medigan: a Python library of pretrained generative
models for medical image synthesis

a

Richard Osuala®,** Grzegorz Skorupko®,* Noussair Lazrako,
Lidia Garrucho®,? Eloy Garcia®,” Smriti Joshi®,* Socayna Jouide®,
Michael Rutherford®,® Fred Prior®,° Kaisar Kushibar®,?
Oliver Diaz®,* and Karim Lekadir®?

“Universitat de Barcelona, Barcelona Artificial Intelligence in Medicine Lab (BCN-AIM),
Facultat de Matematiques i Informatica, Barcelona, Spain
YUniversitat de Barcelona, Facultat de Matematiques i Informatica, Barcelona, Spain
“University of Arkansas for Medical Sciences, Department of Biomedical Informatics,
Little Rock, Arkansas, United States

a

Abstract

Purpose: Deep learning has shown great promise as the backbone of clinical decision support
systems. Synthetic data generated by generative models can enhance the performance and
capabilities of data-hungry deep learning models. However, there is (1) limited availability
of (synthetic) datasets and (2) generative models are complex to train, which hinders their
adoption in research and clinical applications. To reduce this entry barrier, we explore generative
model sharing to allow more researchers to access, generate, and benefit from synthetic data.

Approach: We propose medigan, a one-stop shop for pretrained generative models imple-
mented as an open-source framework-agnostic Python library. After gathering end-user require-
ments, design decisions based on usability, technical feasibility, and scalability are formulated.
Subsequently, we implement medigan based on modular components for generative model
(i) execution, (ii) visualization, (iii) search & ranking, and (iv) contribution. We integrate pre-
trained models with applications across modalities such as mammography, endoscopy, x-ray,
and MRL

Results: The scalability and design of the library are demonstrated by its growing number of
integrated and readily-usable pretrained generative models, which include 21 models utilizing
nine different generative adversarial network architectures trained on 11 different datasets. We
further analyze three medigan applications, which include (a) enabling community-wide sharing
of restricted data, (b) investigating generative model evaluation metrics, and (c) improving
clinical downstream tasks. In (b), we extract Fréchet inception distances (FID) demonstrating
FID variability based on image normalization and radiology-specific feature extractors.

Conclusion: medigan allows researchers and developers to create, increase, and domain-adapt
their training data in just a few lines of code. Capable of enriching and accelerating the develop-
ment of clinical machine learning models, we show medigan’s viability as platform for gener-
ative model sharing. Our multimodel synthetic data experiments uncover standards for assessing
and reporting metrics, such as FID, in image synthesis studies.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JMI1.10.6.061403]

Keywords: synthetic data; generative adversarial networks; Python; image synthesis; deep
learning.

Paper 22262SSR received Oct. 5, 2022; accepted for publication Jan. 23, 2023; published online
Feb. 20, 2023.

*Address all correspondence to Richard Osuala, Richard.Osuala@ub.edu

Journal of Medical Imaging 061403-1 Nov/Dec 2023 « Vol. 10(6)

https://orcid.org/0000-0003-1835-8564
https://orcid.org/0000-0002-1059-6915
https://orcid.org/0000-0002-7459-146X
https://orcid.org/0000-0002-3105-2773
https://orcid.org/0000-0002-0587-1919
https://orcid.org/0000-0001-8480-023X
https://orcid.org/0000-0001-6809-8145
https://orcid.org/0000-0003-2665-753X
https://orcid.org/0000-0002-6314-5683
https://orcid.org/0000-0001-7507-5208
https://orcid.org/0000-0001-6789-5177
https://orcid.org/0000-0002-9456-1612
https://doi.org/10.1117/1.JMI.10.6.061403
https://doi.org/10.1117/1.JMI.10.6.061403
https://doi.org/10.1117/1.JMI.10.6.061403
https://doi.org/10.1117/1.JMI.10.6.061403
https://doi.org/10.1117/1.JMI.10.6.061403
https://doi.org/10.1117/1.JMI.10.6.061403
mailto:Richard.Osuala@ub.edu
mailto:Richard.Osuala@ub.edu
mailto:Richard.Osuala@ub.edu

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access. ..

1 Introduction

1.1 Deep Learning and the Benefits of Synthetic Data

The use of deep learning has increased extensively in the last decade, thanks in part to advances
in computing technology (e.g., data storage, graphics processing units) and the digitization
of data. In medical imaging, deep learning algorithms have shown promising potential for
clinical use due to their capability of extracting and learning meaningful patterns from imaging
data and their high performance on clinically-relevant tasks. These include image-based disease
diagnosis'? and detection,® as well as medical image reconstruction,** segmentation,® and
image-based treatment planning.’”

However, deep learning models need vast amounts of well-annotated data to reliably learn to
perform clinical tasks, whereas, at the same time, the availability of public medical imaging
datasets remains limited due to legal, ethical, and technical patient data sharing constraints.”'”
In the common scenario of limited imaging data, synthetic images, such as the ones illustrated
in Fig. 1, are a useful tool to improve the learning of the artificial intelligence (AI) algorithm,
e.g., by enlarging its training dataset.”'"!? Furthermore, synthetic data can be used to minimize
problems associated with domain shift, data scarcity, class imbalance, and data privacy.’
For instance, a dataset can be balanced by populating the less frequent classes with synthetic
data during training (class imbalance). Further, as domain-adaptation technique, a dataset can
be translated from one domain to another, e.g., from MRI to CT" (domain shift). Regarding
data privacy, synthetic data can be shared instead of real patient data to improve privacy
preservation.”!413

1.2 The Need of Reusable Synthetic Data Generators

Commonly, generative models are used to produce synthetic imaging data, with generative
adversarial networks (GANs)'® being popular models of choice. However, the adversarial train-
ing scheme required by GANs and related networks is known to pose challenges in regard to
(i) achieving training stability, (ii) avoiding mode collapse, and (iii) reaching convergence.'”""’

N
3

Fig. 1 Randomly sampled images generated by five medigan models ranging from (a) synthetic
mammograms and (b) brain MRI to (c) endoscopy imaging of polyps, (d) mammogram mass
patches, and (e) chest x-ray imaging. The models (a)-(e) correspond to the model IDs in Table 3,
where (a) 3, (b) 7, (c) 10, (d) 12, and (e) 19.

Journal of Medical Imaging 061403-2 Nov/Dec 2023 « Vol. 10(6)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access.. .

Hence, the training process of GANs and generative models at large is nontrivial and requires
a considerable time investment for each training iteration as well as specific hardware and
a fair amount of knowledge and skills in the area of Al and generative modeling. Given these
constraints, researchers and engineers often refrain from generating and integrating synthetic
data into their Al training pipelines and experiments. This issue is further exacerbated by the
prevailing need of training a new generative model for each new data distribution, which, in
practice, often means that a new generative model has to be trained for each new application,
use-case, and dataset.

1.3 Community-Driven Model Sharing and Reuse

We argue that a feasible solution to this problem is the community-wide sharing and reuse of
pretrained generative models. Once successfully trained, such a model can be of value to multi-
ple researchers and engineers with similar needs. For example, researchers can reuse the same
model if they work on the same problem, conduct similar experiments, or evaluate their methods
on the same dataset. We note that such reusing ideally is subject to previous inspection of gen-
erative model limitations with the model’s output quality having qualified as suitable for the task
at hand. The quality of a model’s output data and annotations can commonly be measured via
(a) expert assessment, (b) computation of image quality metrics, or (c) downstream task evalu-
ation. In sum, the problem of synthetic data generation calls for a community-driven solution,
where a generative model trained by one member of the community can be reused by other
members of the community. Motivated by the absence of such a community-driven solution
for synthetic medical data generation, we designed and developed medigan to bridge the
gap between the need for synthetic data and complex generative model creation and training
processes.

2 Background and Related Work

2.1 Generative Models

While discriminative models are able to distinguish between data instances of different kinds
(label samples), generative models are able to generate new data instances (draw samples). In
contrast to modeling decision boundaries in a data space, generative models model how data is
distributed within that space. Deep generative models>’ are composed of multihidden layer neu-
ral networks to explicitly or implicitly estimate a probability density function (PDF) from a set of
real data samples. After approximating the PDF from observed data points (i.e., learning the
real data distribution), these models can then sample unobserved new data points from that
distribution. In computer vision and medical imaging, synthetic images are generated by sam-
pling such unobserved points from high-dimensional imaging data distributions. Popular deep
generative models to create synthetic images in these fields include variational autoencoders,”!
normalizing flows,?>* diffusion models,”>’ and GANs.'® From these, the versatile GAN
framework has seen the most widespread adoption in medical imaging to date.” We, hence,
center our attention on GANSs in the remainder of this work but emphasize that contributions
of other types of generative models are equally welcome in the medigan library.

2.2 Generative Adversarial Networks

The training of GANs comprises two neural networks, the generator network (G) and the dis-
criminator network (D), as illustrated by Fig. 2 for the example of mammography region-of-
interest patch generation. G and D compete against each other in a two-player zero-sum game
defined by the value function shown in Eq. (1). Subsequent studies extended the adversarial
learning scheme by proposing innovations of the loss function, G and D network architectures,
and GAN applications by introducing conditions into the image generation process

ngn max V(D,G) = rrgn mgx[IEprm [log D(x)] + E.., [log(1 — D(G(z)))]]. (1)

Journal of Medical Imaging 061403-3 Nov/Dec 2023 « Vol. 10(6)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access. ..

Real ROI

Regions of
interest (ROI)

_ m | | 7 u 4
S | L Real
| Discriminator Loss
3 | Fake

Random Bg
noise Generator &3
il

~
o

== =

Fig. 2 The GAN framework. In this visual example, the generator network receives random noise
vectors, which it learns to map to region-of-interest patches of full-field digital mammograms.
During training, the adversarial loss is not only backpropagated to the discriminator as L but also
to the generator as Lg. This particular architecture and loss function was used to train medigan
models listed with IDs 1, 2, and 5 in Table 3.

2.2.1 GAN loss functions

Goodfellow et al.'® define the discriminator as a binary classifier classifying whether a sample x
is either real or generated. The discriminator is, hence, trained via binary-cross entropy with the
objective of minimizing the adversarial loss function shown in Eq. (2), which the generator, on
the other hand, tries to maximize. In Wasserstein GAN (WGAN),28 the adversarial loss function
is replaced with a loss function based on the Wasserstein-1 distance between real and fake
sample distributions estimated by D (alias “critic”). Gulrajani et al.*’ resolve the need to enforce
a 1-Lipschitz constraint in WGAN via gradient penalty (WGAN-GP) instead of WGAN weight
clipping. Equation (3) depicts the WGAN-GP discriminator loss with penalty coefficient 4 and
distribution IP; based on sampled pairs from (a) the real data distribution Pg,, and (b) the gen-
erated data distribution P,

Lpgy = ~Einpy,[log D)) + E..,, [log(1 - D(G(2)))], @

Lpygaer = Exnp, [D(F)] = Exupy,, [D(x)] + 2Ezp,[([| Vi D(3)[], = 1)7)]. 3
In addition to changes to the adversarial loss, further studies integrate additional loss terms into
the GAN framework. For instance, FastGAN?C uses an additional reconstruction loss in the dis-
criminator, which, for improved regularisation, is trained as self-supervised feature-encoder.

2.2.2 GAN network architectures and conditions

A plethora of different GAN network architectures has been proposed’! starting with a deep
convolutional GAN (DCGAN)?? neural network architecture of both D and G. Later approaches,
e.g., include a ResNet-based architecture as backbone®” and progressively-grow the generator and
discriminator networks during training to enable high-resolution image synthesis (PGGAN).**

Another line of research has been focusing on conditioning the output of GANs based on
discrete or continuous labels. For example, in cGAN this is achieved by feeding a label to both
D and G,** whereas in the auxiliary classifier GAN (AC-GAN), the discriminator additionally
predicts the label that is provided to the generator.*

Other models condition the generation process on input images unlocking image-to-
image translation and domain-adaptation GAN applications. A key difference in image-to-image
translation methodology is the presence (paired translation) or absence (unpaired translation) of
corresponding image pairs in the target and source domain. Using an L1 reconstruction loss
between target and source domain alongside the adversarial loss from Eq. (2), pix2pix°® defines
a common baseline model for paired image-to-image translation. For unpaired translation,

36-40

Journal of Medical Imaging 061403-4 Nov/Dec 2023 « Vol. 10(6)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access.. .

cycleGAN?’ is a popular approach, which also consists of an L1 reconstruction (cycle-consis-
tency) loss between a source (target) image and a source (target) image translated to target
(source) and back to source (target) via two consecutive generators.

A further methodological innovation includes SinGAN,*! which, based on only a single train-
ing image, learns to generate multiple synthetic images. This is accomplished via a multi-scale
coarse-to-fine pipeline of generators, where a sample is passed sequentially through all gener-
ators, each of which also receives a random noise vector as input.

2.3 Generative Model Evaluation

One approach of evaluating generative models is by human expert assessment of their generated
synthetic data. In medical imaging, such observer studies often enlist board-certified clinical
experts such as radiologists or pathologists to examine the quality and/or realism of the synthetic
medical images.“z’43 However, this approach is manual, laborious and costly, and, hence,
research attention has been devoted to automating generative model evaluation,***’ including:

i. Metrics for automated analysis of the synthetic data and its distribution, such as the incep-
tion score (IS)!” and Fréchet inception distance (FID).*® Both metrics are popular in com-
puter vision,’! whereas the latter also has seen widespread adoption in medical imaging.’

FID is based on a pretrained Inception*’ model (e.g., v1,*® v3*) to extract features from

synthetic and real datasets, which are then fitted to multivariate Gaussians X (e.g., real) and
Y (e.g., synthetic) with means uy and uy and covariance matrices Xy and Xy. Next, X and Y
are compared via the Wasserstein-2 (Fréchet) distance (FD), as depicted as

1
FD(X. ¥) = [lux = v l3 + tr(Zx + Ty =22y)7). @

ii. Metrics that compare a synthetic image with a real reference image such as mean squared
error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure
(SSIM).* Given the absence of corresponding reference images, such metrics are not
readily applicable for unconditional noise-to-image generation models.

iii. Metrics that compare the performance of a model on a surrogate downstream task with and
without generative model intervention.”'*%%! For instance, training on additional synthetic
data can increase a model’s downstream task performance, thus, demonstrating the useful-
ness of the generative model that generated such data.

For the analysis of generative models in the present study, we discard (ii) due to its limitation
of requiring specific reference images. We further deprioritize the IS from (i) due to its limited
applicability to medical imagery stemming from it missing a comparison between real and
synthetic data distributions combined with it having a strong bias on natural images via its
ImageNet**-pretrained Inception classifier as backbone feature extractor. Therefore, we focus
on FID from (i) and downstream task performance (iii) as potential evaluation measures for
medical image synthesis models in the remainder of this work.

2.4 Image Synthesis Tools and Libraries

Related libraries, such as pygan,”® torchGAN,>* vegans,> imaginaire,”® TE-GAN,>’ PyTorch-
GAN,’® keras-GAN,> rnirnicry,60 and studioGAN,>! have focused on facilitating the implemen-
tation, training, and comparative evaluation of GANs in computer vision (CV). Despite a strong
focus on language models, the HuggingFace transformers library and model hub®' also contain
a few pretrained computer vision GAN models. The GAN Lab®? provides an interactive visual
experimentation tool to examine the training process and its data flows in GANS.

Specific to Al in medical imaging, Diaz et al.%* provided a comprehensive survey of tools,
libraries and platforms for privacy preservation, data curation, medical image storage, annota-
tion, and repositories. Compared to CV, fewer GAN and Al libraries and tools exist in medical
imaging. Furthermore, CV libraries are not always suited to address the unique challenges of

Journal of Medical Imaging 061403-5 Nov/Dec 2023 « Vol. 10(6)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access. ..

medical imaging data.®* For instance, pretrained generative models from computer vision
cannot be readily adapted to produce medical imaging-specific outputs. The TorchIO library®*
addresses the gap between CV and medical image data processing requirements providing func-
tions for efficient loading, augmentation, preprocessing, and patch-based sampling of medical
imagery. The medical open network for AT (MONAI)® is a PyTorch-based®’” framework that
facilitates the development of diagnostic AI models with tutorials for classification, segmenta-
tion, and AI model deployment. Further efforts in this realm include NiftyNet,® the deep learn-
ing tool kit (DLTK),* MedicalZooPytorch,”” and nnDetection.”’ The recent RadImageNet
initiative’” shares baseline image classification models pretrained on a dataset designed as the
radiology medical imaging equivalent to ImageNet.>

To the best of our knowledge, no open-access software, tool, or library exists that targets
reuse and sharing of pretrained generative models in medical imaging. To this end, we expect
the contribution of our medigan library to be instrumental in enabling dissemination of gener-
ative models and increased adoption of synthetic data into Al training pipelines. As an open-
access plug-and-play solution for generation of multipurpose synthetic data, medigan aims to
benefit patients and clinicians by enhancing the performance and robustness of Al-based clinical
decision support systems.

3 Method: The medigan Library

We contribute medigan as an open-source open-access MIT-licensed Python3 library distributed
via the Python package index (Pypi) for synthetic medical dataset generation, e.g., via pretrained
generative models. The metadata of medigan is summarized in Table 1. medigan accelerates
research in medical imaging by flexibly providing (a) synthetic data augmentation and (b) pre-
processing functionality, both readily integrable in machine learning training pipelines. It also
allows contributors to add their generative models in a thought-through process and provides
simplistic functions for end-users to search for, rank, and visualize models. The overview of
medigan in Fig. 3 depicts the core functions demonstrating how end-users can (a) contribute
a generative model, (b) find a suitable generative model inside the library, and (c) generate
synthetic data with that model.

Table 1 Overview of medigan library information.

Title medigan metadata
1 Code version v1.0.0
2 Code license MIT
3 Code version control system Git
4 Software languages Python
5 Code repository https://github.com/RichardObi/medigan.
6 Software package repository Ref. 73
7 Developer documentation Ref. 74
8 Tutorial medigan quickstart (tutorial.ipynb)
9 Requirements for compilation Python v3.6+
10 Operating system OS independent. Tested on Linux,
OSX, Windows.
11 Support email address Richard.Osuala[at]gmail.com
12 Dependencies tqdm, requests, torch, numpy,
PyGithub, matplotlib (setup.py)
Journal of Medical Imaging 061403-6 Nov/Dec 2023 « Vol. 10(6)

https://github.com/RichardObi/medigan
https://github.com/RichardObi/medigan

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access.. .

Users and contributors Multimodel image generation orchestration Synthetic cancer imaging data

. o Dataset 1
Medigan librar -
edigan library Malginant breast mass

(J%)& \ N Model 1 (DCGAN) / N rj ﬂ ﬁ D

Generate data
B

- Generate
using a model

Dataset 2

Model 2 (DCGAN)
o

Researchers ~ - Abnormal breast calcifications
engineers N e Generate| E B
ML practitioners Model 3 (cycleGAN)
data scientists o 3},, T
clinical centres Find suitable> 2 Q) Dataset 3

collaborators model

Model 4 (pix2pix) Low-to-high breast density
a .

- ~N N-EX

Generate\
\

Generative model n \
N \ Dataset 4

\
Contributea N Shape and texture conditioned masses

model ~—» %
ot n B

Fig. 3 Architectural overview of medigan. Users interact with the library by contributing, searching,
and executing generative models, the latter shown here exemplified for mammography image
generation with models with IDs 1 to 4 described in Table 3.

3.1 User Requirements and Design Decisions

End-user requirement gathering is recommended for the development of trustworthy Al
solutions in medical imaging.” Therefore, we organized requirement gathering sessions with
potential end-users, model contributors, and stakeholders from the EuCanlmage Consortium,
a large European H2020 project’® building a cancer imaging platform for enhanced Al in oncol-
ogy. Upon exploring the needs and preferences of medical imaging researchers and Al devel-
opers, respective requirements for the design of medigan were formulated to ensure usability and
usefulness. For instance, the users articulated a clear preference for a user interface in the format
of an importable package as opposed to a graphical user interface (GUI), web application,
database system, or API. Table 2 summarizes key requirements and the corresponding design
decisions.

3.2 Software Design and Architecture

medigan is built with a focus on simplicity and usability. The integration of pretrained models is
designed as internal Python package import and offers simultaneously (a) high flexibility to and
(b) low code dependency on these generative models. The latter allows the reuse of the same
orchestration functions in medigan for all model packages.

Using object-oriented programming, the same model_executor class is used to implement,
instantiate, and run all different types of generative model packages. To keep the library main-
tainable and lightweight, and to avoid limiting interdependencies between library code and gen-
erative model code, medigan’s models are hosted outside the library (on Zenodo) as independent
Python modules. To avoid long initialization times upon library import, lazy loading is applied.
A model is only loaded and its model_executor instance is only initialized if a user
specifically requests synthetic data generation for that model. To achieve high cohesion,” i.e.,
keeping the library and its functions specific, manageable, and understandable, the library is
structured into several modular components. These include the loosely-coupled model
executor, model_selector, and model_contributor modules.

The generators module is inspired by the facade design pattern®® and acts as a single
point of access to all of medigan’s functionalities. As single interface layer between users and
library, it reduces interaction complexity and provides users with a clear set of readily extendable
library functions. Also, the generators module increases internal code reusability and
allows for combination of functions from other modules. For instance, a single function call
can run the generation of samples by the model with the highest FID score of all models found
in a keyword search.

Journal of Medical Imaging 061403-7 Nov/Dec 2023 « Vol. 10(6)

medigan: a Python library of pretrained generative models for enriched data access. ..

Osuala et al.:

'SUOISION uebjpaw Mau alinbai jou op sajepdn Biuo)H "opousz
uo palols Ajpresedas sabexoed [apow sy jo Apuspuadapul paubisep s| uebipaw

"8|qe|ieAe S| AIOJSIY UOISIBA pue

‘paINQLIUOD S| [opoW
Mau e awl} yoes abexoed uebipaw 8y} JO UoISIaA 8y} alepdn 0} pasu ou 8q pinoys aiay]

4

P02 92IN0S S,|oPOW Yoes aloym ‘Opousz uo s|epow uebjpaw Buliols JO UORUBAUOD "Jasn-pus 8y} 0} Jualedsuel} 8q p|Noys peo| Aleiqi| 8y} jeyl S|ppoW 8y} JO 82IN0S puUe UOISIOA ol
‘NdO pue NdD
Ul0g Uo unJ 0} paouBYUS ‘B paau Jl ‘pue pamairal aie S|opow uebjpew panguiuod ‘arempiey sJasn e uo Buipuadep ebesn NdH pue NdD yioq uoddns pinoys Areiqi ayL 6
'sSwie)sAs 9|1} [800] WO} S|opow peo| osfe ued uebipaw “isnipe
pue a10|dxa 0} S1asn-pua Jo} d|qe|ieAe ale Biyuod pue apod S,|9POW B ‘PEOJUMOP oYY ‘Areiq)] 8y} Jo [opow aAnessuab e isnlpe pue mainai Ajjeoo| 0} ajqissod aq pinoys 8
‘salouspuadap suebipsw jo ued jou ale seouspuadap
Jepow ‘sny] ‘pauodwi Ajjeoo| pue papeojumop ale sjepow paisanbai-lasn ay) AluQ -g|qissod se ybiamiybi se aq pinoys Areiqi ayy ‘sjppow Buiuies| deap abie| Buisn sudseq /
‘slapeojelep Jayio yum ajqeuiquiod ‘sauljadid bulurely
|V Ul 8|qeibajul Ajpeas Jepeojelep yoio} e Buiuinias syoddns uebipaw ‘japowl yoes 104 "Jopeojelep e ein Buurely |y Ul elep uebipaw ayelbajul 0} |ge ag pinoys Jasn 9
'9|qe||eo se uoiouny ayessusb sepow e uiniai (1) Jo *SMO[PHIOM
‘sajdwes yum siap|o} ayesauab (1) ‘sejdwes uinjai (1) ued uonouny ayesausb suebipaw pue ‘sauljadid ‘epoo Jasn asiaAIp ojul 8jgelbaiul Ajises aq pjnoys suonouny uonelauab sjdwes o]
‘ejep Jejnge} pue ‘sysew ‘sired
abewl o} sebewi gg pue gg wouy Buibuel erep onsayiuAs jo adAl Aue spoddns uebipsw "Blep oiayuAs Jo sadA) Juasayip woddns pjnoys Areiqy ayL ¥
"Sjgpow Buiuies| despuou pue ,, .. ‘UOISNYIP . ..‘PaSEq
-MOJ} |,'STVA o, 'SNVD Buipnjoul jspow uonessush ejep jo edA} Aue spoddns uebipsw 'sassao0id uolelauab pue sjppow aAnelsusb Jo sadA} alayip moje pjnoys Areiqi ayL e
'sajouspuadap pue ylomawel) JO 8010UD JO WOPSaI) YIM g, 'SBIB)Y ,,'MO|4I0SUD |
abeyoed uoyifd aresedss se jopow yoes Buneal) onsoube-yiomawel) Jing si uebipaw 194210144 “B-8 ‘sjopows aaneseush Buip|ing 1o} sylomewel uowwod yoddns pinoys | 4
'9p09 siasn ojul ajqepodw Arelqi|
‘|dAd eiA painguisip ebexoed uoyiAd e|qissaooe Ajlignd se uebjpaw jo uoeluawa|dw) wepuadsepul-wiopeld e se payuswsaldwi 8q pjnoys uebips |00} |NL) € Jo pesisu| 1
uolsioap ubisep aAnoadsay swaiinbal Jasn-pug ON
‘uebipaw

yim sjuswialinbas esay Buljjyny piemo) uexe; suolsiosp ubisep eAnoedsal sy episbuole Jesn-pue [enusiod yim Jeyiebo) paleyieb sjuswaiinbai Aey ey Jo MBINBAQ g Blgel

Nov/Dec 2023 « Vol. 10(6)

061403-8

Journal of Medical Imaging

medigan: a Python library of pretrained generative models for enriched data access. ..

Osuala et al.:

‘sindul [euondo (A) ‘uoneoo| a103s (Al) ‘@10]s 1o

‘sg|dwes

winjal () sejdwes jo Jaquinu (1) ‘sybiom (1) Ayoads ued siasn ‘synejop woly Buibianig oneyuAs ay jo uoneoo| abelols pue “aquinu ‘sindul jppow ‘syybiam [ppow Ajloads ued siasn 22
‘spwi| abeiols Aowsw-ul siasn Buipasdxa ploAe 0} saydleq ‘Alowaw s$Sa208-WOopUEl
Jlews el sajdwes sajesauab Ajaaiyesay uebipsw ‘uonelauab jaseiep onayluAs abie| o4 paywI yum saulyoew Jasn uo uonelauab joselep onayiuAs abie| uoddns pinoys Aseiql eyl 12
‘Aiepy pue Alsianip Indino jo uonelojdxa aAlINUL IO} J010BA 'siasn
Jueye| Indu s,Jopow e isnlpe 0] siesn SMmojje ainyea} uonezijensia ajdwis suebipsw -pud Ag pasinbal 8pod [ewiuIW YIM B|JISIA S|oPOW B} JO S)Nsal 8y} axew pinoys Aleiq)| ayL 0e
"SuUOIoUN} 8100 pue sjepow |le Bunse) alojeq ‘paubisap se ylom sjppow
uebipaw sjul| pue ‘syewloy ‘spling Ajjeonewoine auljadid | € ‘urew o} HWWO9 yoes uQ |le 8ins axew 0} papodal s}nsai pue pajsa) Ajleonewoine aq pinoys Aleiqi| ayy ul [gpow Auy 6l
'sjoI)uU0d Buipioae ‘sejouspuadap palsiiesun |ejsul Ued "JOI)JU0D B 8sned
poylew ajessuab suebipaw "Bijuod ayy ul payoads are suoision Aouspuadap [apoy JOU PINOYS SIY} ‘SUOISIOA JUBIBYIP UM Ing Aouspuadap aWEeS ay) dABY S[9POW JUSIBHIP §| 8l
"gNHIY Uo uonesld anssi pue ‘peojdn opousz ‘Buibexoed
‘Bunsal ‘uoneinbiuod [9poW [BO0| SSleWOINE MOJPUOM UOINGLIU0D Suebipaw ‘pajewolne Ajeiued 1se9| 1e pue ajdwis aq pinoys sjepow Bunnguiuon yan
‘selouspuadep Aued-piiy) pue waisAs ‘swalsAs Jasn-pus
sploAe pue ‘quapuadepul-gQ SI ‘salouspuadep Uoyihd 40 189S [ewiuiw e sey uebipaw UOWWOD UO UNJ pINoYs pue apis Jasn ay} uo sajouspuadap [ewiuiw aAey pjnoys Areiqi 8yl 9l
‘Aus opouaz si ul Ajgjesedas osje pue ‘ewpeal
By} Ul ‘uolieluswiNoop suebipaw Ul paquosep pue pajsi| SI [epow s|ge|ieAe yoeg ‘pajusWINOOp 8 pinoys Aseiqi 8y} Ul [ppow aAlesauab yoeg Gl
‘lopow yoes 1o} pauodal diysioyine jualedsuel; ‘pabpaimousoe
pue 9SuUd2|| [9POW JO BJI0YD JO WOPaaly SMo|e Aleiql| pue sjapow jo uonesedsas pue pajels Aueajo aq p|Noys SI0INQUIU0D [apow aAelauab jo diysioyine pue asusdl yL
'|O@ 2u10ads 0 spulod yoiym ‘uebipaw 10aye Jou op sabueyo
/speojdn pajoljosun ‘UonedlaA Jayy 'S|0d dlels 8A192a) speojdn [opow opousz ‘pPazZiWiuIW 8q PINOYS SP02 SNOIDIBW UIBJUOD Jey] S|opowWw Speojumop Aleiql| 8yl jeu %su ayl el
"1senbai |nd eiA abueyd Biyuod e "'s)o9yd Ayjiqionpoidal
salinbai uebipaw 0} sjppow BUIppY “|0JIUOD UOISISA BIA 8|qeadRI} S| UOIINAUIU0D [BPOIN| pue Ayjenb Buimolie ‘Ajgesdel; pue Apuasedsuel) ul peINQUILOD ale sjgpow , ‘Buimojjo Al
uoisioap ubisep annoadsey awainbai Jjasn-pug ON

“(penupuon) g alqeL

Nov/Dec 2023 « Vol. 10(6)

061403-9

Journal of Medical Imaging

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access. ..

3.3 Model Metadata

The FID score and all other model information such as dependencies, modality, type, zenodo
link, associated publications, and generate function parameters are stored in a single compre-
hensive model metadata json file. Alongside its searchability, readability, and flexibility,
the choice of json as file format is motivated by its extendability to a nonrelational database.
As a single source of model information, the global.json file consists of an array of model IDs,
where under each model id the respective model metadata is stored. Toward ensuring model
traceability as recommended by the FUTURE-AI consensus guidelines,” each model (on
Zenodo) and its global.json metadata (on GitHub) are version-controlled with the latter being
structured into the following objects.

i. execution: contains the information needed to download, package, and run the model
resources.

ii. selection: contains model evaluation metrics and further information used to search,
compare, and rank models.

iii. description: contains general information and main details about the model such as title,
training dataset, license, date, and related publications.

This global.json metadata file is retrieved, provided, and handled by the config_manager
module once a user imports the generators module. This facilitates rapid access to a model’s
metadata given its model_id and allows one to add new models or model versions to medigan via
pull request without requiring a new release of the library.

3.4 Model Search and Ranking

The number of models in medigan is expected to grow over time. Potentially this will lead to the
foreseeable issue where users of medigan have a large number of models to choose from. Users
likely will be uncertain which model best fits their needs depending on their data, modality,
use-case, and research problem at hand and would have to go through each model’s metadata
to find the most suitable model in medigan. Hence, to facilitate model selection, the model_
selector module implements model search and ranking functionalities. This search workflow
is shown in Fig. 4 and triggered by running Code Snippet 1.

The model_selector module contains a search method that takes search operator (i.e
OR, AND, or XOR) and a keyword search values list as parameters and recursively searches
through the models’ metadata. The latter is provided by the config manager module.

Medigan
Medigan .
user Generators class ConfigManager class
Search workflow
9 Get config
o Request 9
Request ModelSelector class
e
0 Find search values in
@ Return 6 each model’s config
Model list Retumn
{ “ModelMatchCandidates™ {...} } i 1 @ Rank found models

by evaluation metric

Fig. 4 The search workflow. A user sends a search query (1) to the generators class, which trig-
gers a search (2) via the ModelSelector class. The latter retrieves the global.json model metadata/
config dict (3), in which it searches for query values finding matching models (4). Next, the
matched models are optionally also ranked based on a user-defined performance indicator (5)
before being returned as list to the user.

Journal of Medical Imaging 061403-10 Nov/Dec 2023 « Vol. 10(6)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access.. .

Code Snippet 1: Searching for a model in medigan.

1. from medigan import Generators # fmport

2. generators = Generators () # init

3. values=|['patches’, 'mammography’] # keywords of search query
4. operator='AND’ # all keywords are needed for match

5. results = generators.find_model (values, operator)

The model_selector populates a modelMatchCandidates object with matchedEntry
instances each of which represents a potential model match to the search query. The
modelMatchCandidates class evaluates which of it is associated model matches should
be flagged as true match given the search values and search operator. The method rank_
models_by_performance compares either all or specified models in medigan by a
performance indicator such as FID. This indicator commonly is a metric that correlates with
diversity, fidelity, or condition adherence to estimate the quality of generative models and/or
the data they generate.” The model_selector looks up the value for the specified perfor-
mance indicator in the model metadata and returns a descendingly or ascendingly ranked list of
models to the user.

3.5 Synthetic Data Generation

Synthetic data generation is medigan’s core functionality toward overcoming scarcity of (a) train-
ing data and (b) reusable generative model in medical imaging. Posing a low entry barrier for
nonexpert users, medigan’s generate method is both simple and scalable. While a user can
run it with only one line of code, it flexibly supports any type of generative model and synthetic
data generation process, as illustrated in Table 3 and Fig. 1.

3.5.1 Generate workflow

An example of the usage of the generate method is shown in Code Snippet 2, which triggers
the model execution workflow illustrated in Fig. 5. Further parameters of the generate method
allow users to specify the number of samples to be generated (num_samples), if samples are
returned as a list or stored on a disk (save_images), where they are stored (output_path),
and whether model dependencies are automatically installed (install_dependencies).
Optional model-specific inputs can be provided via the **kwargs parameter. These include
for example, (i) a nondefault path to the model weights, (ii) a path to an input image folder
for image-to-image translation models, (iii) a conditional input for class-conditional generative
models, or (iv) the input_latent_vector as commonly used as model input in GANSs.

Running the generate method triggers the generators module to initialize a mode-
1_executor instance for the user-specified generative model. The model is identified via its
model_id as unique key in the global.json model metadata database, parsed and managed by the
config_manager module. Using the latter, the model_executor checks if the required
Python package dependencies are installed, retrieves the Zenodo URL and downloads, unzips,
and imports the model package. It further retrieves the name of the internal data generation
function inside the model’s __init_ _ .py script. As final step before calling this function,
its parameters and their default values are retrieved from the metadata and combined with user-
provided arguments. These user-provided arguments customize the generation process, which
enables handling of multiple image generation scenarios. For instance, the aforementioned pro-
vision of the input image folder allows users to point to their own images to transform them using
medigan models that are, e.g., pretrained for cross-modality translation. In the case of large
dataset generation, the number of samples indicated by num_samples are chunked into
smaller-sized batches and iteratively generated to avoid overloading the random-access memory
available on the user’s machine.

Journal of Medical Imaging 061403-11 Nov/Dec 2023 « Vol. 10(6)

medigan: a Python library of pretrained generative models for enriched data access. ..

Osuala et al.:

0L¥0 61°65 L 0001 ¢6+202 YAONSS0ID 261 X ¥22 26NVD9I0AD 4N [elueID (e1/11) sueos ureig 2
€¥50 L1°2S €£'82 0001 s LABI-X3S8UD 7201 X #7201 1sNVODd Aei-x 18840 udeiBoipel 1s842 [IN4 02
1620 v.°96 v.'82 0001 s LABI-X1S8UD ¥201 X #7201 NYO5Od Aei-x 18840 udeiBoipel 15842 N4 6l
GLLO rL1e veve 9Lyl 6sL23AON 82l X 82l dOD-NVOM Aei-x 18840 se|npou Bun 8l
2610 8,921 veve YAl 6sL23AON 82l x 82l NYDOad Aei-x 18840 se|npou Bun Ll
YEY0 8£'86 892 20z esMVSO 008 X 2€EL 0sNVDBI0AD AydesBSowwey 00 sisealq Ausuap mojybiH 9l
L9v"0 19291 96'vL 261 esMVSO 008 X ZeEL 0sNVD3IPAD AydeiBowwep O\ sisealq Aususp mojybiH Sl
¥95°0 LLEL L9 Ly 0se 2sNVYINILDO 008 X Zeel 0sNVD3I0AD AydesBowwep 00 siseaiq Ausuap moj/ybiH 14!
0590 60°LOL G1°G9 8ge 2sNVYINILDO 008 X zZeel 0sNVD2I0AD AydesBowwep O\ sisealq Ausuap moj/ybiH €l
zeeo 62'502 2e'89 661 slael! 8zl X 82t NV90Qd-O AydeiBowwepy (uBluag/jew) sessew jseaig 4}
€520 SL'LLL Leey 0001 LIsensadAy 0G2 X 052~ s NVYDUIS Adoosopuz sysew yum sdAjod L
1190 66'€9 Le'ey 0001 LglIsenyiadAy 9G¢g X 952 1sNVOIse Adoosopuz sysew yum sdAjod ok
2610 G8'6ee Le'ey 0001 sglIserdedAy 962 X 952 1sNVODd Adoosopuz sysew ynm sdAjod 6
2.20 SL /€L 95°/¢ 6.€ +eNSAa-s190 82l X 82l Nv90a-0 AydesBowwep (uBlusg/lew) sessew jseaiq 8
6120 20071 €L°0¢ 0001 8102 S1vddg 962 X 952 »s NV juredu [HIN [eued SYSEBW UNM siowny ureig L
80€0 0£'122 22’89 661 cedaog 82l X 82l i dD-NYOM AydesBowwey sessew jseaig 9
6.€0 ¥0°081 2289 661 cgHa0g 8zl X 82t »NVD0a AydesBowwep sessew jseaig S
€2¥°0 JANKCT! 2289 661 cgda0d 9G¢ X 9g¢ xidgxid AydeiGowwep SYSBW UYHM Sossew jseaiq 14
6EV0 91L°0G1 7659 v cgda0d 008 X geel 0sNVD2I0AD AydeiBowwepy sisealq Ausuap mojybiH €
85€0 1508 68’82 0001 2sWYINILDO 82l X 82l LNVD0a AydeiBowwep sossew jsealg 2
L6¥°0 0929 L9°€e 0001 |g}SERIANI 82l X 82l NY50ad AydeiBowwepy suoneoyIo[ed Jsealg L
aey uAs-leay [eai-leay sBwi 1osejep Buiurel | az1S [9PON Ajrepop indino al
a5y ™01

"saljifepow ssoioe pabeiane ale (gl ‘I11) Lz pue (gL ‘OLL ‘1L ‘drejd) Z [epow 1oy synsal 8y "(uhAs-jeal) eyep onoyluAs pue [eal jo s}os pajdwes Ajwopuel
oM} usamiaq paindwod si S|4 /epow ay) sealaym ‘(jeal-|eal) elep [eal Jo s}es pajdwes Ajwopuel jo Jied e usamiaq paindwod s| “q|4 punoq semoy ay] ‘sbBuig Aq peresipul
S| uone|nojed |4 Joj pasn sajdwes [eal Jo Jaquinu 8y "UMOYS ale uebjpaw Ul [8powl Yoes 1o} $8100s |4 paindwod ‘os|y ‘uebipaw Ui s|gejieAe Ajualind S|9poN € alqel

Nov/Dec 2023 « Vol. 10(6)

061403-12

Journal of Medical Imaging

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access.. .

Medigan
Medigan
user Generators class
Generate ModelExecutor class
workflow 9
0 Request Init @ Get model info from config Zenodo
12 —
Find @ Check dependencies @
—_
model_executor _
@ Return or store samples by model_id 0 Unzip and import model ~ Retrieve
Samples model

@ Run generation method

Fig. 5 The generated workflow. A user specifies a model_id in a request (1) to the generators
class, which checks (2) if the model’s ModelExecutor class instance is already initialized. If not,
a new one is created (3), which (4) gets the model’s config from the global.json dict, (5) loads the
model (e.g., from Zenodo), (6) checks its dependencies, and (7) unzips and imports it, before
running its internal generate function (8). Finally, the generated samples are returned to the user.

Code Snippet 2: Executing a medigan model for synthetic data
generation.

1. from medigan import Generators
2. generators = Generators()
create 100 polyps with masks using model 10 (FASTGAN)

generators.generate (model_id=10, num_samples=100)

3.5.2 Generate workflow extensions

Apart from storing or returning samples, a callable of the model’s internal generate function can
be returned to the user by setting is_gen_function_returned. This function with pre-
pared but adjustable default arguments enables integration of the generate method into other
workflows within medigan (e.g., model visualization) or outside of medigan (e.g., a user’s
Al model training). As a further alternative, a torch®’ dataset or dataloader can be returned
for any model in medigan running get_as_torch dataset or get_as_torch_
dataloader, respectively. This further increases the versatility with which users can introduce
medigan’s data synthesis capabilities into their Al model training and data preprocessing
pipelines.

Instead of a user manually selecting a model via model_id, a model can also be automatically
selected based on the recommendation from the model search and/or ranking methods. For
instance, as triggered by Code Snippet 3, the models found in a search for mammography are
ranked in ascending order based on FID, with the highest ranking model being selected and
executed to generate the synthetic dataset.

3.6 Model Visualization

To allow users to explore the generative models in medigan, a novel model visualization module
has been integrated into the library. It allows users to examine how changing inputs like the latent
variable z and/or the class conditional label y (e.g., malignant/benign) can affect the generation
process. Also, the correlation between multiple model outputs, such as the image and corre-
sponding segmentation mask, can be observed and explored. Figure 6 illustrates an example
showing an image-mask sample pair from medigan’s polyp generating FastGAN model.’!

Journal of Medical Imaging 061403-13 Nov/Dec 2023 « Vol. 10(6)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access. ..

Code Snippet 3: Sequential searching, ranking, and data generation
with highest ranked model.

1. from medigan import Generators

2. generators = Generators ()

3. values = ['mammography’] # keywords for searching
4. metric = 'FID’ # metric for ranking

5. generators.find _models_rank_and_generate
(values=values, metric=metric)

Model 00010_FASTGAN_POLYP_PATCHES W_MASKS

FastGAN model for patch generation of polyps with corresponding segmentation masks (trained on HyperKvasir)

Input latent vector

Offset 0.00 Generated image Generated mask
z1 0.57 ‘
z2 0.31
23 I —0,56
7] m—— 0.35
75 e— -1.20
z6 1.55
77 v— -1.86
78— 0.44
29 —— _000

7] () m——— 0.87

[Seed | [Reset |

Offset: Add constant value to each latent variable
Input vector: Modify latent values used to generate image
Seed: Initialize new random seed for latent vector

Reset: Revert user changes to initial seed values

Fig. 6 Graphical user interface of medigan’s model visualization tool on the example of model 10,
a FastGAN that synthesizes endoscopic polyp images with respective masks.5! The latent input
vector can be adjusted via the sliders, reset via the Reset button, and sampled randomly via the
Seed button.

This depiction of the graphical user interface (GUI) of the model visualization tool can be
recreated by running Code Snippet 4.

Internally, the model_visualizer module retrieves a model’s internal generate method
as callable from the model_executor and adjusts the input parameters based on user inter-
action input from the GUI. This interaction further provides insight into a model’s performance
and capabilities. On one hand, it allows one to assess the fidelity of the generated samples. On the
other hand, it also shows the model’s captured sample diversity, i.e., as observed output variation
over all possible input latent vectors. We leave the automation of manual visual analysis of this
output variation to future work. For instance, such future work can use the model_visualizer
to measure the variance of a reconstruction/perceptual error computed between pairs of images
sampled from fixed-distance pairs of latent space vectors z. The slider controls on the left of
the interface allow one to change the latent variable, which for this specific model affects, for
instance, polyp size, position, and background. As the size of the latent vector z commonly is
relatively large, each n (e.g., 10) variables are grouped into one indexed slider resulting in
Z,, adjustable latent input variables. The seed button on the right allows one to initialize a new
set of latent variables, which results in a new generated image. The reset buttons allows one to
revert user’s modifications to previous random values.

Journal of Medical Imaging 061403-14 Nov/Dec 2023 « Vol. 10(6)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access.. .

Code Snippet 4: Visualization of a model in medigan.

1. from medigan import Generators
2. generators = Generators()
3. n=10 #groupinglatent vectorz dimensions by dividing themby 10

4. generators.visualize (model_id=10, slider_grouper=n)
polyp with mask

3.7 Model Contribution

A core idea of medigan is to provide a platform where researchers can share and access trained
models via a standardized interface. We provide in-depth instructions on how to contribute
a model to medigan complemented by implementations automating parts of the model con-
tribution process for users. In general, a pretrained model in medigan consists of a Python __
init __.py and, in case the generation process is based on a machine learning model,
a respective checkpoint or weights file. The former needs to contain a synthetic data storage
method and a data generation method with a set of standardized parameters described in
Sec. 3.5.1. Ideally, a model package further contains a license file, a metadata.json and/or
a requirements.txt file, and a test.sh script to quickly verify the model’s functionalities. To
facilitate creation of these files, medigan’s GitHub repository provides model contributors
with reusable templates for each of these files.

Keeping the effort of pretrained model inclusion to a minimum, the generators module
contains a contribute function that initializes a ModelContributor class instance dedi-
cated to automating the remainder of the model contribution process. This includes automated
(i) validation of the user-provided model_id; (ii) validation of the path to the model’s __
init__ .py; (iii) test of importlib import of the model as package; (iv) creation of the
model’s metadata dictionary; (v) adding the model metadata to medigan’s global json metadata;
(vi) end-to-end test of model with sample generation via generators.test_model ();
(vii) upload of zipped model package to Zenodo via API; and (viii) creation of a GitHub issue,
which contains the Zenodo link and model metadata, in the medigan repository. Being assigned
to this GitHub issue, the medigan development team is notified about the new model, which can
then be added via pull request. Code Snippet 5 shows how a user can run the contribute
method illustrated in Fig. 7.

3.8 Model Testing Pipeline

Each new model contribution is being systematically tested before becoming part of medigan.
For instance, on each submitted pull request to medigan’s GitHub repository, a CI pipeline
automatically builds, formats, lints, and tests medigan’s codebase. This includes the automatic
verification of each model’s package, dependencies, compatibility with the interface, and correct
functioning of its generation workflow. This allows one to ensure that all models and their meta-
data in the global.json file are available and working in a reproducible and standardized manner.

4 Applications

4.1 Community-Wide Data Access: Sharing the Essence of Restricted
Datasets

medigan facilitates sharing and reusing trained generative models with the medical research
community. On one hand, this reduces the need for researchers to retrain their own similar gen-
erative models, which can reduce the extensive carbon footprint™ of deep learning in medical
imaging. On the other hand, this provides a platform for researchers and data owners to share
their dataset distribution without sharing the real data points of the dataset. Put differently,

Journal of Medical Imaging 061403-15 Nov/Dec 2023 « Vol. 10(6)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access. ..

Medigan Zenodo
Medlgan % @ @@ Create New
user Generators class el ConfigManager class A1) Upload model
ao —]
Contribute workflow T metadata \jodelContributor class A2 pescribe %
@ est sample i) aa— l
generation @ - @) Validate model id, path @ Publish
ni H [
CD Prepare model @)Request = | and import Data
=/ Using template E— @ Add metadata from file or storage
via user input
BaseModelUploader class (illt:IUb
ZenodoModelUploader class s
Prepare zip and metadata ~——— Nr:‘g’t:;‘jca"::l
@ Push model via API
GithubModelUploader class @Create issue
ms -
@ Create issue content and push l

Issues

Fig. 7 Model contribution workflow. After model preparation (1), a user provides the model’s id
and metadata (2) to the generators class to (3) initialize a ModelContributor instance, which (4)
validates and (5) extends the metadata. Next, (6) the model’s sample generation capability is
tested after (7) integration into medigan’s global.json model metadata. If successful, (8) the model
package is prepared and (9-13) pushed to Zenodo via API. Lastly, (14 and 15) a GitHub issue
containing the model metadata is created, assigned, and pushed to the medigan repository.

sharing generative models trained on (and instead of) patient datasets not only is beneficial as
data curation step,'* but also minimizes the need to share images and personal data directly
attributable to a patient. In particular, the latter can be quantifiably achieved when the generative
model is trained using a differential privacy guarantee’* before being added to medigan. By
reducing the barriers posed by data sharing restrictions and necessary patient privacy protection
regulation, medigan unlocks a new paradigm of medical data sharing via generative models. This
places medigan at the center toward solving the well-known issue of data scarcity” in medical
imaging.

Apart from that, medigan’s generative model contributors benefit from an increased expo-
sure, dissemination, and impact of their work, as their generative models become readily usable
by other researchers. As Table 3 illustrates, to date, medigan consists of 21 pretrained deep
generative models contributed to the community. Among others, these include two conditional
DCGAN models, six domain translation CycleGAN models and one mask-to-image pix2pix
model. The training data comes from 10 different medical imaging datasets. Various of the

Code Snippet 5: Contribution of a model to medigan.

1. from medigan import Generators
2. generators = Generators()

3. generators.contribute (

4. model_id = “00100_YOUR_MODEL", # assign ID

5. init_py path =“path/ending/with/__init_ .py", # model package root

6. generate_method_name = “generate”, # method inside___init__ .py

7. model_weights_name = “10000",

8. model_weights_extension = ”.pt”,

9. dependencies = [“numpy”, “torch”],
10. zenodo_access_token = “TOKEN” , #zenodo.org/account/settings/applications
11. github_access_token = “TOKEN") #github.com/settings/tokens

Journal of Medical Imaging 061403-16 Nov/Dec 2023 « Vol. 10(6)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access.. .

models were trained on breast cancer datasets including INbreast,®’ OPTIMAM,*> BCDR,*
CBIS-DDSM,* and CSAW.*® Models allow one to generate samples of different pixel resolu-
tions ranging from regions-of-interest patches of size 128 x 128 and 256 X 256 to full images of
1024 x 1024 and 1332 x 800 pixels.

4.2 Investigating Synthetic Data Evaluation Methods

A further application of medigan is testing the properties of medical synthetic data. For instance,
evaluation metrics for generative models can be readily tested in medigan’s multiorgan, multi-
modality, and multimodel synthetic data setting.

Compared to generative modeling, synthetic data evaluation is a less explored research area.’
In particular, in medical imaging the existing evaluation frameworks, such as the FID* or the
IS,'7 are often limited in their applicability, as mentioned in Sec. 2.3. The models in medigan
allow one to compare existing and new synthetic data evaluation metrics and their validation in
the field of medical imaging. Multimodel synthetic data evaluation allows one to measure the
correlation and statistical significance between synthetic data evaluation metrics and down-
stream task performance metrics. This enables the assessment of clinical usefulness of generative
models on one hand and of synthetic data evaluation metrics on the other hand. In that sense, the
metric itself can be evaluated including its variations when measured under different settings,
datasets, or preprocessing techniques.

4.2.1 FID of medigan Models

We compute the FID to assess the models in medigan and report the results in Table 3. We further
note that the FID can be computed not only between a synthetic and a real dataset (rs) but also
between two sets of samples of the real dataset (r7). As the FID,, describes the distance within
two randomly sampled sets of the real data distribution, it can be used as an estimate of the real
data variation and optimal lower bound for the FID, as shown in Table 3. Given the above,
it follows that a high FID,; likely also results in a higher FID,,, which highlights the importance
of accounting for the FID,. when discussing the FID,;. To do so, we propose the reporting of
a FID ratio rgp to describe the FID, in terms of the FID,,.

FID,, — FID,,

rep (FID,, FID,) = 1 — "
IS

, rep € [0,1] CR. 5)
Assuming FID,; > FID,, bounds rgp between 0 and 1, rgp the simplifies the comparison of
FIDs computed using different models and datasets. A rgyp close to 1 indicates that much of
the FID,; can be explained by the general variation in the real dataset. The code used to compute
the FID scores is available at https://github.com/RichardObi/medigan/blob/main/tests/fid.py.

The models in Table 3 yielding the highest ImageNet-based rgp score are the ones with
ID 10 (0.677, endoscopy, 256 X 256, FastGAN), ID 13 (0.650, mammography, 1332 x 800,
CycleGAN), 14 (0.564, mammography, 1332 X 800, CycleGAN), 20 (0.543, chest x-ray,
1024 x 1024, PGGAN) and 1 (0.497, mammography, DCGAN, 128 X 128). This indicates that
the rpp does not depend on the modality, nor on the pixel resolution of the synthetic images.
Further, neither image-to-image translation (e.g. CycleGAN) nor noise-to-image models
(e.g., PGGAN, DCGAN, FastGAN) seem to have a particular advantage for achieving higher
rep results.

The flow chart in Fig. 8 provides further insight into the comparison between the lower
bound FID,, and the model FID,. The red trend line shows a positive correlation between the
FID,, and FID,,, which corroborates our previous assumption that a higher model FID,, is to be
expected given a higher lower bound FID,,.. Hence, for increased transparency, we motivate
further studies to routinely report the lower bound FID,, and the FID ratio rgp apart from
the model FID,,. The three-channel RGB endoscopic images represented by orange dots have
an FID,, comparable with their grayscale radiologic counterparts. However, both chest x-ray
datasets ChestX-ray14” and Node21* represented by green dots show a slightly lower FID,,
than other modalities. The model FID,, shows a high variation across models without readily
observable dependence on modality, generative model, or image size.

Journal of Medical Imaging 061403-17 Nov/Dec 2023 « Vol. 10(6)

https://github.com/RichardObi/medigan/blob/main/tests/fid.py
https://github.com/RichardObi/medigan/blob/main/tests/fid.py
https://github.com/RichardObi/medigan/blob/main/tests/fid.py

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access. ..

90

80 15
= 70 1.3 2 :. 2 1.2 g
se0— t+—t—
'S 50 10 ‘-’[16/‘5/’11/ 9
=40 1 14 o o
30 Xar v P 17 18
20

10

0

60 80 100 120 140 160 180 200 220

FID: real-synthetic

Fig. 8 Scatter plotillustrating the FID,; of medigan’s models (real-synthetic) compared to the lower
bound FID,, between two sets of the model’s respective training dataset (real-real). The lower
bound can represent an optimally achievable model and, as such, facilitates interpretation. Each
model is represented by a dot below its model ID. The dots’ color encoding depicts model modality,
where blue: mammography, orange: endoscopy, green: chest x-ray, and pink: brain MRI. The
red regression line illustrates the trend across all data points/models.

4.2.2 Analysing potential sources of bias in FID

The popular FID metric is computed based on the features of an Inception classifier (e.g., v1,*®

v3*7) trained on ImageNet’>—a database of natural images inherently different from the domain
of medical images. This potentially limits the applicability of the FID to medical imaging data.
Furthermore, the FID has been observed to vary based on the input image resizing methods and
ImageNet backbone feature extraction model types.>' Based on this, we further hypothesize a
susceptibility of the FID to variation due to (a) different backbone feature extractor weights and
random seed initializations, (b) different medical and nonmedical backbone model pretraining
datasets, (c) different image normalization procedures for real and synthetic dataset, (d) nuances
between different frameworks and libraries used for FID calculation, and (f) the dataset sizes
used to compute the FID.

Such variations can obstruct a reliable comparison of synthetic images generated by different
generative models. Illustrating the potential of medigan to analyze such variations, we report and
experiment with the FID. In particular, we subject the FID to variations in (i) the pretraining
dataset of its backbone feature extractor and by (ii) testing the effects of image normalization
across a set of medigan models. We experiment with the Inception v3 model trained on the recent
RadImageNet dataset’ released as radiology-specific alternative to the ImageNet database.’>
The RadImageNet-pretrained Inception v3 model weights we used are available at https://
github.com/BMEII-Al/RadlmageNet. We further compute the FID,, and FID,, with and without
normalization to analyze the respective impact on results.

In Table 4, the FID results are summarized allowing for cross-analysis between variations due
to image normalization and/or due to the pretraining dataset of the FID feature extraction model.
We observe generally lower FID values (1.15 to 7.32) for RadlmageNet compared to ImageNet
as FID model pretraining datasets (52.17 to 225.85). To increase FID comparability, we com-
pute, as before, the FID ratio rgp. The RadlmageNet-based model results in notably lower rgp
values for both normalized and non-normalized images. Notably, an exception to this are models
with ID 5 (mammography, 128 x 128, DCGAN) and 6 (mammography, 128 x 128, WGAN-GP)
achieving respective RadlmageNet-based rgp scores of 0.593 and 0.550. In general, the
RadImageNet-based model seems more robust at detecting if two sets of data originate from
the same distribution resulting in low FID,. values. Overall, for most models, the FID is
explained only by a limited amount by the variation in the real dataset and rgp < 0.7 for
all ImageNet and RadlmageNet-based FIDs. The scatter plot in Fig. 9 further compares the
RadImagnet-based FID with the ImageNet-FID for the models from Table 4. Noticeably, the
difference between non-normalized and normalized images is surprisingly high for several mod-
els for both ImageNet and RadImageNet FIDs (e.g., models with IDs 6 and 8) while negligible
for others (e.g., models with ID 1, 10, 13-16, and 19-21). Another observation is the relatively
modest correlation between RadlmageNet and ImageNet FID indicated by the slope of the red

Journal of Medical Imaging 061403-18 Nov/Dec 2023 « Vol. 10(6)

https://github.com/BMEII-AI/RadImageNet
https://github.com/BMEII-AI/RadImageNet
https://github.com/BMEII-AI/RadImageNet

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access.. .

Table 4 Normalized (left) and non-normalized (right) FID scores. This table measures the nor-
malization impact on FID scores based on a promising set of medigan’s deep generative models.
Synthetic samples were randomly-drawn for each model matching the number of available real
samples. The lower bound FID,, is computed between a pair of randomly sampled sets of real data
(real-real), whereas the model FID,s is computed between two randomly sampled sets of real and
synthetic data (real-syn). The results for model 7 (Flair, T1, T1c, T2) and 21 (T1, T2) are averaged
across modalities.

Normalized images

Non-Normalized images

47,
FIDImageNet

52

72
FI DRadImageNet

47,
FIDImageNet

52

72
Fl DRadImageNet

real-

real-

real-

real-

real-

real-

real-

real-

ID Dataset real syn rep real syn rgp real syn rep real syn rgp
1 Inbreast 33.61 67.60 0.497 025 1.27 0.197 2859 66.76 0.428 0.29 1.15 0.252
2 Optimam 28.85 80.51 0.358 0.22 6.19 0.036 28.75 77.95 0.369 0.33 4.11 0.080
3 BCDR 65.94 150.16 0.439 0.80 3.00 0.265 66.25 149.33 0.444 0.80 3.10 0.259
5 BCDR 68.22 180.04 0.379 0.99 1.67 0.593 64.45 174.38 0.370 0.87 4.04 0.215
6 BCDR 68.22 221.30 0.308 0.99 1.80 0.550 64.45 206.57 0.312 0.87 2.95 0.295
7 BRATS 2018 30.73 140.02 0.219 0.07 5.31 0.012 30.73 144.00 0.215 0.07 6.53 0.010
8 CBIS-DDSM 37.56 137.75 0.272 0.46 3.05 0.151 32.06 91.09 0.352 0.36 6.58 0.055
10 HyperKvasir 43.31 63.99 0.677 0.11 7.32 0.015 43.31 64.01 0.677 0.11 7.33 0.015
12 BCDR 68.22 205.29 0.332 0.99 5.69 0.080 64.45 199.50 0.323 0.87 4.25 0.205
13 OPTIMAM 65.75 101.01 0.650 0.17 1.14 0.153 65.83 101.15 0.651 0.18 1.10 0.163
14 OPTIMAM 4161 73.77 0.564 0.16 0.83 0.190 41.71 74.03 0.563 0.15 0.81 0.184
15 CSAW 74.96 162.67 0.461 0.31 4.07 0.076 73.62 165.53 0.445 0.19 3.71 0.051
16 CSAW 42.68 98.38 0.439 0.38 2.71 0.142 4250 99.81 0426 0.22 2.82 0.077
19 ChestX-ray14 2875 96.74 0.297 0.19 0.77 0.243 2875 96.78 0.297 0.19 0.66 0.286
20 ChestX-ray14 28.33 52.17 0.543 0.20 2.83 0.071 28.33 52.38 0.541 0.20 2.59 0.077
21 CrossMoDA 24.41 59.49 0410 0.02 1.45 0.014 2441 60.11 0.406 0.02 1.40 0.014
8 10Norm

g 7 : 2Norm

¥

% Z 15N orm

Qﬁd 3 20Norm '5\\(.

0

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220
FIDImageNet

Fig. 9 Scatter plot demonstrating the FID,¢ (real-synthetic) of medigan models from Table 4. The
FID, is based on the features of two different inception classifiers,*” one trained on ImageNet®?
(x-axis) and the other trained on RadlmageNet? (y-axis). Each model is represented by a dot
below its model ID. A black dot indicates an FID calculated from normalized (Norm/N) images,
e.g., with pixel values scaled between 0 and 1, as opposed to a blue dot indicating an FID calcu-
lated from images without previous normalization. The dots that correspond to the same model IDs
(normalized and non-normalized) are connected via black lines. The red regression line illustrates
the trend across all data points.

Journal of Medical Imaging 061403-19 Nov/Dec 2023 « Vol. 10(6)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access. ..

regression line. Counterexamples for this correlation include model 2 (normalized), which has
a low ImageNet-based FID (80.51) compared to a high RadlmageNet-based FID (6.19), and
model 6 (normalized), which, in contrast, has a high ImageNet-based FID (221.30) and a low
RadImageNet-based FID (1.80). With a low ImageNet-based FID (63.99), but surprisingly high
RadImageNet-based FID (7.32), model 10 (both normalized and non-normalized) is a further
counterexample. The example of model 10 is of particular interest, as it indicates limited appli-
cability of the Radiology-specific RadlmageNet-based FID for out-of-domain data, such as
three-channel endoscopic images.

Given the demonstrated high impact of backbone model training set and image normalization
on FID, it is to be recommended that studies specify the exact model used for FID calculation
and any applied data preprocessing and normalization steps. Further, where possible, reporting
the RadImageNet-based FID allows for reporting a radiology domain-specific FID. The latter is
seemingly less susceptible to variation in the real datasets than the ImageNet-based FID while
also being capable of capturing other, potentially complementary, patterns in the data.

4.3 Improving Clinical Medical Image Analysis

A high-impact clinical application of synthetic data is the improvement of clinical downstream
task performance such as classification, detection, segmentation, or treatment response estima-
tion. This can be achieved by using image synthesis for data augmentation, domain adaptation,
and data curation (e.g., artifact removal, noise reduction, super—resolution)7’63 to enhance the
performance of clinical decision support systems such as computer-aided diagnosis (CADx) and
detection (CADe) software.

In Table 5, the capability of improving the clinical downstream task performance is
demonstrated for various medigan models and modalities. Downstream task models trained on
a combination of real and synthetic imaging data achieve promising results surpassing the
alternative results achieved from training only on real data. The results are taken from the respec-
tive publications'''**%* and indicate that image synthesis can further improve the promising
performance demonstrated by deep learning-based CADx and CADe systems, e.g., in
mammography”® and brain MRL* For downstream task evaluation, we generally note the
importance of avoiding data leakage between training, validation, and test sets by training the

Table 5 Examples of the impact of synthetic data generated by medigan models on downstream
task performance. Based on real test data, we compare the performance metrics of a model
trained only on real data with a model trained on real data augmented with synthetic data.
The metrics are taken from the respective publications describing the models.

ID Test dataset Task Metric Trained on real Real + synthetic
2 OPTIMAM Mammogram patch classification' F1 0.90 0.96
3 BCDR Mammogram mass detection®®> FROC AUC 0.83 0.89
5 BCDR Mammogram patch classification™ F1 0.891 0.920
5 BCDR Mammogram patch classification'* ~ AUROC 0.928 0.959
5 BCDR Mammogram patch classification™ AUPRC 0.986 0.992
6 BCDR Mammogram patch classification'* F1 0.891 0.969
6 BCDR Mammogram patch classification'* AUROC 0.928 0.978
6 BCDR Mammogram patch classification'* ~ AUPRC 0.986 0.996
7 BRATS 2018 Brain tumor segmentation® Dice 0.796 0.814

14 OPTIMAM Mammogram mass detection®® FROC AUC 0.83 0.85

15 OPTIMAM Mammogram mass detection®® FROC AUC 0.83 0.85

Journal of Medical Imaging 061403-20 Nov/Dec 2023 « Vol. 10(6)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access.. .

Table 6 Examples of the impact of synthetic data generated by medigan models on downstream
task performance. Based on real test data, we compare the performance metrics of a model
trained only on real data with a model trained only on synthetic data. The metrics are taken from
the respective publications describing the models. n.a. refers to the case where only synthetic data
can be used, as no annotated real training data is available.

ID Test dataset Task Metric ~ Trained on real Trained on synthetic
4 BCDR Mammogram mass segmentation Dice 0.865 0.737

11 HyperKvasir Polyp segmentation® Dice loss 0.112 0.137

11 HyperKvasir Polyp segmentation®" loU 0.827 0.798

11 HyperKvasir Polyp segmentation® F-Score 0.888 0.863

20 ChestX-ray14 Lung disease classification®’ AUROC 0.947 0.878

21 CrossMoDA Brain tumor segmentation® Dice n.a. 0.712

21 CrossMoDA Cochlea segmentation® Dice n.a. 0.478

generative model either on only the dataset partition used to train the respective downstream task
model (e.g., IDs 2, 3, 7, 14, 15) or to train the generative models on an entirely different dataset
(e.g., IDs 5, 6).

The approaches displayed in Table 6 represent the application, where synthetic data is used
instead of real data to train downstream task models. Despite an observable performance
decrease when training on synthetic data only, the results’?*> demonstrate the usefulness of
synthetic data if none or only limited real training data is available or shareable. For example,
if labels or annotations in a target domain are scarce but present in a source domain, a generative
model can translate annotated data from the source domain to the target domain to enable super-
vised training of downstream task models.”>"?

5 Discussion and Future Work

In this work, we introduced medigan, an open-source Python library, which allows one to share
pretrained generative models for synthetic medical image generation. The package is easily inte-
grable into other packages and tools, including commercial ones. Synthetic data can enhance
the performance, capabilities, and robustness of data-hungry deep learning models as well as to
mitigate common issues such as domain shift, data scarcity, class imbalance, and data privacy
restrictions. Training one’s own generative network can be complex and expensive since it
requires a considerable amount of time, effort, specific dedicated hardware, carbon emissions,
as well as knowledge and applied skills in generative Al. An alternative and complementary
solution is the distribution of pretrained generative models to allow their reuse by Al researchers
and engineers worldwide.

medigan can help to reduce the time to run synthetic data experiments and can readily be
added as a component, e.g., as a dataloader as discussed in Sec. 3.5.2, in Al training pipelines.
As such, the generated data can be used to improve supervised learning models as described
in Sec. 4.3 via training or fine-tuning but can also serve as plug-and-play data source for
self/semisupervised learning, e.g., to pretrain clinical downstream task models.

Furthermore, studies that use additional synthetic training data for training deep learning
models often do not report all the specifics about their underlying generative model.””> Within
medigan, each generative model is documented, openly accessible, and reusable. This increases
the reproducibility of studies that use synthetic data and makes it more transparent where the data
or parts thereof originated from. This can help to achieve the traceability objectives outlined
in the FUTURE-AI consensus guiding principles toward Al trustworthiness in medical
imaging.”” medigan’s currently 21 generative models are illustrated in Table 3 and developed
and validated by Al researchers and/or specialized medical doctors. Furthermore, each model
contains traceable’ and version-controlled metadata in medigan’s global.json file, as outlined in

Journal of Medical Imaging 061403-21 Nov/Dec 2023 « Vol. 10(6)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access. ..

Sec. 3.3. The searchable (see Sec. 3.4) metadata allows one to choose a suitable model for a
user’s task at hand and includes, among others, the dataset used during the training process, the
trained date, publication, modality, input arguments, model types, and comparable evaluation
metrics.

To assess model suitability, users are recommended to first (i) ensure the compatibility
between their planned downstream task (e.g., mammogram region-of-interest classification) and
a candidate medigan model (e.g., mammogram region-of-interest generator). Second, (ii) a
user’s real (test) data and the model’s synthetic data should be compatible corresponding, for
instance, in domain, organ, or disease manifestation. If the awareness of the domain shifts
between real and synthetic data remains limited after this qualitative analysis, (iii) a quantitative
assessment (e.g., via FID) is recommended. Finally, (iv) it is to be assessed if a downstream task
improvement is plausible. This depends, among others, on the tested scenario and the task at
hand, but also on the amount, domain, task specificity and quality of the available real data, and
the generative model’s capabilities as indicated by its reported evaluation metrics from previous
studies. If a positive impact of synthetic data on downstream task performance is plausible, users
are recommended to proceed toward empirical verification.

The exploration and multimodel evaluation of the properties of generative models and syn-
thetic data is a further application of medigan. medigan’s visualization tool (see Sec. 3.6) intui-
tively allows the user to explore and adjust the input latent vector of generative models to visually
evaluate, e.g., its inherent diversity and condition adherence’ (i.e., how well does a given mask or
label fit the generated image). The evaluation of synthetic data by human experts, such as radi-
ologists, is a costly and time-consuming task, which motivates the usage of automated metric-
based evaluation such as the FID. Our multimodel analysis reveals sources of bias in FID report-
ing. We show the susceptibility of FID to vary substantially based on changes in input image
normalization or in the choice of the pretraining dataset of the FID feature extractor. This finding
highlights the need to report the specific models, preprocessing, and implementations used to
compute the FID alongside the FID ratio rgp proposed in Sec. 4.2.1 to account for the variation
immanent in the real dataset. With medigan model experiments demonstrably leading to insights
in synthetic data evaluation, future research can use medigan as a tool to accelerate, test, analyze,
and compare new synthetic data and generative model evaluation and exploration techniques.

5.1 Legal Frameworks for Sharing of Synthetic and Real Patient Data

Many countries have enacted regulations that govern the use and sharing of data related to
individuals. The two most recognized legal frameworks are the Health Insurance Portability and
Accountability Act (HIPAA)®” from the United States (U.S.) and the General Data Protection
Regulation (GDPR)*® from the European Union (E.U.). These regulations govern the use and
disclosure of individuals’ protected health information (PHI) and assures individuals’ data is
protected while allowing use for providing quality patient care.”®~'%

Conceptually, synthetic data is not real data about any particular individual and conversely to
real data, synthetic data can be generated at high volumes and potentially shared without restric-
tion. In this sense, under both GDPR and HIPAA regulation, the rules govern the use of real data
for the generation and evaluation of synthetic datasets, as well as the sharing of the original
dataset. However, once fully synthetic data is generated, this new dataset falls outside the scope
of the current regulations based on the argument that there is no direct correlation between the
original subjects and the synthetic subjects. A common interpretation is that as long as the real
data remains in a secure environment during the generation of synthetic data, there is little to
no risk to the original subjects.'®

As a consequence, the use of synthetic data can help prevent researchers from inadvertently
using and possibly exposing patients identifiable data. Synthetic data can also lessen the controls
imposed by Institutional Review Boards (IRBs) and based on international regulations by
ensuring data is never mapped to real individuals.'®* There are multiple methods of generating
synthetic data, some of which include building models from real data, which can create a set
statistically similar to real data. How similar the synthetic data is to real-world data often defines
its “utility,” which will vary depending on the synthesis methods used and the needs of the study
at hand. If the utility of the synthetic data is high enough then evaluation results are expected to

Journal of Medical Imaging 061403-22 Nov/Dec 2023 « Vol. 10(6)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access.. .

be similar to those that use real data.'” Being built based on real data, a common concern is
patient reidentification and leaking of patient-specific features in generative models.”'> Despite
the arguably permissive aforementioned regulations, deidentification® of the training data prior
to generative model training is to be recommended. This can minimize the possibility of
generative models leaking sensitive patient data during inference and after sharing. A further
recommended and mathematically-proven tool for privacy preservation is differential privacy
(DP).”> DP can be included in the training of deep generative model, among other setups,
by adding DP noise to the gradients.

5.2 Expansion of Available Models

In the future, further generative models across medical imaging disciplines, modalities, and
organs can be integrated into medigan. The capabilities of additional models can range from
privatising or translating the user’s data from one domain to another, balancing or debiasing
imbalanced datasets, reconstructing, denoising or removing artifacts in medical images, or resiz-
ing images, e.g., using image super-resolution techniques. Despite medigan’s current focus on
models based on GANs,' the inclusion of different additional types of generative models is
desirable and will enable insightful comparisons. In particular, this is to be further emphasized
considering the recent successes of diffusion models,>>?’ variational autoencoders,?! and nor-
malizing flows?>~* in the computer vision and medical imaging!®~'” domains. Before integrat-
ing and testing a new model via the pipeline described in Sec. 3.8, we assess whether a model is
to become a candidate for inclusion into medigan. This threefold assessment is based on the
SynTRUST framework’ and reviews whether (1) the model is well-documented (e.g., in a
respective publication), (2) the model or its synthetic data is applicable to a task of clinical
relevance, and (3) whether the model has been methodically validated.

5.3 Synthetic DICOM Generation

Since the dominant data format used for medical imaging is Digital Imaging and Communications
in Medicine (DICOM), we plan to enhance medigan by integrating the generation of DICOM
compliant files. DICOM consists of two main components, pixel data and the DICOM header.
The latter can be described as an embedded dataset rich with information related to the pixel
data such as the image sequence, patient, physicians, institutions, treatments, observations, and
equipment.®® Future work will explore combining our GAN generated images with synthetic
DICOM headers. The latter will be created from the same training images from which the medigan
models are trained to create synthetic DICOM data with high statistical similarity to real-world
data. In this regard, a key research focus will be the creation of an appropriate and DICOM-
compliant description of the image acquisition protocol for a synthetic image. The design and
development of an open-source software package for generating DICOM files based on syn-
thesized DICOM headers associated to (synthetic) images will extend prior work'® that demon-
strated the generation of synthetic headers for the purpose of evaluating deidentification methods.

6 Conclusion

We presented the open-source medigan package, which helps research in medical imaging to
rapidly create synthetic datasets for a multitude of purposes such as Al model training and
benchmarking, data augmentation, domain adaptation, and intercentre data sharing. medigan
provides simple functions and interfaces for users, allowing one to automate generative model
search, ranking, synthetic data generation, and model contribution. By reuse and dissemination
of existing generative models in the medical imaging community, medigan allows researchers to
speed up their experiments with synthetic data in a reproducible and transparent manner.

We discuss three key applications of medigan, which include (i) sharing of restricted datasets,
(ii) improving clinical downstream task performance, and (iii) analyzing the properties of gen-
erative models, synthetic data, and associated evaluation metrics. Ultimately, the aim of medigan
is to contribute to benefiting patients and clinicians, e.g., by increasing the performance and
robustness of Al models in clinical decision support systems.

Journal of Medical Imaging 061403-23 Nov/Dec 2023 « Vol. 10(6)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access. ..

Disclosures

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Acknowledgments

We would like to thank all model contributors, such as Alyafi et al.,11 Szafranowska et al.,'
Thambawita et al.,’! Kim et al.,?* Segal et al.,”! Joshi et al.,°> and Garrucho et al.”® This project
has received funding from the European Union’s Horizon 2020 research and innovation
program under grant agreements No. 952103 and No. 101057699. Eloy Garcia and Kaisar
Kushibar hold the Juan de la Cierva fellowship from the Ministry of Science and Innovation
of Spain with reference numbers FJC2019-040039-1 and FJC2021-047659-1, respectively.

Data, Materials, and Code Availability

medigan is a free Python (v3.6+) package published under the MIT license and distributed via
the Python Package Index (https://pypi.org/project/medigan/). The package is open-source
and invites the community to contribute on GitHub (https://github.com/RichardObi/medigan).
A detailed documentation of medigan is available (https://medigan.readthedocs.io/en/latest/)
that contains installation instructions, the API reference, a general description, code examples,
a testing guide, a model contribution user guide, and documentation of the generative models
available in medigan.

References

1. C. Martin-Isla et al., “Image-based cardiac diagnosis with machine learning: a review,’
Front. Cardiovasc. Med. 7, 1 (2020).

2. R. Aggarwal et al., “Diagnostic accuracy of deep learning in medical imaging: a systematic
review and meta-analysis,” NPJ Digital Med. 4(1), 1-23 (2021).

3. X. Liu et al., “A comparison of deep learning performance against health-care profession-
als in detecting diseases from medical imaging: a systematic review and meta-analysis,”
Lancet Digital Health 1(6), €271-e297 (2019).

4. J. Schlemper et al., “A deep cascade of convolutional neural networks for MR image
reconstruction,” Lect. Notes Comput. Sci. 10265, 647-658 (2017).

5. E. Ahishakiye et al., “A survey on deep learning in medical image reconstruction,” Intell.
Med. 1(03), 118-127 (2021).

6. N. Tajbakhsh et al., “Embracing imperfect datasets: a review of deep learning solutions for
medical image segmentation,” Med. Image Anal. 63, 101693 (2020).

7. R. Osuala et al., “Data synthesis and adversarial networks: a review and meta-analysis in
cancer imaging,” Med. Image Anal. 84, 102704 (2023).

8. C. Jin et al., “Predicting treatment response from longitudinal images using multi-task
deep learning,” Nat. Commun. 12, 1851 (2021).

9. W. L. Bi et al., “Artificial intelligence in cancer imaging: clinical challenges and applica-
tions,” CA: Cancer J. Clin. 69(2), 127-157 (2019).

10. F. Prior et al., “Open access image repositories: high-quality data to enable machine learn-
ing research,” Clin. Radiol. 75(1), 7-12 (2020).

11. B. Alyafi, O. Diaz, and R. Marti, “DCGANS for realistic breast mass augmentation in x-ray
mammography,” Proc. SPIE 11314, 1131420 (2020).

12. X. Yi, E. Walia, and P. Babyn, “Generative adversarial network in medical imaging:
a review,” Med. Image Anal. 58, 101552 (2019).

13. J. M. Wolterink et al., “Deep MR to CT synthesis using unpaired data,” Lect. Notes
Comput. Sci. 10557, 14-23 (2017).

14. Z. Szafranowska et al., “Sharing generative models instead of private data: a simulation
study on mammography patch classification,” Proc. SPIE 12286, 122860Q (2022).

15. T. Stadler, B. Oprisanu, and C. Troncoso, “Synthetic data—anonymisation groundhog day,”
in 31st USENIX Secur. Symp. (USENIX Security 22), pp. 1451-1468 (2022).

Journal of Medical Imaging 061403-24 Nov/Dec 2023 « Vol. 10(6)

https://pypi.org/project/medigan/
https://pypi.org/project/medigan/
https://github.com/RichardObi/medigan
https://medigan.readthedocs.io/en/latest/
https://doi.org/10.3389/fcvm.2020.00001
https://doi.org/10.1038/s41746-021-00438-z
https://doi.org/10.1016/S2589-7500(19)30123-2
https://doi.org/10.1007/978-3-319-59050-9_51
https://doi.org/10.1016/j.imed.2021.03.003
https://doi.org/10.1016/j.imed.2021.03.003
https://doi.org/10.1016/j.media.2020.101693
https://doi.org/10.1016/j.media.2022.102704
https://doi.org/10.1038/s41467-021-22188-y
https://doi.org/10.3322/caac.21552
https://doi.org/10.1016/j.crad.2019.04.002
https://doi.org/10.1117/12.2543506
https://doi.org/10.1016/j.media.2019.101552
https://doi.org/10.1007/978-3-319-68127-6_2
https://doi.org/10.1007/978-3-319-68127-6_2
https://doi.org/10.1117/12.2625781

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access.. .

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

I. Goodfellow et al., “Generative adversarial nets,” in Adv. Neural Inf. Process. Syst.,
pp. 2672-2680 (2014).

T. Salimans et al., “Improved techniques for training GANS,” in Adv. Neural Inf. Process.
Syst. 29, pp. 2234-2242 (2016).

L. Mescheder, A. Geiger, and S. Nowozin, “Which training methods for GANs do actually
converge?,” in Int. Conf. Mach. Learn., PMLR, pp. 3481-3490 (2018).

S. Arora, A. Risteski, and Y. Zhang, “Do GANs learn the distribution? Some theory and
empirics,” in Int. Conf. Learn. Represent. (2018).

L. Ruthotto and E. Haber, “An introduction to deep generative modeling,” GAMM-
Mitteilungen 44(2), €202100008 (2021).

D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv:1312.6114 (2013).
D. Rezende and S. Mohamed, “Variational inference with normalizing flows,” in Int. Conf.
Mach. Learn., PMLR, pp. 1530-1538 (2015).

L. Dinh, D. Krueger, and Y. Bengio, “Nice: non-linear independent components estima-
tion,” arXiv:1410.8516 (2014).

L. Dinh, J. Sohl-Dickstein, and S. Bengio, ‘“Density estimation using real NVP)”
arXiv:1605.08803 (2016).

J. Sohl-Dickstein et al., “Deep unsupervised learning using nonequilibrium thermodynam-
ics,” in Int. Conf. Mach. Learn., PMLR, pp. 2256-2265 (2015).

Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distri-
bution,” in Adv. Neural Inf. Process. Syst. 32 (2019).

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Adv. Neural
Inf. Process. Syst. 33, pp. 6840-6851 (2020).

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in
Int. Conf. Mach. Learn., PMLR, pp. 214-223 (2017).

I. Gulrajani et al., “Improved training of wasserstein gans,” arXiv:1704.00028 (2017).
B. Liu et al., “Towards faster and stabilized gan training for high-fidelity few-shot image
synthesis,” in Int. Conf. Learn. Represent. (2020).

M. Kang, J. Shin, and J. Park, “StudioGAN: a taxonomy and benchmark of GANs for
image synthesis,” arXiv:2206.09479 (2022).

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep
convolutional generative adversarial networks,” arXiv:1511.06434 (2015).

T. Karras et al., “Progressive growing of gans for improved quality, stability, and variation,”
arXiv:1710.10196 (2017).

M. Mirza and S. Osindero, “‘Conditional generative adversarial nets,” arXiv:1411.1784 (2014).
A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier
GANSs,” in Int. Conf. Mach. Learn., PMLR, pp. 2642-2651 (2017).

P. Isola et al., “Image-to-image translation with conditional adversarial networks,” in
Proc. IEEE Conf. Comput. Vision and Pattern Recognit., pp. 1125-1134 (2017).

J.-Y. Zhu et al., “Unpaired image-to-image translation using cycle-consistent adversarial
networks,” in Proc. IEEE Int. Conf. Comput. Vision, pp. 2223-2232 (2017).

Y. Choi et al., “Stargan: unified generative adversarial networks for multi-domain image-
to-image translation,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit.,
pp. 8789-8797 (2018).

T. Park et al., “Semantic image synthesis with spatially-adaptive normalization,” in Proc.
IEEE/CVF Conf. Comput. Vision and Pattern Recognit., pp. 2337-2346 (2019).

V. Sushko et al., “OASIS: only adversarial supervision for semantic image synthesis,”
Int. J. Comput. Vision 130(12), 2903-2923 (2022).

T. R. Shaham, T. Dekel, and T. Michaeli, “Singan: learning a generative model from a
single natural image,” in Proc. IEEE/CVF Int. Conf. Comput. Vision, pp. 4570-4580 (2019).
D. Korkinof et al., “Perceived realism of high resolution generative adversarial network
derived synthetic mammograms,” Radiol.: Artif. Intell. 3, €190181 (2020).

B. Alyafi et al., “Quality analysis of DCGAN-generated mammography lesions,” Proc.
SPIE 11513, 115130B (2020).

A. Borji, “Pros and cons of GAN evaluation measures,” Comput. Vision Image
Understanding 179, 41-65 (2019).

Journal of Medical Imaging 061403-25 Nov/Dec 2023 « Vol. 10(6)

https://doi.org/10.1002/gamm.202100008
https://doi.org/10.1002/gamm.202100008
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/CVPR.2018.00916
https://doi.org/10.1007/s11263-022-01673-x
https://doi.org/10.1109/ICCV.2019.00467
https://doi.org/10.1148/ryai.2020190181
https://doi.org/10.1117/12.2560473
https://doi.org/10.1117/12.2560473
https://doi.org/10.1016/j.cviu.2018.10.009
https://doi.org/10.1016/j.cviu.2018.10.009

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access. ..

45.

46.

47.

48.

49.

50.

51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

A. Borji, “Pros and cons of GAN evaluation measures: new developments,” Comput.
Vision Image Understanding 215, 103329 (2022).

M. Heusel et al., “GANSs trained by a two time-scale update rule converge to a local nash
equilibrium,” Adv. Neural Inf. Process. Syst. 30 (2017).

C. Szegedy et al., “Rethinking the inception architecture for computer vision,” in Proc.
IEEE Conf. Comput. Vision and Pattern Recognit., pp. 2818-2826 (2016).

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf. Comput. Vision
and Pattern Recognit., pp. 1-9 (2015).

Z. Wang et al., “Image quality assessment: from error visibility to structural similarity,”
IEEE Trans. Image Process. 13(4), 600-612 (2004).

L. Garrucho et al., “High-resolution synthesis of high-density breast mammograms: appli-
cation to improved fairness in deep learning based mass detection,” Front. Oncol. 12,
1044496 (2022).

V. Thambawita et al., “SinGAN-Seg: synthetic training data generation for medical image
segmentation,” PLoS One 17(5), e0267976 (2022).

J. Deng et al., “Imagenet: a large-scale hierarchical image database,” in /EEE Conf.
Comput. Vision and Pattern Recognit., IEEE, pp. 248-255 (2009).

accel brain, “Generative adversarial networks library: Pygan,” 2021, https://github.com/
accel-brain/accel-brain-code/tree/master/Generative-Adversarial-Networks/.

A. Pal and A. Das, “TorchGAN: a flexible framework for gan training and evaluation,”
J. Open Source Software 6(66), 2606 (2021).

J. Herzer and T. NeuerRadu, “vegans,” 2021, https://github.com/unit8co/vegans/.
NVIDIA, “Imaginaire,” 2021, https://github.com/NVlabs/imaginaire.

J. Shor, “Tensorflow-GAN (TF-GAN): tooling for gans in tensorflow,” 2022, https://github
.com/tensorflow/gan.

E. Linder-Norén, “Keras-GAN: Pytorch implementations of generative adversarial net-
works,” 2021, https://github.com/eriklindernoren/PyTorch-GAN.

E. Linder-Norén, “Keras-GAN: Keras implementations of generative adversarial networks,”
2022, https://github.com/eriklindernoren/Keras-GAN.

K. S. Lee and C. Town, “Mimicry: towards the reproducibility of GAN research,”
arXiv:2005.02494 (2020).

T. Wolf et al., “Transformers: state-of-the-art natural language processing,” in Proc. 2020
Conf. Empirical Methods in Nat. Language Process.: Syst. Demonstrations, pp. 38—45
(2020, October).

M. Kahng et al., “GAN lab: understanding complex deep generative models using inter-
active visual experimentation,” IEEE Trans. Vision Comput. Graphics 25(1), 310-320
(2018).

O. Diaz et al., “Data preparation for artificial intelligence in medical imaging: a compre-
hensive guide to open-access platforms and tools,” Phys. Med. 83, 25-37 (2021).

F. Pérez-Garca, R. Sparks, and S. Ourselin, “TorchIO: a Python library for efficient load-
ing, preprocessing, augmentation and patch-based sampling of medical images in deep
learning,” Comput. Methods Prog. Biomed. 208, 106236 (2021).

C. M. Moore et al., “CleanX: a Python library for data cleaning of large sets of radiology
images,” J. Open Source Software 7(76), 3632 (2022).

M. J. Cardoso et al., “MONALI: an open-source framework for deep learning in healthcare,”
arXiv:2211.02701 (2022).

A. Paszke et al., “Pytorch: an imperative style, high-performance deep learning library,”
in Adv. Neural Inf. Process. Syst. 32, H. Wallach et al., Eds., pp. 8024-8035, Curran
Associates, Inc. (2019).

E. Gibson et al., “Niftynet: a deep-learning platform for medical imaging,” Comput.
Methods Prog. Biomed. 158, 113-122 (2018).

N. Pawlowski et al., “DLTK: state of the art reference implementations for deep learning on
medical images,” arXiv:1711.06853 (2017).

A. Nikolaos, “Deep learning in medical image analysis: a comparative analysis of multi-
modal brain-MRI segmentation with 3D deep neural networks,” Master’s thesis, University
of Patras (2019).

Journal of Medical Imaging 061403-26 Nov/Dec 2023 « Vol. 10(6)

https://doi.org/10.1016/j.cviu.2021.103329
https://doi.org/10.1016/j.cviu.2021.103329
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.3389/fonc.2022.1044496
https://doi.org/10.1371/journal.pone.0267976
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://github.com/accel-brain/accel-brain-code/tree/master/Generative-Adversarial-Networks/
https://github.com/accel-brain/accel-brain-code/tree/master/Generative-Adversarial-Networks/
https://github.com/accel-brain/accel-brain-code/tree/master/Generative-Adversarial-Networks/
https://doi.org/10.21105/joss.02606
https://github.com/unit8co/vegans/
https://github.com/unit8co/vegans/
https://github.com/NVlabs/imaginaire
https://github.com/NVlabs/imaginaire
https://github.com/tensorflow/gan
https://github.com/tensorflow/gan
https://github.com/eriklindernoren/PyTorch-GAN
https://github.com/eriklindernoren/PyTorch-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://doi.org/10.1109/TVCG.2018.2864500
https://doi.org/10.1016/j.ejmp.2021.02.007
https://doi.org/10.1016/j.cmpb.2021.106236
https://doi.org/10.21105/joss.03632
https://doi.org/10.1016/j.cmpb.2018.01.025
https://doi.org/10.1016/j.cmpb.2018.01.025

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access.. .

71.

72.

73.

74.

75.

76.

7.

78.
79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

M. Baumgartner et al., “nndetection: a self-configuring method for medical object
detection,” Lect. Notes Comput. Sci. 12905, 530-539 (2021).

X. Mei et al., “RadlmageNet: an open radiologic deep learning research dataset for
effective transfer learning,” Radiol.: Artif. Intell. 4, €210315 (2022).

The Python Package Index, “medigan 1.0.0,” 2022, https://pypi.org/project/medigan/
(accessed 5 February 2023).

R. Osuala, G. Skorupko, and N. Lazrak, “medigan getting started,” 2022, https://medigan
.readthedocs.io/en/latest (accessed 5 February 2023).

K. Lekadir et al., “FUTURE-AI: guiding principles and consensus recommendations for
trustworthy artificial intelligence in medical imaging,” arXiv:2109.09658 (2021).
EuCanlmage Consortium, “EuCanlmage towards a European cancer imaging platform for
enhanced artificial intelligence in oncology,” 2020, https://eucanimage.eu/ (accessed 5
February 2023).

M. Abadi et al., “TensorFlow: large-scale machine learning on heterogeneous systems,”
2015, tensorflow.org.

F. Chollet et al., “Keras,” 2015, https://github.com/fchollet/keras.

C. Larman, Applying UML and Pattern: An Introduction to Object Oriented Analysis and
Design and the Unified Process, Prentice Hall PTR (2001).

E. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software,
Pearson Deutschland GmbH (1995).

I. C. Moreira et al., “INbreast: toward a full-field digital mammographic database,” Acad.
Radiol. 19(2), 236-248 (2012).

M. D. Halling-Brown et al., “Optimam mammography image database: a large-scale re-
source of mammography images and clinical data,” Radiol.: Artif. Intell. 3, €200103 (2020).
M. G. Lopez et al., “BCDR: a breast cancer digital repository,” in /5th Int. Conf. Exp.
Mech., Vol. 1215 (2012).

S. Kim, B. Kim, and H. Park, “Synthesis of brain tumor multicontrast MR images for
improved data augmentation,” Med. Phys. 48(5), 2185-2198 (2021).

B. H. Menze et al.,, “The multimodal brain tumor image segmentation benchmark
(BRATS),” IEEE Trans. Med. Imaging 34(10), 1993-2024 (2014).

R.S. Lee et al., “A curated mammography data set for use in computer-aided detection and
diagnosis research,” Sci. Data 4(1), 170177 (2017).

H. Borgli et al., “Hyperkvasir, a comprehensive multi-class image and video dataset for
gastrointestinal endoscopy,” Sci. Data 7(1), 283 (2020).

K. Dembrower, P. Lindholm, and F. Strand, “A multi-million mammography image dataset
and population-based screening cohort for the training and evaluation of deep neural
networks-the cohort of screen-aged women (CSAW),” J. Digital Imaging 33(2), 408—413
(2020).

E. Sogancioglu, K. Murphy, and B. van Ginneken, “NODE21 (v-5) [data set],” Zenodo
(2021).

X. Wang et al., “Chestx-ray8: hospital-scale chest x-ray database and benchmarks on
weakly-supervised classification and localization of common thorax diseases,” in Proc.
IEEE Conf. Comput. Vision and Pattern Recognit., pp. 2097-2106 (2017).

B. Segal et al., “Evaluating the clinical realism of synthetic chest x-rays generated using
progressively growing GANs,” SN Comput. Sci. 2(4), 1-17 (2021).

S. Joshi et al., “nn-UNet training on CycleGAN-translated images for cross-modal domain
adaptation in biomedical imaging,” Lect. Notes Comput. Sci. 12963, 540-551 (2022).
R. Dorent et al., “CrossMoDA 2021 challenge: benchmark of cross-modality domain adap-
tation techniques for vestibular schwannoma and cochlea segmentation,” Med. Image Anal.
83, 102628 (2022).

R. Selvan et al., “Carbon footprint of selecting and training deep learning models for medi-
cal image analysis,” in Med. Image Comput. and Comput. Assist. Intervention—-MICCAI
2022: 25th Int. Conf., 18-22 September 2022, Singapore, Proceedings, Part V, pp. 506—
516, Springer Nature, Cham, Switzerland (2022).

C. Dwork et al., “The algorithmic foundations of differential privacy,” Found. Trends®
Theor. Comput. Sci. 9(3—4), 211-407 (2014).

Journal of Medical Imaging 061403-27 Nov/Dec 2023 « Vol. 10(6)

https://doi.org/10.1007/978-3-030-87240-3_51
https://doi.org/10.1148/ryai.210315
https://pypi.org/project/medigan/
https://pypi.org/project/medigan/
https://medigan.readthedocs.io/en/latest
https://medigan.readthedocs.io/en/latest
https://medigan.readthedocs.io/en/latest
https://eucanimage.eu/
https://eucanimage.eu/
tensorflow.org
tensorflow.org
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1016/j.acra.2011.09.014
https://doi.org/10.1016/j.acra.2011.09.014
https://doi.org/10.1148/ryai.2020200103
https://doi.org/10.1002/mp.14701
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1038/sdata.2017.177
https://doi.org/10.1038/s41597-020-00622-y
https://doi.org/10.1007/s10278-019-00278-0
https://doi.org/10.5281/zenodo.5548363
https://doi.org/10.1109/CVPR.2017.369
https://doi.org/10.1109/CVPR.2017.369
https://doi.org/10.1007/s42979-021-00720-7
https://doi.org/10.1016/j.media.2022.102628
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access. ..

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

L. Abdelrahman et al., “Convolutional neural networks for breast cancer detection in
mammography: a survey,” Comput. Biol. Med. 131(Jan.), 104248 (2021).

Centers for Medicare & Medicaid Services, “The Health Insurance Portability and
Accountability Act of 1996 (HIPAA),” 1996, http://www.cms.hhs.gov/hipaa/.

European Parliament and Council of European Union, “Council regulation (EU) no 2016/679,”
2018, https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679/.
Committee on Health Research and the Privacy of Health Information: The HIPAA Privacy
Rule, Board on Health Sciences Policy, Board on Health Care Serviceset al., Beyond the
HIPAA Privacy Rule: Enhancing Privacy, Improving Health Through Research, p. 12458,
National Academies Press, Washington, D.C. (2009).

U.S. Dept. of Health and Human Services, “Summary of the HIPAA privacy rule: HIPAA
compliance assistance,” 2003, http://purl.fdlp.gov/GPO/gpo9756.

S. M. Shah and R. A. Khan, “Secondary use of electronic health record: opportunities and
challenges,” IEEE Access 8, 136947-136965 (2020).

C. F. Mondschein and C. Monda, “The EU’s general data protection regulation (GDPR) in
aresearch context,” in Fundamentals of Clinical Data Science, P. Kubben, M. Dumontier,
and A. Dekker, Eds., pp. 55-71, Springer International Publishing, Cham (2019).

K. El Emam, L. Mosquera, and R. Hoptroff, Practical Synthetic Data Generation:
Balancing Privacy and the Broad Availability of Data, 1st ed., O’Reilly Media, Inc,
Sebastopol, California (2020).

F. K. Dankar and M. Ibrahim, “Fake it till you make it: guidelines for effective synthetic
data generation,” Applied Sciences 11, 2158 (2021).

W. H. L. Pinaya et al.,, “Brain imaging generation with latent diffusion models,” in
Deep Generative Models: Second MICCAI Workshop, DGM4MICCAI 2022, Held in
Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings, pp. 117-
126, Springer Nature, Cham, Switzerland (2022, October).

W. H. L. Pinaya et al., “Unsupervised brain imaging 3D anomaly detection and segmen-
tation with transformers,” Med. Image Anal. 79, 102475 (2022).

N. Pawlowski, D. Coelho de Castro, and B. Glocker, “Deep structural causal models for
tractable counterfactual inference,” in Adv. Neural Inf. Process. Syst. 33, pp. 857-869
(2020).

M. Rutherford et al., “A DICOM dataset for evaluation of medical image de-identification,”
Sci. Data 8, 183 (2021).

Biographies of the authors are not available.

Journal of Medical Imaging 061403-28 Nov/Dec 2023 « Vol. 10(6)

https://doi.org/10.1016/j.compbiomed.2021.104248
http://www.cms.hhs.gov/hipaa/
http://www.cms.hhs.gov/hipaa/
http://www.cms.hhs.gov/hipaa/
http://www.cms.hhs.gov/hipaa/
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679/
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679/
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679/
http://purl.fdlp.gov/GPO/gpo9756
http://purl.fdlp.gov/GPO/gpo9756
http://purl.fdlp.gov/GPO/gpo9756
https://doi.org/10.1109/ACCESS.2020.3011099
https://doi.org/10.3390/app11052158
https://doi.org/10.1016/j.media.2022.102475
https://doi.org/10.1038/s41597-021-00967-y

