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1 Introduction

In the context of algebraic quantum field theory [1], the entanglement entropy (EE) of
spacetime regions provides a canonical measure of statistical properties of the vacuum
state restricted to the algebras attached to those regions. Similarly to vacuum expectation
values of local operators in the standard approach [2], it is reasonable to expect that a full
characterization of a given theory should be achievable from the knowledge of the vacuum
EE of arbitrary regions [3–11]. Of course, the EE is not well-defined in the continuum due
to the presence of infinite correlations between fluctuations localized arbitrarily close to the
entangling surface — see e.g., [12, 13]. Hence, one is forced to either resort to alternative
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well-defined measures such as the mutual information [14, 15] or to regulate the theory by
introducing some sort of ultraviolet (UV) regulator. The idea is that some of the terms in
the EE expansion in powers of the regulator should be independent of the regulator choice,
hence capturing “universal” information about the corresponding continuum theory. This
is indeed the case, and the EE universal terms have been shown to contain a remarkable
amount of information, such as: trace-anomaly coefficients, renormalization group charges,
stress-tensor and other conserved currents correlators, thermal entropy charges, conformal
bounds involving ratios of some of those quantities, unitarity bounds and more — see e.g., [15–
38]. In characterizing such terms for general quantum field theories in various spacetime
dimensions d, the interplay between the dependence on the entangling region shape and the
one on the theory under consideration turns out to play a crucial role. The situation is rather
different depending on whether d is even or odd, as we review next. We focus on the latter
case, which will be the one of interest in the present paper.

1.1 EE in odd dimensions, shape dependence and holography

For a smooth entangling region A in a general state of an odd-dimensional CFT, the EE
admits an expansion in powers of any suitable UV regulator δ of the form

SEE(A) = cd−2

(
H

δ

)d−2
+ cd−4

(
H

δ

)d−4
+ . . . + c1

H

δ
+ (−1)

(d−1)
2 F (A) . (odd d) (1.1)

Here, the constants cd−2, . . . , c1 are all cutoff dependent, H is some characteristic length
scale of A, and F (A) is a universal, highly non-local and state-dependent constant which
captures information about the continuum theory.

In the vacuum state, and in the particular case of a round ball, F0 ≡ F
(
A = Bd−1

)
coincides with the Euclidean free-energy of the CFT, F0 = − logZSd [18, 24]. For small
deformations of the round ball, the leading correction to F0 is quadratic in the deformation,
positive-definite and proportional to the stress-tensor two-point function charge CT of the
corresponding CFT [26, 39]. As a consequence, the round ball is a local minimum of F (A) for
general small deformations of A = Bd−1 and for general theories in arbitrary dimensions. A
much more challenging question is whether or not it is a global minimum, namely, whether or
not F (A) ≥ F0 holds for arbitrary regions and for general theories. Answering this question
is difficult because — as opposed to the case of even-dimensional CFTs — the universal term
F (A) does not reduce to some combination of fixed theory-independent integrals over the
entangling surface controlled by a few theory-dependent coefficients. Rather, in general, the
dependence of F (A) on the geometry of A and on the theory under consideration is extremely
complicated. In fact, there are very few known actual models for which an expression for
F (A) can be written more or less explicitly for general regions.

A paradigmatic case is the one of d-dimensional holographic CFTs. When the gravitational
sector of the bulk theory is given by Einstein gravity with Newton constant GN, the Ryu-
Tayakanagi (RT) formula [40–42]

SEE(A) = 1
4GN

A(ΣA) , (1.2)

allows one to compute the EE as the area of the RT surface A (ΣA), a minimal surface in the
bulk which is homologous to the entangling region defined in the anti de Sitter (AdS) boundary,
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where the CFT is defined. Using this, one can obtain expansions of the form (1.1) for arbitrary
boundary regions, where δ is a geometric regulator along the holographic direction. With
some more work, and in the particular case of d = 3, it is possible to write an explicit
geometric formula for the universal term F (A). In the vacuum state, this reads [43–46]

F (A) = L2
⋆

8GN
W3 (2ΣA) , where W3 (2ΣA) ≡

1
4

∫
2ΣA

d2y
√

γ̃ K̃2 , (1.3)

which holds for holographic Einstein gravity. Here, L⋆ is the AdS radius, 2ΣA is the surface
resulting from taking two copies of the RT surface homologous to A and sewing them together
through ∂A, and γ̃, K̃ are, respectively, the induced metric and the trace of the extrinsic
curvature K̃ab of 2ΣA embedded in R3. The W3 functional is well-known in the mathematical
literature due to its special properties, and is usually called the “Willmore energy” [47, 48].
In particular, it follows straightforwardly that F (A)/F0 ≥ 1 for general regions and that the
round disk provides a global minimum of F (A). This holographic result hints at a more
general one, namely, that disks globally minimize F (A) for general three-dimensional CFTs.
As shown in ref. [49] using a combination of geometric arguments and the strong subadditivity
property of EE, this is indeed the case, namely,

F (A)/F0 ≥ 1 ∀A ∀CFT3 , and F (A) = F0 ⇔ A = B2 . (1.4)

Additionally, this result selects F0 as a natural normalization for performing comparisons
of the EE for different theories. Indeed, it has been recently conjectured that F (A)/F0 for
general regions and three-dimensional CFTs is bounded above by the result corresponding
to a free scalar field, and below by the one corresponding to a free Maxwell field, giving
rise to new sets of conformal bounds [38].1

In view of these results, an obvious question arises: what happens in d = 5? Do all or
some of these three-dimensional results possess five-dimensional counterparts? In particular,
prior to this paper it is not even know whether or not F (A) has a definite sign in general and
whether or not it is bounded from above and/or from below. In order to start addressing
these questions, in this paper we generalize eq. (1.3) to five-dimensional holographic theories
dual to Einstein gravity. In the vacuum state, we find that the corresponding universal
term is in this case given by

F (A) = L4
⋆

8GN
W5 (2ΣA) , (1.5)

where the “generalized Willmore energy” reads

W5 (2ΣA) ≡
1
48

∫
2ΣA

d4y
√

γ̃

[
(∂K̃)2 − K̃K̃abK̃K̃ab +

7
16K̃4

]
. (1.6)

In this case, the doubled RT surface 2ΣA is embedded in R5. Just like in the three-dimensional
case, this expression is, by construction, free of UV divergences and can be used to evaluate

1In particular, applied to the case of slightly deformed disks, this implies that CT /F0 ≤ 3/(4π2 log 2 −
6ζ[3]) ≃ 0.14887 for general three-dimensional CFTs. This conjectural universal bound has been shown to
hold for a plethora of theories in ref. [38].
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F (A) for d = 5 holographic Einstein gravity for general regions once the corresponding RT
surface has been determined. From this expression, which is novel in the physics literature,2

we can derive a number of general results. On the one hand, it follows that eq. (1.4) does not
go through to the five-dimensional case. Namely, at least for holographic theories, F (A) does
not have a sign and, as we show explicitly below, it can take positive, negative and vanishing
values for different entangling regions. In particular, while the round ball B4 remains a local
minimum — which holds true for general theories due to Mezei’s formula [26, 39] — it is
possible to find continuous families of regions for which F (A) first grows as one deforms
the ball, then it reaches a maximum, then it vanishes again for some other region and then
it takes arbitrarily negative values — see figure 5. As we explain below, a close look at
the five-dimensional free-scalar and free-fermion results for F (A) available in the literature
reveals that F (A) does not have a sign in those cases either, so it is reasonable to expect
this to be a general feature of d = 5 CFTs.

Our derivation of the above formula for W5 departs from the techniques utilized in refs. [43–
46] for the derivation of W3 in the holographic context. It relies on the so-called Conformal
Renormalization method, which we explain in some detail in the following subsection.

1.2 Conformal Renormalization and holographic EE

Because of the geometric properties of asymptotically AdS (AAdS) manifolds, the gravitational
on-shell action as well as any other local functional of boundary-anchored hypersurfaces —
such as the holograhpic EE — are divergent. As such, in order to define finite functionals,
one needs a renormalization prescription. In refs. [57–60], the prescription of holographic
renormalization (HR) was developed, wherein a series of boundary counterterms which are
defined in terms of the induced metric and its Riemannian curvature are added at the AdS
boundary, such that the on-shell gravitational action is rendered finite and its variational
principle is made into a well-defined Dirichlet boundary problem. Later, in refs. [61, 62], it was
shown that the HR counterterms for Einstein-AdS gravity can be obtained asymptotically at
the AdS boundary by embedding the theory into Conformal Gravity (CG). This is possible in
four bulk dimensions because every solution of Einstein gravity, with or without a cosmological
constant, is also a solution of CG. Moreover, for Einstein-AdS spacetimes, the CG on-shell
action is equal to the renormalized on-shell action of Einstein-AdS gravity, expressed in
Macdowell-Mansouri form. [63]. Also, in ref. [64] it was shown that the Weyl-squared action
of CG is finite when evaluated for any four-dimensional AAdS manifold.

In the case of six-dimensional AAdS manifolds, Lü, Pang and Pope (LPP) have shown that
there is a unique combination of the three point-wise conformal invariants in six dimensions
which admits the Schwarzschild-AdS black hole as a solution [65, 66]. Interestingly, all
Einstein spaces are solutions of this same linear combination of conformal invariants [67, 68].
We shall refer to this six-dimensional version of CG as “LPP CG”. Furthermore, when the
LPP CG action is evaluated in Einstein-AdS spacetimes, it becomes finite as it reduces to

2On the other hand, W5 has previously been derived using different methods in the mathematical literature.
In that context, the construction of W5 has included various papers with conflicting results which have finally
converged to a functional which agrees with the one presented in eq. (1.6) — see refs. [50–56] and references
therein.

– 4 –



J
H
E
P
0
1
(
2
0
2
5
)
0
8
1

the renormalized Einstein-AdS action [67]. This procedure for renormalizing Einstein-AdS
gravity by embedding it into CG was dubbed Conformal Renormalization.

In the computation of holographic EE, the Conformal Renormalization prescription
provides a natural way to isolate the finite term in odd-dimensional CFTs dual to Einstein-
AdS. This is because the EE can be computed directly from the gravitational on-shell action,
using the generalized gravitational entropy formula [69]. The finiteness of the latter gets
inherited by the former. Following this idea, in ref. [70] the holographic EE functional
for Einstein-AdS gravity in four bulk dimensions was derived starting from CG. This is
achieved by applying the generalized gravitational entropy formula to the CG action, which
is evaluated on the conically singular orbifold obtained via the replica trick [16] and using the
relations given in ref. [21]. Then, the resulting functional was identified with the integrand of
the Graham-Witten anomaly [71], which corresponds to a pointwise conformally invariant
functional defined on the codimension-two hypersurface localized at the conical singularity.
This functional was explicitly used to derive not only the renormalized holographic EE of
Einstein-AdS, but also the so-called “reduced Hawking mass” and Willmore energy functionals
which, in other contexts, are related to interesting quantities such as the entanglement
susceptibility and to global bounds on information [45].

For the computation of the renormalized holographic EE for CFTs dual to Einstein-AdS
in six bulk dimensions, one expects that the finite part could be obtained directly starting
from the holographic EE functional of the LPP CG, as it is the latter action which reduces
to the renormalized Einstein-AdS action when evaluated on Einstein manifolds. In the
mathematics literature on conformal invariants, the functional which corresponds to the
area anomaly of an extremal codimension-two boundary anchored hypersurface in seven-
dimensional asymptotically hyperbolic Einstein manifolds is the Graham-Reichert energy [52].
As we will see in this work, this functional, up to boundary terms that will be completely
fixed for Einstein spacetimes, defines a codimension-two four-dimensional conformal invariant
which gives rise to the finite (renormalized) part of the holographic EE for Einstein-AdS
gravity in six bulk dimensions and, as a consequence, also defines a well-motivated version
for a higher-dimensional generalization of the Willmore energy — namely, W5 as defined in
eq. (1.6). We also provide numerous examples, by explicit computation, that this generalized
Willmore energy matches the finite part of the RT functional, and also that it can be directly
computed by considering the covariant version of the renormalized holographic EE that
is directly obtained from the Graham-Reichert energy (with fixed boundary terms) when
evaluated for Einstein manifolds.

The remainder of the paper is as follows. In section 2 we review the derivation of Willmore
energy W3 and reduced Hawking mass I3 from evaluating the four-dimensional CG action
in a manifold with a conical defect. This recipe generates a codimension-two functional L,
known as Graham-Witten anomaly, from which W3 and I3 appear as particular cases. In
section 3 we extend the derivation presented in the previous section to the six-dimensional
LPP CG action, which, after evaluating in the conically singular manifold, produces a four-
dimensional functional F, which coincides with the Graham-Reichert anomaly. We observe
that the analogous particular cases to the ones considered in two dimensions less allow us to
identify a generalized Willmore energy W5 which matches proposals in the mathematical

– 5 –



J
H
E
P
0
1
(
2
0
2
5
)
0
8
1

literature as well as a “generalized reduced Hawking mass” I5. We show that the relation
between holographic EE in d = 3 and Willmore energy W3 by means of the doubling of
the RT surface also holds for holographic EE in d = 5 and the novel W5 functional. We
perform explicit checks of this relation for entangling regions consisting of round balls, slightly
deformed balls and strips, obtaining the same results from both expressions. In section 4 we
study the global shape-dependence of the W5 functional and observe that this quantity is
neither bounded from below nor from above. Related observations in the case of free fields
lead us to conjecture that F (A) is unbounded both from below and from above for general
five-dimensional CFTs. In section 5 we conclude with some general comments and future
directions in light of the results obtained in this paper. Our notation and conventions are
summarized in appendix A. Certain intermediate calculations explained in the bulk of the
paper appear in appendices B, C and D.

2 Holographic EE in d = 3 as Willmore energy

As a warm up, in this section we review the previously known fact that the holographic
EE in the vacuum of three-dimensional CFTs dual to Einstein gravity contains a universal
term F (A) which can be written as a Willmore energy associated to a doubled version
of the corresponding RT surface. The derivation presented here relies on the holographic
renormalization of energy functionals in the context of four-dimensional CG, which we will
later extend in the following section to the six-dimensional case.

Generally speaking, given a closed smooth two-dimensional surface with genus g embedded
in R3, Σg ↪→ R3, its Willmore energy functional is defined as [47, 48]

W3 (Σg) ≡
∫

Σg

H2dS , (2.1)

where H is the mean curvature3 of Σg and dS is the surface element. This quantity has
been the subject of intensive study in the mathematical literature because of the existence
of general bounds satisfied for arbitrary surfaces Σg. Notably, the Willmore energy for any
closed surface embedded in R3 satisfies

W3 (Σg) ≥ 4π . (2.2)

The inequality is saturated in the case of the round sphere Σg = S2 — i.e., the round sphere
is the Willmore energy minimizer among all possible closed surfaces. Restricted to the case
of toroidal closed surfaces, g = 1, the bound is saturated by the so-called “Clifford torus”,
and it can be improved to W3 (Σg) ≥ 2π2, which holds for g ≥ 1 [72].

The link between holographic EE and Willmore energy can be understood from the
prescription described in the following subsections. First, consider the RT surface ΣA

associated to the entangling region A, this is, possessing the same boundary ∂A = ∂ΣA,
homologous and with minimal area. Now, glue an identical copy ΣA

′ along its boundary,
i.e., ∂ΣA = ∂ΣA

′. The obtained doubled-copied submanifold 2ΣA = ΣA ∪ ΣA
′ is a closed

3For surfaces embedded in three dimensions, the mean curvature is related to the extrinsic curvature as
2H = K.
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surface embeddable (through a Weyl rescalling of the ambient space) in R3 to which we
can associate a Willmore energy4 — in figure 2 below the doubling of the RT surface is
presented in the case of a spherical entangling surface. Based on this, the finite piece of
EE can be expressed as [43–46]

F (A) = L2
⋆

8GN
W3 (2ΣA) . (2.3)

Due to the existence of the aforementioned bounds, the Willmore energy is particularly
useful when studying global properties regarding the shape dependence of holographic EE.
For instance, the bound (2.2) allows to establish that the disk entangling region, which
corresponds to a spherical surface in the double-copied RT surface 2ΣA = S2, minimizes
F (A) among all possible smooth shapes. In other words,

F (A) ≥ πL2
⋆

2GN
, with F (A) = πL2

⋆

2GN
⇔ A = disk . (2.4)

In particular, the shape dependence of F (A) is encoded in the AdS curvature of the RT surface,
which admits an upper bound due to the previous relation [46]. The fact that the round disk
minimizes F (A) across all possible entangling regions in the ground state was later proven
true for general three-dimensional CFTs in ref. [49]. For other applications of Willmore energy
in the context of EE in three and four-dimensional CFTs (holographic or not) see refs. [73–76].

2.1 Energy functionals from CG in four dimensions

As we have anticipated in the previous subsection, the Willmore energy, W3, captures the
universal contribution to the vacuum holographic EE for Einstein gravity in three (boundary)
dimensions. As argued in ref. [70], W3 belongs to a broader class of energy functionals which
exhibit restricted conformal symmetry under Weyl rescalings of the ambient metric, alongside
the renormalized area, Aren, and the reduced Hawking mass, I3. In this work we are mostly
interested in the first two objects, which are related to the finite piece of the holographic EE.
The third one is an interesting byproduct of our analysis that provides information regarding
bounds that EE has to satisfy for generic states of a (2 + 1) dimensional CFT [77]. All
these functionals will emanate from another, which we denote L, defined for codimension-two
surfaces embedded in four-dimensional space.

The key input here is the Lewkowycz-Maldacena (LM) prescription [69] that identifies
the generalized gravitational entropy with the holographic EE of the dual CFT. Indeed, the
derivation of holographic EE amounts to the evaluation of the Euclidean on-shell action on
a singular manifold with conical deficit 2π (1− ϑ) and differentiating with respect to the
angular parameter ϑ. As the angle ϑ is related to the replica parameter by ϑ = 1/m, then,
entanglement entropy is obtained in the limit

SEE(A) = − lim
ϑ→1

∂ϑIE
[
M(ϑ)

d+1

]
. (2.5)

4This relation only works for entangling regions in the ground state of the CFT, which is dual to pure AdS.
As the Poincaré patch of a constant-time slice of AdS4 is conformally equivalent to R3/Z2, the procedure
considers doubling the bulk across the boundary, and then performing a conformal transformation to obtain
R3. The RT surface is therefore also doubled.
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Namely, there is a one-to-one correspondence between the gravitational action and the
codimension-two integral that has to be extremized in order to determine the holographic
EE. Based on this consideration one identifies the RT formula as the holographic EE of
CFTs dual to Einstein gravity. Indeed, the Ricci scalar contains a conical contribution when
evaluated on the orbifold as [78]

R
(
M(ϑ)

)
= R (M) + 4π(1− ϑ)δΣ , (2.6)

where δΣ is a (d − 1)-dimensional Dirac delta localized at the conical singularity. In the
limit θ → 1, the RT surface, ΣA, is recovered [79], and using eq. (2.5) one ends up with
the RT formula (1.2).

In this context, the UV divergences of EE (1.1), or equivalently the area divergences
of the RT (1.2) formula, are identified as the volume divergences of a given gravity action
when evaluated on AdS spacetimes. However, the LM prescription (2.5) suggests that
holographic EE functionals coming from renormalized gravitational action, instead of their
bare form, are free of UV divergences. Indeed, the authors of ref. [80], inspired by holographic
renormalization [57, 58, 81–85], proved that by evaluating the counterterms in the LM
formula, one ends up with a series of surface terms that reside at ∂ΣA and correctly isolate
the universal terms of the holographic EE . However, this prescription does not make manifest
certain features of the finite part, such as the conformal invariance of F (A) for vacuum states
of three-dimensional CFTs. An alternative but equivalent path to study these properties
is given by Conformal Renormalization. This scheme is based on the idea that CG — a
four-derivative gravity theory which is invariant under Weyl rescalings of the metric — is
free of IR divergences for AAdS spacetimes [64], rendering finite any gravitational theory
that can be consistently embedded in it, such as Einstein gravity [61, 62]. We shortly review
this connection below.

As it has been shown in refs. [63, 86], counterterms in four dimensions can be resumed
in a unique boundary term with explicit dependence on both the intrinsic and extrinsic
curvature [63, 86–88]. In particular, this is the case of the second Chern form B3, which when
added to the four-dimensional Einstein-AdS action with the appropriate relative coefficient
renders the on-shell action

Iren
E = 1

16πGN

∫
M

d4x
√
|g|
(

R + 6
L2

⋆

)
+ L2

⋆

64πGN

∫
∂M

d3XB3 , (2.7)

finite. The explicit expression of the second Chern form is given by

B3 = −4
√
|h| δµ1µ2µ3

ν1ν2ν3 kν1
µ1

(1
2rν2ν3

µ2µ3 −
1
3kν2

µ2kν3
µ3

)
, (2.8)

where rµνρσ is the intrinsic Riemann tensor of ∂M and kµν its extrinsic curvature. In the
case of a compact manifold, the boundary term can be traded with quantities defined in
the bulk using the Gauss-Bonnet theorem∫

M
d4x

√
|g| X4 = 32π2χ (M) +

∫
∂M

d3xB3 , (2.9)

where X4 = RαβγδRαβγδ − 4RαβRαβ + R2 is the Gauss-Bonnet term — or four-dimensional
Euler density — and χ(M) is the Euler characteristic of the manifold M.
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In ref. [63] it was shown that the expression for the renormalized Einstein-AdS action (2.7),
after employing the Gauss-Bonnet theorem, can be recast in the form of the MacDowell-
Mansouri action [89]

Iren
E = L2

⋆

256πGN

∫
M

d4x
√
|g| Y4

∣∣
E − πL2

⋆

2GN
χ (M) , (2.10)

where5

Y4
∣∣
E ≡ δβ1...β4

α1...α4W α1α2
β1β2

∣∣∣
E

W α3α4
β3β4

∣∣∣
E

, and W γδ
αβ

∣∣∣
E
= Rγδ

αβ + 1
L2

⋆

δγδ
αβ , (2.11)

is the Weyl tensor for Einstein-AdS spacetimes. The connection to MacDowell-Mansouri comes
from the fact that W

∣∣
E can be identified as the curvature of the AdS group without torsion.

This notion of curvature suggests a link to a gravity theory where the (full) Weyl
tensor plays an essential role, that is, CG. At the fundamental level, the mechanism of
embedding an Einstein action supplemented with a topological term in a CG, denoted
conformal covariantization (c.c.), is far from rigorously defined. However, we will see that
it allows to derive the correct codimension-two energy functional. In this line, in order to
c.c. Y4

∣∣
E we just complete it to full CG, this is

Y4
∣∣
E

c.c.−−→ Y4 , (2.12)

so that the resulting CG action reads [61, 62, 67]

ICG = L2
⋆

64πGN

∫
M

d4x
√
|g|W 2 − πL2

⋆

2GN
χ (M) , (2.13)

where we denoted W 2 ≡ WαβγδW αβγδ. This is based on the fact that, in four dimensions,
CG always contains an Einstein sector in its solution set. This sector can be reached upon
imposing proper Neumann boundary conditions that eliminate the ghost mode of CG. This
result suggests a relation between conformal symmetry in the bulk, realized in the form of CG,
and the renormalization of the Einstein-AdS sector, as standard holographic counterterms
may be duly reproduced from eq. (2.10).

As discussed in ref. [70], we can apply Conformal Renormalization to codimension-two
functionals defined in the gravity bulk, making contact with holographic EE. To do so, we
evaluate eq. (2.13) in the orbifold M(ϑ) so that we can employ the LM formula (2.5) to
obtain the EE associated to the region A in the dual CFT. When doing so, additional terms
arise from the conical defect for the Euler characteristic χ

(
M(ϑ)

)
= χ (M) + (1− ϑ)χ (Σ)

and the Weyl-squared term [20, 21]

W 2
(
M(ϑ)

)
= W 2 (M) + 8π (1− ϑ)KΣ , (2.14)

where KΣ = RAB
AB −RA

A + 1
3R+ 1

2K2 −KA
abKA

ab and K2 = KAKA. Here, KΣ is a conformal
invariant defined on the codimension-two surface Σ to which we associate the metric tensor

5In the Conformal Renormalizaion literature, the MacDowell-Mansouri term is often written as the monomial
P4
(
W
∣∣
E

)
= Y4

∣∣
E

. This contextualizes the notation employed afterwards in eq. (3.5) when discussing the
six-dimensional case.
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γab, and the indices A, B correspond to the directions normal to Σ. Taking this into account,
we see that the CG action decomposes, at linear order in (1− ϑ), as

ICG
(
M(ϑ)

)
= ICG + (1− ϑ)

4GN
L(Σ) , (2.15)

where all the contributions coming from the conical defect are encapsulated in the conformally-
invariant codimension-two functional L,6

L(Σ) = L2
⋆

2

∫
Σ

d2y
√

γ KΣ − 2πL2
⋆χ (Σ) . (2.16)

Namely, the LM prescription gives rise to a codimension-two functional that inherits the
conformal invariance of the parent action. Furthermore, L is free of IR divergences for any
boundary anchored surface Σ embedded in an arbitrary bulk spacetime [90]. Let us remember
that until now, the embedding of the two-dimensional surface Σ in a four-dimensional space
is considered in complete generality, with the only requirement that Σ is compact.7 This
is a constraint that we inherited from employing the Gauss-Bonnet theorem (2.9), and it
will become relevant afterwards.

As shown in ref. [70], the energy functional L recovers in a certain limit not only W3
but also the renormalized area Aren, which is related to the holographic EE universal term
F (A) for generic states. In what follows, we review the derivation of these energy functionals
from L, making manifest the significance of conformal symmetry in their construction. On
top of that, a byproduct of the same functional is the reduced Hawking mass I3, which we
also include. We present each case separately.

2.2 Renormalized area

In order to make explicit the relation between the renormalized area Aren and the functional
L, it is particularly convenient to reexpress the invariant KΣ in terms of the subtraces on Σ
of the bulk Weyl tensor W ab

ab and the square of the traceless part of the extrinsic curvature
KA

⟨ab⟩ ≡ KA
ab − 1

2γabK
A as

KΣ = W ab
ab − KA

⟨ab⟩KA
⟨ab⟩ . (2.17)

Since the area term in the RT formula (1.2) comes from the conical contribution of the
Einstein-Hilbert action due to eq. (2.6), then, at the saddle point, the surfaces minimizing
the area should be embedded into Einstein spacetimes. As a consequence, it is expected
that renormalized area should result from the same class of ambient spacetimes but with
AAdS asymptotics. Even though, the parent action of KΣ is a higher-curvature gravity
theory, i.e., CG, this admits an Einstein sector in its set of solutions [67, 68]. For them,
the Weyl tensor acquires the particularly simple expression of eq. (2.11) for which we can
exchange the Riemann tensor of the ambient space with quantities defined on the embedded
surface using the Gauss-Codazzi relation

Rab
ab = R− K2 + KA

abKA
ab . (2.18)

6The L functional equals the Graham-Witten anomaly [71].
7This includes conformally compact surfaces in AdS, which have infinite area.
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In turn, this implies that the L functional for Einstein spacetimes reads

L(Σ)
∣∣
E = Aren(Σ)− L2

⋆

4

∫
Σ

d2y
√

γ K2 , (2.19)

where we denoted

Aren(Σ) ≡ L2
⋆

2

∫
Σ

d2y
√

γ

(
R+ 2

L2
⋆

)
− 2πL2

⋆χ(Σ) , (2.20)

as the renormalized area of the two-dimensional embedded surface Σ [77, 91]. Notice that
up to this point, the surface Σ is not required to be minimal. However, it becomes manifest
from the previous expression that L(Σ)

∣∣
E reduces to renormalized area for minimal surfaces.

The latter allows us to make contact with holographic EE. This is achieved by requiring
that the submanifold of interest to be a RT surface Σ = ΣA, i.e., cobordant and homologous
to the entangling region A under consideration with the additional requirement of being a
minimal surface. The minimality condition is crucial for our expression (2.19) as it implies
the vanishing of the trace of the extrinsic curvature KA = 0. As a consequence, we see
that L reproduces the finite part of the EE [70]

F (A) = −Aren(ΣA)
4GN

= − 1
4GN

L(ΣA)
∣∣
E , (2.21)

as long as we are considering an ambient Einstein spacetime and a RT surface.

2.3 Reduced Hawking mass

An interesting feature of eq. (2.19) is its applicability to a general class of surfaces, either
minimal or non-minimal. Since for RT surfaces, which are minimal, one makes contact with
the finite part of EE, it is necessary to understand its behavior when the minimality condition
is lifted. In this case, the hypersurface Σ remains unrestricted while being embedded in
Einstein-AdS spacetimes, and eq. (2.19) can be cast as follows

L(Σ)
∣∣
E = L2

⋆

4 I3(Σ)− 2πL2
⋆χ (Σ) , (2.22)

where
I3 (Σ) =

∫
Σ

d2y
√

γ

[
2R+ 4

L2
⋆

− K2
]

. (2.23)

Here, I3(Σ) is identified as the reduced Hawking mass, a generalization of the Hawking mass
for AAdS spacetimes introduced in ref. [77]. Namely, L(Σ) becomes the reduced Hawking
mass, up to a topological contribution, when ambient Einstein-AdS spacetimes are considered.
When the latter is evaluated on minimal surfaces Σ, one recovers the renormalized area
functional. This object has very intriguing properties, since it is monotonous under inverse
mean curvature flows. This feature allowed the authors of ref. [77] to obtain bounds on the
renormalized holographic EE for arbitrary regions on general states of three-dimensional
CFTs. As a consequence, L(Σ) not only probes renormalized holographic EE but also imposes
rather generic bounds that F (A) has to satisfy.
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2.4 Willmore energy

Consider the conformal invariant KΣ, appearing in L(Σ), given in terms of the Weyl ten-
sor (2.17). We can decompose this contribution into a sum of the codimension-two subtraces
of the Ricci and Schouten tensors as

W ab
ab = Rab

ab − 2Sa
a . (2.24)

Taking into account the Gauss-Codazzi relation of eq. (2.18) we obtain

KΣ = R− 1
2K2 − 2Sa

a . (2.25)

Until now, we always assumed Σ to be compact. However, Willmore energy is a quantity
defined for closed surfaces —i.e., compact surfaces without boundary. Because of this, we
also assume that Σ is closed for the time being. In turn, this means that we can invoke
the two-dimensional Gauss-Bonnet theorem

∫
Σcl

d2y
√

γ R = 4πχ(Σcl) to simplify the Euler
characteristic with the Euler density, finding [70]

L(Σcl) = −L2
⋆

4

∫
Σcl

d2y
√

γ
(
K2 + 4Sa

a

)
. (2.26)

Interestingly, this expression is nothing less than the conformal Willmore energy [92], defined
for a two-dimensional closed surface Σcl embedded in a Cauchy slice of a four-dimensional
AAdS spacetime. Whenever the background space is pure AdS, we can relate it to the usual
Willmore energy functional — this is, for a closed surface embedded in R3. To see this,
we perform a rescaling of the metric

gαβ = e2φg̃αβ , (2.27)

in which, in the case of a constant-time slice of Euclidean Poincaré-AdS space, gαβdxαdxβ =
L2

⋆
z2
(
dz2 + dx2), with x = (x1, x2). We choose φ = − log z

L⋆
to remove the conformal factor,

arriving to the three-dimensional Euclidean space

g̃αβdxαdxβ = dz2 + dx2 . (2.28)

Of course, this transformation also needs to be applied to the geometric functional we
are considering. However, since L(Σcl) is a conformally invariant quantity, we can replace
immediately all terms by the rescaled ones. Since the Schouten tensor S̃β

α vanishes identically
in a flat background space, the rescaled functional L

(
Σcl ↪→ R3) reads [70]

L
(
Σcl ↪→ R3

)
= −L2

⋆

4

∫
Σcl

d2y
√

γ̃ K̃2 = −L2
⋆W3 (Σcl) , (2.29)

and reduces to the Willmore energy of the surface Σcl as given in eq. (2.1), after expressing
the mean curvature of Σcl in terms of its extrinsic curvature as 2H̃A = K̃A.

In this derivation, we assumed that the surface under consideration is closed. Ultimately,
we are interested in relating RT surfaces — which are compact but not closed, as they possess
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a boundary — to the Willmore energy. Because of this, we can resort to the prescription of
doubling ΣA described in the beginning of the section. As a consequence, we have that

L
(
ΣA ↪→ R3

)
= −L2

⋆

2 W3(2ΣA) , (2.30)

for an RT surface — and, by extension, for any other compact surface Σ. This implies that,
in holographic three-dimensional CFTs in the vacuum, the finite part of the EE can also
be related to this writing of the functional L, this is

F (A) = − 1
4GN

L
(
ΣA ↪→ R3

)
= L2

⋆

8GN
W3 (2ΣA) , (2.31)

which is the expression presented in eq. (2.3). This relation has deep implications, since
the global bounds characterizing the Willmore energy — see eq. (2.2) — impose analogous
constraints on F (A) for holographic Einstein gravity — see eq. (2.4).

As a direct consequence of the bound (2.2) on the Willmore energy, we observe that,
in line with (2.21), we obtain a constraint on the renormalized area Aren (ΣA) of the RT
surface (2.20). Since there is a topological contribution — through χ (ΣA) —, the Willmore
energy bound leads to the condition [46]∫

ΣA

d2y
√

γ

(
R+ 2

L2
⋆

)
≤ 0 . (2.32)

This expression encodes information about the local properties of the minimal surface and
is relevant to the study of its shape deformations.

3 Holographic EE in d = 5 as generalized Willmore energy

In this section we follow the same line of reasoning as in the previous section, this time applied
to the case of six-dimensional holographic Einstein gravity. In particular, we determine the
four-dimensional conformally invariant functional which arises as the conical contribution of
the six-dimenisonal CG with an Einstein sector. In analogy to its two-dimensional counterpart,
this reduces to the renormalized holographic EE, giving rise to notions of renormalized area,
reduced Hawking mass and, most importantly for our purposes, a generalized Willmore
energy. We show that this captures the universal contribution to the holographic EE for
five-dimensional theories dual to Einstein gravity in the vacuum state.

3.1 CG in six dimensions

Due to the fact that CG in six dimensions is a triparametric family of theories, seeking the
combination with an Einstein subsector is a highly non-trivial task. However, conformal
renormalization indicates that the renormalized Einstein-AdS action provides the seed that
allows us to track down the desirable combination. Our starting point is the action of
six-dimensional Einstein-AdS gravity enhanced by the third Chern form

B5 ≡ −6
√
|h| δµ1...µ5

ν1...ν5 kν1
µ1

(1
4rν2ν3

µ2µ3rν4ν5
µ4µ5 −

1
3rν2ν3

µ2µ3kν4
µ4kν5

µ5 +
1
5kν2

µ2kν3
µ3kν4

µ4kν5
µ5

)
, (3.1)
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namely,

Îren
E = 1

16πGN

[∫
M

d6x
√
|g|
(

R + 20
L2

⋆

)
− L4

⋆

72

∫
∂M

d5XB5

]
. (3.2)

The boundary term can be conveniently rewritten as a bulk term, whose topological nature
is made manifest by the Euler theorem∫

M
d6x

√
|g| X6 = 3! (4π)3 χ (M) +

∫
∂M

d5X B5 , (3.3)

where X6 = 1
8δα1...α6

β1...β6
Rβ1β2

α1α2 . . . Rβ5β6
α5α6 is the Euler density in six dimensions. Therefore,

this form of the renormalized AdS action involves the cubic Lovelock term with a fixed
coupling, namely,

Ĩren
E = 1

16πGN

∫
M

d6x
√
|g|
(

R + 20
L2

⋆

− L4
⋆

72X6

)
+ π2L4

⋆

3GN
χ (M) . (3.4)

This combination renders the Einstein-Hilbert action finite for solutions whose boundary is
conformally flat [86]. The tilde in the above functional makes reference to the fact that the
finiteness is not achieved for an arbitrary AAdS geometry, but it is limited to the class just
mentioned. As a consequence, additional counterterms on top of the topological term X6 are
required. At this point, it is difficult to think of an underlying principle which could give
rise to such correction while also reproducing the topological term.

The proposal of Conformal Renormalization considers a symmetry enhancement at the
level of the action: from general diffeomorphism invariance to Weyl invariance [67]. This
feature becomes manifest by the vanishing of the local part of the action in eq. (3.4) for
pure AdS spaces. As a consequence, the action is factorizable by the AdS curvature or, in
other words, a given polynomial of the Weyl tensor for Einstein spaces — a quantity that
vanishes for AdS constant curvature configurations —, [93, 94]

Ĩren
E = L4

⋆

16πGN

∫
M

d6x
√
|g|P6

(
W
∣∣
E

)
+ π2L4

⋆

3GN
χ (M) , (3.5)

where the polynomial P6
(
W
∣∣
E

)
depends on

Y4
∣∣
E ≡ δβ1...β4

α1...α4W α1α2
β1β2

∣∣∣
E

W α3α4
β3β4

∣∣∣
E

, and Y6
∣∣
E ≡ δβ1...β6

α1...α6W α1α2
β1β2

∣∣∣
E

W α3α4
β3β4

∣∣∣
E

W α5α6
β5β6

∣∣∣
E

(3.6)

as
P6
(
W
∣∣
E

)
= 1

2(4!)L2
⋆

Y4
∣∣∣
E
− 1

(4!)2Y6
∣∣∣
E

. (3.7)

This is a convenient rearrangement of the Einstein-AdS action with negative cosmological
constant and, therefore, still a second-derivative theory. The presence of the Weyl tensor in the
action is suggestive of the link to conformal symmetry. A suitable conformal covariantization
of the above action would turn it into a particular form of CG in six dimensions. Such
construction relies on a proper basis of six-derivative conformal invariants, given by [95–100]

I1 ≡ WαβγδW αληβWλ
γδ

η , (3.8)
I2 ≡ WαβγδW γδληWλη

µν , (3.9)

I3 ≡ Wαγδλ

(
δα

β +4Rα
β − 6

5δα
β R

)
W βγδλ +∇αJα , (3.10)
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where the vector in the total derivative term is

Jα ≡ Rα
βγδ∇λRλβγδ + 3Rβγδλ∇αRβγδλ − Rβγ∇αRβγ + 1

2R∇αR − Rβ
α∇βR + 2Rβγ∇βRγ

α .

(3.11)
Naturally, the boundary term ∇αJα does not contribute to the equations of motion.

The point now is to conformally covariantize action (3.5) into a CG action following the
same procedure as the one discussed in section 2.1. This time, we aim to bring it into a
form involving the conformal invariants I1, I2, I3. The most direct term to be conformally
covariantized is the one cubic in the Weyl tensor, that is,

Y6
∣∣∣
E

c.c.−−→ Y6 = 32(2I1 + I2) . (3.12)

On the other hand, the quadratic combination Y4
∣∣
E in the polynomial cannot be directly

related to conformal invariants in six dimensions. By itself, it can be cast as a six-derivative
object by introducing the Schouten tensor. However, to restore Weyl covariance, we need to
supplement it with a Cotton-squared C2 = CαβγCαβγ (which vanishes for Einstein metrics)
and a surface term Ĵα = 8W αγδβCγλβ − W γδ

βε∇αW βε
γδ . Taking all this into account, we have8

− 1
2L2

⋆

Y4
∣∣∣
E

c.c.−−→ I4 = 1
2δβ1...β5

α1...α5W α1α2
β1β2

W α3α4
β3β4

Sα5
β5

+ 8C2 +∇αĴα = 1
3 (4I1 − I2 − I3) . (3.13)

The explicit steps for this conformal covariantization are presented in appendix B. While
in higher even dimensions a number of Schouten tensors may be inserted into the gravity
action, which when evaluated on Einstein spaces become proportional to Kronecker deltas,
Sα

β

∣∣
E = − 1

2L2
⋆
δα

β , there may be plenty of higher-derivative terms which are identically zero
in the Einstein sector of the gravity theory. Fortunately, the six-dimensional case is simple
enough for Weyl invariance to remove the ambiguities in the couplings of the different terms
in the CG action.

Putting together eqs. (3.12) and (3.13), we see that by conformally covariantizing the
polynomial P6 as given in eq. (3.7), one ends up with the CG that admits an Einstein sector
introduced by Lü, Pang and Pope in ref. [66], namely

−(4!)P6
(
W
∣∣
E

) c.c−→ C = 4I1 + I2 −
1
3I3 . (3.14)

The corresponding Lagrangian density with the associated surface term is given by9

ILPP = α

∫
M

d6x
√
|g| LLPP − 2(4π)3αχ (M) + α

∫
∂M

d5x
√
|h|nαĴα , (3.15)

where
LLPP = 1

4!Y6 +
1
2δβ1...β5

α1...α5W α1α2
β1β2

W α3α4
β3β4

Sα5
β5

+ 8C2 , (3.16)

8For more details on the conformal covariantization of action (3.5), we refer the reader to ref. [67].
9As a matter of fact, it was proven in ref. [66] that the Schwarzschild-AdS black hole is a solution of the

higher-derivative equations of motion of this gravity theory. A more compact expression for the field equations
— in terms of the Weyl, Cotton and Schouten tensors — obtained in refs. [67] and [68] readily implies that
Einstein spaces constitute a proper sector of LPP CG, in a similar fashion to the four-dimensional case.
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and where we added a topological contribution to make contact with eq. (3.5). This action
admits Einstein spacetimes in its set of solutions as shown explicitly in ref. [68].

Remarkably, evaluating the action of LPP CG for Einstein spacetimes, it reduces to the
topologically renormalized action of eq. (3.5) enhanced by a total derivative contribution,
up to the Euler characteristic

ILPP
∣∣
E = −4!α

∫
M

d6x
√
|g|P6

(
W
∣∣
E

)
− 2(4π)3αχ (M)− α

2

∫
∂M

d5X
√
|h|nαJα

∣∣
E , (3.17)

where Jα

∣∣
E ≡ 1

2∇α

(
W βγ

δκ

∣∣
EW δκ

βγ

∣∣
E

)
. The connection between CG — in the particular form of

LPP action — and the Einstein sector of the theory is made manifest by a suitable choice of
the coupling, α = −L4

⋆/(384πGN). Interestingly, the resulting boundary term renders the
action of eq. (3.17) finite for Einstein-AdS spacetimes with a generic boundary geometry,
namely, it recovers the renormalized Einstein action [67].

When the asymptotic behavior of the spacetime is taken into account, in the form of a
Fefferman-Graham expansion, the extra boundary term produces a new counterterm which
is quadratic in the Weyl tensor of the boundary metric

ILPP
∣∣
E = 1

16πGN

[∫
M

d6x
√
|g|
(

R + 20
L2

⋆

− L4
⋆

72X6

)
+ 16

3 π3L4
⋆χ (M) + L3

⋆

12

∫
∂M

d5X
√

|h|w2
]
= Iren

E ,

(3.18)
plus other terms which vanish as ∂M is taken to the conformal boundary. Here, we denoted
by w2 = wρσ

µνwµν
ρσ the Weyl-squared tensor at the AdS boundary. This counterterm correctly

removes divergences induced by nontrivial conformal properties of the boundary metric.
This result indicates the profound relation between bulk Weyl symmetry and renormalized
Einstein-AdS action.

3.2 Energy functionals coming from LPP CG

Following the idea of the four-dimensional case, we construct the codimension-two functionals
which are invariant under Weyl rescalings of the ambient spacetime, starting from the unique
combination of six-dimensional CG that admits Einstein-AdS spacetimes in its solution space.
As discussed previously, this is achieved by a precise combination of the three conformal
invariants C, given in eq. (3.14). In particular, our starting point will be the action [65, 67]

ILPP = − L4
⋆

384πGN

∫
M

d6x
√
|g| C + π2L4

⋆

3GN
χ (M) . (3.19)

Extending the prescription of the previous section to six dimensions, we evaluate the invariants
I1, I2 and I3 in the orbifold. However, the situation is more delicate than in four dimensions. In
general, cubic curvature invariants are sensitive to the so-called splitting problem [23, 101, 102].
This means that there are different naive ways to regularize the action near the conical
singularity and, thus, different holographic EE functionals are obtained depending on the
regularization scheme.10 However, it was shown in ref. [23] that bulk conformal symmetry

10There are higher-curvature theories for which this issue does not arise, such as quadratic gravity [21, 103],
f(R) gravity or Lovelock gravity [104–107]. This also occurs when the coupling constants of any higher-
curvature term are treated perturbatively [108].
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should be induced to the resulting codimension-two functional. This allows to parametrize
a family of splittings where the universal part of the holographic EE is independent of the
specific choice. Exploiting this remarkable property of the combination (3.14), one ends
up with the following expression [23]

C
(
M(ϑ)

)
= C (M) + 2π(1− ϑ)CΣ , CΣ = 4F1 + F2 −

1
3F3 , (3.20)

where the codimension-two invariants Fi for i = 1, 2, 3 come from each of the Ii and can
be cast in the form

F1 = 3
(

W αβγδW λη
β γελαεδη −

1
4W λδηβW α

δηβg⊥αλ+
1
20W αβγδWαβγδ

)
+3Kι

⟨λα⟩Kι
⟨βγ⟩W λ

β
α

γ

−3Kι
⟨λα⟩Kι⟨βγ⟩Kζ

⟨λ[γ⟩Kζ ⟨α]β⟩+3ειζKι⟨λη⟩Kζ
⟨αη⟩εγδW λ

αγδ +
3
4
(
Kι

⟨αβ⟩Kι
⟨αβ⟩

)2

+3ειζεκδKι⟨λη⟩Kζ
⟨αη⟩Kκ

⟨γλ⟩Kδ⟨γα⟩−
3
4Kι

⟨λη⟩Kι
⟨λη⟩W αβγδεαβεγδ , (3.21)

F2 = 3
(

W αβγδW λη
γδ εληεαβ −W λδηβW α

δηβg⊥αλ+
1
5W αβγδWαβγδ

)
−6Kι

⟨δ
(γ⟩Kι

⟨α)δ⟩
(
2Wβγλαg⊥βλ+Kζ

⟨αη⟩Kζ⟨γ
η⟩
)

(3.22)

+6εαβεγδKα
⟨ζι⟩Kβ

⟨η
ι⟩
(
2Wγηδζ +Kδ⟨ηλ⟩Kδ

⟨λ
ζ⟩
)

,

F3 =−6XΣ
4 +12F1+3F2+192

(
Υa

a−
1
2SabS

ab+ 1
4 (S

a
a)

2− 1
4KAKAcbS

cb

+ 3
32KAKASb

b −
1
16KAKBSAB − 1

32KAKAcbKBKBcb+ 7
1024

(
KAKA

)2
)

, (3.23)

where

Υab =
1
4

[ 1
16
(
∂aKA∂bKA + KAKA

acKBKBc
b − KAKBWaAbB − KAKASab

−KAKBSABγab

)
+ SaαSα

b − Bab −
1
2
(
SaA∂bK

A − Sc
aKA

bcKA + KACabA

+∇Σ
a

(
KASAb

)
− KAKB

abSAB

)]
, (3.24)

and Kγ
αβ is defined in eq. (A.2). For F1 and F2, we chose to maintain the covariant

formulation in order to simplify the resulting expressions, considering εαβ = nA
α nB

β ϵAB as the
binormal, where ϵAB is the Levi-Civita tensor, and identifying g⊥αβ as the two-dimensional
metric of the normal bundle. For later convenience, we perform the normal decomposition of
the F3, by labeling the bulk indices as α = (A, a), where a denotes tangential indices and A,
the normal directions to Σ. Here, Cαβγ and Bαβ represent the Cotton and Bach tensor of M,
respectively, where ∇Σ

a is the covariant derivative with respect to the codimension-two intrinsic
metric γab. Further details on the normal decomposition of F3 are given in appendix C.

As a consequence, the evaluation of LPP CG in six dimensions in the conical singular
manifold gives rise to a conformal codimension-two functional

ILPP
(
M(ϑ)

)
= ILPP + (1− ϑ)

4GN
F(Σ) , (3.25)
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where F(Σ) denotes the conical part whose explicit expression reads

F(Σ) = −L4
⋆

48

∫
d4y

√
γ CΣ + 4

3π2L4
⋆χ(Σ) . (3.26)

Here, we took advantage of the self-replicating property of the Euler-characteristic in its
codimension-two version when evaluating it in the orbifold χ

(
M(θ)

)
= χ (M)+(1− ϑ)χ (Σ).

Interestingly, the functional F(Σ) is the four-dimensional extension of the Graham-Witten
anomaly L(Σ), dubbed Graham-Reichert anomaly.11

After some algebraic manipulation, we rewrite F(Σ) in a simplified form as

F(Σ) = −4L4
⋆

3

∫
Σ

d4y
√

γ

[
1
32X

Σ
4 +Υa

a + 1
2SabSab − 1

4 (Sa
a)

2 + 1
4KAKAabSab − 3

32KAKASa
a

+ 1
16KAKBSAB + 1

32KAKAabKBKBab − 7
1024

(
KAKA

)2
]
+ 4π2L4

⋆

3 χ (Σ) + b. t. , (3.27)

where XΣ
4 = 1

4δefgh
abcd Rab

efRcd
gh is the Euler-density of the four-dimensional surface Σ and the

boundary terms (b. t.) come from the term ∇αJα in I3 — these terms are dropped in ref. [23],
however they render F3 a conformal invariant for a manifold with boundaries.

This exact form will allow us to make contact with higher-dimensional analogues of both
the reduced Hawking mass and Willmore energy. However, the computation of the former
strongly depends on the determination of the boundary term in eq. (3.27), which is a quite
challenging task due to he presence of covariant derivatives, what makes the computation of
their conical part rather complicated. Interestingly, the form of the boundary term will be
greatly simplified when restricting ourselves to Einstein spacetimes. The four-dimensional
analysis in section 2 indicates that both functionals arise when considering surfaces embedded
in this exact class of spacetimes.

Based on these considerations, in the next subsection we proceed in our quest of determin-
ing the codimension-two functionals. For a better presentation of the argument, we find it is
more convenient to discuss first the reduced Hawking mass and renormalized area functionals,
and then end with the generalized Willmore energy and its connection to F (A) in d = 5.

3.3 Generalized reduced Hawking mass and renormalized area

Obtaining a candidate for the reduced Hawking mass of a four-dimensional hypersurface
embedded in a six-dimensional bulk spacetime is a highly non-trivial task, since this has
to meet the same criteria as its two-dimensional analogue, but for a functional constructed
out of four-derivative objects. As it was revealed in ref. [70], and discussed in the previous
section, the two-dimensional reduced Hawking mass arises from the Graham-Witten anomaly
functional L(Σ) when evaluated for Einstein spacetimes (2.22). Similarly, we present a
candidate for the four-dimensional reduced Hawking mass, as the functional coming from the
evaluation of the Graham-Reichert anomaly F(Σ) in Einstein spacetimes. In this case, the
missing boundary contribution in eq. (3.27) — which we denoted b. t. — can be determined, as

11In ref. [52] it was shown that the F(Σ) functional appears as the logarithmic coefficient in the asymptotic
expansion of the area for codimension-two minimal boundary-anchored surfaces embedded in seven-dimensional
asymptotically hyperbolic Einstein manifolds, which is the area anomaly by definition.
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it comes entirely from the I3 conformal invariant. Indeed, the surviving boundary contribution
from the CG action (3.19) when evaluated in the Einstein sector is

J
∣∣
E = L4

⋆

384πGN

∫
∂M

d5X
√
|h|nαJα

∣∣
E = − L3

⋆

192πGN

∫
∂M

d5X
√
|h|w2 , (3.28)

where w2 = wρσ
µνwµν

ρσ is the Weyl-squared tensor at the AdS boundary. The last equality
is valid only asymptotically, but this is sufficient since its purpose is just to cancel bulk
divergences [67].

Now, we have to evaluate eq. (3.28) in the conically singular manifold and find the
codimension-two contributions. Since we already encountered the decomposition of the Weyl-
squared tensor in eq. (2.14), we just need to adapt the decomposition to the submanifold
∂M in order to find the boundary terms anticipated in eq. (3.27), this is

b. t.
∣∣
E = −L3

⋆

6

∫
∂Σ

d3Y
√

σ
(
wij

ij − κI
⟨ij⟩κI

⟨ij⟩
)
= −L3

⋆

6

∫
∂Σ

d3Y
√

σ K∂Σ . (3.29)

Here, κI
⟨ij⟩ is the traceless extrinsic curvature of ∂Σ embedded in ∂M. In the last equality,

we make manifest that the boundary term evaluated in Einstein spacetimes reproduces the
functional obtained in eq. (2.17), this time for boundary manifolds.

Finally, we are ready to combine all our partial results regarding the evaluation of the
functional F(Σ) in Einstein spacetimes. In this case, both the Bach and the Cotton tensors
vanish identically and the Schouten turns proportional to the metric. As a consequence, the
resulting expression is simplified a lot. In particular, starting from the Graham-Reichert
formula of eq. (3.27) along with Υa

a as given in eq. (3.24) and the boundary term (3.29),
we obtain a functional F(Σ)

∣∣
E from which we identify a generalized reduced Hawking mass

I5(Σ) defined for four-dimensional submanifolds Σ,

F(Σ)
∣∣
E = L4

⋆I5(Σ) +
4π3L4

⋆

3 χ (Σ) . (3.30)

The explicit expression is

I5(Σ) =
1
48

∫
Σ

d4y
√

γ

[ 48
L4

⋆

−XΣ
4 + (∂K)2 − KKabKKab +

7
16K4 − 6

L2
⋆

K2

− KAKB
(
RiA

iB + 1
L2

⋆

δiA
iB

)]
− 1

6L⋆

∫
∂Σ

d3Y
√

σ K∂Σ
∣∣
E , (3.31)

where (∂K)2 ≡ ∂aKA∂aKA, KKabKKab ≡ KAKA
abKBKB

ab and K4 ≡
(
KAKA

)2
. This is

one of our new results so let us make some observations. I5 (Σ) is a conformal invariant for any
codimension-two surface Σ embedded in an Einstein spacetime. Following its two-dimensional
counterpart, it is expected to be free of infrarred (IR) divergences for any boundary-anchored
surface, either extremal or non-extremal. Furthermore, the presence of the Gauss-Bonnet
density is a desirable feature regarding the monotonous evolution of the functional along
inverse mean curvature flows.12

12We thank S. Fischetti for the comments.
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A particularly interesting case arises when Σ is an extremal surface, Σext. In this situation,
the vanishing of the trace of the extrinsic curvature KA = 0 simplifies significantly the form
of F(Σ), which now reduces to the renormalized area of Σ, F(Σext)

∣∣
E = Aren(Σext), where

Aren(Σext) = A(Σext)−
L4

⋆

24

∫
Σext

d4y
√

γ XΣ
4 + 4π2L4

⋆

3 χ(Σ)− L3
⋆

6

∫
∂Σext

d3Y
√

σ K∂Σext . (3.32)

Since we are interested in holographic EE, we will use this result for RT surfaces, which
are a subclass of extremal surfaces.

Finally, let us recall that in the derivation of the renormalized area Aren(Σext) we made
use of the Gauss-Bonnet theorem (2.9), which requires Σext to be a compact surface. In
order to find an expression for extremal non-compact surfaces, we must undo the exchange
of the Euler density and characteristic of Σext, this means

Aren(Σext) = A(Σext)−
L3

⋆

6

∫
∂Σext

d3Y

[
L⋆

4 BΣext
3 +

√
σK∂Σext

]
, (3.33)

where BΣext
3 = −2

3
√

σδlmn
ijk Ki

l

(
3Rjk

mn − 2Kj
mKk

n

)
is the explicit expression of the second Chern

form associated to Σext.
By particularizing the extremal surface to be an RT surface ΣA, it is immediate to find

the finite piece of holographic EE in d = 5 from the renormalized area (3.33) of ΣA as

F (A) = Aren(ΣA)
4GN

= 1
4GN

F(ΣA)
∣∣
E . (3.34)

3.4 Generalized Willmore energy

Once we have an expression for the functional F(Σ) at our disposal in eq. (3.30), it is
straightforward to construct a quantity that corresponds to the generalized Willmore energy.
Following the same reasoning as in section 2.1, we will initially assume that we are dealing
with a closed surface Σcl. In a later stage we will deal with non-closed ones — like an RT
surface. In this case the boundary terms can be dropped, leading to

F(Σcl) = −4L4
⋆

3

∫
Σcl

d4y
√

γ

[
Υa

a + 1
2SabS

ab − 1
4 (Sa

a)
2 + 1

4KAKAabS
ab − 3

32KAKASa
a

+ 1
16KAKBSAB + 1

32KAKAabKBKBab − 7
1024

(
KAKA

)2
]

. (3.35)

Here, we considered the Gauss-Bonnet theorem (2.9) for the four-dimensional closed surface,
i.e.,

∫
Σcl

d4x
√

γ XΣcl
4 = 32π2χ (Σcl) in order to cancel the Euler density and characteristic.

The formal definition of Willmore energy requires the embedding of Σ into R5. This is
achieved by starting with a constant time slice of a Euclidean global AdS6 bulk spacetime
and then choosing a convenient rescaling, like in eq. (2.27), to map it to R5. The functional
form of F(Σcl) will not be modified, since it is conformally invariant, however this will be
further simplified since all curvatures vanish when a flat ambient spacetime is considered.
As a consequence, we end up in

F
(
Σcl ↪→ R5

)
= L4

⋆

∫
Σcl

d4y
√

γ̃ JΣcl = L4
⋆W5 (Σcl) , (3.36)
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where
JΣcl =

1
48

[
(∂K̃)2 − K̃K̃abK̃K̃ab +

7
16K̃4

]
, (3.37)

where the tildes indicate that the quantities are evaluated in R5 as ambient space. This
expression coincides with the generalization of the Willmore energy for closed four-dimensional
surfaces given previously in the mathematical literature13 [50–54].

For the case of a four-dimensional RT surface ΣA, which is a compact but not closed
submanifold, we apply the doubling of the ΣA prescription, described in section 2.1. After
doing so, we obtain the expression

F
(
ΣA ↪→ R5

)
= L4

⋆

2 W5 (2ΣA) , (3.38)

which matches eq. (2.30) but in two-dimensions higher. In analogy to the case of two-
dimensional RT surfaces, we can make manifest the relation between the finite part of
six-dimensional holographic EE and generalized Willmore energy as

F (A) = 1
4GN

F
(
ΣA ↪→ R5

)
= L4

⋆

8GN
W5 (2ΣA) . (3.39)

This equation is one of the main results of our work, so we devote the next subsection to test it
for different entangling regions, namely, the round ball, small deformations of it and thin strips.

3.5 Explicit checks

Let us perform some explicit verifications of our new formula for F (A) in a few cases. On
the one hand, we will explicitly evaluate the RT functional introducing a geometric regulator
and extract F (A) from the constant piece. On the other hand, we will directly evaluate
W5 (2ΣA). Comparing both, we will find perfect agreement in all cases considered.

3.5.1 Sphere

As a first check, let us compute the renormalized area Aren
Σ of the RT surface associated to a

four-ball entangling region B4 and the generalized Willmore energy of its double-copied 2ΣA

surface — which turns out to be a round sphere S4 — and see that they match.
The metric of the dual geometry is given by pure AdS6 which, in Poincaré-AdS co-

ordinates, reads

ds2 = gαβdxαdxβ = L2
⋆

r2 cos2 θ

(
dt2 + dr2 + r2dθ2 + r2 sin2 θdΩ2

3

)
, (3.40)

where 0 ≤ θ ≤ π
2 , with the conformal boundary located at θ = π

2 , and dΩ2
3 = dθ2

1 +
sin2 θ1

(
dθ2

2 + sin2 θ2dθ2
3
)

represents the line element for the angular directions of the S3, with
0 ≤ θ1 ≤ π, 0 ≤ θ2 ≤ π and 0 ≤ θ3 ≤ 2π. For such entangling region, the RT surface
ΣA is given by the embedding

ΣA : {t = const. , r = R} , ds2
ΣA

= γsp
abdyadyb = L2

⋆

cos2 θ

(
dθ2 + sin2 θdΩ2

3

)
. (3.41)

13Note that in the derivation presented in ref. [50], a factor of −2 is dropped in the calculations, obtaining
in the end incorrect coefficients for ∂aK̃A∂aK̃A and K̃AK̃A

abK̃BK̃B
ab.
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R

x

z

xi>1

Σ
∂Σ

A

t =const.

Figure 1. Ball-shaped entangling region A

with radius ρ = R and its cobordant (∂A =
∂Σ) codimension-two surface Σ.

R

Σ

Σ′

∂Σ′ = ∂Σ

R5

Figure 2. Double-copied surfaces Σ and Σ′

glued along the umbilical line defined by ∂Σ =
∂Σ′.

The setup can be seen in figure 1. Using this, it is a straightforward exercise to check
that the bare area A (ΣA) =

∫
ΣA

d4y
√

γ of the codimension-two RT surface, equipped with
metric γab, is given by [41, 42]

A (ΣA) = 2π2L4
⋆

∫ π
2 −

δ
R

0
sec θ tan3 θdθ = 2π2L4

⋆

3

(
R

δ

)3
− 5π2L4

⋆

3
R

δ
+ 4π2L4

⋆

3 +O (δ) , (3.42)

where we introduced δ as a ultraviolet (UV) cutoff and R is the ball radius at the conformal
boundary, which is located at θ = π

2 . As anticipated in eq. (1.1), we obtain two divergent
contributions: the so-called area-law term and a codimension-two divergent piece. Our
expression for the renormalized area (3.32) cancels these contributions, i.e., [109]

Aren (ΣA) = A (ΣA)−
L4

⋆

24

∫
ΣA

d4y
√

γ XΣA
4 + 4π2L4

⋆

3 χ(ΣA) =
4π2L4

⋆

3 , (3.43)

where we used that the Euler characteristic of the RT surface is one, χ(ΣA) = 1, as it is
homeomorphic to a four-ball.14 Notice that the boundary terms appearing in eq. (3.32) vanish
identically for this geometry, so we only have to consider the bulk quantities. Inspecting
the formula, we observe that the first two terms in the second equality of eq. (3.43) cancel
each other, because XΣA

4 = 24
L4

⋆
for the four-ball entangling region, leaving the topological

piece as the only contribution to Aren (ΣA). In turn, this fact makes manifest the non-local
nature of EE in odd-dimensional CFTs [46].

Now, let us turn our attention to the expression of the generalized Willmore energy
derived in eq. (3.39). First, we need to rescale the six-dimensional background in eq. (3.40)

14For an explicit cancellation of the divergences using the Chern form, see appendix D.1.
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with φ = log L⋆
z in eq. (2.27). By doing so, the embedding of the rescaled RT surface reads

ds̃2
ΣA

= γ̃sp
abdyadyb = R2

(
dθ2 + sin2 θdΩ2

3

)
, (3.44)

with the geometric quantities

ñ
(t)
t = ñ(r)

r = 1 , K̃(t)
ab = 0 , K̃(r)

ab =
1
R

γ̃sp
ab , (3.45)

which yields a particularly simple JΣA
= 1

R4 in eq. (3.37). Following the procedure discussed
in section 3.4, we have to consider a doubled-copied 2ΣA = ΣA ∪ ΣA

′ surface associated to
our spherical entangling surface of radius R and glue them along their boundaries ∂ΣA and
∂ΣA

′. The setup is described in figure 2. By doing so, we find that the generalized Willmore
energy for the doubled-copied RT surface yields

W5 (2ΣA) = 2π2
∫ π

2

0
dθ sin3 θ = 8π2

3 , (3.46)

which, by means of relation (3.39), reproduces the finite piece of the four-ball holographic EE

F0 = π2L4
⋆

3GN
, (3.47)

where we denoted F0 ≡ F
(
B4).

Now, to test further our results, let us turn our attention to an entangling surface
with less symmetries.

3.5.2 Small deformations of the sphere

Consider a four-ball entangling region like the one described in the previous section. However,
now we are interested in studying small perturbations around such geometry — we denote
such entangling region as B4

ϵ — in the angular direction θ1. In particular, let us consider
infinitesimal deformations described by the polar equation

ρ (θ1) = R

[
1 + ϵ

∑
ℓ

aℓYℓ(θ1) +O
(
ϵ2
)]

, Yℓ(θ1) =
1

2π2√sin θ1
Q

1
2
ℓ+ 1

2
(cos θ1) , (3.48)

where aℓ is a coefficient that controls the deformation and Qm
n (x) is an associated Legendre

function of second kind. Such expression — which can also be found in ref. [110] — corresponds
to a subset of the deformations considered by Mezei in ref. [39]. In the same reference, the
embedding of the associated RT surface is provided, namely

r(θ, θ1) = R
[
1 + ϵΘ(θ, θ1) +O

(
ϵ2
)]

, (3.49)

Θ(θ, θ1) =
∑

ℓ

aℓYℓ(θ1) tanℓ θ

2
1 + (ℓ + 1) cos θ + ℓ(ℓ+2)

3 cos2 θ

1 + cos θ
, (3.50)

where we use r(θ, θ1) to differentiate it from the coordinate describing the shape of the
deformation of the entangling region, ρ(θ1). In turn, the induced metric given by

ds2
ΣA

= γsp
abdyadyb + ϵ2 L2

⋆

cos2 θ

(
Θ′2dθ2 + Θ̇2dθ2

1 + 2Θ′Θ̇dθdθ1
)
+O

(
ϵ3
)

, (3.51)

– 23 –



J
H
E
P
0
1
(
2
0
2
5
)
0
8
1

where we introduced the shorthand notation Θ′ = ∂θΘ and Θ̇ = ∂θ1Θ. Using this expression,
we can compute the bare area of the RT surface and obtain

A (ΣA) = Aren (ΣA) +
2π2L4

⋆

3

(
R

δ

)3
− 5π2L4

⋆

3
R

δ

+ ϵ2 ℓ(ℓ + 2)L4
⋆

144π

[
6
(

R

δ

)3
− (4ℓ(ℓ + 2)− 3) R

δ

]
+ . . . , (3.52)

where we included all the universal terms in Aren (ΣA). In appendix D.2, we show that
the nonuniversal terms in eq. (3.52) are exactly cancelled by the boundary terms present
in eq. (3.33). In turn, we isolate the universal terms as

Aren (ΣA) =
4π2L4

⋆

3 + ϵ2 L4
⋆

72π

∑
ℓ

a2
ℓ (ℓ − 1)5 +O

(
ϵ4
)

, where (x)n ≡ Γ(x + n)
Γ(x) , (3.53)

is the Pochhammer symbol. Proceeding similarly as before, we now compute the generalized
Willmore energy and check if it coincides with the expression for the renormalized area.
The rescaled metric reads

ds̃2
ΣA

= γ̃sp
abdyadyb + 2ϵΘγ̃sp

abdyadyb

+ ϵ2
[
Θ2γ̃sp

abdyadyb + R2Θ′2dθ2 + R2Θ̇2dθ2
1 + 2R2Θ′Θ̇dθdθ1

]
+O

(
ϵ3
)

, (3.54)

where we employed the expression for γ̃sp
ab given in eq. (3.44). For this embedded surface,

we can compute their normal vectors

n(r)
r = 1− ϵ2

2

(
Θ′2 + Θ̇2

sin2 θ

)
+O

(
ϵ4
)

, (3.55)

n
(r)
θ = −ϵRΘ′ sin θ +O

(
ϵ3
)

, n
(r)
θ1

= −ϵRΘ̇ sin θ +O
(
ϵ3
)

, (3.56)

as well as the extrinsic curvatures that appear in the integrand, namely

K̃(t)
ab = 0 , (3.57)

K̃(r)
ab =

1
R

γ̃sp
ab + ϵR

[(
Θ−Θ′′) dθ2 +

(
Θsin2 θ − Θ̈− cos θ sin θΘ′

)
dθ2

1

+
(
dθ2

2 + sin2 θ2dθ2
3

)
sin θ1

(
sin θ sin θ1

(
Θsin θ −Θ′ cos θ

)
− Θ̇ cos θ1

)
+ 2

(
Θ̇ cot θ − Θ̇′

)
dθdθ1

]
− ϵ2R

2
[(
Θ̇2 csc2 θ − 3Θ′2

)
dθ2 +

(
Θ′2 sin2 θ − 3Θ̇2

)
dθ2

1

+sin2 θ1
(
dθ2

2 + sin2 θ2dθ2
3

) (
Θ̇2 +Θ′2 sin2 θ

)
− 8Θ′Θ̇dθdθ1

]
. (3.58)

Using them for the three terms appearing in JΣA
, we find that the generalized Willmore

energy for the double-copied perturbed RT surface reads

W5 (2ΣA) =
8π2

3 + ϵ2

36π

∑
ℓ

a2
ℓ (ℓ − 1)5 +O

(
ϵ4
)

, (3.59)

which is twice the renormalized area (3.53) modulo the AdS scale (as expected) and matches
exactly the result of the holographic EE using the relation (3.39), this is

F (Bd−1
ϵ ) = π2L4

⋆

3GN
+ ϵ2 L4

⋆

288πGN

∑
ℓ

a2
ℓ (ℓ − 1)5 +O

(
ϵ4
)

. (3.60)
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This expression is also in agreement with Mezei’s formula, as it should [39] — see also [111].
Indeed, in that paper it was pointed out that, when considering a slightly deformed spher-
ical entangling region Bd−1

ϵ in any dimension, the leading correction to the finite piece of
holographic EE is controlled by the flat-space stress-tensor two-point function15 charge CT —
this holographic result was later shown to hold for arbitrary CFTs [26]. It is easy to check
that eq. (3.60) can indeed be rewritten as

F (Bd−1
ϵ ) = 1 + ϵ2 π3

8640CT

∑
ℓ

a2
ℓ (ℓ − 1)5 +O

(
ϵ4
)

, (3.61)

where we used that for CFTs dual to Einstein gravity CT = 30L4
⋆

π4GN
[113], and where both

the functional dependence on the aℓ, the ℓ and the overall coefficient match Mezei’s general
formula.

3.5.3 Infinite strip

As a final check, let us discuss the case of the infinite strip entangling region with width l —
see figure 3. In principle, this region — as well as its associated RT surface — is non-compact
and the expression in terms of the generalized Willmore energy derived in eq. (3.36) is not
guaranteed to hold. However, we will see that it still captures the renormalized area of the
RT surface and, as a consequence, the finite part of the holographic EE.

As usual, our starting point is Poincaré-AdS6 spacetime (3.40) written, this time, in
cylindrical coordinates — which means performing the change of coordinates z = r cos θ,
u = r sin θ, x1 = r sin θ1 cos θ2, x2 = r sin θ1 sin θ2 cos θ3 and x3 = r sin θ1 sin θ2 sin θ3 —
, this is

ds2 = gαβdxαdxβ = L2
⋆

z2

(
du2 + dz2 + dx2

)
, (3.62)

where dx2 = dx2
1 + dx2

2 + dx2
3. The codimension-two RT surface is defined through the

embedding

ΣA : {t = const. , z = z(u)} , ds2
ΣA

= L2
⋆

z2(u)
[(
1 + z′

2(u)
)

du2 + dx2
]

, (3.63)

with z(u) such that the area is minimized and with the boundary condition z(u = ±l/2) = 0,
which corresponds to the location of the conformal boundary. We can write the area functional
and find a conserved quantity — a sort of Hamiltonian — associated to u translations which
then provides a first-order differential equation for z(u), namely z8z′2 + z8 = z8

⋆ — here, z8
⋆ is

related to the conserved quantity, and it represents the maximum value of z that the surface
reaches at u = 0. In turn, this allows us to change variables as

du = z4√
z8

⋆ − z8 dz . (3.64)

15The coefficient CT is a universal quantity, defined from ⟨Tµν(x)Tρσ(0)⟩Rd = CT

x2d

[
Iµ(ρIσ)ν − δµν δρσ

d

]
, which

holds for general CFTs, where Iµν ≡ δµν − 2 xµxν

x2 is a theory-independent tensorial structure [112].
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u

z

xi>1

Li

l

Σ

∂Σ

A

t =const.

Figure 3. Infinite strip entangling region A of
width l in the u direction. We introduced Li as
IR regulators for the transversal directions xi.
The surface Σ is cobordant (∂A = ∂Σ), where
∂Σ is composed by two parallel boundaries
located at u = ±l/2, i.e., ∂Σ = ∂Σl/2∪∂Σ−l/2.

Li

l
Σ′

Σ

∂Σ′
1=∂Σ1

R5

∂Σ′
2

∂Σ2

Figure 4. Double-copied surfaces Σ and Σ′

glued along the umbilical line defined by ∂Σ1 =
∂Σ′

1 located at u = ±l/2. The introduction of
the IR regulators Li defines a pair of symmetric
boundaries ∂Σ2 and ∂Σ′

2 pointing upwards and
downwards along the transverse directions xi.

Duplicating by symmetry the increasing branch u ∈ [−l/2, 0], the bare area can be computed
— after changing variables using eq. (3.64) — as [41]

A (ΣA) = 2L3
i L4

⋆z4
⋆

∫ z⋆

δ

dz

z4
√

z8
⋆ − z8 = 2L4

⋆

3

(
Li

δ

)3
− 2

√
πΓ(5/8)L4

⋆

3Γ(1/8)

(
Li

z⋆

)3
, (3.65)

where, again, we introduced δ as an UV cut-off for this entangling region. From this, we
can easily extract the universal coefficient as the second term in the r.h.s. . Note that the
maximum depth z⋆ can be written in terms l using the relation [41]

l

2 =
∫ z⋆

0

z4dz√
z8

⋆ − z8 =
√

πΓ(5/8)
Γ(1/8) z⋆ , (3.66)

which we will use afterwards.
Unlike in the case of the sphere, the expression for the renormalized area (3.32) is not

applicable to the infinite strip as it is. The reason is that in our argument we assumed
that the entangling region is compact and, as a consequence, we used the Gauss-Bonnet
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theorem to exchange the Chern form B3 with the four-dimensional Euler characteristic and
density, χ(ΣA) and XΣA

4 respectively. This is not the case for the infinite strip, for which we
introduced IR regulators Li’s to characterize the region. As such, we cannot expect the Euler
characteristic, which is a topological quantity, to carry information regarding IR regulators
in our setup. Because of this, in order to find the renormalized area of the RT surface, we
undo the Gauss-Bonnet theorem to return to a formula for the renormalized area which
does not require compact codimension-two manifolds. In appendix D.3 we show the explicit
cancellation of divergences, so that we obtain

Aren (ΣA) = −16π2L4
⋆

3

(Γ(5/8)
Γ(1/8)

)4 (Li

l

)3
, (3.67)

where we have used eq. (3.66) to express the result in terms of the width l of the strip.
The result agrees with the one obtained from direct subtraction of the area-law divergence
in eq. (3.65), as it should.

Now, let us turn our attention to generalized Willmore energy (3.36). First, we need
the geometric quantities associated to the flat background — which, as usual, amounts to
rescaling the metric (3.63) as (2.27) with φ = log(L⋆/z) being the conformal factor —, this is

ds̃2
ΣA

= g̃abdxadxb = z8
⋆

z8 du2 + dx2 , (3.68)

where we have already used the relation (3.64) to express the induced metric of ΣA in terms
of z⋆. From here, we obtain

ñ
(t)
t = 1 , ñ(z)

u = −
√

z8
⋆ − z8

z4
⋆

, ñ(z)
z = z4

z4
⋆

, K̃(z)
uu = 4z4

⋆

z5 , K̃(z) = 4z3

z4
⋆

, (3.69)

with every other component of K̃ab identically vanishing. Taking into account these consid-
erations and using the quantities in eq. (3.69), we obtain the generalized Willmore energy
of the RT surface as

W5 (2ΣA) = 4L3
i

∫ z⋆

0

3z4 (z8
⋆ − 2z8) dz

z12
⋆

√
z8

⋆ − z8 = −32π2

3

(Γ(5/8)
Γ(1/8)

)4 (Li

l

)3
, (3.70)

where we have again introduced Li as IR regulators and expressed the result in terms of the
width l using eq. (3.66). Once again we see that following the relation between the generalized
Willmore energy and the finite part of holographic EE (3.39) we obtain the expected result [41]

F (A) = −4π2L4
⋆

3GN

(Γ(5/8)
Γ(1/8)

)4 (Li

l

)3
. (3.71)

4 F (A) has no global bounds for d = 5 CFTs

As discussed in section 2, the disk, B2, minimizes the finite part of holographic EE in the
vacuum state among all possible entangling regions for three-dimensional holographic CFTs.
This can be seen from the saturation of the lower bound of the Willmore energy W3, which
occurs when the double-copied submanifold 2ΣA is a sphere. This result extends to arbitrary
CFTs, as shown in ref. [49] and summarized in eq. (1.4).
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Let us now exploit our new formula in terms of the generalized Willmore energy W5
to explore the shape dependence of F (A) for five-dimensional holographic theories. Of
course, Mezei’s formula — of which eq. (3.61) is a particular case — implies that the higher-
dimensional version of the disk-like entangling region, B4, is a local minimum of F (A) for small
derformations of the ball not just for holographic CFTs, but for completely general CFTs [39].
Hence, any small deformation away from the round ball will produce an increase of F (A).

An obvious question is then whether A = B4 is a global minimum. It is immediate to
see that this is not the case. This follows from the result for the strip region (3.71), which
implies that the holographic EE is not bounded from below in five dimensions [41]. Namely,
F (A) takes arbitrarily negative values as the IR regulators are made arbitrarily large. This
is somewhat suprising. Indeed, as shown in eq. (1.1), the EE of a general odd-dimensional
CFT contains a universal term of the form

SEE(A) ⊃ (−1)
d−1

2 F (A) . (4.1)

With this normalization, F (A) is such that it takes a positive value for a round ball region
Bd−1 for general d-dimensional CFTs — see e.g., [18, 42, 114]. On the other hand, in the case
of an infinite strip, F (A) is positive for d = 3, 7, 11, . . . but negative for d = 5, 9, 13, . . . This is
the case not only for holographic theories [42], but also for free scalars and fermions [115] and,
presumably, for general CFTs. Hence, we immediately learn that F (A) is unbounded from
above for d = 3, 7, 11, . . . and from below for d = 5, 9, 13, . . . . Hence, while for d = 7, 11, . . .

it is still plausible that —just like for d = 3 — Bd−1 is a global minimum, for d = 5, 9, . . .

this is not the case. Indeed, in those cases there must exist families of entangling regions
which interpolate between round balls and very thin “strip-like” regions such that F (A)
starts growing as we depart from the ball, it reaches a maximum for certain region, it
takes a value coincident with the ball one for some other region, it vanishes for some other
as we keep deforming, and then it takes increasingly negative values as the strip shape is
approached. On the other hand, it is still possible that F (A) is bounded above in those
cases, although this seems unlikely.

In order to gain further insight on this matter, let us now consider smooth non-perturbative
deformations of B4 and feed them to our newly constructed functional W5. For concreteness,
let us consider a four-dimensional ellipsoidal surface embedded in R5, described by the
equation R2 =

∑5
i=1

x2
i

b2
i

in Cartesian coordinates and where bi represent the length of each
of the semiaxes. In spherical coordinates, this reads16

R2 = r2 cos2 θ1
b2

1
+ r2 sin2 θ1 cos2 θ2

b2
2

+ r2 sin2 θ1 sin2 θ2 cos2 θ3
b2

3

+ r2 sin2 θ1 sin2 θ2 sin2 θ3 cos2 ϕ

b2
4

+ r2 sin2 θ1 sin2 θ2 sin2 θ3 sin2 ϕ

b2
5

. (4.2)

We consider two families of ellipsoids: a first one Σ(1)
a with axes of length (b1, b2, b3, b4, b5) =

(1, 1, 1, 1, a) and a second one Σ(2)
a with (1, 1, 1, a, a). For them, we evaluate the generalized

16For clarity, we choose different angular variables with respect to section 3.5.2. In this case their range is
0 ≤ θi ≤ π for i = 1, 2, 3 and 0 ≤ ϕ ≤ 2π.
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Willmore energy W5 (Σa) and normalize it by the value of the four-sphere W5
(
S4) = 8π2

3 , with
the latter retrieved from the former when we take a = 1 in Σ(1)

a and Σ(2)
a respectively. Notice

that the ellipsoids spanned by the embeddings Σ(1)
a and Σ(2)

a do not necessarily correspond to
double-copied RT surfaces as we run the parameter a. However, from this exercise we can
get an intuition about what to expect for RT surfaces and, hence, for holographic EE.

We observe that the ratio W5 (Σa) /W5
(
S4) for the first ellipsoid (1, 1, 1, 1, a) can be

computed analytically, obtaining

W5

(
Σ(1)

a

)
W5 (S4) =

315
(
15a2 − 16

)
a8arcsec a +

√
a2 − 1

(
10613a8 − 7778a6 − 2376a4 − 16a2 − 128

)
17920a6 (a2 − 1)3/2 .

(4.3)
There are two important limits that can be derived from this expression, namely when a is
small and large. They correspond to geometries tending to B4 and S3 × R, respectively. In
both regimes we see that generalized Willmore energy grows indefinitely

W5
(
Σ(1)

a≪1

)
= 1

140a6 +O
(
a−4

)
, W5

(
Σ(1)

a≫1

)
= 135π

1024 a +O
(
a0
)

. (4.4)

This behavior was previously reported numerically in ref. [52], where the authors suggested
that W5

(
Σ(1)

a

)
is a convex function. Here, based on the analytical expression (4.4) we can

unequivocally check that this is the case. Incidentally, this means that F (A) should not be
expected to possess an upper bound either for general d = 5 CFTs.

Regarding the second ellipsoid (1, 1, 1, a, a), we are not able to find an analytical expression
for W5

(
Σ(2)

a

)
/W5

(
S4). However, we can still find numerical results running for different

values of a. In figure 5 we plot these results as well as including the analytical expression
for the (1, 1, 1, 1, a) ellipsoid, (4.4). As expected, for both ellipsoids, W5 (Σa) in the regime
a → 1 tends to the value of the sphere W5

(
S4) and corresponds to a local minimum. In

the regime a ≪ 1,17 we observe that the ratio W5
(
Σ(2)

a

)
/W5

(
S4) oscillates wildly between

−∞ and +∞. We represented this oscillation with a red region in the figure. On the other
hand, the a ≫ 1 regime, which can be associated to R2 × S2 geometry is unbounded from
below. An analogous behavior was previously reported in ref. [56].18

In summary, in this simple setup we observe that the generalized Willmore energy (3.36):
i) has a local minimum for S4, corresponding to an entangling region B4; ii) it is neither
bounded from below nor from above. From the holographic EE point of view, i) was
previously known as it follows from Mezei’s formula. On the other hand, ii) reveals that
W5 and, consequently, F (A) for five-dimensional CFTs can take arbitrarily negative and
positive values for certain entangling regions.

5 Conclusions

In this paper we have presented a new formula for the vacuum EE universal term F (A) for
holographic theories dual to Einstein gravity in five (boundary) dimensions. The resulting

17This limit is the closest one to the thin strip case considered throughout the paper.
18One could ask what is the situation with other ellipsoids, such as (1, 1, a, a, a), (1, a, a, a, a). They are

connected to the two cases studied so far by means of the duality a ↔ 1/a and, hence, their large and small a

regimes are respectively exchanged.

– 29 –



J
H
E
P
0
1
(
2
0
2
5
)
0
8
1

Figure 5. Linear-logarithmic plot of W5

(
Σ(i)

a

)
/W5

(
S4) with i = 1, 2, representing the (1, 1, 1, 1, a)

(blue line) and (1, 1, 1, a, a) (red line) ellipsoids respectively for different values of a. The values
represented for the former are analytical while the latter are numerical. The red region for small
values of a indicates that the (1, 1, 1, a, a) ellipsoid oscillates wildly between −∞ and +∞ in this
regime. We also include the point a = 1 corresponding to a round sphere S4 and represented by an
eight-pointed star. As we can see, while S4 — corresponding to an A = B4 holographic entangling
region — is a local minimum of the generalized Willmore functional, this is neither bounded from
below nor from above for general regions.

expression generalizes the Willmore energy functional which captures the corresponding result
in the three-dimensional case. This generalized Willmore energy, W5, is given — in agreement
with previous results in the mathematical literature [51, 52] — by an integral over the doubled
RT surface embedded in R5 of a linear combination of terms of order-4 in extrinsic curvatures

— see eq. (1.6). As we have seen, in contradistinction to the three-dimensional case, W5 is
both unbounded from above and from below, which implies the same conclusion for F (A) at
least in the holographic case. A more detailed scrutiny of the free-field results available in
the literature strongly suggests that this is a general feature of five-dimensional CFTs.

W5 was obtained here from the evaluation of six-dimensional LLP CG [61] in the conically
singular orbifold defined through the LM procedure [69] following the prescription by Miao
given in ref. [23]. By requiring the resulting functional to be a conformal invariant we were
able to derive W5 as well as the so-called reduced Hawking mass. The latter followed from
imposing the bulk manifold to be an Einstein space, whereas W5 was obtained from further
imposing the surface to be extremal and the bulk to be pure AdS.

There are some future directions which would be worth exploring. On the one hand, it is
natural to wonder about the universal term in the holographic EE for Einstein gravity in seven
(boundary) dimensions, which would yield yet another generalized Willmore energy functional,
W7. This should involve some linear combination of terms of order 6 in extrinsic curvatures
of the doubled RT surface embedded in R7. Presumably, this should follow from a procedure
analogous to the one exploited here, involving this time certain eight-dimensional CG.
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On a different front, it is also natural to explore generalizations of the original Willmore
energy W3 motivated by holographic EE. Indeed, considering higher-curvature terms in the
gravitational action modifies the RT formula introducing corrections to the area functional.
Consequently, the corresponding universal term which in the case of Einstein gravity is given
by W3 will be modified by terms of higher order in extrinsic curvatures of the doubled RT
functional. The obvious first case to consider is the one of quadratic gravities [21], from
which one would expect corrections to W3 involving terms of order 4 in extrinsic curvatures.
Aside from the interpretation of the resulting functionals in the context of holographic EE,
this procedure could be used to obtain somewhat canonical higher-curvature generalizations
of W3 which may be of interest from a mathematical perspective.

Furthermore, the proposed generalization of the reduced Hawking mass in four dimen-
sions (3.31) opens the possibility to derive new holographic EE bounds for states different
from the CFT vacuum as well. The two-dimensional reduced Hawking mass demonstrates a
monotonous behavior under inverse mean-curvature flows that gives rise to a generic bound for
holographic EE in three-dimensional CFTs [77]. Our new four-dimensional reduced Hawking
mass involves desirable terms such as the Gauss-Bonnet density, which is expected to follow
a monotonous behavior under a flow which is not necessarily the inverse mean-curvature one.
It is worth noting that, as the reduced Hawking mass renormalizes the area of arbitrary (i.e.,
not necessarily minimal) surfaces, it would yield the finite part of holographic EE even for
quantum extremal surfaces, which take into account quantum corrections in the entropy due
to the bulk degrees of freedom [116, 117] and O (1/N) corrections as well.

Finally, the results presented here show that the B4 EE in the case of holographic
five-dimensional CFTs is a somewhat less significant quantity than the B2 one in the three-
dimensional counterpart. Indeed, while in the latter case it provides a universal lower bound
for F (A) for general CFTs, in the former it only does so for small deformations around
the ball region. It would be interesting to explore the consequences of this fact in light
of putative generalizations to five dimensions of the three-dimensional conformal bounds
presented in ref. [38].

Acknowledgments

We thank Dorian Martino, Erik Tonni, Andrew Waldron and Matteo Zatti for useful dis-
cussions. The work of GA is funded by ANID FONDECYT grants No. 11240059 and
1240043. The work of IJA is funded by ANID FONDECYT grants No. 11230419 and 1231133.
IJA is grateful to PB and the ICC at the Universitat de Barcelona for their hospitality.
PB was supported by a Ramón y Cajal fellowship (RYC2020-028756-I), by a Proyecto de
Consolidación Investigadora (CNS 2023-143822) from Spain’s Ministry of Science, Innova-
tion and Universities, and by the grant PID2022-136224NB-C22, funded by MCIN/AEI/
10.13039/501100011033/FEDER, UE . The work of JM is supported by ANID FONDECYT
Postdoctorado Grant No. 3230626. RO was supported by Anillo Grant ACT210100 Hologra-
phy and its applications to High Energy Physics, Quantum Gravity and Condensed Matter
Systems and ANID FONDECYT Regular grants No. 1230492, 1231779, 1240043 and 1240955.
AVL is supported by the F.R.S.-FNRS Belgium through conventions FRFC PDRT.1025.14

– 31 –



J
H
E
P
0
1
(
2
0
2
5
)
0
8
1

M ∂M ⊂ M Σ ⊂ M ∂Σ ⊂ Σ ∂A = ∂Σ ⊂ ∂M
Indices α, . . . , λ µ, . . . , ω a, . . . , h i, . . . , q i, . . . , q

Coordinates xα Xµ ya Y i Y i

Metric gαβ hµν γab σij σij

Covariant derivative ∇α ∇∂M
µ ∇Σ

a ∇∂Σ
i ∇∂Σ

i

Riemann tensor Rαβγδ rµνρσ Rabcd Rijkl Rijkl

Unit normal(s) nα NA
α na lI µ

Extrinsic curvature kµν KA
ab Kij κI

ij

Table 1. Notation and conventions.
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A Notation and conventions

In this appendix we present the conventions used throughout the paper. In the first column
of table 1, we provide a list of objects defined on the different manifolds presented in the
first line. The gravity theory is defined on the (d + 1)-dimensional bulk manifold M and
its dual CFT lives on its boundary ∂M. We denote Σ as the codimension-two manifold in
which the RT surface associated to the entangling region A is defined and ∂Σ = ∂A as its
boundary. In table 1, we also differentiate between various embeddings that can be defined
for submanifolds, such as ∂Σ, which can be embedded in either Σ or ∂M.

Assuming an embedding xα = xα (ya), we define the projection vielbein to Σ, γα
a = ∂xα

∂ya .
Similar constructions are valid for the other submanifolds in the table above. Unit normals
are taken to be outward-pointing (for the codimension-two cases, Σ ⊂ M and ∂Σ ⊂ ∂M,
we introduce indices A, B, . . . and I, J, . . . , respectively, labelling the two normals). From
this definition, extrinsic curvatures are obtained as

KA
ab = γα

a γβ
b ∇βNA

α . (A.1)

In addition, we can write the contraction of KA
ab with bulk indices as

Kγ
αβ = γa

αγb
βNA

γKA
ab . (A.2)

It is important to note that in the codimension-two decomposition that we perform here, the
normal bundle indices play the role of labels for objects residing in the hypersurface. This
becomes evident when the Gauss-Codazzi relations for the Christoffel symbol are considered.
In particular, these can be cast as

ΓB
aA = 0 , Γb

aA = −KAa
b , ΓA

ab = KA
ab . (A.3)

Notice that the normal bundle index A of the Christoffel is interpreted as the label indicating
the direction along which the extrinsic curvature is computed. On the other hand, since the
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∂Σ ⊂ Σ embedding is performed only along the radial direction, the label can be omitted
and the corresponding extrinsic curvature can be written as

Kij = σa
i σb

j∇Σ
b na . (A.4)

We will occasionally make use of partial contractions of indices along normal or tangent
directions to a given submanifold. Let us exemplify this with Σ ⊂ M. Given that we take
the normals to satisfy gαβNA

αNB
β = δAB (in Euclidean signature), we can decompose the

metric into tangent and normal components as

gαβ = γαβ + δABNA
αNB

β . (A.5)

We then abbreviate normal contractions using indices A, B, . . . , e.g.,

RA
A = RαβnA

αnB
βδAB , (A.6)

and similarly for tangent ones,

Ra
a = Rαβγαβ . (A.7)

In the case in which we choose coordinates adapted to the surface, so that xα = (xA, xa = ya)
and NA

α = δA
α , the previous expressions reduce to the contraction of normal / tangent indices.

Throughout the text we make use of the so-called Schouten tensor, which is defined
in general dimension D as

Sβ
α ≡ 1

(D − 1)

(
Rβ

α − 1
2D

Rδβ
α

)
. (A.8)

The Cotton tensor is in turn defined from this as

Cαβγ ≡ ∇γSαβ −∇βSαγ . (A.9)

Also, the Weyl tensor can be defined using the Schouten tensor as

W γδ
αβ ≡ Rγδ

αβ − 4S
[γ
[αδ

δ]
β] . (A.10)

Finally, the Bach tensor is defined as

Bαβ ≡ SγδWα
γ

β
δ + 2∇δ∇[δSα]β . (A.11)

B Conformal covariantization of Einstein-AdS gravity

In order to perform the conformal covariantization procedure, we are seeking to construct
Weyl-invariant scalar densities I, namely

δφI = 0 , (B.1)

where φ is the local scaling parameter of the metric as in eq. (2.27). For an infinitesimal
Weyl transformation, the metric behaves as

δφgαβ = 2φgαβ . (B.2)

– 33 –



J
H
E
P
0
1
(
2
0
2
5
)
0
8
1

Based on this relation, we determine the behavior of the Ricci scalar and Schouten tensor, as

δφR = −2φR − 2 (D − 1) φ , (B.3)
δφSαβ = −∇α∇βφ . (B.4)

From this, it follows the Weyl tensor invariance,

δφW δ
γαβ = 0 . (B.5)

Additional expressions that will be useful for our computations are

δφCαβγ = −Wδαβγ∇δφ , (B.6)
δφBαβ = −2σBαβ + (D − 4) (Cαβγ + Cβαγ)∇γφ , (B.7)

where Cαβγ and Bαβ are the Cotton and Bach tensors, respectively. Then, it is straightforward
to show the Weyl invariance of the Pfaffian of the Weyl (3.12).19 Indeed, we get that

δφ

(√
|g|Y6

)
=
√
|g|δα1...α6

β1...β6

[1
2W β1β2

α1α2W β3β4
α3α4W β5β6

α5α6

(
g−1δφg

)
+ 3W β1β2

α1α2W β3β4
α3α4δφW β5β6

α5α6

]
=
√
|g|δα1...α6

β1...β6
6φ
(
W β1β2

α1α2W β3β4
α3α4W β5β6

α5α6 − W β1β2
α1α2W β3β4

α3α4W β5β6
α5α6

)
= 0 , (B.8)

due to the fact that δφW αβ
γδ = −2φW αβ

γδ . On the other hand, the term Y4 breaks Weyl
invariance explicitly. In particular, for the corresponding scalar density, we obtain

δφ

(√
|g|δα1...α5

β1...β5
W β1β2

α1α2W β3β4
α3α4Sβ5

α5

)
=
√
|g|δα1...α5

β1...β5

[1
2W β1β2

α1α2W β3β4
α3α4Sβ5

α5

(
g−1δφg

)
+2W β1β2

α1α2

(
δφW β3β4

α3α4

)
Sβ5

α5 +W β1β2
α1α2W β3β4

α3α4δφSβ5
α5

]
=−

√
|g|δα1...α5

β1...β5
W β1β2

α1α2W β3β4
α3α4∇

β5∇α5φ. (B.9)

Thus, we are seeking compensating terms that will render this expression invariant under
infinitesimal Weyl transformations. This is achieved by rewriting the last term as the Weyl
variation of a scalar density. To do so, after integrating by parts, the latter can be cast
in the form

δφ

(√
|g|δα1...α5

β1...β5
W β1β2

α1α2W β3β4
α3α4Sβ5

α5

)
= −32

√
|g|W αβ

γδ Cγδ
α ∇βφ − 4∇γ

(√
|g|W 2∇γφ

)
(B.10)

+ 16∇γ
(√

|g|W 2δφCδ
αβ

)
+ 32∇γ

(√
|g|φW 2Cδ

αβ

)
,

where the relation

W γδ
αβ∇δφ = δφCγ

αβ + 2φCγ
αβ , (B.11)

was used. Furthermore, the Weyl variation of the divergence of a generic vector field Vα, reads

δφ

(√
|g|∇αVα

)
=
√
|g|∇α (4φVα + δφVα) . (B.12)

19The Pfaffian of a certain tensor Xγδ
αβ in even D dimensions is given by pf(X) ≡

δ
γ1δ1...γD/2δD/2
α1β1...αD/2βD/2

Xα1β1
γ1δ1

· · ·XαD/2βD/2
γD/2δD/2

.

– 34 –



J
H
E
P
0
1
(
2
0
2
5
)
0
8
1

This property allows us to simplify the expression of eq. (B.10). Indeed, we write

δφ

(√
|g|∇2W 2

)
=
√
|g|∇α

[
4φ∇αW 2 + δφ

(
∇αW 2

)]
= −4

√
|g|∇α

(
W 2∇αφ

)
, (B.13)

where we denoted ∇2 = ∇α∇α. Equivalently, we can write

∇α
(√

|g|W 2∇αφ

)
= −1

4δφ

(√
|g|∇2W 2

)
. (B.14)

On top of that, the following relation is valid

δφ

[√
|g|∇γ

(
W αβ

δγ Cδ
αβ

)]
=
√
|g|∇γ

[
4φW αβ

δγ Cδ
αβ + δφ

(
W αβ

δγ Cδ
αβ

)]
=
√
|g|∇γ

(
2φW αβ

δγ Cδ
αβ + W αβ

δγ δφCδ
αβ

)
. (B.15)

After some algebraic manipulation the latter can be cast in the form

∇µ
(√

|g|W αβ
νµ δφCν

αβ

)
= δφ

[√
|g|∇µ

(
W αβ

νµ Cν
αβ

)]
− 2∇µ

(√
|g|φW αβ

νµ Cν
αβ

)
. (B.16)

Replacing eqs. (B.14), (B.16) into eq. (B.10), we get

δφ

(√
|g|δα1...α5

β1...β5
W β1β2

α1α2W β3β4
α3α4Sβ5

α5

)
= −32

√
|g|Cαβ

γ (δφCγ
αβ + 2φCγ

αβ)

− 2δφ∇α
[√

|g|(8W γδ
αβCβ

γδ − W γδ
κβ∇αW κβ

γδ )
]

. (B.17)

As a final step, we have to Weyl-covariantize the remaining terms involving the Cotton
squared contribution. For this term, we consider that

δφ

(√
|g|C2

)
=
√
|g|
2 C2

(
g−1δφg

)
+
√
|g|
(
Cαβ

γ δφCγ
αβ + Cγ

αβδφCαβ
γ

)
(B.18)

= 2
√
|g|Cαβ

γ

(
δφCγ

αβ + 2φCγ
αβ

)
. (B.19)

Substituting this expression in eq. (B.17), we obtain

δφ

(√
|g|δα1...α5

β1...β5
W β1β2

α1α2W β3β4
α3α4Sβ5

α5

)
= −2δφ

[√
|g|
(
8C2 +∇αĴ

)]
, (B.20)

where we denoted Ĵα ≡ 8W αγδβCγλβ − W γδ
βε∇αW βε

γδ . As a consequence, the scalar density
I4 is Weyl invariant, i.e., δφI4 = 0, where

I4 =
√
|g|
(1
2δα1...α5

β1...β5
W β1β2

α1α2W β3β4
α3α4Sβ5

α5 + 8C2 +∇αĴα

)
, (B.21)

which corresponds to the conformal covariantization, or Weyl completion, of the − 1
2L2

⋆
Y4

combination of eq. (3.13).
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C Computation of Υab

Our starting point on the derivation of the term Υab in eq. (3.24), will be its covariant form

Υab = 1
4γα

a γβ
b

[
1
16
(
∇αKγ∇βKγ − KγKδRαγβδ

)
+ SαγSγ

β − Bαβ − Sγ(α∇β)K
γ − 1

2Kγ∇γSαβ

]
,

(C.1)
given in ref. [23]. After performing the integration by parts of the last term and, on
parallel, expressing the Riemann tensor in terms of the Weyl and the Schouten tensors using
expression (A.10), the last expression yields the form

Υab =
1
4γα

a γβ
b

[ 1
16
(
∇αKγ∇βKγ − KγKδWαγβδ − KγKγSαβ − KγKδSγδgαβ + 2KγK(αSβ)γ

)
+ SαγSγ

β − Bαβ − 1
2 (Sαγ∇βKγ + KγCβαγ +∇α (KγSβγ))

]
, (C.2)

where γab is the intrinsic metric of Σ and γα
a is the projector. At this point we can drop

the covariant notation adopting the normal decomposition. In this case, only the extrinsic
curvatures along the normal bundle directions survive, since the vector na is tangent to Σ,
leading to Ka = 0. As a consequence, the last formula can be cast in the following form

Υab =
1
4

[ 1
16
(
∇aKA∇bKA − KAKBWaAbB − KAKASab − KAKBSABγab

)
+ SaαSα

b − Bab −
1
2
(
SaA∇bK

A + KACabA + γβ
b ∇a

(
KASβA

))]
. (C.3)

The Gauss-Codazzi relations (A.3) allow us to express bulk covariant derivatives in terms
of the covariant derivative ∇Σ

a , that is compatible with the induced metric γab. As a
consequence, the following term reads

∇aKA∇bKA = ∇Σ
a KA∇Σ

b KA + KAKA
c
aKBKB

bc . (C.4)

On top of that, the next term where an explicit derivative appears, can be rewritten as

SaA∇bK
A = SaA∇Σ

b KA − Sc
aKA

bcKA . (C.5)

Finally, the last derivative contribution can be analyzed as follows

γβ
b ∇a

(
KASβA

)
= ∇Σ

a

(
KASAb

)
− KAKB

abSAB . (C.6)

Summing up all the previous contributions, the quantity Υab now reads

Υab =
1
4

[ 1
16
(
∂aKA∂bKA + KAKA

acKBKBc
b − KAKBWaAbB − KAKASab

−KAKBSABγab

)
+ SaαSα

b − Bab −
1
2
(
SaA∂bK

A − Sc
aKA

bcKA + KACabA

+∇Σ
a

(
KASAb

)
− KAKB

abSAB

) ]
. (C.7)

D Cancellation of divergences

In this appendix we show explicitly the cancellation of divergences for the renormalized area
in the case of different entangling regions.
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D.1 Sphere

Although it is easy to check that for the spherical entangling region (3.43) yields the renor-
malized area, for the sake of completeness here we show that the expression with the Chern
form (3.33) also does the job. Starting with the embedded metric of the RT surface associated
to the spherical entangling region (3.41), it is easy to check that the boundary of this metric
at θ = π/2 − δ/R is given by

ds2
∂ΣA

= σsph
ij dY idY j = L2

⋆

[
−2
3 +

(
R

δ

)2
+ 1

15

(
δ

R

)2
+O

(
δ4
)]

dΩ2
3 . (D.1)

For this geometry we obtain

BΣA
3 = −2

√
σ

[
2(KR− 2Kj

iR
i
j)−

2
3
(
K3 − 3KKj

iK
i
j − 2Kj

iK
k
jK

i
k

)]
(D.2)

= 8 sin2 θ1 sin θ2

(
R

δ

)3
− 20 sin2 θ1 sin θ2

R

δ
+O

(
δ1
)

(D.3)

where we used that

Rj
i = 2

L2
⋆

(
δ

R

)2
δj

i +O
(
δ4
)

, Kj
i = 1

L⋆

[
1 + 1

2

(
δ

R

)2]
δj

i +O
(
δ4
)

. (D.4)

The last part of the boundary term in eq. (3.33) vanishes identically K∂ΣA
= 0, because

wij
ij = 0 , κI

⟨ij⟩ = 0 . (D.5)

As a consequence, we see that

A (ΣA)ren = A (ΣA)−
L4

⋆

24

∫
∂ΣA

d3Y BΣA
3 (D.6)

= A (ΣA)−
2π2L4

⋆

3

(
R

δ

)3
+ 5π2L4

⋆

3
R

δ
+O (δ) , (D.7)

where the two terms carrying the UV regulator in this expression precisely cancel those
appearing in the bare area (3.41).

D.2 Small deformation of the sphere

Now, let us show explicitly that expression (3.33) also achieves cancellation of divergences
appearing in the area of the RT surface associated to the slightly deformed entangling
region (3.48). Starting with the induced metric of the RT surface (3.51), we find the induced
metric at the conformal boundary θ → π/2, finding

ds2
∂ΣA

= σsph
ij dY idY j + L2

⋆Y ′
ℓ

2
ϵ2
[(

R

δ

)2
+ 1

3(1− ℓ(ℓ + 2)) (D.8)

+ 1
45(5(ℓ − 1)ℓ(ℓ + 2)(ℓ + 3) + 3)

(
δ

R

)2]
dθ2

1 + . . . ,
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where again, we have introduced an UV regulator δ. The Chern form B∂ΣA
3 for this metric reads

B∂ΣA
3 = 8 sin2 θ1 sin θ2

(
R

δ

)3
− 20 sin2 θ1 sin θ2

R

δ
+ ϵ2

[
4 sin2 θ1 sin θ2Y ′

ℓ
2
(

R

δ

)3

+
(
2 sin θ2

(
2l2(l + 2)2 sin2 θ1Y 2

ℓ + Y ′
ℓ

((
(2l(l + 2)− 15) sin2 θ1 + 12

)
Y ′

ℓ

+24 sin θ1 cos θ1Y ′′
ℓ

)
+ 4l(l + 2) sin θ1Yℓ

(
sin θ1Y ′′

ℓ + 2 cos θ1Y ′
ℓ

))) R

3δ

]
+ . . . (D.9)

Finally, we need the partial trace of the Weyl tensor at the conformal boundary and the
quadratic contraction of traceless extrinsic curvature of ∂Σ embedded in ∂M. The first one
vanishes identically for our metric under consideration (wij

ij = 0) whereas the second reads

κI
⟨ij⟩κI

⟨ij⟩ = 2
3L2

⋆

(
δ

R

)2 (
Y ′′

ℓ − Y ′
l cot θ1

)2
, (D.10)

Putting all terms together in eq. (3.33), we find

Aren (ΣA) = A (ΣA)−
2π2L4

⋆

3

(
R

δ

)3
+ 5π2L4

⋆

3

(
R

δ

)
− ϵ2 ℓ(ℓ + 2)L4

⋆

144π

[
6
(

R

δ

)3
− (4ℓ(ℓ + 2)− 3) R

δ

]
+ . . . , (D.11)

which precisely cancels the divergences appearing in eq. (3.52), at quadratic order in ϵ.

D.3 Infinite strip

Let us show that the divergent piece in eq. (3.65) is cancelled when using expression (3.33).
The starting point is the metric of the RT surface associated to the infinite strip entangling
region (3.63), which, after changing variables using eq. (3.64) reads

ds2
ΣA

= L2

z2

(
z8

⋆dz

z8
⋆ − z8 + dx2

)
. (D.12)

The conformal boundary of this geometry is located at z = δ, and the induced metric at
this locus is just flat space with a conformal factor, i.e.,

ds2
∂ΣA

= L2
⋆

δ2 dx2 . (D.13)

Using this, we can compute the quantities appearing in eq. (3.33), namely

BΣA
3 = 8

δ3 , wij
ij = 0 , κI

ij = 0, , (D.14)

where, for the second Chern form of the RT surface BΣA
3 , we have used that for the conformally

flat induced metric (D.13), we have

Rkl
ij = 0 , K⟨ij⟩ =

1
L⋆

σij . (D.15)
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Taking this into account, we obtain the renormalized area of the infinite strip following
equation (3.33), this is

Aren (ΣA) = A (ΣA)−
L4

⋆

24

∫
∂ΣA

d3Y BΣA
3 = A (ΣA)−

2L4
⋆

3

(
Li

δ

)3
, (D.16)

where we used that for the infinite strip we have two parallel boundaries, one located
at u = l/2, say ΣA

l/2, and another symmetric one located at u = −l/2, i.e., ΣA
−l/2 —see

figure 3. Thus, in the boundary term, there is a factor of two as they contribute symmetrically,
i.e., ∂ΣA = ∂ΣA

l/2 ∪ ∂ΣA
−l/2. With these considerations, we observe that the additional

term appearing in eq. (D.16) cancels the divergence coming from the bare area of the RT
surface (3.65).

Data Availability Statement. This article has no associated data or the data will not
be deposited.

Code Availability Statement. This article has no associated code or the code will not
be deposited.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.

References

[1] R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964)
848 [INSPIRE].

[2] A.S. Wightman, Quantum field theory in terms of vacuum expectation values, Phys. Rev. 101
(1956) 860 [INSPIRE].

[3] C.A. Agón, P. Bueno and H. Casini, Tripartite information at long distances, SciPost Phys. 12
(2022) 153 [arXiv:2109.09179] [INSPIRE].

[4] C.A. Agón, P. Bueno and H. Casini, Is the EMI model a QFT? An inquiry on the space of
allowed entropy functions, JHEP 08 (2021) 084 [arXiv:2105.11464] [INSPIRE].

[5] J. Long, On co-dimension two defect operators, arXiv:1611.02485 [INSPIRE].

[6] B. Chen and J. Long, Rényi mutual information for a free scalar field in even dimensions, Phys.
Rev. D 96 (2017) 045006 [arXiv:1612.00114] [INSPIRE].

[7] B. Chen, L. Chen, P.-X. Hao and J. Long, On the mutual information in conformal field theory,
JHEP 06 (2017) 096 [arXiv:1704.03692] [INSPIRE].

[8] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in
conformal field theory II, J. Stat. Mech. 1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].

[9] C. Agón and T. Faulkner, Quantum corrections to holographic mutual information, JHEP 08
(2016) 118 [arXiv:1511.07462] [INSPIRE].

[10] C.A. Agón, P. Bueno and G. van der Velde, Long-distance N-partite information for fermionic
CFTs, JHEP 12 (2024) 178 [arXiv:2409.03821] [INSPIRE].

– 39 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.1704187
https://doi.org/10.1063/1.1704187
https://inspirehep.net/literature/9124
https://doi.org/10.1103/PhysRev.101.860
https://doi.org/10.1103/PhysRev.101.860
https://inspirehep.net/literature/45609
https://doi.org/10.21468/SciPostPhys.12.5.153
https://doi.org/10.21468/SciPostPhys.12.5.153
https://doi.org/10.48550/arXiv.2109.09179
https://inspirehep.net/literature/1924363
https://doi.org/10.1007/JHEP08(2021)084
https://doi.org/10.48550/arXiv.2105.11464
https://inspirehep.net/literature/1864966
https://doi.org/10.48550/arXiv.1611.02485
https://inspirehep.net/literature/1496406
https://doi.org/10.1103/PhysRevD.96.045006
https://doi.org/10.1103/PhysRevD.96.045006
https://doi.org/10.48550/arXiv.1612.00114
https://inspirehep.net/literature/1501270
https://doi.org/10.1007/JHEP06(2017)096
https://doi.org/10.48550/arXiv.1704.03692
https://inspirehep.net/literature/1591356
https://doi.org/10.1088/1742-5468/2011/01/P01021
https://doi.org/10.48550/arXiv.1011.5482
https://inspirehep.net/literature/879322
https://doi.org/10.1007/JHEP08(2016)118
https://doi.org/10.1007/JHEP08(2016)118
https://doi.org/10.48550/arXiv.1511.07462
https://inspirehep.net/literature/1406160
https://doi.org/10.1007/JHEP12(2024)178
https://doi.org/10.48550/arXiv.2409.03821
https://inspirehep.net/literature/2825950


J
H
E
P
0
1
(
2
0
2
5
)
0
8
1

[11] C.A. Agón, P. Bueno, O. Lasso Andino and A. Vilar López, Aspects of N-partite information in
conformal field theories, JHEP 03 (2023) 246 [arXiv:2209.14311] [INSPIRE].

[12] R. Haag, Local quantum physics: fields, particles, algebras, (1992) [INSPIRE].

[13] E. Witten, APS medal for exceptional achievement in research: invited article on entanglement
properties of quantum field theory, Rev. Mod. Phys. 90 (2018) 045003 [arXiv:1803.04993]
[INSPIRE].

[14] H. Casini, Mutual information challenges entropy bounds, Class. Quant. Grav. 24 (2007) 1293
[gr-qc/0609126] [INSPIRE].

[15] H. Casini, M. Huerta, R.C. Myers and A. Yale, Mutual information and the F-theorem, JHEP
10 (2015) 003 [arXiv:1506.06195] [INSPIRE].

[16] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.
0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

[17] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42
(2009) 504005 [arXiv:0905.4013] [INSPIRE].

[18] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement
entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

[19] C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field
theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

[20] S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys.
Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].

[21] D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional geometry of squashed cones,
Phys. Rev. D 88 (2013) 044054 [arXiv:1306.4000] [INSPIRE].

[22] B.R. Safdi, Exact and numerical results on entanglement entropy in (5+1)-dimensional CFT,
JHEP 12 (2012) 005 [arXiv:1206.5025] [INSPIRE].

[23] R.-X. Miao, Universal terms of entanglement entropy for 6d CFTs, JHEP 10 (2015) 049
[arXiv:1503.05538] [INSPIRE].

[24] J.S. Dowker, Entanglement entropy for odd spheres, arXiv:1012.1548 [INSPIRE].

[25] E. Perlmutter, A universal feature of CFT Rényi entropy, JHEP 03 (2014) 117
[arXiv:1308.1083] [INSPIRE].

[26] T. Faulkner, R.G. Leigh and O. Parrikar, Shape dependence of entanglement entropy in
conformal field theories, JHEP 04 (2016) 088 [arXiv:1511.05179] [INSPIRE].

[27] P. Bueno, R.C. Myers and W. Witczak-Krempa, Universality of corner entanglement in
conformal field theories, Phys. Rev. Lett. 115 (2015) 021602 [arXiv:1505.04804] [INSPIRE].

[28] P. Bueno, R.C. Myers and W. Witczak-Krempa, Universal corner entanglement from twist
operators, JHEP 09 (2015) 091 [arXiv:1507.06997] [INSPIRE].

[29] B. Swingle, Structure of entanglement in regulated Lorentz invariant field theories,
arXiv:1304.6402 [INSPIRE].

[30] P. Bueno, P.A. Cano and A. Ruipérez, Holographic studies of Einsteinian cubic gravity, JHEP
03 (2018) 150 [arXiv:1802.00018] [INSPIRE].

[31] J. Lee, L. McGough and B.R. Safdi, Rényi entropy and geometry, Phys. Rev. D 89 (2014)
125016 [arXiv:1403.1580] [INSPIRE].

– 40 –

https://doi.org/10.1007/JHEP03(2023)246
https://doi.org/10.48550/arXiv.2209.14311
https://inspirehep.net/literature/2158345
https://inspirehep.net/literature/338216
https://doi.org/10.1103/RevModPhys.90.045003
https://doi.org/10.48550/arXiv.1803.04993
https://inspirehep.net/literature/1662490
https://doi.org/10.1088/0264-9381/24/5/013
https://doi.org/10.48550/arXiv.gr-qc/0609126
https://inspirehep.net/literature/727169
https://doi.org/10.1007/JHEP10(2015)003
https://doi.org/10.1007/JHEP10(2015)003
https://doi.org/10.48550/arXiv.1506.06195
https://inspirehep.net/literature/1377398
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.48550/arXiv.hep-th/0405152
https://inspirehep.net/literature/650602
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.48550/arXiv.0905.4013
https://inspirehep.net/literature/821276
https://doi.org/10.1007/JHEP05(2011)036
https://doi.org/10.48550/arXiv.1102.0440
https://inspirehep.net/literature/886511
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.48550/arXiv.hep-th/9403108
https://inspirehep.net/literature/372325
https://doi.org/10.1016/j.physletb.2008.05.071
https://doi.org/10.1016/j.physletb.2008.05.071
https://doi.org/10.48550/arXiv.0802.3117
https://inspirehep.net/literature/779865
https://doi.org/10.1103/PhysRevD.88.044054
https://doi.org/10.48550/arXiv.1306.4000
https://inspirehep.net/literature/1238931
https://doi.org/10.1007/JHEP12(2012)005
https://doi.org/10.48550/arXiv.1206.5025
https://inspirehep.net/literature/1119422
https://doi.org/10.1007/JHEP10(2015)049
https://doi.org/10.48550/arXiv.1503.05538
https://inspirehep.net/literature/1353386
https://doi.org/10.48550/arXiv.1012.1548
https://inspirehep.net/literature/879676
https://doi.org/10.1007/JHEP03(2014)117
https://doi.org/10.48550/arXiv.1308.1083
https://inspirehep.net/literature/1246394
https://doi.org/10.1007/JHEP04(2016)088
https://doi.org/10.48550/arXiv.1511.05179
https://inspirehep.net/literature/1405124
https://doi.org/10.1103/PhysRevLett.115.021602
https://doi.org/10.48550/arXiv.1505.04804
https://inspirehep.net/literature/1371699
https://doi.org/10.1007/JHEP09(2015)091
https://doi.org/10.48550/arXiv.1507.06997
https://inspirehep.net/literature/1385088
https://doi.org/10.48550/arXiv.1304.6402
https://inspirehep.net/literature/1229807
https://doi.org/10.1007/JHEP03(2018)150
https://doi.org/10.1007/JHEP03(2018)150
https://doi.org/10.48550/arXiv.1802.00018
https://inspirehep.net/literature/1651777
https://doi.org/10.1103/PhysRevD.89.125016
https://doi.org/10.1103/PhysRevD.89.125016
https://doi.org/10.48550/arXiv.1403.1580
https://inspirehep.net/literature/1284995


J
H
E
P
0
1
(
2
0
2
5
)
0
8
1

[32] A. Lewkowycz and E. Perlmutter, Universality in the geometric dependence of Rényi entropy,
JHEP 01 (2015) 080 [arXiv:1407.8171] [INSPIRE].

[33] H. Casini, E. Testé and G. Torroba, Mutual information superadditivity and unitarity bounds,
JHEP 09 (2021) 046 [arXiv:2103.15847] [INSPIRE].

[34] G. Anastasiou, I.J. Araya, A. Argandoña and R. Olea, CFT correlators from shape
deformations in cubic curvature gravity, JHEP 11 (2022) 031 [arXiv:2208.00093] [INSPIRE].

[35] S. Baiguera, L. Bianchi, S. Chapman and D.A. Galante, Shape deformations of charged Rényi
entropies from holography, JHEP 06 (2022) 068 [arXiv:2203.15028] [INSPIRE].

[36] M. Huerta and G. van der Velde, Instability of universal terms in the entanglement entropy,
Phys. Rev. D 105 (2022) 125021 [arXiv:2204.09464] [INSPIRE].

[37] P. Bueno, P.A. Cano, Á. Murcia and A. Rivadulla Sánchez, Universal feature of charged
entanglement entropy, Phys. Rev. Lett. 129 (2022) 021601 [arXiv:2203.04325] [INSPIRE].

[38] P. Bueno, H. Casini, O.L. Andino and J. Moreno, Conformal bounds in three dimensions from
entanglement entropy, Phys. Rev. Lett. 131 (2023) 171601 [arXiv:2307.05164] [INSPIRE].

[39] M. Mezei, Entanglement entropy across a deformed sphere, Phys. Rev. D 91 (2015) 045038
[arXiv:1411.7011] [INSPIRE].

[40] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,
Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[41] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045
[hep-th/0605073] [INSPIRE].

[42] T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J.
Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

[43] M. Babich and A. Bobenko, Willmore tori with umbilic lines and minimal surfaces in hyperbolic
space, Duke Math. J. 72 (1993) 151.

[44] S. Alexakis and R. Mazzeo, Renormalized area and properly embedded minimal surfaces in
hyperbolic 3-manifolds, Commun. Math. Phys. 297 (2010) 621 [INSPIRE].

[45] P. Fonda, D. Seminara and E. Tonni, On shape dependence of holographic entanglement entropy
in AdS4/CFT3, JHEP 12 (2015) 037 [arXiv:1510.03664] [INSPIRE].

[46] G. Anastasiou, J. Moreno, R. Olea and D. Rivera-Betancour, Shape dependence of renormalized
holographic entanglement entropy, JHEP 09 (2020) 173 [arXiv:2002.06111] [INSPIRE].

[47] T.J. Willmore, Note on embedded surfaces, An. Sti. Univ. “Al. I. Cuza” Iasi Sect. I a Mat.(NS)
B 11 (1965) 20.

[48] T.J. Willmore, Riemannian geometry, Oxford University Press, Oxford, U.K. (1993).

[49] P. Bueno, H. Casini, O.L. Andino and J. Moreno, Disks globally maximize the entanglement
entropy in 2+1 dimensions, JHEP 10 (2021) 179 [arXiv:2107.12394] [INSPIRE].

[50] J. Guven, Conformally invariant bending energy for hypersurfaces, J. Phys. A 38 (2005) 7943
[cond-mat/0507320].

[51] Y. Zhang, Graham-Witten’s conformal invariant for closed four dimensional submanifolds, J.
Math. Study 54 (2021) 200 [arXiv:1703.08611] [INSPIRE].

[52] C.R. Graham and N. Reichert, Higher-dimensional Willmore energies via minimal submanifold
asymptotics, Asian J. Math. 24 (2020) 571 [arXiv:1704.03852] [INSPIRE].

– 41 –

https://doi.org/10.1007/JHEP01(2015)080
https://doi.org/10.48550/arXiv.1407.8171
https://inspirehep.net/literature/1308953
https://doi.org/10.1007/JHEP09(2021)046
https://doi.org/10.48550/arXiv.2103.15847
https://inspirehep.net/literature/1854517
https://doi.org/10.1007/JHEP11(2022)031
https://doi.org/10.48550/arXiv.2208.00093
https://inspirehep.net/literature/2129494
https://doi.org/10.1007/JHEP06(2022)068
https://doi.org/10.48550/arXiv.2203.15028
https://inspirehep.net/literature/2059495
https://doi.org/10.1103/PhysRevD.105.125021
https://doi.org/10.48550/arXiv.2204.09464
https://inspirehep.net/literature/2070098
https://doi.org/10.1103/PhysRevLett.129.021601
https://doi.org/10.48550/arXiv.2203.04325
https://inspirehep.net/literature/2048990
https://doi.org/10.1103/PhysRevLett.131.171601
https://doi.org/10.48550/arXiv.2307.05164
https://inspirehep.net/literature/2676037
https://doi.org/10.1103/PhysRevD.91.045038
https://doi.org/10.48550/arXiv.1411.7011
https://inspirehep.net/literature/1330003
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.48550/arXiv.hep-th/0603001
https://inspirehep.net/literature/711505
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.48550/arXiv.hep-th/0605073
https://inspirehep.net/literature/716307
https://doi.org/10.1088/1751-8113/42/50/504008
https://doi.org/10.1088/1751-8113/42/50/504008
https://doi.org/10.48550/arXiv.0905.0932
https://inspirehep.net/literature/819622
https://doi.org/10.1215/s0012-7094-93-07207-9
https://doi.org/10.1007/s00220-010-1054-3
https://inspirehep.net/literature/861607
https://doi.org/10.1007/JHEP12(2015)037
https://doi.org/10.48550/arXiv.1510.03664
https://inspirehep.net/literature/1397617
https://doi.org/10.1007/JHEP09(2020)173
https://doi.org/10.48550/arXiv.2002.06111
https://inspirehep.net/literature/1780856
https://doi.org/10.1007/JHEP10(2021)179
https://doi.org/10.48550/arXiv.2107.12394
https://inspirehep.net/literature/1893612
https://doi.org/10.1088/0305-4470/38/37/002
https://doi.org/10.48550/arXiv.cond-mat/0507320
https://doi.org/10.4208/jms.v54n2.21.06
https://doi.org/10.4208/jms.v54n2.21.06
https://doi.org/10.48550/arXiv.1703.08611
https://inspirehep.net/literature/1519500
https://doi.org/10.4310/AJM.2020.v24.n4.a3
https://doi.org/10.48550/arXiv.1704.03852
https://inspirehep.net/literature/1591359


J
H
E
P
0
1
(
2
0
2
5
)
0
8
1

[53] A.R. Gover and A. Waldron, A calculus for conformal hypersurfaces and new higher Willmore
energy functionals, Adv. Geom. 20 (2020) 29 [arXiv:1611.04055] [INSPIRE].

[54] S. Blitz, A.R. Gover and A. Waldron, Generalized Willmore energies, Q-curvatures, extrinsic
Paneitz operators, and extrinsic Laplacian powers, Commun. Contemp. Math. 26 (2024)
2350014 [arXiv:2111.00179] [INSPIRE].

[55] P.O. Olanipekun, Study of a four dimensional Willmore energy, Ph.D. thesis, Monash U.,
Melbourne, VIC, Australia (2021) [arXiv:2210.05924] [INSPIRE].

[56] D. Martino, A duality theorem for a four dimensional Willmore energy, arXiv:2308.11433
[INSPIRE].

[57] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023
[hep-th/9806087] [INSPIRE].

[58] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and
renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595
[hep-th/0002230] [INSPIRE].

[59] M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631
(2002) 159 [hep-th/0112119] [INSPIRE].

[60] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849
[hep-th/0209067] [INSPIRE].

[61] J. Maldacena, Einstein gravity from conformal gravity, arXiv:1105.5632 [INSPIRE].

[62] G. Anastasiou and R. Olea, From conformal to Einstein gravity, Phys. Rev. D 94 (2016) 086008
[arXiv:1608.07826] [INSPIRE].

[63] O. Miskovic and R. Olea, Topological regularization and self-duality in four-dimensional anti-de
Sitter gravity, Phys. Rev. D 79 (2009) 124020 [arXiv:0902.2082] [INSPIRE].

[64] D. Grumiller, M. Irakleidou, I. Lovrekovic and R. McNees, Conformal gravity holography in
four dimensions, Phys. Rev. Lett. 112 (2014) 111102 [arXiv:1310.0819] [INSPIRE].

[65] H. Lu, Y. Pang and C.N. Pope, Conformal gravity and extensions of critical gravity, Phys. Rev.
D 84 (2011) 064001 [arXiv:1106.4657] [INSPIRE].

[66] H. Lü, Y. Pang and C.N. Pope, Black holes in six-dimensional conformal gravity, Phys. Rev. D
87 (2013) 104013 [arXiv:1301.7083] [INSPIRE].

[67] G. Anastasiou, I.J. Araya and R. Olea, Einstein gravity from conformal gravity in 6D, JHEP 01
(2021) 134 [arXiv:2010.15146] [INSPIRE].

[68] G. Anastasiou, I.J. Araya, C. Corral and R. Olea, Conformal renormalization of topological
black holes in AdS6, JHEP 11 (2023) 036 [arXiv:2308.09140] [INSPIRE].

[69] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090
[arXiv:1304.4926] [INSPIRE].

[70] G. Anastasiou, I.J. Araya and R. Olea, Energy functionals from conformal gravity, JHEP 10
(2022) 123 [arXiv:2209.02006] [INSPIRE].

[71] C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT
correspondence, Nucl. Phys. B 546 (1999) 52 [hep-th/9901021] [INSPIRE].

[72] F.C. Marques and A. Neves, Min-max theory and the Willmore conjecture, Ann. Math. 179
(2014) 683 [arXiv:1202.6036].

– 42 –

https://doi.org/10.1515/advgeom-2019-0016
https://doi.org/10.48550/arXiv.1611.04055
https://inspirehep.net/literature/1497728
https://doi.org/10.1142/S0219199723500141
https://doi.org/10.1142/S0219199723500141
https://doi.org/10.48550/arXiv.2111.00179
https://inspirehep.net/literature/1957140
https://doi.org/10.48550/arXiv.2210.05924
https://inspirehep.net/literature/2164816
https://doi.org/10.48550/arXiv.2308.11433
https://inspirehep.net/literature/2690232
https://doi.org/10.1088/1126-6708/1998/07/023
https://doi.org/10.48550/arXiv.hep-th/9806087
https://inspirehep.net/literature/471699
https://doi.org/10.1007/s002200100381
https://doi.org/10.48550/arXiv.hep-th/0002230
https://inspirehep.net/literature/524415
https://doi.org/10.1016/S0550-3213(02)00179-7
https://doi.org/10.1016/S0550-3213(02)00179-7
https://doi.org/10.48550/arXiv.hep-th/0112119
https://inspirehep.net/literature/568280
https://doi.org/10.1088/0264-9381/19/22/306
https://doi.org/10.48550/arXiv.hep-th/0209067
https://inspirehep.net/literature/594622
https://doi.org/10.48550/arXiv.1105.5632
https://inspirehep.net/literature/901740
https://doi.org/10.1103/PhysRevD.94.086008
https://doi.org/10.48550/arXiv.1608.07826
https://inspirehep.net/literature/1484331
https://doi.org/10.1103/PhysRevD.79.124020
https://doi.org/10.48550/arXiv.0902.2082
https://inspirehep.net/literature/813152
https://doi.org/10.1103/PhysRevLett.112.111102
https://doi.org/10.48550/arXiv.1310.0819
https://inspirehep.net/literature/1256618
https://doi.org/10.1103/PhysRevD.84.064001
https://doi.org/10.1103/PhysRevD.84.064001
https://doi.org/10.48550/arXiv.1106.4657
https://inspirehep.net/literature/914988
https://doi.org/10.1103/PhysRevD.87.104013
https://doi.org/10.1103/PhysRevD.87.104013
https://doi.org/10.48550/arXiv.1301.7083
https://inspirehep.net/literature/1216874
https://doi.org/10.1007/JHEP01(2021)134
https://doi.org/10.1007/JHEP01(2021)134
https://doi.org/10.48550/arXiv.2010.15146
https://inspirehep.net/literature/1826884
https://doi.org/10.1007/JHEP11(2023)036
https://doi.org/10.48550/arXiv.2308.09140
https://inspirehep.net/literature/2689307
https://doi.org/10.1007/JHEP08(2013)090
https://doi.org/10.48550/arXiv.1304.4926
https://inspirehep.net/literature/1228721
https://doi.org/10.1007/JHEP10(2022)123
https://doi.org/10.1007/JHEP10(2022)123
https://doi.org/10.48550/arXiv.2209.02006
https://inspirehep.net/literature/2147146
https://doi.org/10.1016/S0550-3213(99)00055-3
https://doi.org/10.48550/arXiv.hep-th/9901021
https://inspirehep.net/literature/493759
https://doi.org/10.4007/annals.2014.179.2.6
https://doi.org/10.4007/annals.2014.179.2.6
https://doi.org/10.48550/arXiv.1202.6036


J
H
E
P
0
1
(
2
0
2
5
)
0
8
1

[73] A.F. Astaneh, G. Gibbons and S.N. Solodukhin, What surface maximizes entanglement
entropy?, Phys. Rev. D 90 (2014) 085021 [arXiv:1407.4719] [INSPIRE].

[74] E. Perlmutter, M. Rangamani and M. Rota, Central charges and the sign of entanglement in
4D conformal field theories, Phys. Rev. Lett. 115 (2015) 171601 [arXiv:1506.01679] [INSPIRE].

[75] D. Seminara, J. Sisti and E. Tonni, Holographic entanglement entropy in AdS4/BCFT3 and the
Willmore functional, JHEP 08 (2018) 164 [arXiv:1805.11551] [INSPIRE].

[76] M. Taylor and L. Too, Renormalized entanglement entropy and curvature invariants, JHEP 12
(2020) 050 [arXiv:2004.09568] [INSPIRE].

[77] S. Fischetti and T. Wiseman, A bound on holographic entanglement entropy from inverse mean
curvature flow, Class. Quant. Grav. 34 (2017) 125005 [arXiv:1612.04373] [INSPIRE].

[78] D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the
presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [INSPIRE].

[79] X. Dong, The gravity dual of Rényi entropy, Nature Commun. 7 (2016) 12472
[arXiv:1601.06788] [INSPIRE].

[80] M. Taylor and W. Woodhead, Renormalized entanglement entropy, JHEP 08 (2016) 165
[arXiv:1604.06808] [INSPIRE].

[81] R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT
correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].

[82] V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math.
Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

[83] P. Kraus, F. Larsen and R. Siebelink, The gravitational action in asymptotically AdS and flat
space-times, Nucl. Phys. B 563 (1999) 259 [hep-th/9906127] [INSPIRE].

[84] I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, IRMA Lect. Math.
Theor. Phys. 8 (2005) 73 [hep-th/0404176] [INSPIRE].

[85] I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes,
JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].

[86] G. Anastasiou, O. Miskovic, R. Olea and I. Papadimitriou, Counterterms, kounterterms, and
the variational problem in AdS gravity, JHEP 08 (2020) 061 [arXiv:2003.06425] [INSPIRE].

[87] R. Olea, Mass, angular momentum and thermodynamics in four-dimensional Kerr-AdS black
holes, JHEP 06 (2005) 023 [hep-th/0504233] [INSPIRE].

[88] R. Olea, Regularization of odd-dimensional AdS gravity: kounterterms, JHEP 04 (2007) 073
[hep-th/0610230] [INSPIRE].

[89] S.W. MacDowell and F. Mansouri, Unified geometric theory of gravity and supergravity, Phys.
Rev. Lett. 38 (1977) 739 [Erratum ibid. 38 (1977) 1376] [INSPIRE].

[90] G. Anastasiou, M. Bravo and R. Olea, Asymptotic analysis of energy functional in AdS, in
preparation.

[91] G. Anastasiou, I.J. Araya and R. Olea, Renormalization of entanglement entropy from
topological terms, Phys. Rev. D 97 (2018) 106011 [arXiv:1712.09099] [INSPIRE].

[92] A. Mondino and H.T. Nguyen, Global conformal invariants of submanifolds, Ann. Inst. Fourier
68 (2018) 2663 [arXiv:1501.07527].

[93] O. Miskovic, R. Olea and M. Tsoukalas, Renormalized AdS action and critical gravity, JHEP
08 (2014) 108 [arXiv:1404.5993] [INSPIRE].

– 43 –

https://doi.org/10.1103/PhysRevD.90.085021
https://doi.org/10.48550/arXiv.1407.4719
https://inspirehep.net/literature/1306754
https://doi.org/10.1103/PhysRevLett.115.171601
https://doi.org/10.48550/arXiv.1506.01679
https://inspirehep.net/literature/1374641
https://doi.org/10.1007/JHEP08(2018)164
https://doi.org/10.48550/arXiv.1805.11551
https://inspirehep.net/literature/1675306
https://doi.org/10.1007/JHEP12(2020)050
https://doi.org/10.1007/JHEP12(2020)050
https://doi.org/10.48550/arXiv.2004.09568
https://inspirehep.net/literature/1792024
https://doi.org/10.1088/1361-6382/aa6ad0
https://doi.org/10.48550/arXiv.1612.04373
https://inspirehep.net/literature/1503380
https://doi.org/10.1103/PhysRevD.52.2133
https://doi.org/10.48550/arXiv.hep-th/9501127
https://inspirehep.net/literature/392419
https://doi.org/10.1038/ncomms12472
https://doi.org/10.48550/arXiv.1601.06788
https://inspirehep.net/literature/1417010
https://doi.org/10.1007/JHEP08(2016)165
https://doi.org/10.48550/arXiv.1604.06808
https://inspirehep.net/literature/1451790
https://doi.org/10.1103/PhysRevD.60.104001
https://doi.org/10.48550/arXiv.hep-th/9903238
https://inspirehep.net/literature/497424
https://doi.org/10.1007/s002200050764
https://doi.org/10.1007/s002200050764
https://doi.org/10.48550/arXiv.hep-th/9902121
https://inspirehep.net/literature/495405
https://doi.org/10.1016/S0550-3213(99)00549-0
https://doi.org/10.48550/arXiv.hep-th/9906127
https://inspirehep.net/literature/501908
https://doi.org/10.4171/013-1/4
https://doi.org/10.4171/013-1/4
https://doi.org/10.48550/arXiv.hep-th/0404176
https://inspirehep.net/literature/648961
https://doi.org/10.1088/1126-6708/2005/08/004
https://doi.org/10.48550/arXiv.hep-th/0505190
https://inspirehep.net/literature/683191
https://doi.org/10.1007/JHEP08(2020)061
https://doi.org/10.48550/arXiv.2003.06425
https://inspirehep.net/literature/1785628
https://doi.org/10.1088/1126-6708/2005/06/023
https://doi.org/10.48550/arXiv.hep-th/0504233
https://inspirehep.net/literature/681631
https://doi.org/10.1088/1126-6708/2007/04/073
https://doi.org/10.48550/arXiv.hep-th/0610230
https://inspirehep.net/literature/729630
https://doi.org/10.1103/PhysRevLett.38.739
https://doi.org/10.1103/PhysRevLett.38.739
https://inspirehep.net/literature/118758
https://doi.org/10.1103/PhysRevD.97.106011
https://doi.org/10.48550/arXiv.1712.09099
https://inspirehep.net/literature/1644948
https://doi.org/10.5802/aif.3220
https://doi.org/10.5802/aif.3220
https://doi.org/10.48550/arXiv.1501.07527
https://doi.org/10.1007/JHEP08(2014)108
https://doi.org/10.1007/JHEP08(2014)108
https://doi.org/10.48550/arXiv.1404.5993
https://inspirehep.net/literature/1292095


J
H
E
P
0
1
(
2
0
2
5
)
0
8
1

[94] G. Anastasiou, I.J. Araya, C. Arias and R. Olea, Einstein-AdS action, renormalized volume/area
and holographic Rényi entropies, JHEP 08 (2018) 136 [arXiv:1806.10708] [INSPIRE].

[95] L. Bonora, P. Pasti and M. Bregola, Weyl cocycles, Class. Quant. Grav. 3 (1986) 635 [INSPIRE].

[96] S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary
dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].

[97] J. Erdmenger, Conformally covariant differential operators: properties and applications, Class.
Quant. Grav. 14 (1997) 2061 [hep-th/9704108] [INSPIRE].

[98] F. Bastianelli, G. Cuoghi and L. Nocetti, Consistency conditions and trace anomalies in
six-dimensions, Class. Quant. Grav. 18 (2001) 793 [hep-th/0007222] [INSPIRE].

[99] J. Oliva and S. Ray, Classification of six derivative Lagrangians of gravity and static spherically
symmetric solutions, Phys. Rev. D 82 (2010) 124030 [arXiv:1004.0737] [INSPIRE].

[100] R.R. Metsaev, 6d conformal gravity, J. Phys. A 44 (2011) 175402 [arXiv:1012.2079]
[INSPIRE].

[101] R.-X. Miao and W.-Z. Guo, Holographic entanglement entropy for the most general higher
derivative gravity, JHEP 08 (2015) 031 [arXiv:1411.5579] [INSPIRE].

[102] J. Camps and W.R. Kelly, Generalized gravitational entropy without replica symmetry, JHEP
03 (2015) 061 [arXiv:1412.4093] [INSPIRE].

[103] G. Anastasiou et al., Renormalized holographic entanglement entropy for quadratic curvature
gravity, Phys. Rev. D 104 (2021) 086003 [arXiv:2102.11242] [INSPIRE].

[104] J. Camps, Generalized entropy and higher derivative gravity, JHEP 03 (2014) 070
[arXiv:1310.6659] [INSPIRE].

[105] L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher
curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

[106] J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock
gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].

[107] G. Anastasiou, I.J. Araya, R.B. Mann and R. Olea, Renormalized holographic entanglement
entropy in Lovelock gravity, JHEP 06 (2021) 073 [arXiv:2103.14640] [INSPIRE].

[108] P. Bueno, J. Camps and A.V. López, Holographic entanglement entropy for perturbative
higher-curvature gravities, JHEP 04 (2021) 145 [arXiv:2012.14033] [INSPIRE].

[109] G. Anastasiou, I.J. Araya and R. Olea, Topological terms, AdS2n gravity and renormalized
entanglement entropy of holographic CFTs, Phys. Rev. D 97 (2018) 106015
[arXiv:1803.04990] [INSPIRE].

[110] P. Bueno and R.C. Myers, Universal entanglement for higher dimensional cones, JHEP 12
(2015) 168 [arXiv:1508.00587] [INSPIRE].

[111] A. Allais and M. Mezei, Some results on the shape dependence of entanglement and Rényi
entropies, Phys. Rev. D 91 (2015) 046002 [arXiv:1407.7249] [INSPIRE].

[112] H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general
dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

[113] H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity, and D = 4
conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [INSPIRE].

[114] I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-theorem without supersymmetry, JHEP 10 (2011)
038 [arXiv:1105.4598] [INSPIRE].

– 44 –

https://doi.org/10.1007/JHEP08(2018)136
https://doi.org/10.48550/arXiv.1806.10708
https://inspirehep.net/literature/1680032
https://doi.org/10.1088/0264-9381/3/4/018
https://inspirehep.net/literature/219355
https://doi.org/10.1016/0370-2693(93)90934-A
https://doi.org/10.48550/arXiv.hep-th/9302047
https://inspirehep.net/literature/34439
https://doi.org/10.1088/0264-9381/14/8/008
https://doi.org/10.1088/0264-9381/14/8/008
https://doi.org/10.48550/arXiv.hep-th/9704108
https://inspirehep.net/literature/442124
https://doi.org/10.1088/0264-9381/18/5/303
https://doi.org/10.48550/arXiv.hep-th/0007222
https://inspirehep.net/literature/530981
https://doi.org/10.1103/PhysRevD.82.124030
https://doi.org/10.48550/arXiv.1004.0737
https://inspirehep.net/literature/851015
https://doi.org/10.1088/1751-8113/44/17/175402
https://doi.org/10.48550/arXiv.1012.2079
https://inspirehep.net/literature/880155
https://doi.org/10.1007/JHEP08(2015)031
https://doi.org/10.48550/arXiv.1411.5579
https://inspirehep.net/literature/1328951
https://doi.org/10.1007/JHEP03(2015)061
https://doi.org/10.1007/JHEP03(2015)061
https://doi.org/10.48550/arXiv.1412.4093
https://inspirehep.net/literature/1334133
https://doi.org/10.1103/PhysRevD.104.086003
https://doi.org/10.48550/arXiv.2102.11242
https://inspirehep.net/literature/1848021
https://doi.org/10.1007/JHEP03(2014)070
https://doi.org/10.48550/arXiv.1310.6659
https://inspirehep.net/literature/1261961
https://doi.org/10.1007/JHEP04(2011)025
https://doi.org/10.48550/arXiv.1101.5813
https://inspirehep.net/literature/886017
https://doi.org/10.1007/JHEP07(2011)109
https://doi.org/10.48550/arXiv.1101.5781
https://inspirehep.net/literature/886032
https://doi.org/10.1007/JHEP06(2021)073
https://doi.org/10.48550/arXiv.2103.14640
https://inspirehep.net/literature/1854027
https://doi.org/10.1007/JHEP04(2021)145
https://doi.org/10.48550/arXiv.2012.14033
https://inspirehep.net/literature/1838433
https://doi.org/10.1103/PhysRevD.97.106015
https://doi.org/10.48550/arXiv.1803.04990
https://inspirehep.net/literature/1662496
https://doi.org/10.1007/JHEP12(2015)168
https://doi.org/10.1007/JHEP12(2015)168
https://doi.org/10.48550/arXiv.1508.00587
https://inspirehep.net/literature/1386461
https://doi.org/10.1103/PhysRevD.91.046002
https://doi.org/10.48550/arXiv.1407.7249
https://inspirehep.net/literature/1308554
https://doi.org/10.1006/aphy.1994.1045
https://doi.org/10.48550/arXiv.hep-th/9307010
https://inspirehep.net/literature/35315
https://doi.org/10.1016/S0550-3213(98)00443-X
https://doi.org/10.48550/arXiv.hep-th/9804083
https://inspirehep.net/literature/469198
https://doi.org/10.1007/JHEP10(2011)038
https://doi.org/10.1007/JHEP10(2011)038
https://doi.org/10.48550/arXiv.1105.4598
https://inspirehep.net/literature/900880


J
H
E
P
0
1
(
2
0
2
5
)
0
8
1

[115] H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42
(2009) 504007 [arXiv:0905.2562] [INSPIRE].

[116] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic
entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

[117] N. Engelhardt and A.C. Wall, Quantum extremal surfaces: holographic entanglement entropy
beyond the classical regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].

– 45 –

https://doi.org/10.1088/1751-8113/42/50/504007
https://doi.org/10.1088/1751-8113/42/50/504007
https://doi.org/10.48550/arXiv.0905.2562
https://inspirehep.net/literature/820615
https://doi.org/10.1007/JHEP11(2013)074
https://doi.org/10.48550/arXiv.1307.2892
https://inspirehep.net/literature/1242150
https://doi.org/10.1007/JHEP01(2015)073
https://doi.org/10.48550/arXiv.1408.3203
https://inspirehep.net/literature/1310822

	Introduction
	EE in odd dimensions, shape dependence and holography
	Conformal Renormalization and holographic EE

	Holographic EE in d=3 as Willmore energy
	Energy functionals from CG in four dimensions
	Renormalized area
	Reduced Hawking mass
	Willmore energy

	Holographic EE in d=5 as generalized Willmore energy
	CG in six dimensions
	Energy functionals coming from LPP CG
	Generalized reduced Hawking mass and renormalized area
	Generalized Willmore energy
	Explicit checks

	F(A) has no global bounds for d=5 CFTs
	Conclusions
	Notation and conventions
	Conformal covariantization of Einstein-AdS gravity
	Computation of Upsilon(a b)
	Cancellation of divergences
	Sphere
	Small deformation of the sphere
	Infinite strip


