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Engineering tunable fractional Shapiro steps
in colloidal transport

Andris P. Stikuts1,2,5, Seemant Mishra3,5, Artem Ryabov 4 , PhilippMaass3 &
Pietro Tierno 1,2

Shapiro steps are quantized plateaus in the velocity-force or velocity-torque
curve of a driven system, when its speed remains constant despite an increase
in the driving force. For microscopic particles driven across a sinusoidal
potential, integer Shapiro steps have been observed. By driving a single col-
loidal particle across a time-modulated, non-sinusoidal periodic optical land-
scape,weheredemonstrate that fractional Shapiro steps emerge in addition to
integer ones. Measuring the particle position via individual particle tracking,
we reveal the underlying microscopic mechanisms that produce integer and
fractional steps and demonstrate how these steps can be controlled by tuning
the shape and driving protocol of the optical potential. The flexibility offered
by optical engineering allows us to generate a wide range of potential shapes
and to study, at the single-particle level, synchronization behavior in driven
soft condensed matter systems.

Many physical systems driven out-of-equilibrium by an external force
are characterized in terms of a velocity-frequency or velocity-force
relation1–4, which is an analog of the current-voltage characteristic
measured in superconducting junctions5,6, carbon nanotubes7–9,
graphene10,11 and other electronic circuits12. When subjected to a time-
periodic force, the internal dynamics of these systems may synchro-
nize with the external driving. The synchronization effect manifests
itself in the form of constant plateaus of voltage or velocity versus
mean current or force. Such plateaus, known as Shapiro steps, were
first reported for a superconducting Josephson junction driven by a
microwave signal13,14, where discrete steps in the voltage arise from the
synchronization between the applied signal and oscillations of the
Josephson phase15,16.

Since their discovery, understanding the nature of Shapiro steps
has been important not only for elucidating basic mechanisms
underlying superconductivity but also for new technological devel-
opments, including, for example, the realization of metrological vol-
tage controllers17,18.

In classical driven systems, the presence of discrete steps in the
velocity-force curves can be the signature of different physical effects,
from speed reduction due to friction19–21, to the onset of a pinning-
depinning transition22,23, synchronization24,25 or locking26–28 with an
underlying energetic landscape. In many-particle systems, collective
particle motions through periodic29–32 or random33,34 landscapes are
often mediated by defects, which move like a single particle and dis-
play a complex sequence of plateaus with integer or fractional values
of their speed. Due to the subtle interplay of interparticle and particle-
substrate interaction, defect propagation takes place in complex per-
iodic energy landscapes.

Modern advancements in optical manipulation of microscale
matter have made it possible to engineer such potentials with tunable
energetic wells and inter-well distances35–37. With this capability, one
can manipulate and drag microscopic particles38,39, biological
systems40,41, measure tiny forces42,43, or even assemble matter in
two44,45 or three dimensions46–48. In this context, integer Shapiro steps
have been recently reported for a single colloidal particle driven
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through an optical sinusoidal potential by an underlying oscillating
substrate49. The plateaus emerged due to dynamic mode locking24,
where synchronization with the oscillating substrate leads to a
sequence of transport modes characterized by a constant speed.

By engineering non-sinusoidal periodic potentials with several
maximaperwavelength, we showhere that a single particle candisplay
integer and fractional steps in the average speed under time-
dependent driving. Employing individual particle tracking, we unveil
the microscopic mechanisms leading to the emergence of these steps
and show how it is possible to control them by constructing diagrams
of phase-locked modes. Our driving strategy implements the time
modulation directly within the periodic potential without the need to
translate or oscillate the substrate, which could induce a delay in the
particle response and hydrodynamic back-flow. The non-sinusoidal
shape allows the particle to synchronize with the driving potential in a
variety of modes, generating both pronounced integer and fractional
Shapiro steps. Using our ability to tune the optical landscape and the
driving protocol, we can even increase the prominence of some frac-
tional Shapiro steps over others.

Results
Designing time-modulated periodic optical potentials
We drive a single polystyrene colloidal particle of diameter σ = 4 μm
across a time-dependent periodic potential generated by passing an
infrared continuous-wave laser through a pair of acousto-optic
deflectors, as sketched in Fig. 1a. The particles sediment close to the
bottom surface where they float due to balance between gravity and
electrostatic repulsive interactions. Since the particles are illuminated
by the laser from the top, they are trapped in two dimensions, i.e.,
close to the bottom plane. Technical details are given in the Methods
Section.

The laser is rapidly steered through Ntr = 30 positions on a circle of
radius R=29.6μm. Each trap position is visited every 20μs50–52, a time
scale much smaller than the self-diffusion time of the particles in the
absence of driving, σ2/D ~ 280 s, where D ~ 0.057μm2 s−1 is the self-
diffusion coefficient. As the scanning is much faster than the particle

motion, the particle feels an effective, quasistatic potential. When a laser
passes through a position along the circle, its spot creates a Gaussian
potential well with a depth proportional to the laser power. As described
in the Methods section, the periodic potential felt by the colloidal par-
ticle results from the superposition of these Gaussian wells.

We engineer two types of periodic potentials, a sinusoidal one Us

with wavelength λs = 2πR/30, Fig. 1b, d, and a non-sinusoidal one Uns

with wavelength λns = 3λs, Fig. 1c, e. TheUns is generated by placing the
traps in groupsof three perwavelength λns, with trap centers located at
positions 0, λns/3, and 7λns/12 in [0, λns). With this arrangement, we
obtain three distinct potential wells per wavelength λns with inter-well
spacings λns/3, λns/4, and 5λns/12. The profiles of the periodic potentials
are calculated from measured particle trajectories, see Methods Sec-
tion for details. These profiles, shown in Fig. 1d for the sinusoidal
potential and in Fig. 1e for the non-sinusoidal one, exhibit energetic
barriersof about 500 kBT. Thus, thermalfluctuations are ratherweak in
our system.

The selected distances between the optical traps were chosen
such that the overlap of the Gaussian potential wells generated a
simpleperiodic but non-sinusoidalpotential able to induce integer and
fractional Shapiro steps in the particle current. The distance between
the potential wells were chosen such that each potential well was able
to stably trap a colloidal particle. Indeed, for a distance smaller than
the particle diameter, the wells could have been not distinguished as
different by the particle, which would feel them as a single, larger well
rather than two distinct ones. On the other hand, potential wells very
far from each other could be unable to stably trap the particle along a
ring, due to small but still present thermal fluctuations along the radial
direction.

By rotating all traps with an angular speedω, the particle is driven
along the circle, as illustrated in Fig. 1a. For inducing Shapiro steps in
the average particle velocity, ω is modulated periodically in time with
period τ, yielding a time-modulated driving of the particle. Specifically,
as shown in Fig. 1a, we apply a square-wave protocol with mean fre-
quency ω0 and amplitude Δω: ω(t) =ω0 +Δω for t ∈ [nτ, (n + 1/2)τ) and
ω(t) =ω0 − Δω for t ∈ [(n + 1/2)τ, (n + 1)τ), n = 0, 1, 2, …

Fig. 1 | Time-modulated sinusoidal and non-sinusoidal optical potentials.
a Colloidal particle driven along a rotating ring of optical traps created by fast-
scanning tweezers. The ring rotates with a time-dependent angular frequency ω(t)
modulated according to a squarewave.The inset at the topdisplays themodulation
with period τ and amplitude Δω around a mean frequency ω0. b, c Density plots of
Ntr = 30 optical traps with positions on a circle of radius R = 29.6 μm. In (b), the
optical traps are arranged equidistantly and create a sinusoidal potential with

wavelength λs = 2πR/30 along the ring. In (c), the traps are arranged in 10 groups of
triplets, yielding a periodic non-sinusoidal potential with wavelength λns = 2πR/10.
In each triplet, spacing between neighboring traps are 5λns/12, λns/4, and λns/3.
d, e Corresponding profiles of the optical potential U extracted from torque
measurements. Supplementary Videos 1–6 in the Supporting Information show
representative motions of the particle in these two potentials.
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Shapiro steps in mean particle velocity
For a constant angular velocity ω0, the particle trapped in one of the
potentialwells tends to follow the trap rotation in a clockwisedirection
but experiences resistance due to the Stokesian friction exerted by the
surrounding water. This friction gives rise to a torque in the counter-
clockwise direction. Since this torque is a constant proportional to ω0

in a frame corotating with the traps, we analyze the particle motion in
this frame. The average velocity �v along the tangential direction in the
corotating frame corresponds to an average velocity �vlab = �v� ω0R in
the laboratory frame.

Applying the square-wave modulation ω(t), we measure �v for
both the sinusoidal [Fig. 1d] and the non-sinusoidal potential
[Fig. 1e]. Figure 2a, b show the results of these measurements for
varying ω0 at fixed period τ = 1.047 s and amplitude Δω = 0.6 rad s−1

of the driving (red circles with error bars). In both figures, intervals
ofω0 occur, where �v remains constant, corresponding to a sequence
of Shapiro steps. In these plateau regimes of constant �v, the particle
synchronizes its motion with the oscillatory driving, leading to
phase-locked particle velocities in the corotating reference
frame. The experimental results are in excellent agreement with

Fig. 2 | Phase-locked mean particle velocities reflecting motion synchronized
with the driving. a, b Average velocity �v in the corotating frame versus mean
azimuthal velocity ω0R of trap rotation for the sinusoidal (a) and the periodic but
non-sinusoidal optical potential (b). In both images, we vary ω0 at fixed
R = 29.6μm, τ = 1.047 s, and Δω=0.6 rad s−1. c, d Average velocity �v as a function of
the characteristic oscillatory driving velocities λs/τ = vs and λns/τ = vns for the
sinusoidal potential (c) and the non-sinusoidal one (d). In both images, we vary τ at

fixed ω0 =Δω0 = 0.6 rad s−1, and R = 29.6μm. In all graphs scattered red dots are
experimental data, the error bars denote the standard deviation of three experi-
mental measurements, and blue lines are results from numerical simulations.
Continuous black lines mark integer steps, and dashed lines mark fractional ones.
Values on top of the graphs in (c,d) indicate slopesn and p/q of the lines according
to equations (1) and (2). The colored arrows denotemeasurements, whose particle
trajectories are shown in Fig. 3.
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Brownian dynamics simulations (blue lines) detailed in the Methods
Section.

For the sinusoidal potential [Fig. 2a], all steps are integermultiples
of the characteristic speed vs = λs/τ = 5.92 μms−1 of the driving, yielding
phase-locked values

vn =nvs, n= 1, 2, . . . ð1Þ

These steps are indicated by the horizontal black lines in Fig. 2a for
n = 1,…,4. While not all steps are equally well pronounced, only integer
plateauswereobserved. These steps arise froma synchronizedparticle
motion, where in one period τ of the driving, the particle is displaced
by n wavelengths λs of the sinusoidal potential.

For the non-sinusoidal potential [Fig. 2b], we observe steps
(dashed horizontal black line)

vp, q =
p
q
vns , ð2Þ

which are fractions p/q of the characteristic velocity
�v= vns = λns=τ = 17:76μms�1. Also, the integer step with �v = vns = λns=τ
occurs (solidhorizontal black line). The fractional plateaus arise froma
synchronized particle motion, where in q periods τ of the driving, the
particle is displaced by p wavelengths λns of the non-sinusoidal
potential.

The fractional plateaus are smaller than integer ones and, thus,
more challenging to resolve. In our experiments, we increased ω0R in
steps of 1.5μms−1. For this resolution, none of the fractional steps in
Fig. 2b covers an interval of ω0R consisting of more than two experi-
mental points. However, the numerical simulations shown by the blue
lines in Fig. 2b provide evidence of the presence of the fractional steps
in the non-sinusoidal potential in Fig. 2b.

Nonetheless, to unambiguously demonstrate synchronized
motion with phase-locked velocities according to equations (1) and (2)
in our experiments, we can also keep ω0 and Δω fixed and vary the
period τ of the driving. For a good choice of ω0 and Δω, the driving
should be such that the particle can surmount the potential barriers at
the square wave’s high-value ω0 +Δω, while it remains trapped in a
potential well at the low-value ω0 − Δω. This can be ensured for the
trapping by taking Δω=ω0. For surmounting barriers, we choose
ω0 = 0.6 rad s−1, which is comparable to the critical frequency at which
the particle starts slipping in the potential.

Figure 2c, d show the mean particle velocity as a function of the
characteristic velocities λs/τ and λns/τ for ω0 = Δω =0.6 rad s−1. Now,
phase-locking according to Eqs. (1) and (2) manifests itself as �v varying
linearly with vs = λs/τ and vns = λns/τ. Fractional phase locking in Fig. 2d
is much more clearly visible than in Fig. 2b: a linear increase of �v with
λns/τ occurs in broad intervals with fractional slopes p/q = 1/4, 1/3, 1/2,
and 2/3. Again, simulations (blue lines) in both Fig. 2c, d are in excellent
agreement with the experimental observations.

The error bars in Fig. 2a–d represent the spread between three
different sets of measurements, each conducted with a different par-
ticle from the same stock solution. They are relatively small when the
particle is phase-locked with the oscillating potential and become
larger when it is not. This can be understood from the fact that for
synchronized motion, fluctuations of the particle position due to
thermal noise are suppressed. The effect is reflected in a lower diffu-
sion coefficient of the particle in a phase-locked state53.

The ability to precisely track the colloidal particle allows us to
analyze in detail its movement across the two types of periodic
potentials. In Fig. 3, we show particle trajectories for various driving
frequencies 1/τ at fixed ω0 =Δω for the sinusoidal [Fig. 3a] and non-
sinusoidal potential [Fig. 3b].

Colored synchronized trajectories collapse onto space-time per-
iodic limit cycles apart from thermal fluctuations. Along the

synchronized trajectories in Fig. 3a, the particle moves n = 1, 2, 3
wavelengths λs in one period τ of the driving, giving a mean particle
velocity �v=nvs. Along the synchronized trajectories in Fig. 3b, the
particle moves p wavelengths λns in q periods τ, giving the mean par-
ticle velocity �v= ðp=qÞvns with fractions p/q = 1/2, 2/3, 1/1. Gray lines in
both graphs correspond to particle trajectories that are not synchro-
nized with the driving. In the schematics on the sides of Fig. 3, we
illustrate the particle displacements in successive half periods τ/2 for
the phase-locked modes with n = 2 in Fig. 3a and p/q = 2/3 in Fig. 3b.

For the sinusoidal potential, we see that integer Shapiro steps with
�v= vs, 2vs, . . . occurwhen the particle is trapped in a potentialminimum
for half a period of the driving and then moves a distance λs, 2λs, … in
the other half. The trapping, at the minimum, aids the synchronization
as a way of “resetting” the particle position during each period.

An analogous situation occurs for the non-sinusoidal potential, but
now the particle displays an additional backward or forwardmovement
to reach the closest potential minimum. These additional movements
can be seen, for example, in the bunches of orange particle trajectories
in Fig. 3b, which correspond to the step at �v= 1

2 vns in Fig. 2b.
Next we show that it is possible to calculate the type of phase-

locked modes characterized by p/q in Eq. (2) and thus to control the
experimental parameters that give rise to a selected step.

We consider the particle motion in the absence of thermal fluc-
tuations and determine the propagator G(x), which gives the position
of the particle after one period of driving if it started at position x =Rφ.
After q0 periods of driving, the particle position is obtained by the
q0-fold composition Gðq0 ÞðxÞ=G° . . . °GðxÞ of G(x). For a mode to occur
with value q0, the particle must be at an equivalent position in the
potential after q0 periods of the driving. This means that there must
exist an x* ∈ [0, λns), where the difference Gðq0 Þðx*Þ � x* is an integer
multiple of λns, i.e., such x* must satisfy the fixed point equation

Gðq0 Þðx*Þmod λns = x* , ð3Þ

where amod b 2 ½0, bÞ is the remainder when a is divided by b. The
smallest q0, for which at least one stable fixed point x* exists, is the q of a
phase-locked mode. The number p of wavelengths λns by which the
particle is displaced after qperiods isp= ∣G(q)(x*)− x*∣/λns. Thisfixed-point
method allows us to calculate q and p for any given driving parameters
ω0, Δω, and τ. Technical details are given in the Methods Section.

Figure 4a–c demonstrate the application of the fixed-point
method for the non-sinusoidal potential and the same parameters as
in Fig. 2dwhen λns/τ = 50 μms−1. For q = 1 [Fig. 4a] and q = 2 [Fig. 4b], no
fixed-point solutions of Eq. (3) exist, while a limit cycle of three stable
fixed points x* (bullets) is obtained for q = 3 [Fig. 4c], giving
p = ∣G(q)(x*) − x*∣/λns = 1. Accordingly, the theoretically predicted mode
is 1/3, in agreement with the experimental observation.

Figure 4d shows the diagram of phase-locked modes when vary-
ing ω0R and λnsτ, and setting Δω = 0.6 rad s−1. The vertical and hor-
izontal lines in this diagram represent the variation of parameters
considered in Fig. 2b, d and show good agreement with the experi-
mental observations: for example, the modes with p/q = 1/2, 2/3, and 1
at fixed τ = 1.047 s are predicted to occur for ω0R in the intervals
7−10μms−1, 10−14μms−1, and 15−23μms−1 according to Fig. 4d, which
match the intervals where the modes occur in Fig. 2b. Likewise, the
modes with p/q = 2/3, 1/2, and 1/3 at fixed ω0R = 17.76μms−1 are pre-
dicted to occur for λns/τ in the intervals 20−28μms−1, 29−36μms−1 and
42−57μms−1, matching the intervals in Fig. 2d.

Discussion
We report the observation of integer and fractional Shapiro steps in
the average speed of a single colloidal particle driven across a spatially
and temporally modulated potential landscape. Fractional steps
appear only when the potential is not sinusoidal. Through direct
measurement of the particle and trap positions and using theoretical
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arguments, we unveil the phase-locking mechanisms at the origin of
the fractional steps and demonstrate the possibility to tune them by
engineering the optical driving.

In our periodic potentials, Shapiro steps emerge via the following
mechanisms.During thepartof theperiodwhen thedriving is zero, the
optical potential has a stabilizing role for both integer and fractional
steps. For the sinusoidal potential, the particle relaxes once per driving
period, giving rise to integer steps. For the non-sinusoidal potential,
due to the complexity of the potential landscape, the particle can relax
towards different potential minima in each driving period. This leads
to richer particle dynamics, enabling the synchronization in fractional
Shapiro steps in addition to integer ones.

From the application point of view, we have shown how to
manipulate the lengths of the fractional plateaus via potential engi-
neering, which is important for particle transport in materials and
devices. The occurrence of fractional steps in periodic potentials with
anharmonicities is generic. They can be used for versatile steering of
particles with stable velocities that are robust against noise as well as
small perturbations of driving parameters and spatial periodicity. This
should allow, for example, for setting a prescribed mean velocity of a
particle driven by an external signal within amicrofluidic or a lab-on-a-
chip device. Another potential application is to use fractional steps for
probing characteristic features of periodic potentials, like its deviation
from a sinusoidal form, symmetry, or number of wells per period. As
diagrams of phase-locked modes are very sensitive to the shape of the

potential, the correspondingmeasurements can be employed as a way
to determine carefully the parameters in periodic force fields. Thus,
these modes can be used in sensor applications to detect subtle shifts
in the external force in a similarway tometrological voltage controllers
developed for Josephson junctions17,18.

Unraveling microscopic synchronization mechanisms leading to
Shapiro steps is important in the analysis of transport of particles
across periodically structured landscapes, a generic situation
encountered when studying non-equilibrium dynamics in condensed
matter systems. Plateaus are not just a signature of non-linearity; they
offer a window for exploring details of the coupling between the
particle’s motion and that of the underlying landscape.

While our work has centered on a single driven particle, future
directions may explore complex behavior in collective motions of
many particles, or across disordered landscapes, which can be easily
realized with optical engineering. This will further enrich the study of
resonant transport and phase locking in periodically driven out-of-
equilibrium systems.

Methods
Experimental setup
We use monodisperse spherical polystyrene particles with a diameter
σ = 4 μm(CML,Molecular Probes). The particles aredispersed inhighly
deionizedwater (Milli-Qwater) at room temperatureT = 293K, and the
suspension is confined within a fluidic cell assembled with two
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Fig. 3 | Synchronized and non-synchronized particle trajectories. a, b Scaled
angular particle positionsRφ/λs,ns versus scaled time t/τ in the corotating reference
frame at fixedω0 =Δω=0.60 rad s−1 as in Fig. 2c, d for (a) the sinusoidal and (b) the
non-sinusoidal potential for various driving frequencies 1/τ. The chosen fre-
quencies correspond to values of λs/τ and λns/τ indicated by the colored arrows in
Fig. 2c, d. Optical potentials are shown at the bottom. Trajectories are displayed in
a reduced zone scheme, i.e., when they exit at the right side of the graph they are
continued at the left side. Synchronized trajectories corresponding to Shapiro

steps overlap and are colored in orange, green, and blue. Non-synchronized tra-
jectories are marked in gray. In (a), mean velocities �v obtained from the synchro-
nized trajectories are integer multiples of vs. In (b), fractions p/q of vns appear,
which correspond to particle displacements by p wavelengths λns in q periods of
the driving. The small schematics on the side of the images illustrate the particle
position within the periodic potential corresponding to an integer step (side of a)
and to a fractional one (side of b). The videos 1–6 in the Supplementary Informa-
tion show the synchronized particle motion across the periodic potentials.
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coverslips separated by ~ 100 μm. The cell is placed on the stage of a
custom-built optical microscope and exposed to a set of fast-scanning
optical tweezers. The tweezers are created by passing an infrared laser
beamwith wavelength 1064 μmand power P = 3W (manlightML5-CW-
P/TKS-OTS) through a pair of acousto-optic deflectors (AODs, AA
Optoelectronics DTSXY-400-1064). Combined with the AODs is a two-
channel radio frequency wave generator (DDSPA2X-D431b-34), which
is addressed by a digital output card (National Instruments cDAQ NI-
9403) with a refresh frequency of 150 kHz. A Nikon 40 ×microscope
objective (plan Apo), illuminated by a light emitting diode, and a
complementary metal oxide camera (Ximea MQ003MG-CM) are used
to record the particle positions at 30Hz.

Optical potential
Wedefine byφi =ϕi(t) − θ(t), i= 1, . . . ,Ntr, the fixed azimuthal positions
of the Ntr trap centers in the co-moving frame, where ϕi(t) are the
rotating positions in the laboratory frame and

θðtÞ= �
Z t

0
dt0ωðt0Þ : ð4Þ

Each laser spot creates a Gaussian potential well with a depth A
proportional to the laser power, and a widthw. The total potential felt
by the particle at position φ in the corotating frame is given by the

superposition of the Ntr Gaussian potential wells,

U0ðφÞ= � A
XNtr

i = 1

exp �R2ðφ� φiÞ2
2w2

 !
: ð5Þ

Due to a slight imperfection in the optical tweezer setup, the well
depth is not perfectly uniform across the ring of traps. It is weakly
modulated with two nearly equidistant local maxima along the ring,
giving rise to an amplitude modulation / cosð2φÞ of the optical
potential. Taking this weak modulation into account, the potential in
the corotating frame becomes

Uðφ, tÞ= 1 + ξ cos½2ðφ+θðtÞ�ÞU0ðφÞ
�

, ð6Þ

where ξ is the strength of the amplitudemodulation. With phase shifts
α and β of the amplitude modulation and trap positions in the fixed
laboratory frame, the functional form of the optical potential is

Uðφ, tÞ= ð1 + ξ cos½2ðφ+θðtÞ+αÞ�ÞU0ðφ+ βÞ: ð7Þ

Todetermine theparameters ξ,α, andβ, and theparametersA and
w entering U0(φ + β) via Eq. (5), we follow a similar procedure as in
ref. 51. We rotate the potential landscape with a constant angular fre-
quency ω0 = 0.6 rad s−1 large enough to allow for the particle to cross
potential barriers (Δω =0). The time series ofparticle’s positionsϕ(t) in
the laboratory frame is recorded for 20 minutes at 30 frames
per second, that is with a time step of δt = 1/30 s. With the positions
φ(t) =ϕ(t) +ω0t in the corotating frame, the angular velocities
[φ(t + δt) − φ(t)]/δt are calculated and we extract the torques

MðtÞ= kBTR
2

D
φðt + δtÞ � φðtÞ

δt
+ω0

� �
ð8Þ

acting on the particle in the cororating frame51.
Mean values of torque vary with the position along the ring and

areperiodic in timewith period 2π/ω0. To determine themean torques
from the times series M(t), the intervals [0, 2π) and [0, 2π/ω0) of azi-
muthal positions and times are divided into Nφ = 210 and Nt = 10
equally sized bins. Averaging theM(t) in each bin, we obtain the mean
torques �Mðφ, tÞ, which must agree with the derivative of U(φ, t) with
respect to φ,

� ∂Uðφ, tÞ
∂φ

= �Mðφ, tÞ : ð9Þ

The parameters A, w, ξ, α, and β are obtained by fitting ∂U(φ, t)/∂φ to
the measured �Mðφ, tÞ with the least square method. For the sinusoidal
potential, A = 559 kBT = 1.36MJ/mol, w = 1.45μm, ξ = 0.09, α = 1.81, and
β = 0.23. For the non-sinusoidal potential, A = 548 kBT = 1.34MJ/mol,
w = 1.60μm, ξ =0.10, α =0.80, and β = 0.18.

We checked that our simulation results for the average particle
velocities in Fig. 2 are almost unaffected by small perturbations of the
positions φi of the optical trap centers as well as small i-dependent
random modulations of A in Eq. (5).

Brownian dynamics simulations
Equation (6) gives the potential U(φ, t) in the corotating frame. In the
laboratory frame, it is Ulab(ϕ, t) =U(ϕ − θ(t), t), and the Langevin
equation for the overdamped Brownian motion of the particle reads

γR
dϕ
dt

= � 1
R
∂U labðϕ, tÞ

∂ϕ
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγ

q
ηðtÞ : ð10Þ

Here, Rϕ is the particle displacement along the ring, γ is the Stokesian
frictioncoefficient, and η(t) is a thermalnoisemodeledby theGaussian

Fig. 4 | Diagram of phase-locked modes. a–c Propagators G(q)(x) giving the posi-
tionof theparticle afterqperiodsof thedriving if it startedat x. Parameters are as in
Fig. 2d when λns/τ = 50 μms−1. Intersections of G(3)(x) with the diagonal line in (c)
imply that a limit cycle of three stable fixed points (bullets) is present, giving
p = ∣G(q)(x*) − x*∣/λns = 1. The theoretically predictedmode of phase locking thus is 1/
3, in agreement with the experimental finding in Fig. 2d.dDiagramof phase-locked
modes for the non-sinusoidal potential obtained by the fixed-point analysis when
applying it to a wide range of values λns/τ and ω0R at fixed Δω=0.6 rad s−1. Yellow
regions indicate integer Shapiro steps, and blue regions mark fractional steps.
Following the vertical and horizontal lines in the diagram correspond to the var-
iations of ω0R and λns/τ in Fig. 2b, d, respectively.
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white noise process with zero mean and correlation func-
tion hηðtÞηðt0Þi= δðt � t0Þ.

In the corotating frame with angle variable φ =ϕ − θ(t),
_φðtÞ= _ϕðtÞ � ωðtÞ, and Eq. (10) becomes

dφ
dt

= � D

kBTR
2

∂Uðφ, tÞ
∂φ

+ωðtÞ+
ffiffiffiffiffiffi
2D

p

R
ηðtÞ, ð11Þ

where D = kBT/γ is the diffusion coefficient according to the
fluctuation-dissipation theorem. Equation (11) is solved numerically
using the Euler-Maruyama method.

Theoretical prediction of phase-locked modes
The fixed pointmethod can be applied to both the sinusoidal and non-
sinusoidal potential. It relies on the propagator G(x) =G(1)(x), which is
determined by the numerical solution of the Langevin equation (11) in
the limit of zero noise [η(t) = 0]. The fixed points of ½GðqÞðxÞmod λ�
given by equation (3), with λ = λs or λ = λns, are zeros of the func-
tion HðqÞðxÞ= ½GðqÞðxÞmod λ� � x.

To obtain the zeros of H(q)(x), we divide the interval [0, λ) into
M = 50 equidistant points x1 < … < xM, and search for all pairs of suc-
cessive points xi and xi+1, where H(q)(xi) and H(q)(xi+1) have different
signs. Letm be the number of such pairs xðαÞ

i , xðαÞi + 1, α = 1,…,m. In each
interval ½xðαÞ

i , xðαÞ
i+ 1Þ, wedetermine thepoint xðαÞ0 of sign changewith high

accuracy by applying the Wijngaarden-Dekker-Brent method54. The
sign change at xðαÞ0 does not necessarily imply that xðαÞ0 is a zero because
H(q)(x) can jump at xðαÞ

0 . A zero is considered to be present at xðαÞ
0 , if

jHðqÞðxðαÞ
0 � δÞ � HðqÞðxðαÞ0 + δÞj≤ ϵ for δ = 10−6λ and ϵ = 10−3λ.

For a zero x0 ofH(q)(x) to be a stablefixedpoint x* of ½GðqÞðxÞ mod λ�,
it must hold ∣∂xG(q)(x*)∣< 155. Such stable fixed point x* corresponds to a
limit cycle of ½GðxÞ mod λ� running through q points, which forms an
attractor of the stationary particle motion. Each of the q points of the
limit cycle is a stable fixed point of ½GðqÞðxÞ mod λ�. For the example
shown in Fig. 4c, the three points marked by the bullets are stable fixed
points of one limit cycle. The two other points, where GðqÞðxÞ mod λns
intersects with the diagonal line, are unstable fixed points.

The q of the phase-locked mode is the smallest q0, where
½Gðq0 ÞðxÞ mod λ� exhibits a stable fixed point. We thus obtain q by
starting with q0 = 1 and incrementing it by one until a stable fixed point
occurs, i.e., a zero x* of H(q)(x) satisfying ∣∂xG(q)(x*)∣ < 1.

For the mode diagram shown in Fig. 4d, we have carried out the
analysis for a wide range of parameters ω0R, λns/τ, and q values up to
four. Parameter regions where either synchronized motion with q > 4
or non-synchronized motion occurs, are marked in white.

Data availability
The authors declare that all data supporting the findings of this study
are available within the paper and its Supplementary Information files
or available from the corresponding authors upon request. Source
data are provided in this paper.
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