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a large-scale multicenter breast 
cancer DCE-MRI benchmark 
dataset with expert segmentations
Lidia Garrucho et al.#

Artificial Intelligence (AI) research in breast cancer Magnetic Resonance Imaging (MRI) 
faces challenges due to limited expert-labeled segmentations. to address this, we present 
a multicenter dataset of 1506 pre-treatment T1-weighted dynamic contrast-enhanced 
MRI cases, including expert annotations of primary tumors and non-mass-enhanced 
regions. the dataset integrates imaging data from four collections in the Cancer Imaging 
Archive (TCIA), where only 163 cases with expert segmentations were initially available. To 
facilitate the annotation process, a deep learning model was trained to produce preliminary 
segmentations for the remaining cases. These were subsequently corrected and verified by 16 
breast cancer experts (averaging 9 years of experience), creating a fully annotated dataset. 
Additionally, the dataset includes 49 harmonized clinical and demographic variables, as well 
as pre-trained weights for a baseline nnU-Net model trained on the annotated data. this 
resource addresses a critical gap in publicly available breast cancer datasets, enabling the 
development, validation, and benchmarking of advanced deep learning models, thus driving 
progress in breast cancer diagnostics, treatment response prediction, and personalized care.

Background & Summary
Magnetic Resonance Imaging (MRI) is recognized as a highly sensitive imaging modality for breast cancer 
assessment, particularly in preoperative staging and treatment response evaluation. Breast MRI, specifically 
T1-weighted dynamic contrast-enhanced imaging (DCE-MRI), uses contrast agents to enhance blood vessels 
and tissues within the breast, aiding in the localization of tumors, often identified through angiogenesis1. The 
precise delineation of the tumor boundary, or tumor segmentation, enables accurate quantitative evaluation of 
tumor characteristics such as shape, size, and volume, which can help monitor disease progression and treat-
ment effectiveness. In addition to its clinical value, gold-standard segmentations enable a more nuanced analysis 
of breast cancer characteristics and contribute to the development of AI models for improved diagnosis and 
prognosis. Radiomics2, a method widely employed in machine learning applied to radiology, involves extract-
ing numerous quantitative features from images and is highly dependent on gold-standard segmentations3. 
Although Radiomics has proven effective in predicting treatment response and survival status in breast cancer 
research, particularly using breast DCE-MRI images4–6, current studies in public datasets include only a small 
number of subjects (up to 300) due to the limited availability of expert segmentations7. Besides the lack of expert 
segmentations, open-access DCE-MRI datasets with clinical outcomes are scarce and, currently, all available 
collections are part of The Cancer Imaging Archive8 (TCIA). Within the selected collections, only 163 expert 
primary tumor segmentations from the I-SPY1/ACRIN 6657 trial9 were available in TCIA10. The TCIA collec-
tions lack standardization in terms of folder structure, file naming, and clinical variables. Similarly to the M&Ms 
benchmark dataset for cardiac imaging11,12 and the BraTS dataset for brain imaging13, our initiative presents a 
multicenter breast cancer dataset comprising 1506 pre-treatment DCE-MRI cases with expert segmentations. 
This dataset is specifically designed to support the benchmarking of advanced medical imaging models lever-
aging AI.

The main contributions of our work are shown in Fig. 1.
First, we collected pre-treatment T1-weighted DCE-MRI cases from four different collections in TCIA, 

sourcing a total of 1506 cases. The selection criteria, shown in Fig. 2, included pre-treatment cases where patients 
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underwent neoadjuvant chemotherapy (NAC) within months of diagnosis and for which corresponding clinical 
data was available, such as the pathological complete response (pCR) to NAC or five-year survival information.

Second, the clinical and imaging data of the selected cases across four collections were consolidated and 
harmonized into a single table, which contains 21 clinical variables, 6 demographic variables, and 22 imaging 
parameters.

Third, a total of 16 experts participated in the segmentation of the primary tumors and non-mass-enhanced 
areas present in the 1506 T1-weighted DCE-MRI cases. Manual segmentation of breast tumors in 3D MR images 
is both tedious and time-consuming, making it impractical for large-scale datasets. To address this challenge, 
we adopted a strategy similar to that used in the BraTS dataset13 for brain tumor segmentation, where automatic 
methods assist in generating preliminary annotations that are then refined by experts. Specifically, we initially 
trained a standard state-of-the-art deep learning model using private expert segmentations of DCE-MRI. This 
model produced preliminary segmentations that the 16 experts manually corrected, inspected, and verified, 
resulting in 1506 expert segmentations. This approach not only reduced annotation time but also ensured con-
sistency across a large dataset, similar to BraTS, where semi-automated tools accelerate initial segmentation, 
followed by expert refinement. Additionally, two expert clinicians visually assessed all the preliminary automatic 
segmentations for quality assurance. The quality labels from these preliminary automatic segmentations, along 
with expert corrections, offer insights for the design of AI-driven models for segmentation quality control.

Forth, the dataset folder structure was standardized for easy retrieval and harmonized to support 
plug-and-play AI training.

Last, an additional contribution of this work is the pre-trained weights of a baseline nnU-Net14 tumor 
segmentation model, trained on the 1506 expert segmentations of the primary tumors segmented in the 
MAMA-MIA dataset. These weights can be used for inference or to fine-tune models for a wide variety of seg-
mentation tasks involving MRI or other 3D medical image modalities.

We note that our dataset may have potential biases arising from preliminary automatic segmentations and 
inter-annotator variability among the 16 experts performing manual corrections. Typically, radiologists employ 
similar software tools (e.g., thresholding) to generate rough approximations of lesions, saving annotation time. 
Despite these potential biases, our dataset represents the largest collection of expert segmentations in breast 
cancer MRI to date, paired with harmonized imaging and clinical data. This addresses a significant gap in the 
availability of gold-standard segmentations in breast MRI, adding substantial value to breast cancer research. It 
is important to highlight that experts were instructed to segment only the primary lesion in cases of multifocal 
or multicenter breast cancers. This restriction was due to the clinical information, such as tumor subtype and 
pathologic complete response (pCR), being available only for the primary lesion and to reduce segmentation 
time.

In the following paragraphs some of the most important potential applications of the MAMA-MIA dataset 
are introduced in detail.

Fig. 1 Summary of the main contributions in the MAMA-MIA dataset. The dataset includes three tables with 
the harmonized clinical and imaging data, train and test splits for benchmarking, the preliminary automatic 
segmentations quality scores, the images and the expert and the preliminary automatic segmentations. 
Each case in the dataset consists of a pre-treatment T1-weighted DCE-MRI sequence with all the phases in 
a subfolder under the images folder, and two primary tumour segmentations, one expert-corrected and the 
preliminary automatic segmentation, without expert corrections.
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treatment Response and survival prediction. Despite its benefits, NAC has associated side effects, 
making it desirable to predict patient response before treatment planning. Most deep learning methods predict-
ing pCR to NAC using MRI data have been developed with fewer than 300 samples and are difficult to benchmark 
due to the lack of a standardized dataset with expert segmentations7. By including treatment and survival out-
comes alongside other clinical variables, the MAMA-MIA dataset can serve as a benchmark for developing AI 
models to predict treatment response and patient survival.

automatic segmentation of Breast Cancer in MRI. Automated segmentation algorithms can process 
medical images much faster than manual methods, minimizing inter-observer variability and providing more 
consistent results. The 1506 expert segmentations in this dataset enable the development of large-scale, generaliz-
able, and robust automatic tumor segmentation models. The pre-trained weights of a baseline nnU-Net segmen-
tation model trained on this dataset are provided to facilitate further improvements and to serve as a baseline for 
comparative studies.

Segmentation Quality Control. Visual inspection by expert radiologists is the gold standard for quality 
control, but it is impractical at scale15. The expert segmentations, combined with evaluations of preliminary auto-
matic segmentations, form the basis for developing robust quality control mechanisms in breast cancer MRI.

Image Synthesis. The synthesis of realistic and diverse 2D MRI slices, as well as full 3D DCE-MRI volumes, 
can enhance the optimization of image analysis algorithms via data augmentation, domain adaptation, or privacy 
preservation. This can also support radiologist decision-making, such as simulating treatment response or pre-
dicting disease progression16–19. Patient demographics and clinical data in the dataset can be utilized to condition 
generative models or analyze their impact on generated images, enabling AI fairness analysis and bias mitigation 
(e.g., age or ethnicity).

Image Standardization. The dataset includes both bilateral and unilateral images, with variations in mag-
netic field strengths, number of slices, slice thickness, and scanner manufacturers, making it a valuable resource 
for developing domain generalization and image standardization techniques. Exploring contrast dynamics in 
tumors and their correlation with acquisition times, as included in the harmonized imaging data, represents a 
promising avenue for future studies.

Fine-tuning of Foundational Models. Foundation models like MedSAM20, based on SAM21, address 
segmentation tasks across imaging modalities but suffer from imbalances in modality representation in train-
ing data and challenges with segmenting vessel-like structures. While SAM has been explored for breast tumor 
segmentation in ultrasound images22 and mammographic mass segmentation23, the MAMA-MIA dataset could 
accelerate the ingestion of 3D medical imaging data for training or fine-tuning foundational models tailored to 
breast MRI tasks.

Methods
Data Collection and Harmonization. The steps to collect the DCE-MRI cases that form the MAMA-MIA 
data set are illustrated in Fig. 2. The initial selection criterion was to gather all available open-access DCE-MRI 
studies of breast cancer patients who underwent NAC treatment. Four collections available on TCIA8 met this 
requirement: the level 2b cohort24 from the I-SPY1/ACRIN 6657 trial (I-SPY1)9, the I-SPY2/ACRIN 6698 trial25,26, 
NACT-Pilot27, and Duke-Breast-Cancer-MRI28, referred to as ISPY1, ISPY2, NACT, and DUKE, respectively.

The second criterion was to select the DCE-MRI series acquired before NAC treatment started, often referred 
to as pre-treatment sequences or timepoint T0. The third criterion was to exclude cases that lacked information 
on treatment response or survival status. The final criterion involved the quality control by experts during cancer 
segmentation in the DCE-MRI images. Experts excluded cases without sufficient contrast enhancement or those 
with artifacts that significantly impeded segmentation.

Fig. 2 Selection criteria to build the MAMA-MIA dataset. The DCE-MRI cases are collected from four public 
collections available on TCIA8: level 2b cohort24 from I-SPY1/ACRIN 6657 trial (I-SPY1)9, I-SPY2/ACRIN 
6698 trial25,26, NACT-Pilot27, and Duke-Breast-Cancer-MRI28, referred to as NACT, ISPY1, ISPY2, and DUKE, 
respectively.
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The final MAMA-MIA dataset comprises 1506 DCE-MRI cases that meet all the selection criteria. Figure 3 
illustrates the pre-contrast and post-contrast phases of one case from each of the four different collections 
included in the dataset. In the first post-contrast phase, malignant tissues are better visualized due to enhanced 
contrast after injection. The dataset includes both bilateral and unilateral breast MRIs, as well as images acquired 
in axial and sagittal planes. This diversity arises from scanner-dependent acquisition protocols at different 
centers, where some scanners capture MRIs in the axial plane, while others use sagittal protocols. By including 
this variety, the dataset reflects real-world clinical practices, enhances its generalizability, and supports research 
into a wide range of imaging scenarios.

The dataset harmonization steps included data curation, image quality control, extraction of clinical and 
imaging data from DICOM headers, and establishing a standardized naming and folder structure for all 
sequences in the dataset. In addition, the orientation was standardized to ensure consistency and facilitate usa-
bility in computational analysis. Axial MRIs were reoriented to the LAS (left-anterior-superior) coordinate sys-
tem, while sagittal MRIs were reoriented to the PSR (posterior-superior-right) coordinate system. This decision 
aligns with common practices in machine learning and deep learning research, where software such as nibabel29 
and SimpleITK30 is frequently used to process medical imaging data. This uniformity simplifies downstream 
tasks such as visualization, annotation, and model development, while preserving anatomical accuracy and 
clarity for each imaging plane.

No additional preprocessing steps, such as bias field correction, image normalization (e.g., z-score or 
min-max normalization), or voxel resampling, were applied to the dataset. These methods can significantly 
alter image resolution and potentially affect model performance. Preprocessing choices depend on the specific 
requirements of the downstream task31. For instance, voxel resampling may influence spatial resolution crucial 
for tumor segmentation, while normalization strategies might affect intensity-based tasks like radiomics or con-
trast enhancement studies. Researchers can tailor these procedures to their use cases.

Expert segmentations. The dataset cohort includes a highly heterogeneous group of locally advanced 
breast cancers, encompassing cases with single tumors, multiple tumors (multifocal cases), non-mass enhanced 
areas where the cancer has spread, and bilateral breast cancers. In our dataset, both automatic and expert segmen-
tations were performed within the Volume of Interest (VOI), excluding other cancerous findings outside the VOI. 
The reason for segmenting only the tissues within the VOI is related to the clinical outcomes and tumor subtype 
information, which is available only for the primary tumor (delineated VOI) and not for bilateral or multifocal 
breast cancers.

Selection of the Volume of Interest. The VOI is defined as a 3D rectangular box manually drawn to encompass 
the entire enhanced region. Its dimensions depend on the tumor morphology, ranging from a few centimeters to 
the entire breast in cases of more advanced tumors. Accurate selection of the VOI is important for segmentation, 
as the clinical information regarding tumor subtype and treatment response can only be reliably linked to the 
volume within the VOI.

In DUKE, the bounding boxes are provided within the clinical information. However, not all datasets include 
straightforward 3D coordinates of the tumor. For the NACT, ISPY1, and ISPY2 collections, tumor volumetric 
analysis images are available in most of the DCE-MRI cases. These volumetric analysis images include various 
annotations of the breast tissue and pixel-level annotations of the peak enhanced region after contrast injection, 
also known as the Functional Tumor Volume (FTV).

The FTV is determined by filtering the percent enhancement (PE) image and the signal enhancement ratio 
(SER) image using specific thresholds on their pixel values, following the steps described in4. Figure 4 compares 
the FTV to the expert tumor segmentation. Although the FTV delineates a region likely to encompass malignant 

Fig. 3 Pre-treatment DCE-MRI sequences from the four collections forming the dataset. Left to right: images 
are shown in the acquisition plane (axial or sagittal) from DUKE, ISPY1, ISPY2 and NACT. Only two phases  
of the DCE-MRI sequence are shown, the pre-contrast phase (first row) and the first post-contrast phase 
(second row).
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tissue, it frequently fails to accurately represent the precise tumor volume. Consequently, expert refinement of 
the FTV masks is essential to ensure anatomical accuracy and reliable segmentation for downstream analyses.

In cases where the analysis mask was unavailable, an approximate VOI was created using the same filtering 
steps applied to the SER and PE images. Using these procedures, we obtained 3D bounding boxes, or VOIs, 
encapsulating the primary tumor or non-mass-enhanced area for all 1506 cases in the dataset.

Preliminary Automatic Segmentations. In this study, the preliminary automatic tumor segmentations were gen-
erated using the popular nnU-Net framework14. A segmentation model was trained using a total of 331 primary 
tumor and non-mass enhanced (NME) segmentations from DUKE28,32 and the TCGA-BRCA collection33. The 
training dataset encompasses 251 axial DCE-MRI cases from DUKE with expert segmentations shared by the 
authors from a treatment response study6,30 and other 80 sagittal DCE-MRI cases with expert-validated auto-
matic tumor segmentations34,35 (Chicago Dynamic MRI Explorer 2005 Version) from TCGA-BRCA, increas-
ing the heterogeneity of the training data. This combination of axial and sagittal cases in the training dataset 
introduced diversity in imaging orientations, which was hypothesized to improve the preliminary segmenta-
tion model’s robustness for segmenting the MAMA-MIA dataset, as it contains both axial and sagittal cases. 
However, this hypothesis has not been explicitly tested in this study. At the time this model was developed, the 
DUKE and TCGA datasets were the only sources of expert tumor segmentations available to the research team.

The 331 expert-validated tumor segmentations were performed on the first post-contrast images. Due to 
negligible patient movement, these segmentations were applied across all DCE-MRI phases, including pre- and 
post-contrast images, serving as additional data for training. Preprocessing steps prior to training included crop-
ping the images to the Volume of Interest (VOI) and resampling to 1 × 1 × 1 mm3 isotropic pixel spacing. Data 
augmentation was performed by adding a 25% pixel margin to the VOI and applying random flipping.

The VOI preliminary automatic segmentations were up-sampled and mapped back to the original image 
space to generate full-image segmentation masks of the primary lesions. The nnU-Net model achieved a mean 
validation Dice coefficient of 0.8287 ± 0.0112 in a 5-fold cross-validation setting. As a note, the 80 DCE-MRI 
cases from TCGA-BRCA collection were not included in the final MAMA-MIA dataset due to the absence of 
clinical information, such as tumor subtype, treatment response, or survival status.

Visual Quality Control of the Preliminary Automatic Segmentations. Two expert breast radiologists evaluated 
the quality of the preliminary automatic segmentations using an in-house graphical user interface (GUI). For 
each case, three 2D slices from the first post-contrast image—spanning the axial, sagittal, and coronal planes—
were displayed with segmentation contours highlighted in red. Full image slices were provided to help the 
experts quickly identify whether the primary tumor or NME region was missed by the segmentation model.

The visual inspection process was guided by specific instructions provided to the expert breast radiologists. 
Based on the different images displayed, the experts assessed the 1506 preliminary automatic segmentations 
and categorized them into four quality categories: Good, Acceptable, Poor, or Missed. A Good segmentation 
indicated precision with no need for major corrections. An Acceptable segmentation captured the tumor but 
required minor corrections. A Poor segmentation lacked precision and contained numerous pixels outside the 
tumor region. Finally, a segmentation categorized as Missed corresponded to an area of the breast unrelated to 
the tumor.

This categorization was also used to evenly distribute segmentations among the experts for correction, ensur-
ing that the difficulty of cases assigned to each radiologist was balanced. Notably, all cases, including those rated 
as Good during the visual assessment, were sent to the radiologists for manual correction without disclosing the 
assigned quality category (Good, Acceptable, Poor, or Missed). This blinded approach ensured that no bias was 

Fig. 4 Volumetric analysis image with the corresponding tumor bounding box (in purple) and the tumor 
volume extracted using the signal enhancement ratio (SER) method denoted as Functional Tumor Volume 
(FTV). In comparison to FTV, the expert segmentation of the tumor is more precise and contains only the 
malignant tissues.
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introduced during the correction process, preserving the integrity of the evaluation and ensuring that expert 
corrections remained consistent across categories.

Expert Manual Corrections. From the 1506 DCE-MRI cases forming the MAMA-MIA dataset only a total 
of 160 manual segmentations from the ISPY1 collection10 were available in the TCIA platform. Additionally, 
the authors from a treatment response study using DUKE dataset6,30 shared the expert manual segmentations 
from an additional 251 cases. Therefore, a total of 411 out of 1506 cases had expert manual segmentations. 
Our main contribution, together with the dataset harmonization, are the manual segmentations of the missing 
1095 cases. A total of 16 experts from nine different institutions from Europe and Africa participated in the 
manual correction of the 3D segmentations. The group, with an average of 9 years of expertise in breast cancer 
radiology, was formed by fourteen breast radiologists, one surgical oncologist and one medical physicist. The 
preliminary automatic segmentation quality scores from one radiologist were used to stratify the cases and 
assign each expert an evenly distributed set of 70 cases in terms of corrections needed. However, as previously 
stated, this categorization was blind to the manual annotators. Along with the automatic segmentations, each 
case consisted of the pre-contrast and the first post-contrast phase. The experts were asked to segment the tumor 
in the first post-contrast phase but the subtracted image or a later phase could be used as a support in the manual 
correction process if needed. The Mango viewer36 was the tool selected to correct the automatic segmentations. 
The guidelines provided to the experts included: 1) segment only the primary tumor if the secondary tumors are 
not within the FTV volume in multifocal cases, 2) avoid as much as possible the inclusion of healthy tissue in 
non-mass enhanced cases, 3) exclude tissue markers (or clips) from the segmentations, 4) include tumor necro-
sis in the segmentation, 5) do not include intra-mammary lymph nodes, 6) verify the segmentation is consistent 
in all views, not only in the highest resolution view. In Fig. 5 some examples of first post contrast images and the 
corresponding manually corrected segmentations are shown.

Baseline Segmentation Model using the Expert Segmentations. An additional contribution of this work is the 
pretrained weights of a vanilla nnU-Net14 tumor segmentation model, trained using the 1506 expert segmen-
tations. The nnU-Net model was trained with DCE-MRI full-images as input over a total of 1000 epochs in a 
5-fold cross-validation setting. The model achieved a mean validation Dice coefficient of 0.7620 ± 0.2113.

The image preprocessing steps included z-scoring the DCE-MRI images using the mean and standard 
deviation of all its phases (pre- and post-contrast) and resampling to 1 × 1 × 1 mm3 isotropic pixel spacing. 
In the training pipeline, all post-contrast phases and the subtraction MRI image (computed by subtracting 
the pre-contrast image from the first post-contrast image) were included as data augmentation. The model 
was evaluated only on the first post-contrast phases, which are the images used by the experts to perform the 
segmentations.

Fig. 5 Manual segmentations were performed for both (a) primary tumors and (b) non-mass enhanced areas. 
For each case, the middle slice of the manual segmentation is displayed in sagittal, coronal, and axial views, with 
the segmentation contour highlighted in red. The rightmost columns in (a) and (b) present the corresponding 
3D segmentation.
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Data Records
All data records, including the DCE-MRI images, the automatic and expert segmentations for each of the 1506 
cases in the MAMA-MIA dataset and the weights of the baseline segmentation model, are available online in the 
MAMA-MIA Synapse repository37 under CC-BY-NC license at the level of the most restrictive primary data-
set (Duke-Breast-Cancer-MRI28). Data records also include three tables, one that contains all the clinical and 
imaging information, another with the quality scores from the two breast radiologists that evaluated the prelim-
inary automatic segmentations using the GUI, and a table with the train and test split to promote reproducibility 
in future studies using the dataset. Figure 1 illustrates the file content and folder structure of the MAMA-MIA 
dataset. Each case identifier consists of the original collection/dataset acronym and the corresponding patient 
identification number (patient ID). For instance, the ISPY1_1221 case corresponds to the pre-treatment 
DCE-MRI sequences of patient ID 1221 from the ISPY-1 collection. The different phases are named using the 
same case ID plus the corresponding phase number (ISPY1_1221_000X). For example, ISPY1_1221_0000 rep-
resents the pre-contrast phase and ISPY1_1221_0002 represents the second post-contrast phase.

Country

MAMA-MIA Dataset

ISPY1 ISPY2 DUKE NACT Total

United States United States United States United States United States

Studies time-period 2002–2006 2010–2016 2000–2014 1995–2002 1995–2016

# (%) # (%) # (%) # (%) # (%)

Age

<  40 35 (20.5) 208 (21.2) 61 (21.0) 13 (20.3) 317 (21.0)

40-49 62 (36.3) 300 (30.6) 104 (35.7) 25 (39.1) 491 (32.6)

50-59 56 (32.7) 317 (32.3) 74 (25.4) 18 (28.1) 465 (30.9)

60-69 18 (10.5) 134 (13.7) 41 (14.1) 6 (9.4) 199 (13.2)

>=70 0 (0.0) 18 (1.8) 11 (3.8) 2 (3.1) 31 (2.1)

N/A 0 (0.0) 3 (0.3) 0 (0.0) 0 (0.0) 3 (0.2)

Ethnicity

Caucasian 129 (75.4) 777 (79.3) 177 (60.8) 45 (70.3) 1128 (74.9)

African American 31 (18.1) 116 (11.8) 91 (31.3) 3 (4.7) 241 (16.0)

Asian 7 (4.1) 68 (6.9) 7 (2.4) 4 (6.2) 86 (5.7)

Other 2 (1.2) 16 (1.6) 14 (4.8) 3 (4.7) 35 (2.3)

N/A 2 (1.2) 3 (0.3) 2 (0.7) 9 (14.1) 16 (1.1)

BMI

Underweight 6 (3.5) 17 (1.7) 7 (2.4) 5 (7.8) 35 (2.3)

Normal 57 (33.3) 301 (30.7) 73 (25.1) 39 (60.9) 470 (31.2)

Overweight 40 (23.4) 224 (22.9) 71 (24.4) 15 (23.4) 350 (23.2)

Obesity class I 23 (13.5) 155 (15.8) 50 (17.2) 5 (7.8) 233 (15.5)

Obesity class II 10 (5.8) 62 (6.3) 19 (6.5) 0 (0.0) 91 (6.0)

Obesity class III 26 (15.2) 39 (4.0) 13 (4.5) 0 (0.0) 78 (5.2)

N/A 9 (5.3) 182 (18.6) 58 (19.9) 0 (0.0) 249 (16.5)

Implants
Yes 1 (0.6) 29 (3.0) 0 (0.0) 0 (0.0) 30 (2.0)

No 170 (99.4) 951 (97.0) 291 (100.0) 64 (100.0) 1476 (98.0)

Bilateral cancer
Yes 3 (1.8) 20 (2.0) 7 (2.4) 0 (0.0) 30 (2.0)

No 168 (98.2) 960 (98.0) 284 (97.6) 64 (100) 1476 (98.0)

Multifocal cancer

Yes 4 (2.3) 389 (39.7) 139 (47.8) 7 (10.9) 539 (35.8)

No 7 (4.1) 591 (60.3) 152 (52.2) 57 (89.1) 807 (53.6)

N/A 160 (93.6) 0 (0.0) 0 (0.0) 0 (0.0) 160 (10.6)

Tumor subtype

Luminal 67 (39.2) 536 (54.7) 123 (42.3) 21 (32.8) 747 (49.6)

HER2-enriched 25 (14.6) 86 (8.8) 50 (17.2) 8 (12.5) 169 (11.2)

HER2-pure 29 (17.0) 0 (0.0) 30 (10.3) 6 (9.4) 65 (4.3)

Triple neg. 45 (26.3) 358 (36.5) 85 (29.2) 11 (17.2) 499 (33.1)

N/A 5 (2.9) 0 (0.0) 3 (1.0) 18 (28.1) 26 (1.8)

pCR

Yes 49 (28.7) 316 (32.2) 64 (22.0) 11 (17.2) 440 (29.2)

No 118 (69.0) 664 (67.8) 216 (74.2) 53 (82.8) 1051 (69.8)

N/A 4 (2.3) 0 (0.0) 11 (3.8) 0 (0.0) 15 (1.0)

Total cases 171 980 291 64 1506

Table 1. Social (upper half) and clinical (bottom half) variables of the accumulated dataset, MAMA-MIA, 
consisting of four breast cancer TCIA collections: ISPY19, ISPY225, DUKE28, and NACT27. Age is measured 
in years, Ethnicity is categorized in Caucasian/White, African American/Black, Asian and Other (Hispanic, 
American Indian/Alaskan native, Hawaiian/Pacific Islander, Multiple race) groups, while BMI (Body Mass 
Index) is categorized in the indicated groups using the patient weight and height (if patient height was missing, 
1.65cm was used as default). pCR stands for pathological Complete Response and N/A for not available. Last 
row summarizes the number of cases per dataset and in total.
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Tables 1 and 2 summarize the most representative dataset demographics, clinical variables, and image acqui-
sition parameters. As described in Table 1, age and ethnicity information is available for more than 98% of the 
cases, while Body Mass Index (BMI) is available for 83% of cases. The MAMA-MIA dataset comprises 314 
cases from women younger than 40 years old, constituting 21% of the total patients, and half of the dataset 
patients were younger than 50 years old at diagnosis. Therefore, the MAMA-MIA dataset can be considered 
well-balanced in terms of the young versus older population. Ethnicity distributions in the dataset are reflective 
of United States demographics38, with 16% African American patients, less than 6% Asian, a 2.3% of other eth-
nicities, and a majority Caucasian population (74.9%).

MAMA-MIA Dataset

ISPY1 ISPY2 DUKE NACT Total

# (%) # (%) # (%) # (%) # (%)

Acquisition plane
Axial 0 (0.0) 980 (100.0) 291 (100.0) 0 (0.0) 1271 (84.4)

Sagittal 171 (100.0) 0 (0.0) 0 (0.0) 64 (100.0) 235 (15.6)

Magnetic field strength
1.5 171 (100.0) 715 (73.0) 136 (46.7) 64 (100.0) 1086 (72.1)

3.0 0 (0.0) 265 (27.0) 155 (53.3) 0 (0.0) 420 (27.9)

Fat suppression
Yes 170 (99.4) 976 (99.6) 290 (99.7) 64 (100.0) 1500 (99.6)

No 1 (0.6) 4 (0.4) 1 (0.3) 0 (0.0) 6 (0.4)

Scanner manufacturer

SIEMENS (S) 44 (25.7) 252 (25.7) 115 (39.5) 0 (0.0) 411 (27.3)

GE 115 (67.3) 611 (62.3) 176 (60.5) 64 (100.0) 966 (64.1)

PHILIPS (P) 12 (7.0) 117 (11.9) 0 (0.0) 0 (0.0) 129 (8.6)

Scanner model

Avanto (S) 0 (0.0) 123 (12.6) 70 (24.1) 0 (0.0) 193 (12.8)

SIGNA HDxt (GE) 0 (0.0) 536 (54.7) 59 (20.3) 0 (0.0) 595 (39.5)

SIGNA GENESIS (GE) 103 (60.2) 0 (0.0) 0 (0.0) 64 (100) 167 (11.1)

Other (S, GE, P) 68 (39.8) 321 (32.8) 162 (55.7) 0 (0.0) 551 (36.6)

Bilateral MRI
Yes 3 (1.8) 171 (17.4) 291 (100.0) 0 (0.0) 465 (30.9)

No 168 (98.2) 809 (82.6) 0 (0.0) 64 (100.0) 1041 (69.1)

Image matrix

[256, 256] 156 (91.2) 33 (3.4) 0 (0.0) 62 (96.9) 251 (16.7)

[384, 384] 0 (0.0) 149 (15.2) 0 (0.0) 0 (0.0) 149 (9.9)

[512, 512] 15 (8.8) 721 (73.6) 176 (60.5) 2 (3.1) 914 (60.7)

Other 0 (0.0) 77 (7.9) 115 (39.5) 0 (0.0) 192 (12.7)

Number of phases

3 143 (83.6) 0 (0) 4 (1.4) 58 (90.6) 205 (13.6)

4-5 15 (8.8) 9 (0.9) 287 (98.6) 5 (7.8) 316 (21.0)

6 13 (7.6) 971 (99.1) 0 (0.0) 1 (1.6) 985 (65.4)

mean [min, max] 3 [3, 6] 6 [4, 6] 4 [3, 5] 3 [3, 6] 5 [3, 6]

Number of slices

< 100 166 (97.1) 593 (60.5) 3 (1.0) 64 (100.0) 826 (54.8)

100-199 1 (0.6) 369 (37.7) 257 (88.3) 0 (0.0) 627 (41.6)

>= 200 4 (2.3) 18 (1.8) 31 (10.7) 0 (0.0) 53 (3.5)

mean [min, max] 64 [44, 256] 106 [52, 256] 169 [60, 256] 60 [46, 64] 111 [44, 256]

Slice thickness

< 2.0 5 (2.9) 183 (18.7) 287 (98.6) 0 (0.0) 475 (31.5)

2.0-2.9 131 (76.6) 796 (81.2) 4 (1.4) 64 (100.0) 995 (66.1)

>= 3.0 35 (20.5) 1 (0.1) 0 (0.0) 0 (0.0) 36 (2.4)

mean [min, max] 2.4 [1.5, 4.0] 2.0 [0.8, 3.0] 1.1 [1.0, 2.5] 2.0 [2.0, 2.4] 1.9 [0.8, 4.0]

Pixel spacing

< 0.5 15 (8.8) 2 (0.2) 0 (0.0) 2 (3.1) 19 (1.3)

0.5-0.9 150 (87.7) 939 (95.8) 274 (94.2) 62 (96.9) 1425 (94.6)

>= 1.0 6 (3.5) 39 (4.0) (5.8) 0 (0.0) (4.1)

mean [min, max] 0.8 [0.4, 1.2] 0.7 [0.3, 1.4] 0.7 [0.5, 1.3] 0.7 [0.4, 0.9] 0.7 [0.3, 1.4]

Total cases 171 980 291 64 1506

Table 2. Image acquisition variables of the accumulated dataset, MAMA-MIA, consisting of four breast 
cancer TCIA collections: ISPY19, ISPY225, DUKE28, and NACT27. The upper half shows general acquistion 
characteristics, while the bottom half shows specifics of the acquired sequences and slices. Magnetic field 
strength is measured in Tesla (T), while Slice thickness and Pixel spacing in mm. Other Scanner models include 
MAGNETOM Symphony, SymphonyTim, TrioTim, Verio, Skyra, Sonata, Vision, Vision plus, Prisma fit, 
Espree from Siemens; Signa Excite, Discovery MR750w, Discovery MR750, Signa HDx, Optima from GE; and 
Gyroscan Intera, Ingenia, Achieva, Intera from Philips. Other Image matrices or slice sizes (measured in pixels) 
include [320, 320], [400, 400], [416, 416], [432, 432], [448, 448], [480, 480], [528, 528], [560, 560], [576, 576], 
[640, 640], and [1024, 1024]. The Number of phases include the pre-contrast and all post-contrast phases. To 
have a broader overview, the mean value, as well as the minimum and maximum values (in []) are given for a 
selection of variables. Last row summarizes the number of cases per dataset and in total.
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Clinical information available in more than 90% of the cases includes the presence of bilateral cancer at diag-
nosis, multifocal cancer, tumor subtype, and pathological complete response (pCR) after neoadjuvant chemo-
therapy (NAC) treatment. Other relevant information included in the dataset, albeit not present in all cases, 
comprises survival status in over 450 cases, different tumor receptors, days to recurrence or metastasis, agents 
prescribed during NAC, the necessity of mastectomy after treatment, breast density, and more. A comprehen-
sive list of clinical and imaging variables included in the dataset can be found in the Excel Table as part of the 
Supplementary Material.

Table 2 presents the most common imaging information included in the dataset: date of original collections, 
acquisition plane, magnetic field strength (Tesla) used for DCE-MRI acquisition, scanner manufacturers and 
models, number of bilateral and fat-suppressed DCE-MRIs, mean number of slices, slice thickness, pixel spac-
ing, number of phases, and total number of cases obtained from each original collection. In the DCE-MRI med-
ical imaging modality, the acquisition time interval between contrast administration (pre-contrast MRI) and 
subsequent post-contrast phases is an important factor. Table 3 summarizes the average time intervals between 
phases per dataset. It should be noted that older datasets like ISPY1 and NACT have longer acquisition intervals 
than later collections.

technical Validation
This technical validation evaluates the visual quality control of preliminary automatic segmentations, empha-
sizing the role of expert-corrected segmentations as the primary contribution of this study. The goal is to pro-
vide actionable guidelines and recommendations for future segmentation quality assessments by analyzing 
inter-rater agreement between two expert radiologists and correlating their evaluations with established quality 
metrics, such as the Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD).

Representative examples of expert corrections are shown in Fig. 6, categorized by expert-assigned qual-
ity scores of the preliminary automatic segmentations. It is important to note that all cases, including those 
rated as Good during the visual assessment, were sent to the radiologists for manual correction without reveal-
ing the quality category (Good, Acceptable, Poor, or Missed). This blinded approach ensured that no bias was 
introduced during the correction process. Green voxels highlight areas added by the experts, while pink voxels 
indicate areas removed. Minimal corrections were necessary for segmentations rated as Good, which typically 
involved refining tumor boundaries. In contrast, cases categorized as Missed, such as ISPY2_566011, required 
the experts to perform full tumor segmentation from scratch. These examples underscore the critical role of 
robust automatic segmentation methods in minimizing the burden of manual corrections and highlight the 
value of expert-corrected segmentations. 

Figure 7 illustrates the distribution of quality scores assigned by the experts, alongside the DSC and 
95 percentile HD values calculated between expert-corrected and preliminary automatic segmentations. 
Segmentations rated as Good were strongly correlated with high DSC values and low HD, confirming the 
reliability of the visual quality control interface in distinguishing segmentations that meet clinical standards. 
However, the greatest discrepancies between experts occurred in the Acceptable and Poor categories, where 
subjective interpretation played a larger role in the quality assessment.

To quantify inter-rater agreement, we computed Cohen’s Kappa under two categorization schemes: the origi-
nal four categories (Good, Acceptable, Poor, and Missed) and a simplified binary scheme (Good versus Corrections 
Needed). The four-category scheme yielded a Cohen’s Kappa of 0.39, reflecting low to moderate agreement and 
indicating inconsistencies, particularly in intermediate categories. Simplifying to a binary scheme improved 
agreement significantly, with a Cohen’s Kappa of 0.53, demonstrating that a simplified approach improves con-
sistency between experts while maintaining the primary goal of identifying segmentations that require manual 
correction.

These findings emphasize the efficiency of adopting a binary categorization scheme in visual quality control 
workflows. By focusing only on segmentations requiring correction (Corrections Needed) versus those consid-
ered satisfactory (Good), future visual assessments can achieve greater inter-rater agreement, reduce annotation 
time, and optimize the use of expert resources. The results of this analysis aim to contribute to the development 
of robust visual quality control guidelines for assessing automatic segmentation models.

Furthermore, the categorization of the preliminary automatic segmentations by the radiologists pro-
vides a valuable dataset that can be leveraged to train a classifier capable of mimicking radiologists in 
assessing segmentation quality. Such a classifier could automatically identify Good segmentations or flag 

Average Time Intervals

pre to 1st post 1st to 2nd post 2nd to 3rd post 3rd to 4th post 4th to 5th post

ISPY1 390 [27, 915] 284 [20, 531] 324 [24, 899] 142 [121, 162] 142 [121, 162]

ISPY2 145 [77, 761] 92 [59, 206] 92 [58, 206] 92 [58, 217] 91 [58, 206]

DUKE 241 [94, 922] 124 [75, 354] 114 [74, 169] 118 [88, 391] — —

NACT 442 [331, 752] 362 [290, 901] 314 [283, 435] 288 [286, 289] 286 [286, 286]

MAMA-MIA 203 [27, 922] 131 [20, 901] 100 [24, 899] 96 [58, 391] 91 [58, 286]

Table 3. Average time intervals, measured in seconds, between the pre-contrast and the subsequent post-
contrast phases with the corresponding minimum and maximum values in brackets. Here, details of up to fifth 
post-contrast phase are shown.
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those requiring corrections, further reducing the reliance on manual evaluations and improving scalability. 
A comprehensive list of expert quality scores and corresponding distance metrics is included in the Data 
Records as a CSV file, enabling further analysis, benchmarking efforts, and the potential training of auto-
mated quality assessment tools.

Fig. 6 Examples of preliminary automatic (yellow) and expert segmentations (red) and the corresponding 
expert corrections (pink if the voxels were removed, and green if they were added). The examples are grouped 
by the expert-assigned quality scores for automatic segmentations during the visual inspection (a) Missed, (b) 
Poor, (c) Acceptable, and (d) Good). Under the automatic segmentation there is the Dice Similarity Coefficient 
(DSC) and the 95 percentile Hausdorff Distance (HD) between automatic and expert segmentations. Also, 
under the manual segmentation, the final volume of the expert segmentation in cm3. The total volume corrected 
by the experts is quantified in cm3.

Fig. 7 From left to right: (a) distribution of expert-assigned quality scores for preliminary automatic 
segmentations, (b) Dice Similarity Coefficient (DSC) and (c) the 95 percentile Hausdorff Distance (HD) 
between automatic and expert segmentations across different quality categories. Panel (b) displays DSC 
(higher values indicate better agreement), while Panel (c) shows HD (lower values indicate better alignment), 
respectively.

https://doi.org/10.1038/s41597-025-04707-4


1 1Scientific Data |          (2025) 12:453  | https://doi.org/10.1038/s41597-025-04707-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

Code availability
The GitHub repository for the MAMA-MIA dataset is available at: https://github.com/LidiaGarrucho/MAMA-MIA.  
This repository provides detailed resources and instructions to support researchers in integrating the MAMA-
MIA dataset into their studies. It includes comprehensive scripts to facilitate working with the dataset and enable 
customization of workflows for segmentation, detection, and analysis in various radiomic and AI-driven studies. 
The key components of the repository are as follows:

• Data Filtering and Visualization Scripts: Jupyter notebooks are provided to guide users in filtering and 
visualizing clinical and imaging data using the pandas library, along with the clinical and imaging variables 
included in the dataset’s supplementary Excel table. The notebooks include:

•	 Filtering patients based on clinical outcomes, such as tumor subtype, treatment response, or survival 
status.

•	 Sorting and grouping cases by scanner manufacturer, image resolution, or pixel spacing. 
•	 Exploring relevant clinical and imaging metadata from the dataset information table.
•	 Displaying filtered datasets in tabular or graphical formats for further analysis.
•	 Plotting MRI images using matplotlib for quick visual inspection.
•	 Displaying VOIs and segmentation contours, along with 3D visualizations of tumor segmentations.

• Preprocessing Script: A Jupyter notebook describing common preprocessing steps has been designed to ensure 
the dataset’s compatibility with a wide range of analysis pipelines, while offering flexibility for researchers to adapt 
workflows to their specific objectives. For a detailed guide, refer to the notebooks directory. The script includes 
methods to perform:

•	 Bias Field Correction: Corrects for intensity inhomogeneities and biases, which can enhance the accu-
racy of subsequent analyses.

•	 Denoising: A non-linear filter that averages similar patches throughout the image, allowing it to selec-
tively reduce noise without sacrificing edges and subtle intensity variations.

•	 Intensity Clipping: clipping intensity values to a defined percentile range can help reduce outliers.
•	 Normalization (Z-score): Pixel intensity normalization is performed by subtracting the mean and divid-

ing by the standard deviation, resulting in a distribution with zero mean and unit standard deviation.
•	 Histogram Equalization: Enhances the contrast of the images by redistributing the intensity values to 

span the full range of the histogram.
•	 Resampling: e.g. Resampling the images to isotropic voxel size (e.g., 1 × 1 × 1 mm3), ensuring uniform 

resolution across all images.

• Bounding Box Extraction: Code to extract 3D bounding box coordinates containing primary lesions to ease 
the detection and isolation of VOIs for tumor analysis.

• nnU-Net Segmentation Model Training: Detailed steps for training an nnU-Net model using the dataset’s 
segmentations. The automatic segmentation models were trained using the nnU-Net framework in a 5-fold 
cross-validation setting. Additionally, the pretrained weights of the segmentation model, trained on all expert 
segmentations, are shared and hosted in the Synapse repository. This facilitates model development and enables 
easier benchmarking and comparison by other researchers.

The original DICOM images from TCIA were transformed to NIfTI format using the pycad Python library. 
Metrics such as the Dice coefficient and 95% Hausdorff Distance were computed using the seg-metrics 1.2.7 
Python library39.
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