer votes to win the election.

Next, they give an example showcasing an interesting finding, there can actu-
ally be multiple equilibria, some in which A is more likely to win and some in
which B is more likely to win. If d = 5 and c = 0.169185, (xA, xB) = (0, 5.4) is an
equilibrium of the game and A is chosen with probability 0.467359. If d = 5 and
c = 0.182668, (xA, xB) = (0, 4.4) is an equilibrium of the game and A is chosen
with probability 0.644138.

As they mention, this shows that the underdog and handicap effects can over-
turn an advantage, although it would be interesting to see what happens with
larger turnouts.

Their investigation continues by trying to determine for which values of d there
exists an equilibrium with strictly positive turnout. To sum up their findings, they
provide a table showcasing for which values of d there exists (multiple) equilibria
with positive turnout and for which there exists an equilibrium with no turnout.

A (partial) characterization of equilibria of the game for d ≥ 0.

0 ≤ d ≤ 1 2 ≤ d ≤ K2
c2

K1
c2 ≤ d

(Multiple) equilibria with positive expected turnout ✓ ✓ ×

Equilibrium with zero turnout × ✓ ✓

Table 4.1: Existence and type of equilibria depending on d.

Table 4.1, which is a copy of "Table 2" featured in Gersbach, Mamageishvili,
and Tejada (2021), displays for which values of d there exists at least one equilib-
rium with strictly positive turnout and an equilibrium with no turnout. If d > 1
there always is an equilibrium with no turnout, unlike in the cases d = 0 and d = 1
in which it doesn’t exist. When d ≤ K2

c2 , where K2 and K1 denote constants such
that K2 < K1, the game has equilibria that differ from the no-show equilibrium.
Whereas if d ≥ K1

c2 , the only equilibrium is the no-show equilibrium.

In the next section, this paper showcases another common practice in the costly
voting literature. Researchers often explore new voting procedures and attempt to
optimize them. In this case, Gersbach, Mamageishvili and Tejada worked on the
optimal design of "Assesment Voting" (AV). Although this procedure is outside of
the scope of this review.

Finally, the authors study the robustness of their model and possible exten-
sions of it. One of those extensions is including a cost difference amongst types,
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which happened in the main model that we studied, and another one is including
multiparty elections as in Xefteris (2019).



5 Conclusion

We have studied models in which voting is thought of as a non-cooperative
game. Within these pivotal voter models, voters condition their strategy on the
probability of being pivotal, allowing us to study the equilibrium equations as
well as other interesting concepts, such as the impact of pre-election polls. In
Proposition 3.8, we discovered that in large electorates, voting costs play a critical
role and essentially decide the result of the election. However, in these scenarios,
turnout seems to be very limited which deviates considerably from reality. For
instance, in the 2023 Spanish general elections, participation was over 60%.

There are other innovative models, such as Feddersen (2004), which analyze
a voting cost setting with a quite distinct approach that ends up yielding much
higher rates of participation. In his model, agents, which he calls "ethical agents"
behave as "if everyone who shares their preferences were to act according to the
same rule"- a behaviour I have personally observed amongst the population, mak-
ing the model especially interesting.

On a personal level, the elaboration of this thesis has allowed me to learn a lot.
I have discovered firsthand the differences in notation and rigor between mathe-
maticians and economists. Moreover, it has also deepened my understandings of
rational voting theory- from the notion of pivotal voter, to the effect of polls on
elections and the relationship of voting costs with turnout.

As we mentioned, a characteristic limitation of this model, was its limited
turnout. Moving forward, it would be interesting to further research group-based
voting, which seems to address the pivotal voter model’s main flaw and could
potentially be easier to study.

41
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