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Abstract
It has been shown that Bayesian reasoning is affected by the believability of the data, but it is unknown which conditions 
could potentiate or reduce such belief effect. Here, we tested the hypothesis that the belief effect would mainly be observed 
in conditions fostering a gist comprehension of the data. Accordingly, we expected to observe a significant belief effect in 
iconic rather than in textual presentations and, in general, when nonnumerical estimates were requested. The results of three 
studies showed more accurate Bayesian estimates, either expressed numerically or nonnumerically, for icons than for text 
descriptions of natural frequencies. Moreover, in line with our expectations, nonnumerical estimates were, in general, more 
accurate for believable rather than for unbelievable scenarios. In contrast, the belief effect on the accuracy of the numerical 
estimates depended on the format and on the complexity of the calculation. The present findings also showed that single-event 
posterior probability estimates based on described frequencies were more accurate when expressed nonnumerically rather 
than numerically, opening new avenues for the development of interventions to improve Bayesian reasoning.

Keywords  Bayesian reasoning · Belief effect · Presentation format · Nonnumerical probability estimates · Gist 
comprehension

Introduction

Bayesian reasoning tasks are generally presented as math-
ematical problems that request the posterior probability of 
a hypothesis if certain condition were true (e.g., probability 
that an individual who sleeps with the window open would 
catch a cold), based on the prior probability of that hypoth-
esis (probability of catching a cold), and on the likelihood of 
the condition (likelihood of sleeping with the window open 
for individuals with and without a cold; see examples in the 
Appendix). Accordingly, correct Bayesian problem-solving 
implies understanding the extent to which the condition 
changes the prior probability (i.e., the impact of the condi-
tion; Tentori et al., 2016). However, accurate estimates of the 
posterior probability are rare and strong effort has been put 
to investigate how to improve performance (e.g., Mandel & 

Navarrete, 2015). In essence, besides the cognitive abilities 
of the reasoner and/or experience with the task, both the 
format of the numerical information and the believability 
of the scenario modulate the accuracy of the posterior prob-
ability estimates.

Format of the data and levels of understanding

A large amount of evidence shows that presenting the data 
as ratios of natural frequencies makes the Bayesian infer-
ence easier, compared with percentages or decimals (see, 
for example, the reviews of Brase & Hill, 2015; Johnson & 
Tubau, 2015; McDowell & Jacobs, 2017). The benefit of the 
frequency format has been attributed to its similarity to the 
way in which the mind intuitively encodes the frequency of 
events in every-day tasks (e.g., Cosmides & Tooby, 1996; 
Gigerenzer & Hoffrage, 1995), or to its role in enhancing 
the comprehension of the nested-sets structure of the data 
(e.g., Barbey & Sloman, 2007; Girotto & Gonzalez, 2001). 
Nevertheless, natural frequencies described in the text do 
not eliminate all the difficulties of the Bayesian task and, in 
some conditions, they still lead to erroneous estimates that 
suggest superficial or incomplete understanding.
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It has been proposed that numerical data can be under-
stood in a verbatim level (by representing the literal words 
and numbers and performing exact calculations) or in a 
more abstract level (by representing their gist or general 
meaning; Reyna, 2008; Furlan et al., 2016). In the Bayesian 
task, different verbatim levels could be distinguished. One 
level, based on correct calculation, would lead to a correct 
posterior probability estimate. The other, based on incom-
plete processing of the data, could lead to highly incorrect 
responses. As outlined above, the latter can be the case for 
word problems describing natural frequencies as well. For 
example, in Tubau et al. (2019), natural frequencies pre-
sented in text format were not better than percentages in 
helping to infer the posterior ratio as a single-event prob-
ability,1 and most of the responses suggested a superficial 
and incomplete understanding of the data (common errors 
were numbers presented in the text such as the hit rate or 
the base rate; see also Evans et al., 2000; Johnson & Tubau, 
2017; or Pennycook & Thompson, 2012, for similar errors). 
Interestingly, Tubau et al. (2019) also showed that the pres-
entation format of the frequency information modulates 
the level of understanding. Specifically, in contrast to the 
text format, where the few correct estimates were expressed 
using the literal numbers, an iconic display (see an example 
in Fig. 1) promoted mostly accurate single-event probability 
estimates and a comprehension of the posterior ratio beyond 
the literal data (about half of the participants used equivalent 

expressions for representing the posterior ratio, such as “1 
of 5” or “20 of 100” instead of “3 of 15”).

Therefore, previous findings suggest three levels of 
understanding of the data included in Bayesian scenarios: 
verbatim-incorrect (superficial and incomplete data pro-
cessing), verbatim-correct (correct exact calculation), and 
comprehension of the gist of the posterior probability (i.e., 
understanding if it is larger or smaller than the prior and 
the approximate distance between different probabilities). 
Although most exact correct Bayesian responses imply a 
comprehension of the gist, some of them do not. That is, 
in some conditions, the components of the posterior ratio 
can be induced by directly matching common text-question 
keywords, as shown in the case of the direct translation 
strategy in mathematical problem solving (Lewis & Mayer, 
1987). This is more likely to be observed in the case of 
text formats and questions that guide the selection of cor-
responding numbers, such us two-step frequency questions 
(e.g., Girotto & Gonzalez, 2001; Tubau, 2022). At the same 
time, comprehension of the gist of the posterior ratio does 
not imply necessarily an exact correct response, as shown 
for nonnumerical representations of proportions (Ahl et al., 
1992; Dixon & Moore, 1996; see also below). Importantly, 
these different levels may also differ in their sensitivity 
to contextual information such as the believability of the 
scenario.

Gist comprehension and the influence of previous 
beliefs

Gist comprehension of numerical data seems to automati-
cally engage the evaluation of some properties, such as its 
goodness. For example, research on decision-making sug-
gests that affective evaluations of the prospects (i.e., whether 
they are good or bad; Peters et al., 2006; Petrova et al., 2019) 
or the goodness of medical treatments (Reyna, 2008) are 
based on the gist. In Bayesian scenarios, the evaluation of 
the reliability or believability of the data, and associated 
affective reactions, might also depend on the gist of the 
posterior. If this were the case, we expected that gist-based 
reasoning would be more sensitive to the believability of the 
data than would more verbatim processing.

Interestingly, the influence of previous beliefs in Bayesian 
reasoning has been reported for conditions that may foster 
a gist understanding of the data. For example, Evans et al. 
(2002) presented problems that included only one piece of 
information (either the prior probability of the hypothesis or 
the likelihood of the datum), while the other was implicit. 
Overall, their findings showed that the implicit informa-
tion, based on participants’ beliefs, had a stronger effect on 
the posterior probability estimate than the explicit infor-
mation. More directly related with the believability of the 
data, Cohen et al. (2017) showed that posterior probability 

Fig. 1   Example of icon array used in the Study 1 (see Table 1 for a 
description of these data)

1  In Tubau et al. (2019) the single-event probability was requested as 
two terms (i.e., “based on previous data, what is the probability that 
a person with the condition is actually ill: _ of _”), requiring a sin-
gle addition as for the typical frequency question (“of the individuals 
with the condition, how many are ill? _ of _”). Based on the data in 
Fig. 1, the response should be “15 of [15+5]” (or equivalent expres-
sion) in both cases.
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estimates were more accurate for believable rather than for 
unbelievable scenarios. While estimates based on believable 
scenarios did not differ from the ones produced by a group of 
participants who did not see the data, unbelievable scenarios 
led to largely erroneous estimates. Of note, in these previous 
studies, participants provided approximate estimates of the 
posterior probabilities (by either marking a point on a line 
or selecting the response among radio buttons), which might 
trigger the comprehension of the gist to a larger extent than 
the request of an exact estimate.

To more directly study the relationship between gist 
understanding and the influence of previous beliefs, in the 
present studies we compared conditions that may foster this 
level of comprehension (nonnumerical representations of 
either the data, or the response) with conditions that may 
foster more verbatim-based processing (text descriptions of 
numerical data and/or requests of exact numerical estimates).

Nonnumerical representations of proportions

Differing from ratios expressed with natural numbers, non-
symbolic ratios, as the ones represented in icon arrays or 
in continuous lines, foster “perceptual intuitions”; that is, 
the intuitive comprehension of part-to-whole or part-to-part 
relations that adults share with infants and other nonhu-
man animals (Matthews & Ellis, 2018). In some conditions, 
intuitive understanding of non-numeric ratios may be more 
accurate than the comprehension of corresponding numeri-
cal ones (Matthews & Ellis, 2018). This is coherent with the 
observed benefit of icons, compared with numerical formats, 
for Bayesian reasoning (e.g., Brase, 2009, 2014; Galesic 
et al., 2009; Garcia-Retamero & Hoffrage, 2013; Garcia-
Retamero et al., 2015; Sirota et al., 2014, Exp 2; Tubau et al., 
2019). This benefit has been related to the proposal that icons 
facilitate proportional reasoning through the intuitive visu-
alization of the gist of the ratio (Brust-Renck et al., 2013; 
Reyna, 2008; Stone et al., 2018), being considered closer 
to the type of information to which the human minds have 
been adapted (Brase, 2009, 2014). Hence, we expected to 
replicate the observed benefit of icons on the accuracy of 
posterior probability estimates. Moreover, by enhancing a 
gist comprehension of the data, we also expected to observe 
a stronger influence of previous beliefs in estimates based on 
icons than in those based on textual presentations.

Similarly, previous evidence suggests that nonnumerical 
estimates, such as the ones expressed as marks on continu-
ous lines, are useful to either assess or foster gist compre-
hension of proportions in mathematical problem solving 
(Ahl et al., 1992; Dixon & Moore, 1996). Specifically, in 
the Bayesian task with text presentations, the requirement to 
make a single mark on a line might promote the integration 
of the different pieces of numerical information and, hence, 
fewer errors due to superficial processing would be expected. 

Therefore, in both iconic and text formats, the requests of 
nonnumerical estimates would foster a gist understanding 
of the data and, consequently, a stronger influence of previ-
ous beliefs than the requests of numerical estimates. These 
hypotheses were tested in the following studies.

Study 1

We created two Bayesian problems related to conditions 
commonly considered to prevent or facilitate catching a 
cold. For half of the participants the data were believable, 
while for the other half they were unbelievable. Data were 
presented either as ratios of natural frequencies described in 
the text or as icon arrays, and participants were required to 
estimate the posterior probability both nonnumerically and 
numerically. As outlined above, we expected to observe a 
significant belief effect for nonnumerical estimates in either 
format. We also expected to observe stronger influence of 
previous beliefs on numerical estimates based on icons, com-
pared with those based on natural frequencies presented in 
text. We requested single-event probabilities (percentages), 
both nonnumerically (in a continuous line) and numerically 
(as a percentage). It has been observed that Bayesian infer-
ences based on described frequencies are much less accurate 
when they are requested as single-event probabilities rather 
than as frequencies in set and subset (Cosmides & Tooby, 
1996; Tubau et al., 2019). This effect has been attributed 
to a difficulty in understanding the concept of single-event 
probability (Cosmides & Tooby, 1996). Nevertheless, Tubau 
et al. (2019) showed that single-event probability estimates 
based on text formats were mostly correct when the required 
set-subset relation aligned with the described ones (dif-
fering from the Bayesian inference, the critical numbers 
had the same subset role in both the description and the 
response2). By contrast, single-event probability estimates 
based on iconic format were mostly correct, regardless the 
type of question (Tubau et al., 2019). The dependency of 
the text format on the question-text alignment points to the 
involvement of superficial problem-solving strategies (i.e., 
direct translation; Lewis & Mayer, 1987). However, if the 
request of a nonnumerical estimate diminished the reliance 
on superficial processing, it could increase the accuracy of 
the probability estimates based on text presentations as well.

2  For example, in Table 1 (posterior 75), the numbers quantifying the 
subsets (15 and 5) are aligned with “the probability that an individ-
ual sleep with the window open” (probability of the datum) because 
they can keep the subset role ([15+5] of 100). By contrast, these 
numbers are misaligned with “the probability that an individual who 
sleeps with the window open will catch a cold” (posterior probability) 
because they must change the relational role from subset to reference 
class (15 of [15+5]; see also Johnson & Tubau, 2017; Tubau, 2022).



1822	 Memory & Cognition (2023) 51:1819–1835

1 3

Method

Participants and design

Three hundred forty-three undergraduates (mean age = 
22.5 years; 47 males) participated in the experiment. One 
hundred seventy-nine received the data as ratios of natural 
frequencies described in a text (NF; see Table 1). The rest 
(164) received the same data through icon arrays (IA; see 
an example in Fig. 1). In each format, some participants 
received believable data (93 in NF; 78 in IA) and for the rest, 
the data were unbelievable (86 in NF; 86 in IA). Participants 
were randomly assigned to one of these groups.

Questionnaire and procedure

Problems were presented through an online questionnaire 
(Qualtrics XM). First, we assessed previous beliefs by 
requesting participants to estimate (1) the prior probability 
of catching a cold for people at their age, and (2) two condi-
tional probabilities: (2a) the probability of catching a cold 
if sleeping with the window open and (2b) the probability 
of catching a cold if eating oranges every day. Estimates 
had to be reported by placing the cursor on a line with two 
endpoints “definitely not” (on the left), and “totally sure” 
(on the right) and a middle point (“as likely as not”). The 
position of their marks was numerically coded from 0 to 100, 
but numbers were not displayed.

Second, two Bayesian problems related to the conditions 
assessed in the previous beliefs’ requests were presented to 
each participant in the same format (icons or natural fre-
quencies in text format). The posterior probabilities were 

25% for one problem and 75% for the other to obtain sym-
metrical preventive and generative conditions with respect 
to the prior (always 50%). However, numbers and scenarios 
were crossed so that, for half of the participants, the sce-
narios were believable while, for the other half, they were 
unbelievable (see Table 1). For each problem, participants 
were requested to estimate the corresponding posterior prob-
ability both in the line and numerically, as a percentage. 
Questions were the same for both iconic and text presenta-
tions (see an example of problem in the iconic format in the 
Appendix). The order of presentation of the problems was 
counterbalanced. Participants were also assessed on other 
cognitive abilities, as a part of a larger project that will not 
be discussed here.

Ethics statement

The procedure was approved by the University of Barce-
lona’s Bioethics Commission. Participants were free to join 
in the experiment and provided written consent for the use 
of their data for research purposes. They were debriefed in 
a subsequent session.

Data analyses

First, participants who reported inconsistent previous 
beliefs with our believable scenarios (P(cold|window open) 
<= P(cold) and P(cold|orange everyday) >= P(cold)) were 
eliminated from the analyses. Second, to study the effects 
of the different independent variables on the accuracy of the 
posterior probability proposed to each problem, we fitted 
binomial generalized linear mixed effects models (using the 

Table 1   Problems presented in the  text format (natural frequency) in Study 1

Participants received both posterior 25 and 75 scenarios, being the data were either believable or unbelievable (see the appendix for an example 
in the iconic format).

Believable Unbelievable

Posterior 25 According to a recent study, 50 out of every 100 people 
catch a cold in winter. Of the people who catch a cold, 10 
eat oranges every day. Of the 50 people who do not catch a 
cold, 30 also eat oranges every day.

According to a recent study, 50 out of every 
100 people catch a cold in winter. Of the 
people who catch a cold 10 sleep with the 
window open. Of the 50 people who do not 
catch a cold, 30 also sleep with the window 
open.

Posterior 75 According to a recent study, 50 out of every 100 people 
catch a cold in winter. Of the people who catch a cold, 15 
sleep with the window open. Of the 50 people who do not 
catch a cold, 5 also sleep with the window open.

According to a recent study, 50 out of every 
100 people catch a cold in winter. Of the 
people who catch a cold, 15 eat oranges 
every day. Of the 50 people who do not 
catch a cold, 5 also eat oranges every day.

Nonnumerical estimate request Based on these data, to what extent will a person who / eats oranges every day/sleeps with the window 
open/catch a cold?def. not                                     as likely as not                                        totally sure

Numerical estimate request More concretely, according to the data presented above, what is the probability that a person who / eats 
oranges every day / sleeps with the window open / will actually catch a cold? (%)
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R lme4 package), with posterior (25 or 75) as the within-
participant variable, and Format and Believability as the 
between-participants factors, with the participants as random 
effects. Two measures of accuracy were considered: exact 
correct (plus an estimate error for nonnumerical estimates) 
and approximate correct (see below). Finally, we used fac-
torial ANOVAS to study the effects of the abovementioned 
factors on the distance between the estimates proposed to 
each problem, and chi-squared and t tests to study within-
participants differences between nonnumerical and numeri-
cal estimates.

Results

Previous beliefs

Only four participants in each format condition showed incon-
sistent beliefs and were eliminated from the analyses. For the 
belief-consistent participants, the means of the estimates were 

55% for P(cold), 79% for P(cold|window open) and 42% for 
P(cold|orange everyday). Differences between these means 
were all significant (ps < .001).

Nonnumerical posterior probability estimates

Figure 2 shows the histograms of the numbers corresponding 
to the nonnumerical estimates proposed to each problem. As 
introduced, these data were analyzed based on two accuracy 
criteria: (1) the percentage of line marks in the actual poste-
rior ±3 interval (this corresponds to the average estimate error 
for the 0–100 line observed in a sample of the same popu-
lation (Núñez-Peña et al., 2019), and (2) the percentage of 
line marks in the correct direction (estimate of posterior 25 
< 40 and estimate of posterior 75 > 60). This second crite-
rion was created as a measure of intuitive comprehension of 
the relation between the prior (always 50%) and the posterior. 
Regarding the first criterion, the best model showed a single 
significant effect of posterior (loglikelihood ratio with and 
without this factor: −325/−328; AIC ratio: 656/660; χ2(1) = 
6.07, p = .014; see Table S1-A). The percentage of estimates 
in the actual posterior ±3 interval was higher for the posterior 
25 than for the posterior 75 (23% vs. 16%; see also Table 2-
A). Regarding the second criterion, the best model revealed 
that all the main effects and two interactions: Posterior × 
Format and Posterior × Believability were significant (log-
likelihood ratio between models with and without interactive 
effects: −396/−400, AIC: 805/810; χ2(2) = 8.39, p = .015; 
see Table S1-B). There were more nonnumerical estimates 
in the correct direction for IA than for NF (74% vs. 51%), 
for believable rather than unbelievable scenarios (this differ-
ence was significant only for the posterior 75: 63% vs. 41% for 
believable vs. unbelievable scenarios) and, in general, for the 
posterior 25 rather than for the posterior 75 (this difference 
being larger for NF: 65% vs. 37% than for IA: 79% vs. 69%; 
see also Table 2-B).

Numerical posterior probability estimates

Figure 3 shows the histograms corresponding to the numerical 
estimates. These data were also analyzed based on two accu-
racy criteria: (1) percentage of exact correct responses (either 

Fig. 2   Histograms of the nonnumerical estimates in Study 1. Dashed 
vertical lines represent the means

Table 2   Percentages of correct nonnumerical estimates in Study 1 (frequencies are shown inside parentheses)

Believable Unbelievable

A. Actual posterior ±3 25 75 25 75
   Icon Array 28 (22 of 78) 17 (13 of 78) 23 (19 of 82) 20 (16 of 82)
   Natural Freq. 18 (16 of 91) 15 (14 of 91) 24 (20 of 84) 12 (10 of 84)

B. Correct direct. 25 75 25 75
   Icon Array 81 (63 of 78) 81 (63 of 78) 78 (47 of 82) 57 (36 of 82)
   Natural Freq. 70 (64 of 91) 47 (43 of 91) 60 (50 of 84) 26 (22 of 84)



1824	 Memory & Cognition (2023) 51:1819–1835

1 3

25 or 75) and (2) percentage of estimates in the correct direc-
tion. For the first criterion, the best model showed significant 
effects of posterior, format and a marginal interaction of these 
factors (loglikelihood ratio between models with and without 
interaction −291/−293; AIC ratio: 592/593; χ2(1) = 3.40, p 
= .065; see Table S2-A). There were more exact correct esti-
mates for IA than for NF (48% vs. 9%), and for the posterior 
25 than for the posterior 75 in the case of IA (53% vs. 42%; for 
NF this percentage was 9% in each posterior; see also Table 3-
A). For the second criterion, the best model showed that all 
the main effects and the interaction Posterior × Format were 
significant (loglikelihood ratio between models with and with-
out the interaction: −376/−379; AIC ratio: 763/768; χ2(1) = 
6.99, p = .008; see Table S2-B). There were more numerical 
estimates in the correct direction for IA than for NF (71% vs. 
38%), for believable rather than for unbelievable scenarios 
(59% vs. 49%), and for the posterior 25 than for the posterior 
75 (this difference being larger for NF: 60% vs. 17% than for 
IA: 82% vs. 61%; see also Table 3-B).

Distances between estimates

To assess the accuracy of the perception of the distance 
between both posterior probabilities, we analyzed the extent 
to which the distance between the estimates corresponded 
to the actual distance (50). To this end, we calculated, for 
each participant and for each type of estimate, a distance 
score (posterior 75 estimate − posterior 25 estimate). For 
the distances between the nonnumerical estimates, the facto-
rial ANOVA showed significant effects of format, F(1, 333) 
= 48.04, p < .001, η2 =.12, and believability, F(1, 333) = 
19.88, p < .001, η2 =.06. Distances were closer to the actual 
one for IA than for NF (means: 39 vs. 15), and for believ-
able rather than for unbelievable data (means 34 vs. 19). For 
the distances between the numerical estimates, the factorial 
ANOVA also showed significant effects of format, F(1, 333) 
= 71.69, p < .001, η2 = .17, and believability, F(1, 333) = 
4.42, p = .036, η2 = .01. Moreover, the Format × Believabil-
ity interaction was significant, F(1, 333) = 7.14, p = .008, 
η2 = .02. Believability was significant for IA (means: 39 vs. 
23 for believable vs. unbelievable scenarios), F(1, 158) = 
11.41, p = .001, η2 = .07), but not for NF (F < 1). As shown 
in both Fig. 3 and Table 4, distances between numerical 
estimates based on NF were highly inaccurate, regardless 
of the believability of the data.

Comparisons between nonnumerical and numerical 
estimates

For NF, the percentage of nonnumerical estimates in the 
actual posterior ±3 interval was larger than the percentage 
of exact correct numerical estimates (18% vs. 9%; McNemar 
χ2(3) = 20.33, p < .001, Cohen’s g = .31. The opposite 
was true for IA (22% vs. 48%; McNemar χ2(3) = 45, p < 
.001, Cohen’s g = .32. The percentage of estimates in the 
correct direction based on NF was still significantly higher 
for nonnumerical rather than numerical estimates (51% vs. 
39%; McNemar χ2(3) = 23.2, p < .001, Cohen’s g = .22. 
Nevertheless, for IA, it was similar for both estimates (74% 
vs. 71%). Finally, for believable scenarios, the distances 
between estimates (estimate of posterior 75 – estimate of 

Fig. 3   Histograms of the numerical estimates in Study 1. Dashed ver-
tical lines represent the means

Table 3   Percentages of correct numerical estimates in Study 1 (frequencies are shown inside parentheses)

Believable Unbelievable

A. Exact correct 25 75 25 75
   Icon Array 53 (41 of 78) 47 (37 of 78) 54 (44 of 82) 38 (31 of 82)
   Natural Freq. 9 (8 of 91) 10 (9 of 91) 8 (7 of 84) 8 (7 of 84)

B. Correct direct. 25 75 25 75
   Icon Array 88 (69 of 78) 69 (54 of 78) 76 (62 of 82) 52 (43 of 82)
   Natural Freq. 60 (55 of 91) 21 (19 of 91) 60 (50 of 84) 13 (11 of 84)
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posterior 25) were, on average, closer to the actual distance 
(50) when the estimates were reported on the line than as 
numerical percentages (means: 41 vs. 24 for nonnumerical 
vs. numerical estimates; see also Table 4).

Discussion

Overall, results of Study 1 confirmed the observed benefit 
of icons, compared with text presentations, for Bayesian 
reasoning (e.g., Brase, 2009, 2014; Galesic et al., 2009; 
Garcia-Retamero & Hoffrage, 2013). Furthermore, results 
confirmed the hypothesis that nonnumerical estimates would 
foster belief-sensitive representations of the data. In each 
format, nonnumerical estimates were more likely in the 
correct direction for believable rather than for unbelievable 
scenarios. The believability of the data also affected the per-
centage of numerical estimates in the correct direction and, 
only for icons, the accuracy of the distance between those 
estimates. This supports the hypothesis that numerical esti-
mates based on icons would be more influenced by previous 
beliefs than those based on text. However, accurate numeri-
cal estimates in the text format were scarce, even consider-
ing the correct direction criterion (see Table S4), suggesting 
a difficulty at both understanding the gist and performing 
the exact calculation. It might be the case that, by making 
the calculation easier, both the comprehension of the gist 
and exact calculation would be facilitated. In this case, the 
belief effect might be observed in the numerical estimates 
based on text as well. To test this hypothesis, numbers were 
changed in Study 2.

Study 2

In addition to try to replicate previous findings, here we 
tested the hypothesis that numbers affording fraction reduc-
tion by 10 (30/40 instead of 15/20) would facilitate the cal-
culation of the posterior 75. Such an easier calculation could 
also enhance comprehending the gist of the data if the num-
bers could be related to familiar ratios (i.e., 3/4 facilitates 
understanding that the posterior is larger than 1/2). If this 
were the case, numerical estimates would be more accurate 

than in Study 1, particularly for believable scenarios. We 
also changed “eating oranges” by “taking vitamins” as an 
attempt to create a preventive condition closer to the poste-
rior 25 believable scenario. Finally, we replaced the emoti-
cons used in the previous study by neutral circles (see an 
example in the Appendix) to eliminate the possibility that 
the format effect was due to differences in the attentional 
engagement to the task (Mack et al., 2002).

Method

Participants and design

Two hundred sixty-five undergraduates (mean age = 22.5 
years; 50 males) participated in the experiment. One hun-
dred twenty-six received the data as ratios of natural fre-
quencies (NF; see Appendix). The rest (139) received the 
same data through icon arrays (IA). In each format, some 
participants received believable data (59 in NF; 73 in IA) 
and for the rest the data were unbelievable (67 in NF; 66 in 
IA). Participants were randomly assigned to one of these 
groups.

Questionnaire and procedure

The questionnaire was the same as for Study 1 with a few dif-
ferences. The condition “eat oranges” was replaced by “take 
vitamins” as a potentially stronger preventive condition. To 
facilitate fraction reduction, posterior 75 scenarios changed 
numbers (30/40 instead of 15/20). To avoid repetitions across 
problems, posterior 25 scenarios changed numbers as well 
(5/20 instead of 10/40). Finally, neutral circles instead of 
emoticons were used as icons (see an example in the Appen-
dix). The rest of the procedure was as for the previous study.

Ethics statement

The procedure was approved by the University of Barce-
lona’s Bioethics Commission. Participants were free to join 
in the experiment and provided written consent for the use 
of their data for research purposes. They were debriefed in 
a subsequent session.

Table 4   Means of the distance (estimate of posterior 75 − estimate of posterior 25) and standard deviation (SD) for both nonnumerical and 
numerical estimates in Study 1

***p < .001

Icon Arrays Natural Frequencies

Believable Unbelievable Believable Unbelievable

Nonnumerical 49.4 (29) 28.6 (37) 20.9 (27) 8.9 (35)
Numerical 39 (26) 23.4 (32) 5.3 (26) 6.1 (29)
t.test t(77) = 3.16, d = .36*** n.s. t(90) = 4.93, d = .52*** n.s.
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Results

The same analyses as for the Study 1 were performed.

Previous beliefs

Only five participants (three in IA and two in NF) showed 
inconsistent estimates with both believable scenarios. For 
belief-consistent participants, the means of these estimates 
were 53% for P(cold), 78% for P(cold|window open) and 
38% for P(cold|orange everyday). Differences between these 
means were all significant (ps < .001).

Nonnumerical posterior probability estimates

Figure 4 shows the histograms of the nonnumerical esti-
mates. The accuracy of these estimates was analyzed accord-
ing to the same criteria as in the Study 1. Regarding the 

exact ±3 accuracy criterion, the best generalized linear 
mixed effects model revealed a marginal significant effect 
of the posterior (loglikelihood ratio with and without this 
factor: −288/−290; AIC ratio: 582/584; χ2(1) = 3.48, p = 
.064; see Table S3-A). Estimates tended to be more accu-
rate for the posterior 75 than for the posterior 25 (28% vs. 
22%; see also Table 5-A). Regarding the correct direction 
criterion, the model revealed significant effects of format, 
believability, and Posterior × Believability (loglikelihood 
ratio between models with and without the interactive effect: 
−278/−293; AIC ratio: 568/596; χ2(2) = 29.78, p < .001; 
see Table S3-B). The percentage of nonnumerical estimates 
in the correct direction was higher for IA than for NF (79% 
vs. 61%), and for believable rather than for unbelievable sce-
narios (this difference was significant only for the posterior 
75: 87% vs. 48%). For believable scenarios, there were more 
nonnumerical estimates in the correct direction for the pos-
terior 75 than for the posterior 25 (87% vs. 72% for posterior 
75 vs. 25). For the unbelievable ones, the opposite was true 
(48% vs. 74% for posterior 75 vs. 25; see also Table 5-B).

Numerical posterior probability estimates

Figure  5 shows the histograms corresponding to the 
numerical estimates. For the exact accuracy criterion, the 
best model revealed significant effects of posterior, for-
mat, and believability (loglikelihood ratio with and with-
out believability: −255/−257; AIC ratio: 520/522; χ2(1) 
= 4.89, p = .027; see Table S4-A). Estimates were more 
accurate for IA than for NF (61% vs. 18%), for believable 
rather than for unbelievable scenarios (47% vs. 34%), and 
for the posterior 25 than for the posterior 75 (44% vs. 
37%; see also Table 6-A). For the correct direction crite-
rion, in addition to the same main effects, the best model 
also showed significant interactions: Posterior × Format, 
and Posterior × Believability (loglikelihood ratio with 
and without interactive effects: −266/−272; AIC ratio: 
547/555; χ2(4) = 12.13, p = .002; see Table S4-B). The 
percentage of numerical estimates in the correct direction 
was higher for IA than for NF (79% vs. 52%), for believ-
able rather than for unbelievable scenarios (this difference 

Fig. 4   Histograms of the nonnumerical estimates in Study 2. Dashed 
vertical lines represent the means

Table 5   Percentages of correct nonnumerical estimates in Study 2 (frequencies are shown inside parentheses)

Believable Unbelievable

A. Actual posterior+/-3 25 75 25 75
   Icon Array 27 (20 of 73) 33 (24 of 73) 16 (10 of 63) 30 (19 of 63)
   Natural Freq. 21 (12 of 57) 32 (18 of 57) 22 (15 of 67) 19 (13 of 67)

B. Correct direction 25 75 25 75
   Icon Array 84 (61 of 73) 92 (67 of 73) 79 (50 of 63) 57 (36 of 63)
   Natural Freq. 60 (34 of 57) 82 (47 of 57) 67 (45 of 67) 37 (25 of 67)
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was significant only for the posterior 75: 61% vs. 39%), 
and for the posterior 25 rather than for the posterior 75 
(this difference was larger for NF [76% vs. 28%] than for 
IA [87% vs. 78%]; see also Table 6-B).

Distances between estimates

The factorial ANOVAs on the distances between either the 
nonnumerical or numerical estimates (estimate posterior 
75 − estimate posterior 25) showed significant effects of 
format, F(1, 258) = 22.78, p < .001, η2 = .08, and F(1, 258) 
= 9.51, p = .002, η2 = .04, respectively, and believability, 
F(1, 258) = 30.38, p < .001, η2 = .10, and F(1, 258) = 7.21, 
p = .008, η2 = .02, respectively, but no interaction (Fs < 
1). Distances were closer to the actual distance (50) for IA 
than for NF (means for nonnumerical estimates: 42 vs. 26; 

means for numerical estimates: 35 vs. 26), and for believable 
rather than unbelievable scenarios (means for nonnumerical 
estimates: 44 vs. 25; means for numerical estimates: 35 vs. 
26; see also Table 7).

Comparisons between nonnumerical and numerical 
estimates

Results replicated the ones found in Study 1. For NF, the 
percentage of nonnumerical estimates in the posterior ±3 
interval was larger than the percentage of exact correct 
numerical estimates (24% vs. 17%; McNemar χ2(3) = 12, 
p = .007, Cohen’s g = .24. For IA, the opposite was true 
(27% vs. 62%; McNemar χ2(3) = 54, p < .001, Cohen’s g 
= .38. Regarding the number of estimates in the correct 
direction, the difference between estimates disappeared for 
IA (76% for each type of estimate) but it was still signifi-
cant for NF (61% vs. 50% for nonnumerical vs. numeri-
cal estimates; McNemar χ2(1) = 5.8, p = .02, Cohen’s 
g = .14. Finally, for believable scenarios, the distances 
between the estimates (estimate of posterior 75 − esti-
mate of posterior 25) were also significantly closer to the 
actual distance when the estimates were provided on the 
line than as numerical percentages (means: 44 vs. 35; see 
also Table 7).

Comparisons between Studies 1 and 2

For IA, results of Study 2 showed more exact correct 
numerical estimates than in Study 1 for the posterior 75, 
either believable or unbelievable (overall percentages of 
exact correct responses were 43% vs. 58% for Study 1 vs. 2; 
χ2(1)=7.34, p = .007, Φ = .16), and for the believable sce-
nario with the posterior 25 (52% vs. 71% for Study 1 vs. 2, 
χ2(1) = 5.6, p = .02, Φ = .19). For NF, differences between 
studies were significant only for the believable scenarios, 

Fig. 5   Histograms of the numerical estimates in Study 2. Dashed ver-
tical lines represent the means

Table 6   Percentages of correct numerical estimates in Study 2 (frequencies are shown inside parentheses)

a Of these “correct direction” estimates, twelve were the value “10”, consequence of calculating the hit rate (“5 of 50”) for 100 (as some of the 
participants explained in a final questionnaire), six were the literal “5”, and seven were the value “30”, which could be derived from the false 
alarm rate (“15 of 50” to “30 of 100”). These superficial errors were less likely for the believable scenario of NF or for IA. Common errors for 
the posterior 75 estimates for NF were also the hit rate (“60 out of 100”) and the literal “30” but these did not count as correct direction esti-
mates (see also Fig. 5).

Believable Unbelievable

A. Exact correct 25 75 25 75
   Icon Array 71 (52 of 73) 62 (45 of 73) 57 (36 of 63) 54 (34 of 63)
   Natural Freq. 28 (16 of 57) 23 (13 of 57) 15 (10 of 67) 7 (5 of 67)

B. Correct Direct. 25 75 25 75
   Icon Array 92 (67 of 73) 77 (56 of 73) 83 (52 of 63) 62 (39 of 63)
   Natural Freq. 74 (42 of 57) 46 (26 of 57) 78 (52 of 67)a 13 (9 of 67)
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either with the posterior 75 (10% vs. 22% for Study 1 vs. 2; 
χ2(1) = 4.33, p = .04, Φ = .17) or with the posterior 25 (9% 
vs. 27% for Study 1 vs. 2; χ2(1) = 7.8, p = .005, Φ = .23).

Discussion

Results of Study 2 replicated the main findings of Study 1. 
Iconic presentations and believable data produced more accu-
rate posterior probability estimates than textual presentations 
and unbelievable data. Interestingly, regarding the likelihood 
of nonnumerical estimates in the correct direction, the effect 
of the posterior reversed in believable scenarios (more accu-
rate estimates for the posterior 75 than for the posterior 25). 
This, together with the main belief effect on the accuracy 
of the numerical estimates, confirms that numbers pointing 
to familiar ratios such as 3/4 enhanced gist, belief-sensitive 
comprehension. Nevertheless, numerical estimates were still 
less accurate for the posterior 75 than for the posterior 25, 
particularly for the text format. Of note, the numerator of the 
hit rate described in the posterior 75 scenarios (“30”) was 
still relatively small, which could explain the bias towards 
lower estimates. Indeed, this value was one of the frequent 
responses for the posterior 75 in NF (see Fig. 5). In sum, 
compared with Study 1, estimates were in general more accu-
rate in the present study, but such improvement seemed to 
depend on the format and on the believability of the data.

Study 3

Studies 1 and 2 consistently showed that the belief effect 
was stronger for nonnumerical rather than numerical prob-
ability estimates. Still, the belief effect was significant on 
the percentage of numerical estimates in the correct direc-
tion, particularly when the data were presented through 
icons (distances between estimates were closer to the 
actual distance). Given that both numerical and nonnumer-
ical requests required to infer a single-event probability, 
it might be the case that participants answered both based 
on the gist of the posterior ratio, producing such belief-
sensitive estimates. That is, the request of either a single 

mark on a line or a single percentage may have promoted 
the integration of the different pieces of numerical infor-
mation, facilitating a gist, belief-sensitive understanding 
of the data. In contrast, numerical estimates in frequency 
format (e.g., “among the people sleeping with the window 
open, how many catch a cold? __ of __”; see also the 
Appendix) might promote focusing more on the critical 
numbers (“people sleeping with the window open” and, 
among them, “people catching a cold”), rather than on the 
ratio. In this case, participants would mostly rely on verba-
tim exact processing and, therefore, a much weaker belief 
effect on the accuracy of the numerical estimates would be 
expected. The present study aimed to test this hypothesis. 
As previously shown for NF formats (e.g., Cosmides & 
Tooby, 1996), we also expected more accurate numerical 
estimates for frequency rather than single-event probabil-
ity requests of the posterior ratio.

Method

Participants and design

One hundred ninety-one undergraduates (mean age = 21.8 
years; 46 males) participated in the experiment. Ninety-five 
received the data as ratios of natural frequencies (NF; see 
Appendix). The rest (96) received the same data through 
icon arrays (IA). In each format, some participants received 
believable data (49 in NF; 48 in IA) and for the rest the data 
were unbelievable (46 in NF; 48 in IA). Participants were 
randomly assigned to one of these groups.

Questionnaire and procedure

The questionnaire was the same as for Study 2, except for 
the request of the numerical posterior probability. After the 
nonnumerical probability request, the following question 
was included: “More concretely, among the people who /
sleep with the window open/take vitamins/, how many will 
catch a cold?” (_ of _ ; see also the Appendix). The rest of 
the procedure was as for the previous studies.

Table 7   Means of the distance (estimate of posterior 75 − estimate of posterior 25) and standard deviation (SD) in Study 2

***p < .001, *p < .05

Icon Arrays Natural Frequencies

Believable Unbelievable Believable Unbelievable

Nonnumerical 51.18 (21) 31.94 (34) 35.89 (21) 17.72 (31)
Numerical 39.99 (23) 30.16 (31) 29.49 (23) 22.30 (24)
t.test t(72) = 3.75***, d = .44 n.s. t(56) = 2.31*, d = .31 n.s.
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Ethics statement

The procedure was approved by the University of Barce-
lona’s Bioethics Commission. Participants were free to join 
in the experiment and provided written consent for the use 
of their data for research purposes. They were debriefed in 
a subsequent session.

Results

The same analyses as for the previous studies were 
performed.

Previous beliefs

Only six participants (three in each format) showed incon-
sistent estimates with both believable scenarios. For belief-
consistent participants, the means of these estimates were 
67% for P(cold), 87% for P(cold|window open) and 45% for 

P(cold|orange everyday). Differences between these means 
were all significant (ps < .001).

Nonnumerical posterior probability estimates

Figure 6 shows the histograms of the nonnumerical esti-
mates. The accuracy of these estimates was analyzed accord-
ing to the same criteria as in the previous studies. Regard-
ing the actual posterior ±3 accuracy criterion, the best 
generalized linear mixed-effects model revealed significant 
effects of format and believability (loglikelihood ratio with 
and without believability: −223/−227; AIC ratio: 453/469; 
χ2(1) = 8.07, p = .005; see Table S5-A). Estimates based 
on IA were more accurate than those based on NF (36% 
vs. 26%). Estimates were also more accurate for believable 
rather than unbelievable scenarios (40% vs. 26%; see also 
Table 8-A). Regarding the correct direction criterion, the 
model revealed significant effects of posterior, format, and 
believability (loglikelihood ratio between models with and 
without believability: −158/−161; AIC ratio: 325/330; χ2(2) 

Fig. 6   Histograms of the nonnumerical estimates in Study 3. Dashed vertical lines represent the means

Table 8   Percentages of correct nonnumerical estimates in Study 3 (frequencies are shown inside parentheses)

Believable Unbelievable

A. Actual posterior +/-3 25 75 25 75
   Icon Array 50 (24 of 48) 48 (23 of 48) 31 (14 of 45) 27 (12 of 45)
   Natural Freq. 34 (16 of 47) 26 (12 of 47) 27 (12 of 45) 16 (7 of 45)

B. Correct Direct. 25 75 25 75
   Icon Array 100 (48 of 48) 96 (46 of 48) 84 (38 of 45) 78 (35 of 45)
   Natural Freq. 77 (36 of 47) 72 (34 of 47) 87 (39 of 45) 58 (26 of 45)
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= 6.16, p = .013; see Table S5-B). The percentage of non-
numerical estimates in the correct direction was higher for 
IA than for NF (90% vs. 74%), for believable rather than for 
unbelievable scenarios (86% vs. 77%), and for the posterior 
25 rather than the posterior 75 (87% vs. 76%; see Table 8-B).

Numerical posterior probability estimates

Figure 7 shows the histograms corresponding to the numeri-
cal estimates. For the exact accuracy criterion, the best 
model revealed significant effects of posterior and format 
(loglikelihood ratio with and without format: −205/−213; 
AIC ratio: 419/432; χ2(1) = 15.17, p < .001; see Table S6-
A). Estimates were more accurate for IA than for NF (78% 
vs. 56%), and for the posterior 25 than for the posterior 75 
(72% vs. 63%). Responses tended to be also more accu-
rate for believable rather than for unbelievable scenarios, 
but the difference was not significant (see Table 9-A). For 

the correct direction criterion, in addition to the same main 
effects, the best model also showed significant Posterior × 
Format (loglikelihood ratio with and without the interactive 
effect: −163/−168; AIC ratio: 336/345; χ2(1) = 10.62, p = 
.001; see Table S6-B). The percentage of numerical esti-
mates in the correct direction was higher for the posterior 
25 rather than for the posterior 75 (87% vs. 67%). For the 
posterior 25, the accuracy of the estimates did not differ 
between formats, but they did for the posterior 75 (percent-
age of estimates in the correct direction were 78% and 56% 
for IA and NF, respectively; see also Table 9-B).

Distances between estimates

The factorial ANOVA on the distances between the non-
numerical estimates (estimate posterior 75 − estimate pos-
terior 25) showed significant effects of format, F(1, 181) = 
11.74, p < .001, η2 = .06, believability, F(1, 181) = 4.99, 

Fig. 7   Histograms of the numerical estimates in Study 3. Dashed vertical lines represent the means

Table 9   Percentages of correct numerical estimates in Study 3 (frequencies are shown inside parentheses)

a Of these “correct direction” estimates, twelve were the value “10”, consequence of calculating the hit rate (“5 of 50”) for 100 (as some of the 
participants explained in a final questionnaire; see also Fig. 7)

Believable Unbelievable

A. Exact Correct 25 75 25 75
   Icon Array 88 (42 of 48) 75 (36 of 48) 78 (35 of 45) 71 (32 of 45)
   Natural Freq. 68 (32 of 47) 53 (25 of 47) 53 (24 of 45) 51 (23 of 45)

B. Correct Direct. 25 75 25 75
   Icon Array 92 (44 of 48) 77 (37 of 48) 84 (38 of 45) 78 (35 of 45)
   Natural Freq. 94 (44 of 47) 55 (26 of 47) 98 (44 of 45)a 56 (25 of 45)
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p = .07, η2 = .03, and a significant interaction, F(1, 181) = 
7.93, p = .005, η2 = .04. As shown in Table 10, the effect 
of format was significant only for believable scenarios, and 
the effect of believability was significant only for icons. For 
numerical estimates, the ANOVA on the distances reported 
no significant effect.

Comparisons between nonnumerical and numerical 
estimates

In both formats, the percentage of exact correct numerical 
estimates was larger than the percentage of nonnumerical 
estimates in the posterior +/-3 interval (IA: 78% vs. 39%; 
McNemar χ2(3) = 43.23, p<.001, Cohen’s g=.41; NF: 57% 
vs. 26%; McNemar χ2(3) = 35.44, p < .001, Cohen’s g = 
.39). Regarding the percentage of estimates in the correct 
direction, the difference between estimates was also signifi-
cant, although in this case, percentages were larger for non-
numerical rather than numerical estimates: IA: 83% vs. 79%; 
McNemar χ2(3) = 9.2, p = .026, Cohen’s g = .32; NF: 76% 
vs. 73%; McNemar χ2(3) = 7.8, p = .050, Cohen’s g = .16). 
Finally, only for the believable scenarios in iconic format, 
the distance between the estimates (estimate of posterior 
75 − estimate of posterior 25) was significantly closer to 
the actual distance when the estimates were provided on 
the line than as numerical percentages (means: 55 vs. 37; 
see Table 10).

Discussion

As expected, numerical estimates of the posterior ratio were 
more accurate when requested as frequencies in set and sub-
set (Study 3) than as single-event probabilities (Studies 1 and 
2). Differing from the previous studies, numerical estimates 
in either format were more accurate than the nonnumerical 
ones when the exact accuracy criterion was used. This find-
ing confirms that the frequency question promoted exact 
verbatim processing, regardless the believability of the data. 
However, for both formats, nonnumerical estimates were 
more likely in the correct direction than the numerical ones 

(for NF, this was the case in the three studies). That is, non-
numerical single-event probability requests seemed to have 
facilitated understanding the gist of the posterior ratio to a 
larger extent than the frequency questions. In line with this 
proposal, and as observed in Studies 1 and 2, nonnumeri-
cal estimates were more accurate for believable rather than 
unbelievable scenarios.

General discussion

The present research aimed to test the hypothesis that the 
influence of previous beliefs on Bayesian reasoning would 
mainly be observed in conditions fostering a gist compre-
hension of the data. Accordingly, we expected to observe 
stronger belief effect for iconic rather than for textual pres-
entations, and for nonnumerical rather than for numerical 
estimates. Here, we discuss the results concerning each of 
these predictions.

Presentation format and gist processing

Overall, results replicated the observed benefit of icons for 
Bayesian reasoning (e.g., Brase, 2009, 2014; Galesic et al., 
2009; Garcia-Retamero et al., 2015; Tubau et al., 2019). In 
the three studies, icons promoted more accurate estimates 
(either expressed nonnumerically or numerically) than natu-
ral frequencies in text format. Moreover, estimates based 
on icons were, overall, more affected by previous beliefs, 
being the distance between estimates closer to the actual 
distance (50) in believable scenarios. These findings are 
coherent with the role of icon arrays in helping to grasp the 
gist of the represented ratios (Brust-Renck et al., 2013; Stone 
et al., 2018; Tubau et al., 2019) and, as shown in the pre-
sent studies, in promoting belief-sensitive representations. 
Importantly, the benefit of icons for Bayesian reasoning 
might be due to the specific organization used in the present 
experiments, where the requested reference class is inside 
the frame (see Fig. 1). It has been shown that other organiza-
tions of icons are less effective (e.g., Witt & Dhami, 2022).

By contrast, replicating previous findings with prob-
ability or proportion requests (Cosmides & Tooby, 1996; 
Tubau et al., 2019; Weber et al., 2018), natural frequencies 

Table 10   Means of the distance (estimate of posterior 75 − estimate of posterior 25) and standard deviation (SD) in Study 3

***p < .001

Icon Arrays Natural Frequencies

Believable Unbelievable Believable Unbelievable

Nonnumerical 54.83 (16) 36.38 (34) 32.28 (24) 34.47 (23)
Numerical 36.65 (22) 31.82 (31) 36.51 (21) 40.16 (17)
t.test t(43) = 5.43 ***, d = .78 n.s. n.s. n.s.
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described in the text produced mostly inaccurate numeri-
cal percentages, supporting a more superficial processing 
of the data (further discussion on the limitations of textual 
presentations for Bayesian reasoning can be read in Tubau, 
2022). In Study 2, where the numbers facilitated the com-
prehension of the gist, the numerical estimates improved 
for the believable scenarios based on natural frequencies 
described in the text. Accordingly, although the accuracy of 
the numerical estimates was still low, these results suggest 
that Bayesian inferences based on numerical descriptions 
may also benefit from conditions fostering a gist under-
standing. Differing from single-event probability requests, 
posterior probabilities requested as frequencies (Study 3) 
promoted verbatim exact processing, increasing the number 
of correct estimates, and reducing the influence of previous 
beliefs in both formats.

Of note, comparisons between the Studies 1 and 2 suggest 
that, for the iconic presentation, numbers affording easier 
calculation (i.e., “30 of 40” instead of “15 of 20”) might 
have increased the likelihood of getting the correct response 
through either verbatim calculation or gist-based reasoning. 
This could explain the general increment in Study 2 of cor-
rect numerical responses in the iconic format3. However, 
differing from the iconic format, the accuracy of the numeri-
cal estimates based on the frequencies included in the text 
only improved for believable scenarios. This, together with 
the finding that exact correct numerical estimates were still 
scarce, suggests that numbers included in Study 2 facilitated 
the comprehension of the gist rather than exact calculation. 
Nevertheless, further research is needed to investigate the 
specific impact of different Bayesian reasoning strategies 
and their relationship with the complexity of the calculation 
and the presentation format.

Results of Study 2 also suggest that unbelievable data 
promoted superficial processing of the data rather than an 
adjustment of the estimate based on previous beliefs. This 
was the case particularly for the text presentation, where 
the most frequent erroneous responses were the hit rate 
and the base rate (see Fig. 5). This appears to be in contrast 
with the findings of Cohen et al. (2017), where unbeliev-
able data seemed to promote an adjustment of the estimates 
(estimates between the actual posteriors and the previous 
beliefs). However, it is unknown the extent to which some 
of the erroneous responses in Cohen et al. (2017) corre-
sponded to superficial errors as well. That is, superficial 

errors in unbelievable scenarios (e.g., selecting the hit rate 
or the base rate alone) could resemble responses towards 
the previous belief (incorrect direction), as found in the 
present studies for the posterior 75 (see Figs. 3 and 5). It 
might also be the case that unbelievable data promote more 
superficial reasoning in more difficult tasks (exact instead 
of approximate estimate as provided by the participants of 
Cohen et al.).

For the iconic format, results also suggest that unbe-
lievable data promoted a change in the strategy, but dif-
ferent from the text format (many of the errors seemed to 
be consequence of inverting the colors of the icon array). 
Overall, these findings are coherent with an initial evalu-
ation of the consistency or believability of the gist of the 
posterior. This process might be faster in conditions such as 
iconic presentations or, as found in other reasoning tasks, 
for more skilled participants (e.g., Bago & De Neys, 2019; 
Furlan et al., 2016; Raoelison et al., 2020). In the case of 
our problems, when the gist was believable, participants 
proceeded with the calculation. But if it was evaluated as 
unbelievable, some of them seemed to apply a different 
strategy. Future research could investigate these sugges-
tions in more detail.

The role of nonnumerical probability estimates

Based on the proposals that nonnumerical estimates foster 
intuitive or gist comprehension (Dixon & Moore, 1996; 
Mathews & Ellis, 2018), we expected that estimates on 
the line would be particularly affected by the believability 
of the data. Supporting this expectation, the percentage 
of nonnumerical estimates in the correct direction were, 
in each presentation format, higher for believable rather 
than for unbelievable scenarios. However, a weaker but 
significant belief effect was observed for the accuracy 
of numerical estimates expressed as single-event prob-
abilities as well, and this effect was modulated by format 
in Study 1 (the numerical estimates of the posterior 75 
were highly inaccurate for NF, regardless of the believ-
ability of the data). Cohen et al. (2017) also reported a 
significant belief effect for Bayesian problems in a text 
format, but the response choices (lines of radio buttons in 
5 % increments) were closer to the present nonnumerical 
rather than numerical requests. The fact that in the pre-
sent experiments the numerical estimates were reported 
after the nonnumerical ones might explain the general 
belief effect in either format. Also, as Study 2 suggested, 
the complexity of the calculation may also determine the 
extent to which the gist would be understood and, there-
fore, probability estimates would be affected by previous 
beliefs.

Importantly, these results confirmed the claim that non-
numerical representations of proportions may be, in some 

3  Study 2 also showed more exact correct numerical responses than 
Study 1 for the believable scenario with posterior 25 in each format. 
However, rather than due to easier calculation, this improvement 
might be related with the ratio bias phenomenon (Denes-Raj et  al., 
1995; Reyna & Brainerd, 2008). That is, smaller numerators (i.e., 
5/20 vs. 10/40), together with believable data, might have helped to 
intuitively understand that the probability was low.
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conditions, more accurate than corresponding numerical 
expressions (Ahl et al., 1992; Dixon & More, 1996; but 
see below). This was the case for the textual presentations 
of Studies 1 and 2, even when considering the estimates 
in the correct direction. That is, participants reading the 
natural frequencies demonstrated better gist understand-
ing of the posterior probability when nonnumerical rather 
than numerical single-event probability estimates were 
requested. This supports the hypothesis that requests of 
nonnumerical estimates reduce the tendency to rely on 
superficial-verbatim processing of the text, compared with 
the requests of numerical ones. At the same time, by fos-
tering a gist comprehension of the posterior probability, 
nonnumerical estimates might have helped to understand 
the impact of the condition, which has been also related 
to a more intuitive processing of the data (Tentori et al., 
2016).

In Study 3, the advantage of nonnumerical estimates 
over the numerical ones was true only regarding the cor-
rect direction criterion. Given that the frequency ques-
tions more explicitly referred to the numbers that had to 
be selected, they promoted a more verbatim exact pro-
cessing, increasing the number of exact correct responses. 
This is in line with findings using other tasks (e.g., Ten-
tori et al., 2016) where numerical estimates tend to be 
more accurate than the nonnumerical ones. Accordingly, 
the benefit of nonnumerical estimates over the numerical 
ones seems to depend on the format of the data (iconic 
or text), the type of response (single-event probability or 
frequency format), and on the accuracy criterion (exact 
or correct direction).

For the iconic format of the three studies, there were 
more exact correct numerical estimates than nonnumeri-
cal estimates in the actual posterior ±3 interval. How-
ever, the gist comprehension of the iconic data seemed 
to be independent from the question when requested as a 
single-event probability, as shown by the similar percent-
age of numerical and nonnumerical estimates in the cor-
rect direction in Studies 1 and 2 (as commented above, in 
Study 3, nonnumerical single-event probability estimates 
were more likely in the correct direction than the estimates 
expressed as frequencies in set and subset). This suggests 
that, as observed with the gist perception of visual images 
(e.g., Furtak et al., 2022), the perception of the ratio of 
colors occurred very fast, before the processing of the 
requests. Nevertheless, for the believable scenarios, the 
distance between the posterior estimates based on icons 
was, in the three studies, closer to the actual distance when 
the estimates were expressed nonnumerically rather than 
numerically. Therefore, nonnumerical probability requests 
could be helpful to improve the comprehension of the 
gist of the posterior probability in both text and iconic 
presentations.

Concluding remarks

Present findings support the proposal that iconic presenta-
tions promote a gist, belief-sensitive understanding of the 
quantitative relations. In three studies, Bayesian inferences 
were more accurate, and in some conditions more affected 
by the believability of the data, when the numerical infor-
mation could be visualized in arrays of icons rather than 
inferred from the text. Of note, this benefit was observed for 
posterior probability estimates expressed either as single-
event probabilities, or as frequencies of individuals. There-
fore, icons seem to specifically facilitate the comprehension 
of the posterior ratio beyond the counting of frequencies in 
set and subset. For text presentations, requesting nonnumeri-
cal estimates seemed also to enhance the comprehension of 
the gist of the data, reducing the tendency to rely on super-
ficial reasoning, particularly in the case of believable data. 
Although gist-based reasoning may have some costs due to 
stronger affective reactions than verbatim processing, gist 
comprehension may be necessary to detect belief-data incon-
sistencies, being a first step for changing previous beliefs 
if it were required. In this regard, promoting gist compre-
hension of the numerical data might be particularly critical 
when misinformation, prejudices, or wrong beliefs should 
be overcome.

Appendix

Note: Here is an example of the icon array used in Studies 2 
and 3. An example of the icon array used in Study 1 can be 
seen in Fig. 1 of the main text.

The following figure shows data from a recent study about 
the number of people who catch a cold in winter and the 
number of people who sleep with the window open.

Nonnumerical posterior probability request (in the three 
studies, both formats)
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Based on these data, to what extent will a person who 
sleeps with the window open catch a cold?

Numerical posterior probability request (Studies 1 and 
2, both formats)

More concretely, according to the data presented above, 
what is the probability that a person who sleeps with the 
window open will actually catch a cold? (%)

Numerical posterior probability request (Study 3, both 
formats)

More concretely, according to the data presented above, 
among the people who sleep with the window open, how 
many will actually catch a cold? (“ _of__”)
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