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A B S T R A C T

In recent decades, the complexity of the food chain has contributed to a surge of food adulteration issues, 
resulting in numerous instances of food fraud. For this reason, ensuring the authenticity of food is crucial for 
society as a whole. In this context, beverages are particularly vulnerable to adulteration by adding flavors and 
aromas or incorporating unspecified substances to enhance volume, among other deceptive practices.

This work focuses on the detection of fraud in coffee, one of the world’s most popular beverages, which is a 
product easily prone to manipulation. Fingerprinting studies of volatile compounds in 185 samples were per-
formed by gas chromatography (with polar and non-polar columns) coupled to mass spectrometry (GC–MS) and 
in combination with chemometrics for data analysis. In this group of samples, 42 were chicory, 96 were coffee of 
different species and geographical production regions, and 47 were soluble coffees. Headspace-solid phase 
microextraction (HS-SPME) was employed to obtain the volatile compounds in the samples directly from the 
solid coffee. The GC–MS fingerprints served as reliablechemical descriptors for the classification of coffee 
samples using chemometrics. Moreover, some compounds found in samples were tentatively identified using 
NIST Research Libraries.

Furthermore, two adulteration coffee studies were performed using partial least squares (PLS) regression, 
which demonstrated the feasibility of the proposed methodology for the quantification of adulterant levels up to 
15%, with calibration and prediction errors below 2.9% and 7.4%, respectively.

1. Introduction

The quality of natural products is a collective concern within society, 
including governments, food manufacturers, and researchers. Food 
quality control aims to protect the consumer and ensure that all food 
products are healthy and suitable for human consumption. Food prod-
ucts are highly complex matrices composed of a wide variety of natural 
compounds, in addition to substances derived from their processing or 
packaging, which makes the quality of these products important in terms 
of nutrition and food safety. Considering the complexity of the food 
chain and the involvement of various factors both in food production 
and consumption, food handling and adulteration practices are 

increasing, leading to cases of food fraud. In this context, beverages are 
food products that can be easily adulterated through incorrect labeling, 
supplementation with flavors or aromas, or addition of unspecified 
substances, among other practices [1–3].

In this field, coffee, one of the most popular beverages in the world, is 
a very easily adulterable drink. Coffee is an infusion made from roasted 
and ground beans of the coffee plant, possessing a distinctive taste and 
aroma [4–6]. The coffee plant is classified as Coffea with over seventy 
varieties and belongs to the Rubiaceae family, with Coffea arabica 
(arabica variety) and Coffea canephora (robusta variety) being the 
principal species. The arabica variety is most highly esteemed by con-
sumers and considered superior to the robusta variety due to its superior 
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sensory properties. For this reason, arabica coffee normally has a higher 
price in the international market [7].

Coffee contains a large number of bioactive substances with anti-
oxidant activity, recognized for its beneficial effects on health. Some 
studies link its consumption with the reduction of the development of 
some serious diseases such as type II diabetes, cancer and some car-
diovascular diseases. Furthermore, coffee contains volatile compounds 
responsible for its characteristic aroma and significantly contribute to its 
sensory profile. The content of these substances and, consequently, the 
characteristics of coffee may vary depending on factors such as variety, 
origin, and climate, among others [4,6,8,9].

Unfortunately, coffee adulteration is on the rise, leading to cases of 
food fraud due to the coffee vulnerability and the complexity of the food 
chain. For that reason, determining the authenticity of coffees by 
analytical methodologies is crucial to ensure their quality [10].

Several studies in the literature have analyzed volatile compounds 
using analytical techniques. For instance, Claro et al. [11] employed 
spectrophotometry and chromatography techniques (Liquid Chroma-
tography coupled to Ultraviolet–Visible, LC-UV–Vis, and Headspace Gas 
Chromatography coupled to Flame Ionization Detection, HS-GC-FID) 
combined with chemometrics to determine the compound profiles in 
green coffee beans and differentiate them into special or traditional 
categories. Similarly, Mannino et al. [12] utilized high-throughput 
metabolomics, including High-Performance Liquid Chromatography 
coupled to Diode-Array Detection and Tandem Mass Spectrometry 
(HPLC-DAD-MS/MS), Gas Chromatography coupled to Mass Spectrom-
etry (GC–MS), and Polymerase Chain Reaction coupled to Restriction 
Fragment Length Polymorphism (PCR-RFLP) fingerprinting, to distin-
guish between different coffee species and origins, providing insights 
into the volatile profiles and genetic markers of Coffea arabica and Coffea 
canephora. In another study, Pasias et al. [13] developed a rapid GC-FID 
method to determine caffeine levels in coffee grains. Additionally, 
Gamal et al. [14] optimized GC–MS/MS and LC-MS/MS methods to 
detect organic contaminants in green and roasted coffee, identifying 
various pesticides and PCBs. In another work, the variability of volatile 
compounds in roasted coffee was explored by Caporaso et al. [15], who 
used SPME-GC–MS to analyze the flavor profiles of Arabica and Robusta 
beans, revealing significant intra-batch and inter-batch variability and 
the potential for classification based on geographical origin and species. 
Lastly, Zhang et al. [16] analyzed the flavor characteristics of cold brew 
coffee using GC–MS and electronic nose and tongue techniques, focusing 
on how roasting degrees and freeze-drying processes influence the 
aroma.

In this study, a non-targeted method of headspace-solid phase 
microextraction with gas chromatography coupled to mass spectrometry 
(HS-SPME-GC–MS) has been developed to achieve the characterization, 
classification, and authentication of different coffee samples according 
to geographical production region, and variety (arabica/robusta). 
Moreover, decaffeinated and non-decaffeinated instant coffee samples 
were analyzed. Some samples of chicory, a potential coffee adulterant, 
have also been considered. The GC–MS fingerprints have been utilized as 
descriptors of chemical information to address the characterization and 
classification of the analyzed coffees using principal component analysis 
(PCA), partial least squares-discriminant analysis (PLS-DA) and partial 
least squares (PLS) regression.

2. Materials and methods

2.1. Samples

A total of 185 commercially available samples (see Table S1 in 
supplementary material) were analyzed by gas chromatography (with 
polar and non-polar column) coupled to mass spectrometry (GC–MS). 
Out of these 185 samples, 42 were chicory (a typical coffee substitute or 
adulterant), 96 were coffee from three geographical production regions 
(Vietnam, Cambodia, and Costa Rica) and species (Arabica, Robusta, 

and Arabica-Robusta mixture), and 47 samples were soluble coffee 
(decaffeinated and non-decaffeinated). The chicory samples were pur-
chased from Barcelona supermarkets (Spain) and the coffee samples 
were from Vietnam, Cambodia and Costa Rica local supermarkets.

Furthermore, a Cambodian Coffee sample was injected as the Quality 
Control (QC) at the beginning, the end, and three times throughout the 
corresponding sequence to assess the reproducibility of the method.

Moreover, some samples were also employed for adulteration 
studies. The adulteration cases proposed were Vietnamese Arabica cof-
fee with Vietnamese Robusta coffee, and Vietnamese Robusta coffee 
with chicory. For both adulteration cases, two sample sets were pre-
pared for calibration (to build the PLS regression model) and prediction 
(to validate the model), with various adulteration percentages as 
described in Fig. S1 (supplementary material). The calibration set 
included adulterant percentages of 0 % (pure coffee), 20 %, 40 %, 60 %, 
80 %, and 100 % (i.e., chicory or Robusta coffee). The validation set 
included adulteration percentages of 15 %, 25 %, 50 %, 75 % and 85 %. 
Each blended adulteration level was prepared in triplicate, thus result-
ing in 33 samples for every proposed adulteration case.

2.2. Sample treatment: Headspace-solid phase microextraction (HS- 
SPME)

The sample treatment consisted of a headspace-solid phase micro-
extraction (HS-SPME) using a divinylbenzene/carboxen/poly-
dimethylsiloxane (DVB/CAR/PDMS) fiber (Supelco, Merck KgaA, 
Darmstadt, Germany). In accordance with Kim et al. [17] no pre- 
treatment was performed prior to the microextraction. Thus, the anal-
ysis was performed directly from solid samples. The solid coffee or 
chicory (ca. 0.5 g) was placed in a sealed vial of 20 mL tightly capped. 
The sample equilibration temperature was 50 ◦C, with an agitation time 
of 10 min at 500 rpm. Then, the fiber was exposed to the headspace of 
the sample vial at 50 ◦C for 10 min. The extracted volatiles were 
introduced into the gas chromatograph by fiber desorption at 250 ◦C for 
1 min.

2.3. Instrumentation

Two GC–MS methods were employed to obtain the chromatographic 
fingerprints with a GC–MS instrument (Agilent Technologies, Santa 
Clara, CA, USA) equipped with gas chromatograph (model 7890B) and a 
selective mass quadripolar detector (model 5977A).

For the first methodology, the chromatographic separation was 
carried out in a polar UF-WAX ms (60 m × 0.25 mm, 0.25 μm) column 
from Agilent. For the other method, the chromatographic separation was 
performed in a non-polar DB-5 ms (30 m × 0.25 mm, 0.5 μm) column 
from Agilent. The polar column (UF-WAX ms) was used to separate polar 
compounds, while the non-polar column (DB-5 ms) captured non-polar 
compounds. This complementarity allowed for a more thorough evalu-
ation of the volatile profiles under different chromatographic conditions 
and provided insight into how each column influences the detection and 
classification of coffee samples. In both cases, helium was the carrier 
gas. The temperature was initially maintained at 40 ◦C for 2 min, then 
increased to 200 ◦C at a rate of 3 ◦C/min until min 60; subsequently, it 
raised to 250 ◦C at 10 ◦C/min until min 70, and finally held at 250 ◦C for 
5 min. An electron ionization (EI) source at 70 eV was employed. The 
temperatures of the ionization source and the quadrupole were 230 ◦C 
and 150 ◦C, respectively. Full scan data (m/z: 50–650) were acquired in 
positive acquisition mode.

The GC–MS conditions were based on a previously established 
methodology in the literature by Kim et al., optimized for the analysis of 
volatile compounds in food matrices. Preliminary tests were conducted 
to compare the split and splitless injection modes, with the splitless 
mode being ultimately selected due to its higher sensitivity for detecting 
minor volatile compounds. Once optimized for the UF-WAX column, the 
same conditions were applied to the DB-5 column to ensure consistency 
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between the methods.

2.4. Data analysis

Coffee and chicory samples were randomly analyzed with the pro-
posed non-targeted HS-SPME-GC–MS methods. The obtained sample 
fingerprints were employed as chemical descriptors to build different 
data matrices to be analyzed by PCA, PLS-DA and PLS using the SOLO 
8.6 chemometric software from Eigenvector Research (Manson, WA, 
USA) [18]. Details of the theoretical foundation of these statistical 
methodologies are discussed elsewhere [19]. The X-data matrices con-
sisted of the GC–MS fingerprints, i.e., ion intensities at each m/z and 
retention time. The Y data matrices defined the sample classes in the 
PLS-DA and adulterant percentages in the PLS regression. Autoscaling 
was applied to GC–MS fingerprints to provide the same weight to each 
variable by suppressing differences in magnitude and amplitude. The 
optimal number of principal components (PCs) or latent variables (LVs) 
was estimated from the first significant minimum point of the cross- 
validation (CV) error through a Venetian blind approach. For valida-
tion of PLS-DA models, 70 % of the samples were utilized as the cali-
bration set and the remaining 30 % as validation set. In the case of PLS 
regression, models were validated with the prediction sets (see Fig. S1).

3. Results and discussion

3.1. Non-targeted HS-SPME-GC–MS fingerprints

The main objective of this study was to obtain GC–MS fingerprints of 
different coffee and chicory samples for their classification and 
authentication. Two methodologies were proposed to obtain GC–MS 
fingerprints rich in volatile compounds.

Chromatographic separation was carried out using a polar UF-WAX 
ms column in the first method and a non-polar DB-5 column in the 
second method, both employing helium as a carrier gas. The optimal 
temperature conditions of the method were selected considering the 
detected signals for each sample type and the total analysis time.

The obtained GC–MS fingerprints, for both employed columns, 
constitute an intricate system, giving place to ca. 10,000 features per 
sample, reflecting the chemical diversity of the analyzed samples. 
Notable differences are observed (Fig. 1) between the chromatograms 
generated using the polar and non-polar column, highlighting how the 
selectivity of each column influences compound retention and resolu-
tion. Chromatograms from the polar column tend to show a more uni-
form distribution of peaks, with a higher number of signals spread across 
the retention time. In contrast, for the non-polar column, compounds are 
primarily observed between 2 and 40 min. In the Vietnamese Arabica 
coffee samples, Vietnamese Robusta coffee samples, Cambodian coffee 
samples, and Costa Rica coffee samples, high-intensity peaks are 
observed in similar intervals and small peak signals shown differences 
between samples. On the other hand, decaffeinated and regular soluble 
coffees exhibit simpler profiles with a lower density of peaks, likely 
reflecting the loss of volatile compounds during industrial processing. 
Chicory, in contrast, presents a distinctive chromatographic profile with 
specific signals that may be associated with its unique compounds. It is 
important to highlight that the GC–MS fingerprints are reproducible 
within samples of the same category, making them reliable chemical 
descriptors to address sample classification using chemometric methods.

3.2. PCA exploration

The potential of non-targeted GC–MS fingerprints as chemical de-
scriptors was initially assessed through PCA. Data matrices (X-data) 
were constructed using the intensity signals at each m/z and retention 
time for all samples under analysis. Furthermore, an autoscaling pre-
processing method was employed to ensure equal weighting for all 
variables.

Fig. 2 depicts the PCA score plots from non-targeted GC–MS finger-
prints using both UF-WAX ms and DB-5 ms columns. For the polar col-
umn, Fig. a.1 shows all analyzed coffees vs. chicory samples, Fig. a.2 
shows non-soluble coffees vs. soluble coffees, and Fig. a.3 shows soluble 
decaffeinated coffees vs. non-decaffeinated soluble coffees. Figs. b.1, b.2 
and b.3 show the equivalent information for the non-polar column. 
Similar PCA information is provided for exploring coffees regarding the 
variety (Arabica, Robusta and Arabica-Robusta mixture) and the 
geographical origin region in Figs. S2 and S3 (supplementary material), 
respectively.

Regarding the distribution of the samples, the plots of scores (Fig. 2) 
show that chicory samples are satisfactorily discriminated from coffee 
samples when both GC methods are employed. As shown in Fig. 2.a.1 
and 2.b.1, chicory and coffee samples are grouped according to their 
class, achieving better separation with the non-polar column (DB5). This 
separation is further emphasized by the fact that chicory and coffee 
samples are located in different regions of scores’ plot, suggesting a 
significant chemical difference between the two categories. For coffee 
typology, Fig. 2.a.2 and 2.b.2 show a perfect discrimination when 
comparing soluble and non-soluble coffees for both GC–MS methods, 
indicating a clear separation based on volatolomics.

For the specific case of coffee samples analyzed with the WAX col-
umn, the samples are distributed along PC1, while for the DB5 column, 
the samples are mainly grouped according to PC2, in both cases located 
in the positive value region. However, in the case of soluble coffees (both 
regular and decaffeinated), the discrimination of the samples is less 
clear, as some overlap between the sample groups is observed, regard-
less of the GC–MS method used. This overlap suggests that the vari-
ability in soluble coffee is higher than in the ground (normal) 
counterpart, which could indicate greater heterogeneity in soluble cof-
fee due to the manufacturing process.

Regarding the coffee classifying based on variety, Fig. S2 shows that 
coffee samples containing a mix of Arabica and Robusta varieties are 
located approximately at the center of the plot, positioned between pure 
Arabica and Robusta types as expected. The 100 % Arabica and 100 % 
Robusta samples show clear grouping, with a distribution reflecting 
opposite trends between them, particularly in the principal components 
PC1 and PC2. This distribution pattern confirms the chemical and profile 
differences between the two coffee varieties.

Finally, Fig. S3 shows that, although there is some overlap between 
samples, particularly between coffees from Vietnam and Cambodia, the 
samples are correctly grouped according to their geographic region of 
origin. This result supports the hypothesis that geographic origin 
significantly influences the chemical characteristics of the samples, 
which is reflected in the PCA’s ability to group the samples effectively 
based on their origin. The presence of overlaps may be attributed to the 
possible similarity in the growing and processing conditions of coffees 
from these two regions, which could make their chemical profiles more 
similar.

3.3. PLS-DA classification

The non-targeted GC–MS fingerprints of the analyzed coffee samples 
were also subjected to a supervised PLS-DA to deal with classification 
and authentication. The same X-data matrices in PCA were used as the 
source of information; Y-data matrices were designed specifically for 
each case under study by coding each sample class attribute.

Fig. 3 depicts PLS-DA score plots obtained for both GC–MS meth-
odologies, categorized by (i) coffee vs. chicory, (ii) non-soluble coffee vs. 
soluble coffee, and (iii) soluble decaffeinated coffee vs. soluble non- 
decaffeinated coffee. The PLS-DA results obtained for classifications 
based on coffee variety and the geographical origin region were shown 
in Fig. S4 and Fig. S5, respectively, in supplementary material. In 
addition, sensitivity, specificity and classification prediction error 
values by cross-validation for multiclass PLS-DA models are shown in 
Table S2 (supplementary material).
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Fig. 1. GC–MS total ion chromatograms (a) polar column and (b) non-polar column for chicory, Vietnamese Arabica coffee, Vietnamese Robusta coffee, Cambodian 
Coffee, Costa Rica coffee, soluble non-decaffeinated coffee and soluble decaffeinated coffee.
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Fig. 2. PCA score plots using GC–MS fingerprints from (a) polar column and (b) non-polar columns. (a.1) Coffees vs. Chicory (score plot of PC1 vs. PC2), (a.2) Coffee 
vs. soluble Coffee (score plot of PC1 vs. PC2), and (a.3) Soluble non-decaffeinated Coffee vs. soluble decaffeinated coffee (score plot of PC1 vs. PC2); (b.1) All Coffee 
vs. Chicory (score plot of PC1 vs. PC2 vs. PC3), (b.2) Coffee vs. soluble Coffee (score plot of PC1 vs. PC2), and (b.3) Soluble non-decaffeinated Coffee vs. soluble 
decaffeinated coffee (score plot of PC1 vs. PC2 vs. PC3).
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Fig. 3. PLS-DA score plots using GC–MS fingerprints from (a) polar column and (b) non-polar columns. (a.1) Coffees vs. Chicory (score plot of LV1 vs. LV2), (a.2) 
Coffee vs. soluble Coffee (score plot of LV1 vs. LV2), and (a.3) Soluble non-decaffeinated Coffee vs. soluble decaffeinated coffee (score plot of LV1 vs. LV2); (b.1) All 
Coffee vs. Chicory (score plot of LV1 vs. LV2), (b.2) Coffee vs. soluble Coffee (score plot of LV1 vs. LV2), and (b.3) Soluble non-decaffeinated Coffee vs. soluble 
decaffeinated coffee (score plot of LV1 vs. LV2 vs. LV3).
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Perfect discrimination among chicory versus coffee was achieved 
with both GC–MS fingerprints; this is an interesting result as chicory is 
often employed as a coffee adulterant (Fig. 3.a.1 and Fig. 3.b.1). The 
chicory samples are distributed in the negative value region of LV1, 
while the coffee samples are located in the positive value region of LV1. 
Results were also quite satisfactory for ground vs soluble coffee (see 
Fig. 3.a.2 and Fig. 3.b.2), showing a good discrimination among both 
sample groups. For both methodologies, the ground coffees remain in 
the negative value region of LV1, while the instant coffees cluster in the 
positive value region of LV1. This separation suggests that the chemical 
profiles of instant and non-instant coffees are sufficiently distinct to be 
identified through PLS-DA analysis. Excellent results were also obtained 
when soluble decaffeinated and non-decaffeinated coffees were 
considered (Fig. 3a.3 and Fig. 3.b.3). This finding highlights the ability 
of the method to capture key chemical differences related to the 
decaffeination process, which is an important factor in the classification 
of the samples. This excellent sample discrimination performance is 
summarized in Table S2, with sensitivity and specificity values of 100 % 
for all the classifications studied in Fig. 3. The classification errors were 
0 % for both polar and non-polar columns.

Furthermore, as shown in Fig. S4.a and Fig. S4.b (supplementary 
material), the classification based on varieties was also very satisfactory. 
As observed in the scores’ plot, coffee samples containing a blend of 
Arabica and Robusta are located between the 100 % Arabica and 100 % 
Robusta samples for both methodologies employed. Robusta samples 
were positioned in the negative value region of LV2 and the Arabica 
samples in the positive value region of LV2. Sensitivity and specificity 
values were higher than 95 % and 95.8 %, respectively, with the polar 
column, and values higher than 93.3 % and 95.9 % with the non-polar 
column. Classification errors obtained were below 2.5 % for the polar 
column and below 3.3 % for the non-polar column.

Regarding the geographical production region, an excellent classi-
fication was also accomplished (see Fig. S5.a and Fig. S5.b, supple-
mentary material). The sample groups clustered according to their 
studied geographical origin, with each group differentiated from the 
others for both methodologies. In this case, for the polar column, 
sensitivity and specificity values of 100 % were obtained. For the non- 
polar column, sensitivity values of 100 % and specificity values higher 
than 94.5 % were observed, with a classification error below 2.7 %.

Furthermore, to explore the potential of a multiclass classification 
model, as an example, a PLS-DA was conducted to group the coffee 
samples based on multiple attributes, including coffee variety (Arabica, 
Robusta) and geographic origin (Vietnam, Costa Rica, Cambodia). The 
results, shown in a PLS-DA score plot (Fig. S6 in the supplementary 
material), suggest that clustering based on these attributes is feasible, 
and such an approach could be considered for more comprehensive 
future studies.

For the polar column, the PLS-DA score plot (LV1 vs. LV2 vs. LV3) 
shows that the Costa Rican samples are positioned in the lower area of 
the plot, whereas those from Vietnam are located in the upper region 
(see Fig. S6.a). Additionally, Arabica coffee samples from Costa Rica and 
Vietnam are clustered on the right side of the plot, while Vietnamese 
Robusta samples are positioned on the left. The Vietnam Arabica- 
Robusta mixture samples are distributed between the 100 % Arabica 
and 100 % Robusta clusters. For the non-polar column (Fig. S6.b), the 
PLS-DA score plot (LV1 vs. LV2 vs. LV3) reveals that Costa Rican samples 
are situated on the left side of the plot, while Vietnamese samples are 
found on the right. Similarly, Arabica coffee samples from Costa Rica 
and Vietnam are grouped in the lower-left region, whereas Vietnamese 
Robusta samples are positioned in the upper-right region. The Vietnam 
Arabica-Robusta mixture samples are located in the lower-right area of 
the plot.

3.4. PLS-DA validation

Paired PLS-DA models, where a single sample class was compared 

with all the others, were evaluated to prove the viability of the proposed 
methodology to classify and predict coffees according to the sample 
type, origin region and variety. Each paired PLS-DA model was built 
using 70 % of samples randomly selected for each group as the cali-
bration set while the remaining 30 % of the samples were employed as 
the prediction set.

Fig. 4 shows the class prediction plots of both calibration and pre-
diction steps for the type of coffee sample analyzed. Figs. S7 and S8, in 
supplementary material, show similar information regarding the coffee 
varieties and the geographical production regions, respectively. More-
over, the optimal number of LVs, as well as the sensitivity, specificity 
and classification error for both calibration and prediction steps, for 
each paired PLS-DA classification model, were summarized in Table 1.

As shown in Table 1, satisfactory validation results were obtained for 
the classification of coffee samples by paired PLS-DA models for the two 
GC–MS methodologies.

When coffees were compared with chicory, sensitivity and specificity 
values of 100 % for calibration and prediction were obtained, regardless 
of the GC–MS methodology employed. The same results were attained 
when coffees were compared with instant coffees. In contrast, when 
decaffeinated and non-decaffeinated instant coffees were addressed, 
classification errors for prediction of 0 % and 7.1 % for the polar and 
non-polar columns, respectively, were obtained.

When studying the coffee variety, sensitivity and specificity values of 
100 % were obtained with the polar column for both calibration and 
prediction, while with the non-polar column, values higher than 93.3 % 
were observed. For both calibration and prediction, classification errors 
were 0 % for the polar column. For the non-polar column, the classifi-
cation errors for calibration were 0 %, while for the prediction, the 
classification errors were below 3.3 %.

Finally, sensitivity and specificity values for the geographical pro-
duction regions were 100 % in both calibration and prediction when the 
Vietnam and Cambodia samples were evaluated against the other sam-
ples. In the case of Costa Rica, sensitivity was 100 % while specificity 
was higher than 98 % and 95.7 % for calibration and prediction, 
respectively. Classification errors were always below 0.9 % for the 
paired PLS-DA calibration and lower than 2.2 % for prediction.

The results obtained indicate that the GC–MS fingerprinting methods 
proposed appear to be suitable chemical descriptors for the character-
ization, classification and authentication of the analyzed coffee and 
chicory samples.

3.5. Volatile compound identification

The composition of volatile compounds of coffee is intricate and 
plays a significant role in the coffee aroma, flavor and overall sensory 
profile. Volatile compounds are abundant in coffee regardless of its 
variety, geographical origin region, or other features. The peaks sepa-
rated by HS-SPME-GC/MS were identified using the NIST Research Li-
brary, and the experimental retention index (RI) of the compounds were 
compared with the theoretical RI values from the NIST database. The 
volatile compounds detected through HS-SPME-GC/MS using polar and 
non-polar columns are summarized in Table 2. Vietnamese Arabica 
Coffee exhibited 24 identified compounds using the WAX (polar) col-
umn and 20 with the DB5 (non-polar) column, while Vietnamese 
Robusta Coffee showed 25 and 22 compounds, respectively. When 
analyzing both Vietnamese Arabica and Robusta Coffee mixtures, 29 
compounds were identified with the WAX column and 28 with the DB5 
column. Cambodian Coffee presented 27 compounds with WAX and 21 
with DB5, whereas Costa Rica Coffee had 30 and 22 compounds, 
respectively. Costa Rica Arabica Coffee contained 23 compounds iden-
tified with WAX and 22 with DB5. In the case of Soluble Non- 
Decaffeinated Coffee, 21 compounds were found using WAX and 20 
with DB5. Finally, Decaffeinated Coffee exhibited 25 compounds with 
WAX and 20 with DB5. The results reveal significant differences in the 
aromatic profile and the compounds identified tentatively using the 
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Fig. 4. Prediction plots from paired PLS-DA using fingerprints from the (a) polar and (b) non-polar columns: (1) Coffee vs. Chicory, (2) Coffee vs. soluble Coffee, and 
(3) Soluble non-decaffeinated Coffee vs. soluble decaffeinated coffee. Filled and empty symbols correspond to calibration and prediction sets, respectively. Red lines 
represent the threshold between classes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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NIST database in the diverse sample typologies, distributed based on 
coffee variety, geographic origin, and coffee solubility.

In this context, the aromatic profile of Arabica coffee included a high 
content of phenolic compounds, esters, and aldehydes, particularly in 
the polar column. Compounds such as furfural and maltol were identi-
fied with a 90 % probability in the NIST database. These compounds are 
known for their contributions to sweet and fruity aromas, providing 
characteristic notes of caramel, fruits, and nuts [15,20]. Furthermore, 
compounds such as acetic acid and hexanoic acid, which were identified 
with a medium probability (ca. 75–80 %), contributed to the freshness 
and acidity of this variety’s overall profile [21]. Acetic acid, in partic-
ular, is fundamental for the perception of the sour aroma [20,21]. The 
non-polar column also reflected the presence of aliphatic hydrocarbons 
and aldehydes, such as hexanal and nonanal, with identification prob-
abilities exceeding 85 %. These compounds contribute to a slightly citrus 
profile, providing balance and complexity to the sensory profile of 
Arabica coffee [21]. In contrast, Robusta coffee exhibited a high con-
centration of pyrazines, such as 2-methylpyrazine and 2,5-dimethylpyr-
azine, detected with identification probabilities above 90 %. These 
compounds are typical of the roasting process [21]. The results also 
indicate that Robusta has a lower proportion of esters and fruity com-
pounds compared to Arabica. In addition, sulfur-containing compounds, 
such as dimethyl sulfide, were detected in Robusta coffee using the polar 
column.

Regarding geographical origin, Vietnamese coffee was characterized 
by a high concentration of pyrazines and aldehydes detected in both 
columns, with the most prominent being 2,3-butanedione and methyl-
pyrazine, both with identification probabilities exceeding 90 %. These 
compounds are responsible for buttery and earthy aromatic notes 
[20,21]. The profile from the polar column contained acetic acid, 
identified with an 85 % probability, which adds moderate acidity to 

Vietnamese coffee, balancing the sweetness of other compounds [21]. 
On the other hand, Cambodian coffee showed a higher content of vol-
atile acids and phenolics than Vietnamese coffee. Compounds such as 
benzoic acid and guaiacol, with identification probabilities close to 80 
%, contribute to spicy, acidity and burnt perceptions [15,20]. The non- 
polar column also detected phenolic derivatives. Costa Rica coffee pre-
sented profiles rich in esters and aldehydes, being remarkable com-
pounds such as 1-hexanol and hexanal, both with high identification 
probabilities in the NIST database (85–90 %). These compounds render 
Costa Rica coffee a sweet and fruity flavor [15]. Esters, such as ethyl 
acetate, contributed to a more balanced perception of the unique char-
acteristics of this coffee-growing region [22].

In the soluble coffee samples, Table 2 shows a predominance of 
pyrazine and aldehyde compounds, such as furfural and acetaldehyde, 
with high identification probabilities exceeding 90 %. These compounds 
generate a profile of sweet, almond, caramel and toasted notes, 
commonly perceived in soluble coffee [20,21]. The low presence of acids 
and esters suggests a less acidic and fruity aroma typical of soluble coffee 
due to the industrial processing that eliminate some volatiles [21].

Finally, it is important to emphasize that the previous chemometric 
analysis of the coffee samples relied on only the HS-SPME-GC–MS fin-
gerprints, consisting of ion intensities at each mass-to-charge ratio (m/z) 
and retention time. Further compound identification, including com-
pounds with high identification probabilities (above 90 %), was not 
utilized for classification purposes in this study but for providing insight 
into the aromatic profiles of the coffee samples.

3.6. Detection and quantitation of coffee adulteration by PLS regression

Finally, the proposed methodologies were employed to quantify 
adulteration levels in blended coffee samples using PLS regression. Two 

Table 1 
Sensitivity, specificity and classification error for calibration and prediction on paired PLS-DA models according to the sample type, coffee variety and geographical 
production region with fingerprints obtained from both GC–MS methods were employed.

Calibration Prediction
LVs Class Sensitivity 

(%)
Specificity 
(%)

Classification error 
(%)

Sensitivity 
(%)

Specificity 
(%)

Classification error 
(%)

All Coffees and chicory classification
Polar column 4 Coffee 100 100 0 100 100 0

4 Chicory 100 100 0 100 100 0
Non-polar 

column
3 Coffee 100 100 0 100 100 0
3 Chicory 100 100 0 100 100 0

Coffee and soluble Coffee
Polar column 3 Coffee 100 100 0 100 100 0

3 Soluble Coffee 100 100 0 100 100 0
Non-polar 

column
3 Coffee 100 100 0 100 100 0
3 Soluble Coffee 100 100 0 100 100 0

Soluble non-decaffeinated Coffee and soluble decaffeinated coffee classification
Polar column 4 Soluble non-decaffeinated 

Coffee
100 100 0 100 100 0

4 Soluble decaffeinated 
Coffee

100 100 0 100 100 0

Non-polar 
column

4 Soluble non-decaffeinated 
Coffee

100 100 0 100 85.7 7.1

4 Soluble decaffeinated 
Coffee

100 100 0 85.7 100 7.1

Coffee variety classification
Polar column 4 Arabica 100 100 0 100 100 0

2 Arabica-Robusta mixture 100 100 0 100 100 0
2 Robusta 100 100 0 100 100 0

Non-polar 
column

3 Arabica 100 100 0 100 100 0
3 Arabica-Robusta mixture 100 100 0 100 93.3 3.3
4 Robusta 100 100 0 100 100 0

Coffee geographical production region classification
Polar column 3 Vietnam 100 100 0 100 100 0

5 Cambodia 100 100 0 100 100 0
5 Costa Rica 100 100 0 100 95.7 2.2

Non-polar 
column

3 Vietnam 100 100 0 100 100 0
3 Cambodia 100 100 0 100 100 0
2 Costa Rica 100 98 0.9 100 95.7 2.2
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Table 2 
Volatile compounds identified in coffee samples using WAX column (polar column) and DB5 column (non-polar column).

UF-WAX ms column (polar column)
N◦ Compound RT 

(min)
Exact 
Mass

RI 
value

RI 
theoretical 
value

Probability (%)
Vietnamese 
Arabica 
Coffee

Vietnamese 
Robusta 
Coffee

Vietnamese 
Arabica and 
Robusta 
Coffee

Cambodian 
Coffee

Costa 
Rica 
Coffee

Costa Rica 
Arabica 
Coffee

Soluble Non- 
Decaffeinated 
Coffee

Soluble 
Decaffeinated 
Coffee

1 Hexamethylcyclotrisiloxane 6.353 222.0564 830 830 ± 2 − − − − − − 70.8 %-78.9 % 75.2 %-79.2 %
2 2,3-Dihydro-5-methylfuran 7.800 84.0575 640 640 ± 0 − − − − − − 69.2 %-81.5 % 74.3 %-80.8 %
3 Pyridine 17.724 79.0422 1185 1185 ± 10 79.6 %-88.5 % 79.8 %-87.8 % 86.2 %-88.4 % 83.7 %-89.3 

%
82.5 
%-88.8 %

81.4 
%-88.1 %

79.6 %-88.7 % 82.7 %-88.0 %

4 2-Pentylfuran 19.754 138.1045 1231 1231 ± 9 − − − 70.5 %-77.9 
%

69.4 
%-82.4 %

80.1 
%-85.8 %

 −

5 Methylpyrazine 21.397 94.0531 1266 1266 ± 10 63.3 %-70.2 % 52.6 %-73.5 % 58.3 %-66.3 % 58.7 %-73.5 
%

62.8 
%-71.0 %

59.4 
%-67.1 %

51.4 %-72.5 % 50.1 %-68.5 %

6 2,5-Dimethylpyrazine 23.889 108,0687 1320 1320 ± 11 82.0 %-88.5 % 76.9 %-85.4 % 80.3 %-86.3 % 79.0 %-84.5 
%

82.0 
%-85.5 %

83.7 
%-86.8 %

73.2 %-78.8 % 70.4 %-73.9 %

7 Ethylpyrazine 24.445 108,0687 1337 1337 ± 12 75.4 %-81.4 % 72.8 %-85.1 % 79.3 %-81.3 % 75.9 %-85.5 
%

75.6 
%-83.4 %

79.1 
%-82.7 %

 77.2 %-84.7 %

8 2,3-Dimethylpyrazine 24.982 108,0688 1343 1343 ± 10 − − − − 88.1 
%-95.1 %

−  −

9 2-Ethyl-6-methylpyrazine 26.659 122,0844 1386 1386 ± 11 − 51.5 %-61.4 % 50.9 %-52.0 % 51.6 %-66.6 
%

− −  −

10 2-Ethyl-5-methylpyrazine 26.950 122.0844 1387 1387 ± 10 50.1 %-62.7 % 50.8 %-69.1 % 55.3 %-57.1 % 52.2 %-67.2 
%

56.2 
%-67.3 %

54.5 
%-65.5 %

54.6 %-66.3 % 59.9 %-67.9 %

11 Trimethylpyrazine 27.466 122.0844 1402 1402 ± 8 − 84.0 %-89.0 % 82.9 %-87.6 % 84.5 %-89.7 
%

83.4 
%-88.2 %

82.1 
%-89.9 %

 85.4 %-88.9 %

12 2-Ethyl-3-methylpyrazine 27.527 122.0844 1407 1407 ± 9 − 86.9 %-91.4 % 86.2 %-90.0 % 85.8 %-91.1 
%

84.1 
%-91.9 %

89.5 
%-90.9 %

 −

13 3-Ethyl-2,5-dimethylpyrazine 29.231 136.1000 1443 1443 ± 8 71.5 %-76.5 % 71.2 %-78.0 % 69.4 %-75.1 % 73.6 %-77.2 
%

69.7 
%-77.5 %

73.1 
%-76.8 %

 −

14 1-Acetoxy-2-propanone 30.195 116.0473 1474 1474 ± 9 94.5 %-96.1 % 92.8 %-95.6 % 95.2 %-96.4 % 93.0 %-96.2 
%

93.7 
%-96.0 %

93.8 
%-95.9 %

92.7 %-96.3 % 91.4 %-94.7 %

15 Furfural 30.317 96.0211 1461 1461 ± 11 50.6 % − 62 % 58.1 %-69.9 % 54.9 %-57.6 % 57.3 %-61.1 
%

50.6 
%-59.0 %

50.3 
%-59.3 %

57.8 %-77.7 % 53.6 %-62.7 %

16 1-(2-Furanyl)ethanone 32.001 110.0368 1499 1499 ± 10 77.6 %-86.3 % 70.4 %-84.6 % 75.0 %-84.3 % 77.3 %-87.3 
%

81.6 
%-88.4 %

78.1 
%-86.5 %

 60.4 %-72.4 %

17 2,3-Pentanedione 32.802 100.0524 1058 1058 ± 9 54.9 %-61.6 % 50.4 %-61.4 % 51.6 %-58.9 % − 51.7 
%-59.4 %

−  −

18 1-Acetoxy-2-butanone 33.033 130.0630 1536 1536 ± 17 70.3 %-73.5 % − 71.5 %-74.0 % − 73.5 
%-83.2 %

69.7 
%-74.4 %

 −

19 Acetate of 2-furanmethanol 33.162 140.0473 1531 1531 ± 10 92.5 %-96.7 % 91.3 %-96.2 % 91.0 %-94.4 % 94.4 %-96.5 
%

94.0 
%-96.6 %

95.7 
%-96.7 %

81.8 %-93.9 % 86.4 %-95.3 %

20 Propanoic acid 33.57 74.0368 1535 1535 ± 11 72.6 %-79.9 % 73.7 %-79.3 % 73.5 %-76.9 % 69.0 %-77.3 
%

66.2 
%-79.3 %

− 74.3 %-82.6 % 76.3 %-80.2 %

21 2-Methylpropanoic acid 34.676 88.0524 1570 1570 ± 12 − − − − − 90.8 
%-94.2 %

83.8 %-88.3 % 86.1 %-90.5 %

22 5-Methyl-2-furancarboxaldehyde 34.832 110.0368 1570 1570 ± 10 90.0 %-95.6 % 92.0 %-95.5 % 93.5 %-95.1 % 93.4 %-94.5 
%

93.7 
%-95.0 %

− 88.6 %-94.9 % 80.0 %-85.4 %

23 Propanoate of 2-furanmethanol 35.599 154.0630 1601 1601 ± 18 70.0 %-71.8 % 71.3 %-82.2 % 70.2 %-74.2 % − 68.3 
%-72.9 %

64.0 
%-71.7 %

 −

24 2,2′-Methylenebis(furan) 36.169 148.0524 1632 1632 ± 5 73.5 %-83.3 % − 72.6 %-80.5 % 78.4 %-84.7 
%

50.8 
%-57.6 %

61.6 
%-72.7 %

 −

25 1-Ethyl-1H-pyrrole-2- 
carboxaldehyde

36.264 123.0684 1610 1610 ± 10 − − − − − − 60.2 %-66.7 % 55.7 %-71.1 %

(continued on next page)
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Table 2 (continued )

UF-WAX ms column (polar column)
N◦ Compound RT 

(min) 
Exact 
Mass 

RI 
value 

RI 
theoretical 
value 

Probability (%)
Vietnamese 
Arabica 
Coffee 

Vietnamese 
Robusta 
Coffee 

Vietnamese 
Arabica and 
Robusta 
Coffee 

Cambodian 
Coffee 

Costa 
Rica 
Coffee 

Costa Rica 
Arabica 
Coffee 

Soluble Non- 
Decaffeinated 
Coffee 

Soluble 
Decaffeinated 
Coffee

26 1-Methyl-1H-pyrrole-2- 
carboxaldehyde

36.747 109.0528 1626 1626 ± 11 78.8 %-85.7 % − 76.4 %-79.7 % 76.6 %-82.2 
%

78.2 
%-85.1 %

77.6 
%-82.2 %

74.8 %-87.7 % 84.2 %-88.0 %

27 Butanoic acid 36.977 88.0524 1625 1625 ± 12 − 64.4 %-74.1 % 64.8 %-72.1 % 55.5 %-63.1 
%

− − 60.4 %-82.5 % 67.7 %-75.4 %

28 2-Furanmethanol 38.240 98.0368 1660 1660 ± 9 79.9 % − 84 % 79.6 %-84.2 % 80.3 %-83.2 % 79.7 %-81.0 
%

79.9 
%-83.8 %

80.1 
%-83.9 %

79.7 %-86.7 % 80.2 %-86.6 %

29 3-Methylbutanoic acid 38.695 102.0681 1666 1666 ± 11 61.8 %-76.9 % 63.1 %-87.1 % 69.0 %-74.2 % 75.2 %-87.9 
%

76.6 
%-89.2 %

70.6 
%-74.5 %

73.2 %-81.8 % 68.1 %-78.8 %

30 2-Acetyl-3-methylpyrazine 39.442 136.0637 1630 1630 ± 4 − − − − 52.0 
%-54.8 %

−  −

31 3,4-Dimethyl-2,5-furandione 41.044 126.0317 1714 1714 ± 29 − − − − 60.6 
%-69.5 %

−  −

32 3-Methyl-2-butenoic acid 43.481 100.0524 1782 1782 ± 10 51.7 %-55.0 % − 46.1 %-49.0 % − 51.3 
%-57.4 %

−  −

33 4-Methylpentanoic acid 43.603 116.0837 1803 1803 ± 12 − − − − − −  87.4 %-91.1 %
34 1-(2-Furanylmethyl)-1H-pyrrole 44.472 147.0684 1824 1824 ± 6 − − − 70.3 %-79.2 

%
− −  −

35 2-Methoxyphenol 45.585 124.0524 1861 1861 ± 13 69.7 %-79.7 % 72.7 %-85.0 % 82.1 %-85.2 % 75.3 %-84.7 
%

70.6 
%-75.1 %

71.6 
%-81.1 %

 −

36 3-Ethyl-2-hydroxy-2- 
cyclopenten-1-one

46.793 126.150 1894 1894 ± 3 − − − − − −  61.4 %-73.3 %

37 Maltol 49.312 126.0317 1969 1969 ± 15 92.9 %-95.5 % 91.5 %-95.3 % 93.0 %-94.8 % 94.1 %-95.6 
%

93.8 
%-95.1 %

92.9 
%-95.2 %

91.8 %-95.0 % 91.7 %-95.7 %

38 1-(1H-Pyrrol-2-yl)ethanone 49.543 109.0528 1973 1973 ± 12 50.5 %-57.6 % 53.6 %-63.8 % 71.4 %-75.4 % 50.3 %-61.0 
%

50.5 
%-57.5 %

53.4 
%-63.5 %

56.8 %-67.1 % 53.5 %-64.3 %

39 Phenol 50.724 94.0419 2000 2000 ± 15 − − − 64.9 %-74.7 
%

− − 58.2 %-70.2 % −

40 1H-Pyrrole-2-carboxaldehyde 51.295 95.0371 2030 2030 ± 14 50.5 %-58.3 % 63.6 %-76.0 % 58.8 %-71.8 % − 50.3 
%-58.2 %

− 69.5 %-77.8 % 72.5 %-78.6 %

41 4-Ethyl-2-methoxyphenol 51.356 152.0837 2032 2032 ± 12 − 68.4 %-75.7 % 69.1 %-72,8% 61.6 %-73.3 
%

− −  −

DB5 column (non polar column)
N◦ Compound RT 

(min)
m/z RI 

value
RI 
theoretical 
value

Probability (%)
Vietnamese 
Arabica 
Coffee

Vietnamese 
Robusta 
Coffee

Vietnamese 
Arabica and 
Robusta 
Coffee

Cambodian 
Coffee

Costa 
Rica 
Coffee

Costa Rica 
Arabica 
Coffee

Soluble Non- 
Decaffeinated 
Coffee

Soluble 
Decaffeinated 
Coffee

1 2,3-Dihydro-5-methylfuran 3.414 84.0575 670 670 ± 8 − − − − 53.0 
%-59.4 %

− 65.6 %-78.0 % 67.0 %-70.4 %

2 Propanoic acid 4.663 74.0368 700 700 ± 20 − 51.0 %-59.2 % 52.1 %-55.3 % 53.2 %-62.9 
%

− 72.5 
%-75.0 %

51.1 %-69.0 % −

3 Pyridine 5.301 79.0422 746 746 ± 7 82.2 %-86.2 % 80.9 %-88.9 % 82.0 %-87.1 % 77.9 %-86.0 
%

80.1 
%-87.8 %

81.0 
%-88.5 %

75.5 %-84.7 % 79.5 %-85.9 %

4 1-Methylpiperidine 6.232 99.1048 779 779 ± N/A − − − − − 77.8 
%-83.3 %

− −

5 1-Methyl-1,2,3,6- 
tetrahydropyridine

6.992 97.0891 − − − − − − − 86.8 
%-90.4 %

− −

6 Hexamethylcyclotrisiloxane 7.705 222.0564 851 851 ± N/A − − − − − − 71.1 %-82.5 % 76.9 %-78.4 %

(continued on next page)
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Table 2 (continued )

UF-WAX ms column (polar column)
N◦ Compound RT 

(min) 
Exact 
Mass 

RI 
value 

RI 
theoretical 
value 

Probability (%)
Vietnamese 
Arabica 
Coffee 

Vietnamese 
Robusta 
Coffee 

Vietnamese 
Arabica and 
Robusta 
Coffee 

Cambodian 
Coffee 

Costa 
Rica 
Coffee 

Costa Rica 
Arabica 
Coffee 

Soluble Non- 
Decaffeinated 
Coffee 

Soluble 
Decaffeinated 
Coffee

7 Methylpyrazine 8.037 94.0531 831 831 ± 7 61.9 %-68.4 % 66.5 %-69.5 % 59.5 %-67.3 % 61.9 %-67.5 
%

55.9 
%-61.5 %

− 56.3 %-70.6 % −

8 Furfural 8.390 96.0211 833 833 ± 4 60.0 %-64.2 % 50.0 %-55.1 % 51.7 %-56.1 % 57.4 %-63.0 
%

57,7%- 
62.0 %

52.7 
%-60.7 %

51.0 %-56.6 % 52.4 %-60.9 %

9 2-Furanmethanol 9.666 98.0368 859 859 ± 6 79.1 %-83.2 % 75.7 %-82.0 % 78.0 %-79.2 % 77.5 %-84.1 
%

77.0 
%-80.3 %

74.3 
%-79.9 %

77.7 %-81.6 % 78.3 %-82.7 %

10 1-(Acetyloxy)-2-propanone 10.060 116.0473 870 870 ± 5 − 69.9 %-72.1 % 60.1 %-68–0 % − 80.3 
%-86,7%

75.1 
%-85.6 %

76.1 %-81.9 % −

11 3-Methylpentanoic acid 10.142 116.0837 947 947 ± 6 61.9 %-66.5 % 70.3 %-75.8 % 67.2 %-74.7 % 62.3 %-71.2 
%

61.8 
%-69.8 %

− − −

12 3-Methylbutanoic acid 10.291 102.0681 863 863 ± 16 70.7 %-75.0 % 70.1 %-78.0 % 72.5 %-74.1 % − 72.3 
%-78.2 %

73.6–75.9 − 84.4 %-86.8 %

13 2-Methylbutanoic acid 10.603 102.0681 861 861 ± 14 73.5 %-82.8 % − 56.0 %-58.5 % 52.1 %-61.6 
%

54.7 
%-63.0 %

− − 82.9 %-84.4 %

14 1-(2-Furyl)ethanone 11.913 110.0368 911 911 ± 4 66.6 %-71.5 % − 65.85–71.1 % 51.3 %-60.9 
%

− 50.5 
%-58.2 %

− −

15 Butyrolactone 12.113 86.0368 915 915 ± 6 − − − − − − 50.3 %-53.9 % 50.1 %-52.8 %
16 Ethylpyrazine 12.239 108.0687 921 921 ± 7 61.1 %-66.9 % 63.6 %-71.9 % 64.1 %-70.7 % 63.0 %-73.5 

%
67.2 
%-77.9 %

68.1 
%-74.1 %

58.3 %-63.9 % 61.6 %-64.2 %

17 2,3-Dimethylpyrazine 12.375 108.0687 925 925 ± 6 64.7 %-68.8 % 64.1 %-67.2 % 65.0 %-66.9 % 60.3 %-67.2 
%

69.0 
%-74.9 %

63.3 
%-74.2 %

− −

18 3-Ethylpyridine 14.317 107.0735 959 959 ± 5 − 67.7 %-74.3 % 68.1 %-75.1 % 50.9 %-57.8 
%

− 61.4 
%-75.9 %

− −

19 5-Methyl-2-furancarboxaldehyde 14.500 110.0368 965 965 ± 5 89.2 %-93.7 % 82.8 %-92.2 % 82.7 %-87.4 % 89.8 %-93.8 
%

89.1 
%-92.1 %

85.5 
%-89.5 %

− 64.4 %-66 %

20 1-(Acetyloxy)-2-butanone 14.649 130.0630 967 967 ± 7 52.1 %-61.9 % − 51.8 %-61.8 % − 62.1 
%-75.8 %

55.8 
%-62.6 %

− −

21 4-Methylpentanoic acid 14.840 116.0837 949 949 ± 6 − − − − − − − 68.0 %-76.8 %
22 Phenol 15.79 94.0419 980 980 ± 4 − 51.3 %-57.2 % 52.8 %-57.2 % − − − − −

23 2-Furfurylmethanol acetate 16.109 140.0473 995 995 ± 4 90.2 %-92.7 % 88.9 %-92.7 % 85.6 %-89.1 % 91.3 %-92.6 
%

92.5 
%-94.7 %

91.2 
%-93.5 %

− 85.0 %-92.1 %

24 2-Ethyl-6-methylpyrazine 16.333 122.0844 1003 1003 ± 6 57.4 %-69.9 % − 57.0 %-65.0 % 54.9 %-59.1 
%

58.2 
%-69.4 %

57.6 
%-61.7 %

59.8 %-66.3 % 54.5 %-62.8 %

25 2-Ethyl-3-methylpyrazine 16.523 122.0844 1004 1004 ± 5 55.8 %-66.8 % 54.7 %-66.3 % 54.8 %-60.4 % 58.3 %-65.7 
%

61.5 
%-69.8 %

65.0 
%-69.9 %

− −

26 1-Methyl-1H-pyrrole-2- 
carboxaldehyde

16.625 109.0528 1016 1016 ± 6 71.6 %-73.9 % − 71.4 %-73.7 % − 70.1 
%-75.4 %

67.8 
%-75.9 %

51.0 %-54.8 % 54.6 %-67.1 %

27 1-(2-Furyl)propanone 16.828 124.0524 1011 1011 ± 6 − − − − 52.8 
%-60.2 %

− − −

28 1H-Pyrrole-2-carboxaldehyde 17.419 95.0371 1015 1015 ± 7 − − − − − − 53.4 %-56.4 % −

29 3-Methyl-1,2-cyclopentanedione 17.725 112.0524 1043 1043 ± 0 − − − − − − 55.3 %-67.7 % 59.7 %-66.9 %
30 1-(1H-Pyrrol-2-yl)ethanone 19.822 109.0528 1064 1064 ± 5 53.4 %-68.9 % 52.3 %-60.1 % 53.1 %-54.7 % 50.2–60.2 % 50.2 

%-53.9 %
50.2 
%-51.7 %

72.9 %-78.3 % 62.1 %-74.9 %

31 3-Ethyl-2,5-dimethylpyrazine 20.358 136.1000 1082 1082 ± 3 57.3 %-68.2 % 66.1 %-69.9 % 59.7 %-66.4 % 51.3 %-61.1 
%

67.2 
%-69.5 %

60.1 
%-69.7 %

− −

32 2,2′-Methylenebisfuran 20.61 148.0524 1088 1088 ± 2 − − − − − 54.8 
%-56.3 %

− −

33 2-methoxyphenol 20.847 124.0524 1090 1090 ± 3 − 61.9 %-67.4 % 62.4 %-67.7 % 66.2 %-77.3 
%

− − − −

(continued on next page)
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coffee adulteration scenarios were considered. The first case was Viet-
namese Robusta coffee adulterated with chicory, and the second case 
was Vietnamese Arabica coffee adulterated with Vietnamese Robusta 
coffee.

Independent calibration and validation sets were employed for each 
adulteration case. The calibration sets encompassed adulteration levels 
between 0 % to 100 %, whereas the validation sets comprised adulter-
ation levels between 15 to 85 % (see Section 2.1 and Fig. S1 in sup-
plementary material). Each level of adulteration was prepared in 
triplicate, resulting in 33 sample extracts for each case under study. 
Additionally, a quality control solution was prepared at a 50 % adul-
teration level.

The PLS results obtained for the two adulteration cases considered 
when using both GC–MS proposed methodologies are depicted in Fig. 5. 
In general, good results were obtained with R2 coefficients higher than 
0.993, indicating the good performance of both GC–MS methodologies. 
Moreover, Root Mean Square Error of Calibration (RMSEC) and Root 
Mean Square Error of Prediction (RMSEP) were also acceptable in all 
evaluated cases, with values below 2.9 % and 7.4 %, respectively.

4. Evaluation of the greenness and blueness of the method

Sustainability and practical applicability are crucial factors in mod-
ern analytical chemistry. The integration of Green Analytical Chemistry 
(GAC) principles into method development aims to reduce environ-
mental impact, minimize reagent consumption, and improve safety 
while ensuring efficiency and reliability in real-world applications 
[23,24]. Alongside environmental sustainability, the practical applica-
bility of an analytical method—often referred to as “blueness”—assesses 
its feasibility for routine use, including factors such as automation, 
sample throughput, and reagent requirements [25,26].

To provide a quantitative assessment of both aspects, the AGREE 
metric was used to evaluate the greenness of the method, while the Blue 
Applicability Grade Index (BAGI) was applied to assess its practical 
utility (blueness). These tools allow for an objective comparison of our 
methodology against existing approaches, reinforcing its suitability for 
large-scale applications such as coffee authentication and adulteration 
detection.

4.1. Greenness assessment using AGREE metric

The AGREE tool provides a comprehensive evaluation of analytical 
methods based on the 12 principles of Green Analytical Chemistry 
(GAC), incorporating aspects such as solvent use, energy consumption, 
sample preparation, waste generation, and reagent toxicity [23]. This 
metric generates a circular pictogram with a quantitative score from 0 to 
1, where higher values indicate a greener method.

The employed HS-SPME-GC–MS methodology was evaluated using 
the AGREE framework based on the following GAC principles [23]: 

1) Direct analytical techniques should be applied to avoid sample 
treatment: HS-SPME is a non-invasive extraction method, so the 
score is 0.90.

2) Minimal sample size and minimal number of samples are goals: 
Small sample volume (0.5 g), so the score is 0.75.

3) In situ measurements should be performed: On-line analysis with 
GC–MS, so the score is 0.66.

4) Integration of analytical processes and operations saves energy 
and reduces the use of reagents: 5 steps in total (extraction, 
desorption, separation, detection, data analysis), so the score is 
0.60.

5) Automated and miniaturized methods should be selected: HS- 
SPME and GC–MS were automatic and miniaturized, so the 
score is 1.

6) Derivatization should be avoided: No derivatization applied, so 
the score is 1.Ta
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7) Generation of a large volume of analytical waste should be 
avoided and proper management of analytical waste should be 
provided: Minimal waste (0.5 g per sample), so the score is 1.

8) Multianalyte or multiparameter methods are preferred versus 
methods using one analyte at a time: Was a non-targeted 
approach, so multiple analytes were detected per hour, so the 
score is 1.

9) The use of energy should be minimized: GC–MS consumes ≥ 1.5 
kWh per sample, so the score is 0.

10) Reagents obtained from renewable source should be preferred: 
No solvents or chemicals used, so the score is 1.

11) Toxic reagents should be eliminated or replaced: No toxic re-
agents are used, so the score is 1.

12) The safety of the operator should be increased: No chemical 
hazards present, so the score is 1.

The final AGREE score of the proposed methodology was the average 
of the 12 GAC principles. The obtained AGREE score was 0.83, classi-
fying the methodology as a highly sustainable analytical approach. 
Compared to conventional GC–MS workflows that require derivatiza-
tion, solvent extraction, or extensive sample handling, our methodology 
significantly reduces chemical waste, hazard exposure, and energy 
consumption, making it an eco-friendly alternative for coffee 

authentication and adulteration detection.

4.2. Blueness assessment using BAGI metric

We applied the Blue Applicability Grade Index (BAGI) to evaluate the 
practical applicability of the method, which assesses 10 key parameters 
related to efficiency, automation, sample processing, and reagent re-
quirements [25]. Each category is scored based on a standardized scale, 
with a maximum score of 100, where higher values indicate a more 
practical method. To be regarded as practical, it is recommended that 
the method achieve at least 60 points.

The BAGI evaluation of the HS-SPME-GC–MS methodology yielded 
the following attributes [25]: 

1) Type of analysis: Qualitative analysis scores 2.5.
2) Multi- or single- element analysis: Multi-element analysis for ≥

15 compounds scores 10.
3) Analytical technique: Sophisticated instrumentation (GC–MS) 

scores 5.
4) Simultaneous sample preparation: Every sample was analysed 

individually, so the score is 2.5.
5) Sample preparation: Miniaturized extraction sample preparation 

(SPME)scores 5.

Fig. 5. PLS regression for results using fingerprints from (a) polar column and (b) non-polar column for (1) Vietnamese Robusta Coffee adulterated with Chicory and 
(2) Vietnamese Arabica Coffee adulterated with Vietnamese Robusta Coffee.
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6) Samples per h (sample preparation + analysis time): Each sample 
takes more than 70 min, which is equivalent to a minutes that 1 
sample per hour, so is punctuated with a 2.5.

7) Reagents and materials: Commercially available reagents that are 
non-common in QC labs scores 7.5.

8) Preconcentration: HS-SPME preconcentrates the volatile com-
pounds present in samples, so it is scored 7.5.

9) Automation degree: The instrument equipped with an autosam-
pler for HS-SPME and GC–MS scores 10.

10) Amount of sample: 0.5 g of coffee was employed per sample, so it 
is scored 10.

The final BAGI score of the proposed methodology was the sum of the 
scores of the 10 BAGI attributes. The obtained BAGI score was 62.5, 
indicating good applicability for routine and large-scale implementa-
tions. Compared to conventional GC–MS approaches, which often 
require sample derivatization, extensive pre-processing, or complex 
extraction steps, our HS-SPME-GC–MS workflow reduces sample 
handling time, minimizes reagent use, and enhances automation, mak-
ing it an ideal choice for high-throughput authentication of coffee 
samples.

5. Comparison with other scientific publications

This section has been included to contextualize our findings by 
contrasting them with previous research in the field. A detailed sum-
mary table (Table S3) in the Supplementary Material presents key fea-
tures and outcomes from relevant studies, allowing for a direct 
comparison with our work. The table includes information on authors, 
publication year, study objectives, methodologies used, and how our 
results align or differ from those of other researchers.

The position of the present study within the broader literature is 
contrasted and its contribution to the advancement of coffee authenti-
cation research is highlighted. The supplementary material also offers a 
comparative analysis of various GC–MS-based studies on coffee, 
encompassing topics such as volatile compound profiling, fraud detec-
tion, and contamination assessment. While these approaches all 
contribute valuable insights into coffee quality and authenticity, they 
differ in their analytical scope, with some emphasizing metabolic 
markers for sensory quality, others focusing on chemical contaminants, 
and some addressing adulteration detection. These distinctions under-
line the diverse applications of GC–MS in coffee research and demon-
strate how our study complements and expands upon existing 
methodologies [14,15,27–37].

6. Conclusions

Two GC–MS methods have been proposed to obtain HS-SPME- 
GC–MS fingerprints providing chemical descriptors of the samples 
suitable for the characterization, classification, and authentication of 
coffee samples of different types, varieties, and origins, as well as for 
discriminating coffee with chicory (one of its possible adulterants).

Chemometric analysis by PCA using the HS-SPME-GC–MS finger-
prints show good discrimination capabilities between coffee and chicory 
and between coffee varieties with the two GC–MS methodologies (with 
polar or non-polar column).

The PLS-DA models showed very good results providing sensitivity 
and specificity values greater than 93.3 % and 94.5 %, respectively. 
Furthermore, PLS-DA paired models simulating an external validation 
provided excellent results, with sensitivity and specificity values of 100 
% when coffee is classified in front chicory and when non-soluble coffee 
is classified in front soluble coffee. For soluble decaffeinated and non- 
decaffeinated coffees, prediction values higher of 85.7 % were ob-
tained. For coffee varieties, sensitivity values of 100 % and specificity 
values higher than 93.3 % were observed. Finally, for geographical 
production regions, sensitivity values of 100 % and specificity values 

higher than 95.7 % were achieved.
The capability of the proposed methods to detect and quantify coffee 

frauds through multivariate PLS regression was studied for two adul-
teration cases: Vietnamese Arabica Coffee adulterated with Vietnamese 
Robusta Coffee and Vietnamese Robusta Coffee adulterated with 
chicory. Very acceptable calibration and prediction errors were 
accomplished, lower than 2.9 % and 7.4 %, respectively. Hence, the HS- 
SPMEGC-MS methodologies combined with chemometrics are good 
strategies to authenticate coffee and to detect and quantify coffee frauds.

Additionally, the identification of volatile compounds in the samples 
provides a detailed understanding of the characteristic aromatic profiles 
of each coffee type. These results allow for the correlation of the 
complexity and diversity of coffee aromas and flavors with their 
chemical composition, highlighting the utility of the HS-SPME-GC/MS 
technique for sensory studies and authenticity in coffee. Moreover, the 
precise identification of volatile compounds opens the door to future 
studies dealing with agricultural and processing practices, thereby 
improving coffee quality and meeting consumer expectations in a 
constantly evolving market.

Furthermore, although our study does not directly measure aroma or 
taste, it is well established in the literature that volatile compounds such 
as esters, aldehydes, and pyrazines play crucial roles in the aroma and 
flavor profiles of coffee. Previous studies have demonstrated a direct link 
between volatile compounds and sensory attributes, supporting the idea 
that the chemical profiles obtained here could offer insights into the 
sensory qualities of the coffee samples. In future research, it would be 
valuable to combine chemical profiling with sensory analysis to further 
correlate these findings.

Finally, AGREE and BAGI evaluations demonstrate that the 
employed HS-SPME-GC–MS approach is both environmentally sustain-
able (AGREE score: 0.79) and highly applicable for routine analysis 
(BAGI score: 62.5/100). These findings reinforce its potential as a 
robust, scalable, and eco-friendly alternative for coffee authentication 
and adulteration detection, bridging the gap between sustainability and 
analytical efficiency.
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