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High-resolution synthesis of
high-density breast
mammograms: Application to
improved fairness in deep
learning based mass detection
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Computer-aided detection systems based on deep learning have shown good

performance in breast cancer detection. However, high-density breasts show

poorer detection performance since dense tissues can mask or even simulate

masses. Therefore, the sensitivity of mammography for breast cancer detection

can be reduced by more than 20% in dense breasts. Additionally, extremely

dense cases reported an increased risk of cancer compared to low-density

breasts. This study aims to improve the mass detection performance in high-

density breasts using synthetic high-density full-field digital mammograms

(FFDM) as data augmentation during breast mass detection model training. To

this end, a total of five cycle-consistent GAN (CycleGAN) models using three

FFDM datasets were trained for low-to-high-density image translation in high-

resolution mammograms. The training images were split by breast density BI-

RADS categories, being BI-RADS A almost entirely fatty and BI-RADS D

extremely dense breasts. Our results showed that the proposed data

augmentation technique improved the sensitivity and precision of mass

detection in models trained with small datasets and improved the domain

generalization of the models trained with large databases. In addition, the

clinical realism of the synthetic images was evaluated in a reader study

involving two expert radiologists and one surgical oncologist.

KEYWORDS

data synthesis, full-field digital mammograms, generative adversarial networks
(GANs), data augmentation (DA), mass detection, reader study, breast cancer
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1 Introduction

Breast density is divided into four categories in the American

College of Radiology Breast Imaging and Data System (ACR BI-

RADS) 5th edition (1). The categories range from A to D and

correspond to fatty, scattered, heterogeneous, and extremely

dense breasts. The qualitative classification of breast density in

mammography is an accepted method in breast radiology with

good inter-observer and intra-observer agreement (2), despite

the fact that commercial software can produce a more accurate

quantitative measure by calculating the ratio of fibroglandular

tissue to the total breast area.

In mammography databases, the distribution of breast

densities among women aged 40 years or older is

approximately 43% for dense breasts: 36% for BI-RADS C and

7% for BI-RADS D (3). Han et al. (4) found that women with a

family history of breast cancer were more likely to have dense

breasts than women with no cancer in the family history. In

addition, high breast density is associated with an increased risk

of interval cancers (5), being those 13–31 times more likely in

BI-RADS D breasts than in BI-RADS A (6–8). Consequently, it

is recommended to decrease the interval between screening

mammograms and consider supplemental screening for

women with dense breasts (8, 9).

Dense breast tissue is one of the strongest and most common

independent risk factors for breast cancer (5, 6, 10). On

mammograms, masses and other suspicious findings can be

obscured in normal dense tissue and become imperceptible on

mammograms. Therefore, the sensitivity of mammography

decreases with increasing breast density and has a range value

of 81-93% for fatty breasts, 84-90% for breasts with scattered

fibroglandular density, 69-81% for heterogeneously dense

breasts, and 57-71% for extremely dense breasts in women 40-

74 years of age (5). Although mammography is the gold standard

non-invasive method for breast cancer detection in population-
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based screening, women with dense breasts have shown both a

reduced cancer detection and higher mortality rates (11–13).

The goal of this study is two-fold. First, mitigate the

differences in computer-aided detection (CADe) systems

sensitivity by breast density (14). Second, improve the

performance of state-of-the-art deep learning-based breast mass

detection models by the means of synthetic data augmentation.

Figure 1 shows the differences in sensitivity of our deep

learning-based mass detection model by density composition.

The breast composition distribution of the dataset used to train

the model has a big unbalance in categories A (9%) and D (5%)

(Figure 1A). Nonetheless, the sensitivity between fatty (95% for

BI-RADS A) and extremely dense breasts (82% for BI-RADS D)

is very different (Figure 1B). The decrease in performance is

partly caused by the high rate of false positives in extremely

dense breasts (Figure 1C).

Data augmentation is commonly used to increase the

variability of the training samples, improve the model

generalization and avoid overfitting. Among all deep learning-

based augmentation techniques, Generative Adversarial

Networks (GANs) (15) are frequently used to generate new

synthetic samples in an unsupervised manner. GANs have been

previously used to synthesize full-field digital mammograms

(FFDMs) or lesion patches, normally at low resolutions (16–

18). Becker et al. (19) trained a cycle-consistent GAN

(CycleGAN) on downscaled mammograms (256×256 and

515×408 pixels) to artificially inject or remove suspicious

features. In their reader study, three radiologists could

discriminate between original and synthetic images with an

area under the curve (AUC) of 0.94, mainly due to the

presence of artifacts. Zakka et al. (20) trained a style-based

GAN to generate 512×512 mammograms enabling user-

controlled global and local attribute-editing. Then, a double-

blind study involving four expert radiologists assessed the

quality of the resulting images achieving an average AUC of 0.54.
A B C

FIGURE 1

Differences in sensitivity of a deep learning-based mass detection model by breast density composition in full-field digital mammography.
(A) Breast composition distribution of the training set. (B) Mass detection sensitivity by breast density. (C) Output of an automated detection
model in a high-density (BI-RADS D) image. The red bounding boxes are the AI model outputs and the green box corresponds to the true mass,
summing a total of four false positives.
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Other studies used the synthetic mammograms as data

augmentation to improve the performance in different

downstream tasks. Synthetic data augmentation using GANs

was evaluated in breast cancer classification by Shrinivas et al.

(21). The proposed model, a Deep Convolutional GAN

(DCGAN), synthesized FFDM with 256×256 image resolution.

The synthetic images were validated using a Visual Turing test

with the help of medical experts and were easily spotted by the

radiologist because they lacked the sharpness and fine-grained

details of original mammograms. In a similar study, Jendele et al.

(22) balanced the ratio of benign and malignant lesions in the

training set using a CycleGAN trained to translate healthy

mammograms to mammograms containing malignant

findings. The synthetic mammograms were 256×256 pixels, as

higher image resolutions introduced many artifacts. The benefits

of using the synthesized mammograms for data augmentation

were inconclusive considering that the performance of their

detection model did not improve. Muramatsu et al. (23) trained

a CycleGAN using masses from unrelated domains – lung CT

and mammography – to synthesize 256×256 pixels masses and

improve the mass classification in mammography. However, no

statistical difference was found between the model trained with

synthetic masses and the classifier trained with original

mass patches.

In this study, the original resolution of FFDMs, around 5

Megapixels (MP), with image sizes of 3328×4084 or 2560×3328

pixels depending on the manufacturer. Two main challenges

have prevented the use of GANs for high-resolution FFDM

synthesis. The first one is the high demand for graphics

processing unit (GPU) memory, which typically scales with

the input and output resolutions. As an example, CycleGAN

needs more than 24GB of GPUmemory when the input image is

larger than 1MP. The second challenge is data scarcity. The

training set has to be representative enough to generate realistic

samples and overcome the training instabilities and image

artifacts of GANs. High intrinsic heterogeneity exists across

mammograms due to the huge variability of breast sizes, shapes,

and compositions. Moreover, FFDMs contain very fine

structural details at high resolution such as the different

parenchymal patterns, nipples, and pectoral muscles, the

presence of lymph nodules, microcalcifications, or

calcifications, among many other associated features.

Korkinof et al. (24) was the first study that managed to

synthesize high-resolution FFDM images using a Progressively

Growing GAN (PGGAN) (25). Their PGGAN was trained using

more than 400,000 FFDMs and was demonstrated to generate

mammograms up to a 1280×1024 pixel resolution. All

mammograms available were used for training, independently

of the clinical findings, and only images with post-operative

artifacts and large foreign bodies such as implants were excluded

from the training set. In a separate retrospective study, Kornikof

et al. (26) evaluated the perceived realism of the synthetic FFDM

images in a reader study involving 55 radiologists and 62 non-
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radiologists. Overall, in the setup of this study, the synthetic

images were shown to be indistinguishable from original

mammograms. However, it was unclear and was not further

investigated whether the synthetic FFDMs have relevant

applications for clinical purposes.

This work presents for the first time the use of GAN models

to generate high-resolution FFDMs with increased breast density

using images from different manufacturers and datasets.

Moreover, we evaluated the potential of using the synthesized

images as data augmentation to improve the mass detection

performance. Only a single prior study had performed similar

data augmentation by breast density categories for improved

mass detection (27). However, the authors employed

mathematical breast phantoms generated using the pipeline in

the VICTRE study (28) instead of GANs. The breast phantoms

were generated across the four BI-RADS breast density

categories for each view, cranio-caudal (CC) and mediolateral

oblique (MLO), and were modeled after a single vendor, the

Siemens Mammomat Inspiration. The limitation of their study is

the lack of diversity within each density type, including the size

and shape of the breast. Moreover, the statistical analysis did not

show a significant difference between the Free-response Receiver

Operating Characteristic (FROC) curves for mass detection.

To summarize, the contributions of our study are as follows:
• Synthesize high-resolution high-density FFDMs using

GAN-based models from three different datasets and

mammography systems (manufacturers).

• Tackle the class imbalance by breast density

composition by augmenting the training set using

high-density synthetic mammograms.

• Improve the performance of mass detection in extremely

dense breasts, categorized as BI-RADS D.

• Investigate the potential of high-density data

augmentation for domain adaptation.

• Evaluate the anatomical realism of the synthetic

mammograms in a reader study involving two expert

radiologists and one surgical oncologist.
2 Materials and methods

2.1 Datasets and breast density

Four different datasets were used in this study. General

details of these datasets are presented in Table 1. The

OPTIMAM Mammography Image Database (OMI-DB) (29)

comprises FFDM from the Breast Screening Programme of the

United Kingdom (UK). In this study, we used the subset of

mammograms captured with the Hologic Selenia Dimensions

scanners (Hologic, Inc., Massachusetts, United States). The

proportion of fibroglandular (dense) tissue in the breast was
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obtained from the commercial Volpara software (version 1.5.4,

Volpara Health, Wellington, New Zealand). The Volumetric

Breast Density (VBD) percentage of each mammogram was

mapped to the corresponding BI-RADS breast density category.

Only normal mammograms – without pathologies – were

selected to train the synthetic data generation models. The

mammograms containing masses were used to train and test

the mass detection AI model.

The non-hidden case-control dataset of the CSAW dataset

(30) was also used in this study. The dataset comprises screening

FFDMs from Karolinska University Hospital (Solna, Sweden)

acquired with Hologic Inc. devices. A total of 91,484 normal

FFDM contained breast density information estimated using the

LIBRA automated tool (University of Pennsylvania, United

States) (31). The mapping between LIBRA breast density

percentage and BI-RADS A and D categories was done by

selecting the tails of the percent density distribution of the

healthy exams.

The Breast Cancer Digital Repository (BCDR) dataset (32) is

a public dataset from 2012 comprising images supplied by the

Centro Hospitalar São João, at University of Porto (Portugal)

and obtained using a MammoNovation Siemens FFDM scanner.

For our purposes, we selected a total of 200 FFDMs without

pathologies. The breast density categories were provided in the

annotations of the dataset following the American College of

Radiology (ACR) statement on reporting breast density (1).

The INbreast dataset (33) was acquired from a single

Portuguese center using a FFDM system, the Siemens

MammoNovation. INbreast was used in this study as an

external validation dataset for the mass detection model

trained with OPTIMAM Hologic images. In addition, INbreast

was used to train a mass detection model in a low data regime

scenario. The dataset contains 107 FFDMs with 116 annotated

masses from different breast densities. The percentage of images

in each BI-RADS category is 36%, 35%, 22% and 7% for BI-

RADS A, B, C and D.

All images have a matrix of 3328×4084 or 2560×3328 pixels,

depending on the compression plate used for image acquisition.

In a previous work, we confirmed that a resolution of 1332×800
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pixels was enough to detect small masses and reach state-of-the-

art performance in different AI detection methods (34). All the

FFDM images were cropped to the breast region and resized to

1332×800 pixels keeping the aspect ratio. Our target resolution

for data synthesis was the same as the one used by our deep

learning mass detection model.
2.2 Synthesis of high-density full-field
digital mammograms

Our goal was to synthesize high-density FFDM from original

low density mammograms and then use the synthetic data to

improve the performance of our mass detection models. To this

end, the training images were split by breast density BI-RADS

categories, being BI-RADS A the source domain and BI-RADS D

the target domain. Before training, all mammogram images were

resized to the target resolution (1332×800 pixels), the input size

of the mass detection model.

The CycleGAN (35) was the method selected to perform the

low-to-high-density mammogram translation. The choice of

CycleGAN was motivated by its widespread use and successes

reported in the cancer imaging domain (17). Akey methodological

feature of CycleGAN is that its training data can be unpaired

without the need for corresponding image pairs in source and target

domains. Unpaired training data ensured the applicability of

CycleGAN to our datasets, in which image pairs are not available,

as the same breast of the same patient cannot be from both the high

and the low breast density domains.

As shown in Figure 2, the CycleGAN contains two mapping

functions: 1) an image x in the source domain is mapped to a

synthetic image G(x) = ŷ in the target domain via a generator G;

and 2) an image y is mapped from target to source F(y) = x̂ via a

generator F. This enables translating images from source to

target and back to the source domain F(G(x)) = x̂ . Both

generators F and G are paired with corresponding

discriminators, which try to classify whether a generated image

is real or synthetic in a two-player minmax game with their

respective generator (15). Based on the predictions of the
TABLE 1 Digital mammography datasets used in this study.

BCDR CSAW OPTIMAM Hologic INbreast

ACR Normal
MMG

LIBRA (%) Normal
MMG

Volpara
VBD(%)

Normal
MMG

MMG with masses ACR MMG with masses

BI-RADS A 1 40 ≤ 2.8 435 ≤ 3.5 972 344 1 42

BI-RADS B 2 40 (2.8, 25) 52064 (3.5, 7.5) 3670 1740 2 36

BI-RADS C 3 62 (25, 75) 38545 (7.5, 15.5) 1987 808 3 21

BI-RADS D 4 58 ≥ 75 394 ≥ 15.5 708 161 4 8
For each dataset, the total number of mammograms (MMG) with the available breast density information are mapped to the corresponding BI-RADS categories. In CSAW, the breast
percentage was obtained running LIBRA software. In OPTIMAMHologic, the Volumetric Breast Density (VBD) percentage was obtained using Volpara software. In BCDR and INbreast,
only the American College of Radiology (ACR) categories are available in the dataset information.
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discriminator, binary cross entropy is used to compute the

adversarial loss as shown below, which is back-propagated to

the respective generator network.

LGAN G,DY ,X,Yð Þ
=  Ey∼pdata yð Þ log  DY yð Þ½ � + Ex∼pdata xð Þ log  (1 − DY G xð Þð Þ½ �

CycleGAN further contains two cycle-consistency losses

defined as L1 reconstruction loss between (i) the source image

x and the reconstructed source image F(G(x)) = x̂ and between

(ii) the target image y and the reconstructed target image G(F(

y)) = ŷ .

Lcyc G, Fð Þ =  Ex∼pdata xð Þ ‖ F G xð Þð Þ − x ‖1½ �
+ Ey∼pdata yð Þ ‖G F yð Þð Þ − y ‖1½ �

As defined by (35), the full loss function of our CycleGAN

reads as follows with the l parameter (l=10) weighting the

relative importance between cycle-consistency and adversarial

losses.

L G, F,DX ,DYð Þ =  LGAN G,DY ,X,Yð Þ + LGAN F,DX ,Y ,Xð Þ + l  Lcyc G, Fð Þ

Only healthy mammograms (Normal) were used to train the

different CycleGAN models. The main reason was to avoid

feature hallucinations that have been shown to occur in cancer

imaging when training on images where tumors were present

(17, 36).

A total of five CycleGAN models from the three different

datasets –BCDR, CSAW and OPTIMAM– were trained (see

Figure 3). For the OPTIMAM and the CSAW dataset, a different

model was trained for each view (CC and MLO). That was

because the anatomic features of CC and MLO are different and

more specialized CycleGAN models – focusing only on one view

– should learn better translations. However, the small sample

size in BCDR dataset made it unfeasible to split the models by

view and, for this dataset, a single model was trained combining

both CC and MLO views (Figure 3A).
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The models were trained using a single GPU (24GB NVIDIA

GeForce RTX 3090) for a maximum of 200 epochs, using a batch

size of 1 and adjusting the learning rate following the

recommendations implemented in the CycleGAN Pytorch

framework1. The models are available inside the mediGAN

library (37).
2.3 Mass detection using high-density
synthetic data augmentation

2.3.1 Effectiveness of the data augmentation
strategies

Data scarcity is an important topic in the cancer imaging

field and can substantially impact the performance of AI models.

In this regard, the effectiveness of the proposed data

augmentation technique will depend on the available training

images. Ideally, the mass detection models should be trained

with large databases with enough representation of the different

breast density categories. However, as described in Table 1, there

is a considerable imbalance among BI-RADS categories in the

datasets. To evaluate the effectiveness of the proposed data

augmentation under different data availability conditions, we

have designed four different training scenarios.

First, we analyzed the impact of the dataset size. Both a large and

a small public dataset were selected to train the detection models,

respectively, in high- and low-data regime scenarios. The OPTIMAM

Hologic database was selected to investigate the first scenario,

comprising more than 3000 mammograms with annotated masses.

The low-regime scenario was simulated using the INbreast dataset,

which contains 107 FFDMs with annotated masses.

Second, we evaluated how well the synthetic images were

able to simulate extremely dense breasts (BI-RADS D) during
A

B

FIGURE 2

Overview of the mapping functions of the CycleGAN framework. (A) shows the mapping of a low-density mammogram (source domain) via
generator G to a high-density mammogram (target domain). (B) depicts the mapping of a synthetic high-density mammogram back to the low-
density source domain via generator F.
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training. To this end, we trained the detection models twice.

First, removing the real BI-RADS D images from the training set

and keeping only real mammograms from BI-RADS A, B, and C.

In this training setup, the model did not see any real BI-RADS D

images during training. Second, including the real BI-RADS D

mammograms in the training. In this last scenario, the

OPTIMAM Hologic detection models used 25% of the real BI-

RADS D mammograms available for training while the

remaining ones were used for testing and validation purposes.

Note that the INbreast dataset has only 8 real BI-RADS D

mammograms available for training.

2.3.2 Training and testing
Our baseline model for mass detection in FFDM is a

Deformable DETR (38) with a ResNet50 (39) feature

extraction backbone. The model choice was based on the good

performance of Deformable DETR in our previous comparative

study (34).

First, the baseline model was trained without synthetic data

augmentation. Then, four mass detection models were trained

with different data augmentation strategies as follows. Three

mass detection models, named BC-Aug, CS-Aug and OP-Aug,

used synthetic images from a single CycleGAN model with a

proportion of 1:1 per mammogram – 1 real and 1 synthetic. The

fourth detection model, named OP-CS-BC-Aug, included a

combination of synthetic images from all the CycleGAN

models with a proportion of 1:3 per mammogram – 1 real and

3 synthetic. Thus, the combined detection model was trained

with a proportion of synthetic data three times higher than the

other three models.

The BC-Aug detection model was trained using synthetic

data generated from the BC-All CycleGAN (Figure 3). Similarly,

the OP-Aug and the CS-Aug detection models were trained with

synthetic data from the corresponding CycleGAN models. Note

that BC-All generates both the MLO and CC views, whereas the

CSAW and OPTIMAM have two independent models for each

view: CS-CC, CS-MLO, OP-CC and OP-MLO.

Only random flipping was used as additional data

augmentation. All models were trained five times, that is,

using five different random seeds, and evaluated by averaging

the results across seeds. A single GPU was used (24GB NVIDIA

GeForce RTX 3090) to train each model for a maximum of 60

epochs, using a batch size of 1 and adjusting the learning rate

following the implementation recommendations of the

MMDetection framework
2.

2.3.3 Evaluation metrics and statistical
significance tests

The area under the curve (AUC) of the Free-response

Receiver Operating Characteristic (FROC) curve (40) was used
2 https://github.com/open-mmlab/mmdetection
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to compare the baseline with the different data augmentation

strategies. The AUC was computed by varying the confidence

threshold of each bounding box in a range of FPPI ∈ (0, 1) (False

Positives per Image). If the Intersection-over-Union (IoU) of the

prediction and the ground truth was greater than 10%, then the

bounding box was considered as a True Positive (TP) (41).

To assess statistical differences in AUCs between the baseline

and the models trained with different data augmentation

strategies, we used the paired version of DeLong’s test for

ROC curves (42). To do so, we defined a maximum of 10

False Positives per Image (FPPI) and compared the detection

scores of the baseline with the augmented models. The statistical

analysis was performed using the code from the fast

implementation of DeLong by (43).
2.4 Reader study

A reader study involving two breast radiologists and one

surgical oncologist specializing in breast disease was conducted

to determine whether the synthetic images were distinguishable

from the real ones as a proxy for perceptual realism. The readers

were two breast radiologists from different hospitals in Spain,

with +9 (Reader A) and +7 (Reader B) years of experience and

the surgical oncologist from a hospital in Poland with +12 years

of experience in image guided breast biopsy and lesion

localization techniques (Reader C).

The reader study contained 180 high-density mammograms

balanced by view and dataset. A total of 90 images were original

BI-RADS D mammograms: 30 from OPTIMAM Hologic, 30

from CSAW and 30 from BCDR dataset. The other 90 images

were synthetic mammograms generated with the different

CycleGAN models: 30 images from OP-CC and OP-MLO

models, 30 from CS-CC and CS-MLO models, and 30 from

BC-All model. The original low-density mammograms used to

generate the synthetic images were randomly selected from BI-

RADS A OPTIMAM Hologic dataset.

The reader study was designed as a stand-alone ImageJ3

plugin. A single mammogram was displayed at a time

(Figure 4B) next to a multiple-choice panel (Figure 4A) to

assign a label based on the certainty of the image being

synthetic (Fake) or original (Real). The 6 different choices

were converted to equally-distributed probabilities of (0.95,

0.77, 0.59, 0.41, 0.23, 0.05) to compute the ROC curve of each

reader as in Alyafi et al. (44). No feedback was given to the

readers during the assessment to avoid the identification of

artifacts of synthetic images.

The images were resized to a maximum 532 pixels height to

avoid the identification of the checkerboard artifacts and the lack

of sharpness of synthetic mammograms, which is related to
3 https://imagej.nih.gov/ij/
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upsampling (45) in GANs. The goal of the reader test was to

evaluate the anatomically-plausible realism of the synthetic

images rather than the noise and common artifacts of the

CycleGAN models. Additionally, we asked radiologists to

identify the artifacts and common pitfalls of the synthetic

images after performing the reader study (Section 4.3.2.1).
3 Results

3.1 Evaluation for the CycleGAN models

The Fréchet Inception Distance (FID) (46) is a useful metric

to measure the quality of the synthetic mammograms and

compare the synthetic models with each other. The FID was

calculated between two different sets of images 4. Since FID is not

an absolute measure, we defined lower and upper bounds using

real mammograms. First, the lower bound was defined as the

FID between two different splits of real BI-RADS D

mammograms from the same dataset. Second, the upper

bound was given by the FID between real BI-RADS A and BI-

RADS D mammograms. The synthetic BI-RADS D images in

our evaluation set were generated from real BI-RADS A

mammograms using the five different CycleGAN models (BC-
4 GitHub repository used to compute FID: https://github.com/

mseitzer/pytorch-fid (commit 3d604a2)
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All, CS-CC, CS-MLO, OP-CC and OP-MLO). The BI-RADS A

mammograms were from the OPTIMAM Hologic and INbreast

datasets, the training datasets for the mass detection models. In

such manner, we would like to evaluate if the CycleGAN models

were able to translate from the source domains – OPTIMAM

Hologic and INbreast – to the target domains – OPTIMAM

Hologic, CSAW or BCDR – with enough fidelity.

In Table 2, the FID between different groups of images is

shown. Overall, the FID score was lower for the synthetic CC

mammograms than for the MLO view. Ideally, the FID between

synthetic and real BI-RADS D mammograms should be as close

as possible to the lower bound and do not exceed the upper

bound. As an example, the FID scores in CSAW CC view

between real and synthetic BI-RADS D for both OPTIMAM

Hologic and INbreast input images, were 99.95 and 124.84,

which are between the lower bound (42.57) and the upper bound

(142.34). For the synthetic BI-RADS D images generated from

OPTIMAM Hologic, both in OPTIMAM Hologic and CSAW

CycleGANs, the FID between the real and the synthetic BI-

RADS D mammograms lies between the FID bounds. Only in

BCDR, the FID score was greater than the FID between both

original images.

On the contrary, for the synthetic BI-RADS D images

generated from INbreast, the FID was lower in BCDR than in

OPTIMAM Hologic and CSAW. Both BCDR and INbreast were

acquired with Siemens scanners, while OPTIMAM and CSAW

were acquired with Hologic Inc. scanners. This indicates a less

pronounced domain difference between BCDR and INbreast,

which aligns with the correspondingly smaller FID. Lastly, the
A

B

C

FIGURE 3

Training setup for the different CycleGAN models. (A) BC-All model for both CC and MLO views trained with 98 normal FFDMs from BCDR
dataset. (B) two models for CC (CS-CC) and MLO (CS-MLO) views trained with 463 and 366 normal FFDMs from CSAW dataset. (C) two models
for CC (OP-CC) and MLO (OP-MLO) views trained with 894 and 786 normal FFDMs from OPTIMAM Hologic dataset.
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synthetic images from the OPTIMAM Hologic CycleGAN

models lie outside the bounds when the input images came

from INbreast. In section 4.2, we will evaluate the impact on

mass detection performance when synthetic images with high

FID scores are used as data augmentation.

3.1.1 Qualitative analysis of the
synthetic images

In Figure 5 there are some sample high-density

mammograms generated with the different CycleGAN models.

The first row (Figure 5A) corresponds to the CC view and the

second (Figure 5B) to MLO. The first column is the original BI-

RADS A FFDMs from OPTIMAM Hologic scanner. The next

columns are the synthetic FFDMs from the different CycleGAN

models. By visual inspection, one can see that the synthetic

images did not remove the masses in the original mammograms,

which enabled their usage for data augmentation in the mass

detection training. We can also confirm that the synthetic

images are able to properly translate from source to target
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domain. The low-to-high-density image translation was

applied for the input BI-RADS A, B, or C. In higher density

mammograms, such as BI-RADS C, the changes were more

subtle and less density was added to the output image.
3.2 Mass detection performance

All models were evaluated in independent sets of 120

mammograms of each BI-RADS category from the

OPTIMAM Hologic dataset. As our objective was to improve

the detection performance in BI-RADS D mammograms, we

focused on the performance gain in BI-RADS D mammograms.

The evaluation metrics for the other BI-RADS categories (A, B

and C) can be found in the Supplementary Material.

3.2.1 Large data availability scenario
The corresponding FROC curves of the detection models

trained with OPTIMAM Hologic are shown in Figure 6. All
A

B

FIGURE 4

Main panels of the ImageJ reader study plugin. (A) multiple choice panel to label the mammograms as synthetic (Fake) or original (Real).
(B) Mammogram image to assess.
TABLE 2 Fréchet Inception Distance between different sets of images.

CycleGAN
Dataset

View Real BI-RADS D
(lower bound)

Synthetic BI-RADS D (input BI-
RADS A from OPTIMAM

Hologic)

Synthetic BI-RADS D
(input BI-RADS A from

INbreast)

Real BI-RADS A
(upper bound)

Real BI-
RADS
D

BCDR CC +
MLO

66.16 149.10 (BC-All) 103.98 (BC-All) 142.61

CSAW CC 42.57 99.95 (CS-CC) 124.84 (CS-CC) 142.34

MLO 73.54 165.48 (CS-MLO) 183.89 (CS-MLO) 206.04

OPTIMAM
Hologic

CC 34.17 73.16 (OP-CC) 132.04 (OP-CC) 107.99

MLO 57.24 109.68 (OP-MLO) 175.63 (OP-MLO) 140.93
The lower bound was defined as the FID between two different splits of real BI-RADS Dmammograms from the same CycleGAN dataset. Similarly, the upper bound was given by the FID
between real BI-RADS A and BI-RADS D mammograms. The synthetic BI-RADS D images were generated from real BI-RADS A mammograms from OPTIMAM Hologic and INbreast
datasets. The different CycleGAN models (BC-All, CS-CC, CS-MLO, OP-CC and OP-MLO) were used to generate the synthetic images. Bold values indicates the FID values from the
synthetic images.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1044496
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Garrucho et al. 10.3389/fonc.2022.1044496
detection models were evaluated on BI-RADS D test set from

OPTIMAM Hologic while the INbreast dataset was used as an

external validation set.

The models trained using only synthetic BI-RADS D

mammograms in training obtained more benefit from the

high-density data augmentation. Table 3 summarizes the gains

in AUC and the p-values for the best performing data

augmentation strategies. When only synthetic BI-RADS D

images were present in training, the combined data

augmentation strategy (OP-CS-BC-Aug) obtained a gain of

+1.24, increasing the AUC from 79.71% to 80.95% with a p-

value of 0.0696. The OP-CS-BC-Aug obtained a +2.95 gain in

AUC in the external validation dataset – INbreast. This

confirmed that the resulting model is more robust in the

presence of domain-shifts compared to the baseline. However,

the best performing data augmentation strategy for the INbreast

test set was the BC-Aug, with a total gain of +4.15 in AUC. The

models trained with real and synthetic BI-RADS D

mammograms obtained less gain in the OPTIMAM Hologic

test set. To this end, the most substantial gain was achieved with

the BC-Aug model, with +0.5 in AUC and a p-value of 0.2277,

which indicates it is not statistically significant. In the external

test set, the model with the highest increase in AUC was the OP-
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Aug model, with a gain of +1.45 in INbreast. This increase in

AUC in the external test set showed that the models benefited

from high-density synthetic data augmentation even when the

training data is large and contains real BI-RADS D

mammograms. The detailed metrics for the other data

augmentation strategies can be found in Supplementary

Material (Table D).

3.2.2 Low data availability scenario
The corresponding FROC curves of the detection models

trained on the INbreast dataset are shown in Figure 7. All mass

detection models were evaluated on the BI-RADS D test set from

OPTIMAM Hologic. Table 4 summarizes the gains in AUC and

the p-values for the best performing data augmentation

strategies in INbreast. The detailed metrics for the other data

augmentation strategies can be found in Supplementary Material

(Table E).

The models trained using only synthetic BI-RADS D

mammograms in training improved their performance in two

out of four data augmentation strategies, namely, OP-Aug and

OP-CS-BC-Aug. The OP-Aug model increased the AUC from

42.59% to 45.41%, a gain of +2.81 with a p-value smaller than

0.05 with respect to the baseline model. The OP-CS-BC-Aug
A

B

FIGURE 5

Samples of high-density synthetic mammograms generated with the different CycleGAN models. On the left, the input BI-RADS A mammogram
from OPTIMAM Hologic dataset. (A) CC view, (B) MLO view.
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model increased the baseline AUC by +1.05. When training the

models with real and synthetic BI-RADS D mammograms, only

the OP-Aug model obtained a gain in performance with respect

to the baseline. However, the gain is higher than in other

scenarios, increasing the AUC from 44.59% to 48.84%, a gain

of +4.25.

The AUC values in the OPTIMAM Hologic BI-RADS D test

set are low in comparison with the AUCs in the large availability

scenario. A first reason is that the INbreast models were trained

with only 116 mammograms with masses. Second, the test set is

from a different domain (OPTIMAM Hologic) due to the fact

that the entire INbreast dataset was used as training set. The

latter was motivated by the fact that the number of BIRADS D

mammograms available in the INbreast dataset (Table 1) was

deemed insufficient for representative performance evaluation.
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3.3 Reader study outcomes

3.3.1 Receiver operating characteristic curves
The AUC of each reader ROC curve can be found in Table 5.

On average, the synthetic mammograms of CC view from

OPTIMAM CycleGAN were the most difficult to discriminate

from original mammograms (0.615 AUC). Overall, the CC view

looked more realistic to all readers than the MLO view. The

BCDR model was the easiest for recognition of synthetic images,

with an AUC of 0.824 in CC view and 0.954 in MLO view.

3.3.2 Qualitative analysis of synthetic FFDM
After completing the study, the readers evaluated the realism

of the synthetic images and identified the common artifacts

and failures.
A

B

C

D

FIGURE 6

FROC curves for the mass detection models trained using OPTIMAM Hologic database. The baseline model did not include synthetic data
augmentation in the training. The BC-Aug, CS-Aug, OP-Aug and the OP-CS-BC-Aug models used synthetic images from the corresponding
CycleGAN models. (A, C) The OPTIMAM Hologic test set contained 120 BI-RADS D mammograms with annotated masses, (B, D) The INbreast
test set containing 107 mammograms with annotated masses from different breast densities, used for external validation. (C, D) The models
were trained with 41 additional real BI-RADS D mammograms. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.).
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3.3.2.1 Common artifacts and failures

The most unrealistic features in order of importance were: 1)

big concentrations of glandular tissue adjacent to pectoral

muscle (Figure 8D); 2) dark small dots or ovals in the image

like perforations (Figure 8A); 3) linear fragmentation of muscles;

4) distorted nipples (Figure 8C); and 5) lack of glandular tissue

behind the nipple (Figure 8B). Some synthetic images missed to

preserve the prepectoral fat or smooth contours at the interface

with subcutaneous fat.
3.3.2.2 Realistic mammograms

Some synthetic high-density FFDMs that looked realistic to

the radiologist are shown in Figure 9. The features that improved

realism of synthetic images were 1) the presence of linear

microcalcifications or roundish calcifications; 2) lymph nodes

in the correct areas; 3) post-biopsy tissue markers; and 4) the

correct distribution of dense tissue.
4 Discussion

The contributions in this study are two fold. First, synthesize

high-resolution high-density FFDMs from different domains.

Second, use the synthetic images as data augmentation to
Frontiers in Oncology 11
improve the mass detection performance in high-density

breasts and multi-center datasets.

In our image synthesis experiments, we trained a total of five

CycleGAN models using FFDMs from three different datasets to

perform low-to-high density translat ion from real

mammograms. Only healthy mammograms were used to train

the image-to-image translation models. By training with healthy

images, the models learned the healthy data distribution, hence,

minimizing any risk of inserting hallucinated lesions into the

synthetic images. As our goal was to use the synthetic

mammograms to improve the mass detection, we confirmed

that the CycleGAN models did not remove the masses from the

original mammograms (see Figure 5).

To assess the quality of the synthetic images we calculated

the commonly used FID metric between synthetic and real high-

density mammograms. Since FID is not an absolute measure, we

defined lower and upper bounds using real mammograms. The

closer the synthetic images are to the real BI-RADS D images,

the closer the FID should be to the lower bound. After evaluating

the FID metric of the different CycleGAN models, we observed

that the FID for the CC view was better than the one of the MLO

view. The difficulty of synthesizing MLO view was previously

mentioned in Korkinof et al. (24), most probably because MLO

has greater complexity and more anatomical information than

the CC view. However, the OP-MLO and CS-MLO models still
TABLE 3 Performance values and statistical significance test results of the best data augmentation strategies for the models trained with
OPTIMAM Hologic database.

Only synthetic BI-RADS D in train-
ing

Synthetic and real BI-RADS D in training

FROC AUC Gain p-value FROC AUC Gain p-value

OPTIMAM Hologic BI-RADS D Test Set Baseline 79.71%
(78.44, 80.98)

Ref Ref 80.60%
(79.20, 82.00)

Ref Ref

BC-Aug 79.62%
(77.83, 81.41)

-0.09 0.0064 81.10%
(80.40, 81.80)

+0.50 0.2277 0.2277

OP-Aug 79.86%
(78.30, 81.42)

+0.15 0.8269 80.75%
(78.77, 82.73)

+0.15 0.5599 0.5599

OP-CS-BC-Aug 80.95%
(79.63, 82.27)

+1.24 0.0696 80.76%
(79.92, 81.60)

+0.16 0.7921 0.7921

INbreast Dataset (external validation) Baseline 81.51%
(78.93, 84.09)

Ref Ref 84.71%
(83.39, 86.03)

Ref Ref

BC-Aug 85.66%
(81.91, 89.41)

+4.15 0.0002 84.88%
(82.86, 86.90)

+0.17 0.1666 0.1666

OP-Aug 83.45%
(80.03, 86.87)

+1.94 6.08e-05 86.16%
(83.37, 88.95)

+1.45 0.0041 0.0041

OP-CS-BC-Aug 84.47%
(82.32, 86.62)

+2.95 0.0008 84.29%
(82.22, 86.36)

-0.42 0.0162 0.0162
front
The columns on the left correspond to the models trained without real BI-RADS D mammograms. The baseline models were trained without synthetic images. The 95% Confidence
Intervals of the FROC AUC are in parenthesis. The p-value was computed using the DeLong method with a maximum of 10 FPPI. Bold values correspond to the best performing strategy.
Ref corresponds to the reference method.
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had an FID score between the lower and upper bounds when the

input images were from OPTIMAM Hologic.

The BC-All CycleGAN had the largest FID score when the

input images were from OPTIMAM Hologic, and the smallest

FID when the input images were from INbreast. This is in line

with the scanner manufacturer differences between both

datasets. BCDR and INbreast were acquired with Siemens

scanners. On the other hand, OPTIMAM and CSAW were

acquired with Hologic Inc. scanners. Moreover, BCDR

contains old digitized film mammograms while OPTIMAM is

a Hologic digital mammography dataset with very specific image

characteristics, i.e., it is very sharp, usually shows lymph nodes

very well and it does visualize some skin of the breast.

To further evaluate the clinical realism of the synthetic

images, we performed a reader study involving two breast
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radiologists and one surgical oncologist. When the CycleGAN

models trained using OPTIMAM Hologic and CSAW datasets

(OP-CC, OP-MLO, CS-CC, CS-MLO) were used to insert density

onto low density mammograms from OPTIMAM Hologic, it

was much more difficult for the readers to differentiate between

original and synthetic mammograms. In that case, the readers

had to look for anatomical disparities and inadequacies to spot

the difference. Both OPTIMAM and CSAW FFDMs were

acquired with an Hologic scanner. On the other hand, all the

readers could easily identify the synthetic images generated with

the BC-All model. As previously mentioned, BCDR contains old

digitized film mammograms acquired with a Siemens scanner.

Considering that, we can conclude that domain disparities

between the acquisition settings of the source and the target

domains have a big impact on the perceptual realism of the
A B

FIGURE 7

FROC curves for the mass detection models trained using INbreast dataset. The baseline model did not include synthetic data augmentation in
the training. The BC-Aug, CS-Aug and OP-Aug and the OP-CS-BC-Aug models only used synthetic images from the corresponding CycleGAN
models. (A) The OPTIMAM Hologic test set contained 120 BI-RADS D mammograms with annotated masses. (B) The models were trained with
8 additional real BI-RADS D mammograms. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.).
TABLE 4 Performance values and statistical significance of the best data augmentation strategies for the models trained with INbreast dataset.

Only synthetic BI-RADS D in
training

Synthetic and real BI-RADS D
in training

FROC AUC Gain p-value FROC AUC Gain p-value

OPTIMAM Hologic BI-RADS D Test Set (external validation) Baseline 42.59%
(39.73, 45.45)

Ref Ref 44.59%
(42.87, 46.31)

Ref Ref

OP-Aug 45.41%
(42.70, 48.12)

+2.81 4.58e-22 48.84%
(46.21, 51.47)

+4.25 1.43e-27

OP-CS-BC-Aug 43.65%
(40.64,46.66)

+1.05 2.32e-11 39.74%
(35.72, 43.76)

-4.85 9.40e-10
fron
The columns on the left correspond to the models trained without real BI-RADS D mammograms. The baseline models were trained without synthetic images. The 95% Confidence
Intervals of the FROC AUC are in parenthesis. The p-value was computed using the DeLong's method with a maximum of 10 FPPI. Bold values correspond to the best performing
strategy. Ref corresponds to the reference method.
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synthetic images. In addition, the synthetic mammograms from

the MLO view were easier to identify than the ones from the CC

view and this observation correlates with the higher FID scores

of the synthetic images from the MLO CycleGAN models (OP-

MLO and CS-MLO).

In our mass detection experiments, different data

augmentation strategies were tested to improve the mass

detection of the baseline model. First, three mass detection

models were trained using synthetic images from the different
Frontiers in Oncology 13
CycleGANs with a proportion of 1:1 – 1 real and 1 synthetic.

Second, a fourth mass detection model was trained with

synthetic images from all the CycleGAN models, the OP-CS-

BC-Aug, with a proportion of 1:3 – 1 real and 3 synthetic. To

evaluate the effect of the different data augmentation strategies

under diverse training conditions, we defined four training

scenarios for the mass detection models. Two scenarios

involving the amount of data available for training, and the

other two involving the exclusion or inclusion of the real BI-
TABLE 5 Reader test results: Area Under the Curve (AUC) from the Receiver Operating Characteristics (ROC) curve of each CycleGAN model and
view (CC, MLO).

OPTIMAM CSAW BCDR

CC MLO CC MLO CC MLO

Reader A 0.580 0.664 0.651 0.718 0.818 0.962

Reader B 0.576 0.893 0.887 0.758 0.871 0.956

Reader C 0.689 0.673 0.489 0.636 0.784 0.944

Average ± std 0.615 ± 0.052 0.743 ± 0.105 0.675 ± 0.163 0.704 ± 0.050 0.824 ± 0.037 0.954 ± 0.007
f

Reader A: 9+ years of experience as a breast radiologist. Reader B: 7+ years of experience as a breast radiologist. Reader C: surgical oncologist with +12 years of experience in image
guided breast biopsy and lesion localization techniques.
A B

C D

FIGURE 8

Common artifacts of synthetic high-density mammograms, (A) dark dots or ovals, (B) lack of glandular tissue behind the nipple, (C) distorted
nipples, (D) big concentrations of glandular tissue adjacent to the pectoral muscle.
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RADS D mammograms in training. By excluding the real BI-

RADS D mammograms, we tested if the synthetic high-density

mammograms could replace the real BI-RADS D images,

simulating a plausible clinical scenario in which no BI-RADS

D images were available for training. In the large availability

scenario, the data augmentation strategies did not improve the

baseline performance with statistically significant difference.

However, the synthetic data helped the models to generalize

better and increased the performance in the external dataset

(INbreast). When training only with synthetic BI-RADS D

images, the BC-Aug model improved the AUC by 4.15% in

INbreast. When the real BI-RADS D images were present in

training, the OP-Augmodel improved the AUC by 1.45%. In the

low data availability scenario, the OP-Aug data augmentation

strategy improved the AUC significantly for both scenarios in

the out-of-domain test set.

As we hypothesized, the CycleGAN models not only learned

how to translate from low-to-high density but also preserved the

domain characteristics from their respective training datasets

during translation. The domain characteristics comprise the

differences in image quality, acquisition settings and

scanner manufacturers.

Based on our experimental results, we did not observe a

consistent association between the FID scores and the success of

the corresponding data augmentation in mass detection. For

instance, in the low-data availability scenario, the CycleGANs

trained on OPTIMAM Hologic had a comparably high FID but

the OP-Aug detection model obtained the highest increase in the

AUC. Moreover, the OP-Aug detection model yielded a

consistent improvement in the four training scenarios. The

OP-CC and OP-MLO CycleGANs were trained with a larger

number of training images than the CSAW and BCDR

CycleGANs. Overall, the number of images used to train the

CycleGAN models seemed to have a higher importance for the

detection performance gain compared to the FID score.
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One of the limitations of our work involves the availability of

healthy BI-RADS D mammograms to train the generative

models. From the results, the data augmentation that obtained

more consistent gains under all four scenarios was the OP-Aug,

using CycleGANs trained with the OPTIMAM Hologic dataset.

As shown in Figure 3, OP-MLO and OP-CC were trained with

more images than the other CycleGANs, showing the big impact

of data for training more robust CycleGANs. In this regard,

fairer comparisons among generative models could be achieved

if more images from the CSAW and BCDR datasets would

be available.

Data scarcity is one of the most common and general

limitations in medical imaging AI research. In tasks where

patch-based approaches are sufficient, extracting multiple

samples from one scan can aid to overcome the data scarcity

issue (47). However, this limitation is further exacerbated in

tasks where a single subject scan can only be used as a single

sample in the training of deep learning methods. Moreover, the

high resolution nature of the breast FFDMs makes it even more

challenging. We believe that this study is not only an important

step towards mitigating data scarcity and class imbalance, but

also demonstrates the importance of fair AI in clinical practice.

However, there is still room for improvement to increase the

fairness of AI models for women with high-density breasts in

mammography screening.

Future research may focus on evaluating the potential of the

high-density synthetic mammograms in other downstream

tasks. We analyzed the high-density mammogram synthesis

via the downstream task of breast mass detection. However,

there is a multitude of further applications of our proposed low-

to-high breast density translation. For instance, our method can

be applied to breast mass segmentation or tumor malignancy

classification. Furthermore, our synthetic images can expand the

radiologist curricular and professional training programs. For

instance, for training purposes radiologist candidates would
A B C

FIGURE 9

Synthetic high-density mammograms that looked realistic to the radiologist. Samples from the different CycleGAN models: (A) OP-CC and OP-
MLO, (B) CS-CC and CS-MLO, (C) BC-All.
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need to detect and accurately annotate the same lesion in both

high and low-density breast, which allows to measure inter- and

intra-observer variability per lesion and breast density level. This

way our method provides flexibility to personalize and adjust the

radiologist training to specific scenarios (e.g. very high density

breasts with very small-sized tumor lesions).
5 Conclusion

In this study, we evaluated different CycleGAN models for

high-density FFDM synthesis from three different datasets and

acquisition pipelines, comprising two scanner manufacturers –

i.e. Hologic and Siemens. Moreover, we applied different

synthetic data augmentation strategies to improve the mass

detection performance of a deep-learning based model. Even

though the improvements were not always statistically

significant for models trained in the large data availability

scenario, the results demonstrated that the data augmentation

helped to improve the mass detection in out-of-domain datasets,

improving the domain generalization of the final model. The

models trained in the low data availability scenario obtained

more benefit from the data augmentation, with a maximum gain

of 4.25% in AUC for the model trained with synthetic images

generated with the OPTIMAM Hologic CycleGANs. Finally, a

reader study involving three expert radiologists evaluated the

perceptual realism of the synthetic mammograms, concluding

that the quality of CC view synthetic images is higher than the

mammograms from MLO view. Our study is the first one to

synthesize high-resolution FFDMs with increased density and

showed the potential of including the generated images in the

data augmentation pipeline to improve the generalization and

performance of downstream tasks using mammography images,

such as mass detection.
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