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Abstract
Randomization tests represent a class of significance tests to assess the statistical significance of treatment effects 
in randomized single-case experiments. Most applications of single-case randomization tests concern simple treat-
ment effects: immediate, abrupt, and permanent changes in the level of the outcome variable. However, researchers 
are confronted with delayed, gradual, and temporary treatment effects; in general, with “response functions” that are 
markedly different from single-step functions. We here introduce a general framework that allows specifying a test 
statistic for a randomization test based on predicted response functions that is sensitive to a wide variety of data pat-
terns beyond immediate and sustained changes in level: different latencies (degrees of delay) of effect, abrupt versus 
gradual effects, and different durations of the effect (permanent or temporary). There may be reasonable expectations 
regarding the kind of effect (abrupt or gradual), entailing a different focal data feature (e.g., level or slope). However, 
the exact amount of latency and the exact duration of a temporary effect may not be known a priori, justifying an 
exploratory approach studying the effect of specifying different latencies or delayed effects and different durations for 
temporary effects. We provide illustrations of the proposal with real data, and we present a user-friendly freely avail-
able web application implementing it.
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Introduction

Single-case experimental designs (SCEDs) are useful for 
obtaining scientific evidence regarding functional relations 
and informing professional practice in several fields such 
as education (Kennedy, 2005), special education (Horner 
et al., 2005), clinical psychological (Morley, 2018), behav-
ioral sciences (Ledford & Gast, 2018), rehabilitation (Tate 

& Perdices, 2019), and a variety of other applied settings 
(Kazdin, 2020, 2021).

The current text focuses on SCED data analysis and, 
more specifically, on one data analytical option: rand-
omization tests. In the following section, we first review 
several reasons why the data analysis of SCEDs is not a 
closed chapter, but a field requiring further research. We 
also provide a justification for the focus on the paper. 
Second, we discuss in more detail some features of rand-
omizations tests relevant for the current proposal. Third, 
we review the prototypical patterns of effect that are to 
be represented by the effect sizes. Fourth, we refer to 
possible variations in the operational definitions of: (a) 
latency in delayed effects; and (b) the abrupt or gradual 
nature of the effect; and (c) the duration of the effect for 
temporary effects. Fifth, we present the proposed defini-
tion of the test statistic. Finally, we illustrate the use of 
our proposals in the context of real datasets exhibiting 
different patterns.
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Rationale

Lack of consensus regarding data analysis

For analyzing data collected using SCEDs, several quan-
titative approaches exist and they have already been dis-
cussed extensively in the methodological literature (see 
Busse et al., 2015; Chen et al., 2015; Gage & Lewis, 2013; 
Manolov & Solanas, 2018; Parker et al., 2011). Similarly, 
the main advantages and disadvantages of nonquantitative 
visual approaches have also been presented multiple times 
(Lane & Gast, 2014; Ledford et al., 2018, 2019; Maggin 
et al., 2018). However, even in the presence of institutional 
guidelines regarding quantification of effects, there is no 
consensus regarding the optimal approach to data analysis. 
For instance, the What Works Clearinghouse (2022) recom-
mends the design-comparable effect size. The original ver-
sion of the design-comparable effect size by Hedges et al. 
(2012, 2013) uses moment estimation and assumes lack of 
trend, whereas the version suggested as preferential by the 
What Works Clearinghouse (2022) is the one by Pustejovsky 
et al. (2014), using restricted maximum likelihood estimation 
and allowing for trends. The Hedges et al. version has been 
criticized for disregarding trend, and both version can be 
criticized of requiring necessarily several participants to be 
computed, have been explicitly discussed (Kratochwill et al., 
2021; Maggin et al., 2022). In the context of other methodo-
logical guidelines (e.g., Ganz & Ayres, 2018; Maggin et al., 
2014; Tate et al., 2013; Wendt & Miller, 2012) not imposing 
a single best data analytical option, a common suggestion 
is to combine visual and statistical analysis and to provide 
justification for the chosen approach (Fisher et al., 2003; Har-
rington & Velicer, 2015; Houle, 2009; Kazdin, 2020).

Limitations of existing approaches

All data analytical techniques have limitations. For 
instance, nonoverlap indices have a ceiling effect, which 
entails that they may not distinguish between different 
magnitudes of intervention effect once the ceiling has been 
reached (Carter, 2013). Some regression-based approaches 
also do not discriminate well between different magnitudes 
of effect (Parker & Brossart, 2003). As another example, 
the between-case standardized mean difference (Hedges 
et al., 2012, 2013) and the log-response ratio (Pustejovsky, 
2018) assume a lack of trend. The within-case standardized 
mean difference is affected by potentially irrelevant proce-
dural details of the study’s design (Pustejovsky, 2019), and 
the interpretation of its values may depend on whether the 
aim is to increase or reduce the target behavior (Richman 
et al., 2022). Referring to another data analytical option, 
multilevel models require a minimum number of partici-
pants and measurements to ensure the statistical properties 

of the inferential information they provide (e.g., Ferron 
et al., 2009, 2010; Moeyaert et al., 2017). However, with 
the current text, we do not aim to substitute all other data 
analytical methods; we are rather aiming to expand the 
potential of the randomization test approach and introduced 
next.

Main features of the randomization test approach

The usefulness of randomization tests in the SCED context 
was initially suggested by Edgington (1967, 1996). Rand-
omization tests yield p values for intervention effects without 
referring to theoretical sampling distributions. These p values 
allow making a statistical decision regarding the null hypoth-
esis that the intervention is not effective (that is, that the inde-
pendent and the dependent variables are uncorrelated). Rand-
omization tests have several advantages in the SCED context 
(Craig & Fisher, 2019; Jacobs, 2019; Kratochwill & Levin, 
2010; Onghena, 1992), including the applicability to all kinds 
of SCEDs1, the absence of parametric assumptions2, and the 
flexibility in choosing the test statistic that quantifies the inter-
vention effect. The inference in the context of randomization 
tests is a tentative causal inference, on the basis of the features 
of the design and the probability of obtaining a test statistic as 
extreme as or more extreme than the one actually obtained, in 
case the null hypothesis of no intervention effect were true. 
Thus, it is not a population inference, which may not be war-
ranted or of interest when following an idiographic approach 
(Jacobs, 2019; Onghena et al., 2019).

In terms of their statistical operating characteristics, ran-
domization tests control type I error rates, but the statistical 
power may not be sufficient for detecting smaller effect sizes 
(Bouwmeester & Jongerling, 2020; Ferron & Onghena, 1996; 
Ferron & Sentovich, 2002; Ferron & Ware, 1995; Michiels & 
Onghena, 2019). It should be noted that the statistical power 
also depends on the series’ length and the test statistic used 
(Levin et al., 2021; Michiels et al., 2018), as well as on the 
randomization scheme (Levin et al., 2018; Manolov, 2019). 
Another problem with randomization tests is that researchers 
might be tempted to exclusively focus on p values, while the 
drawbacks and abuses of “p value-driven” statistical analysis 
have been extensively documented and debated (Wasserstein 

1 Actually, for some SCEDs, there are several possible randomization 
schemes: see Levin et  al. (2018) for multiple-baseline designs, and 
Onghena and Edgington (2005) for alternation designs.
2 It is not even assumed that the data are independent or interchange-
able because the data are not permuted, as the data sequence is main-
tained and what is randomized (in the design, before gathering the 
data, and equally when carrying out the randomization test) are the 
labels representing the different conditions. Whatever autocorrelation 
may be present in the data, it is the same under all randomizations 
because the data are not permuted or randomized.
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& Lazar, 2016). However, the p values (generated by a ran-
domization test or otherwise) should never be interpreted in 
isolation, but rather be considered as additional information 
to descriptive statistical measures, an assessment of the effect 
magnitude, a graphical display of the interrupted time series, 
and a judgement about the clinical significance or the practi-
cal relevance of the obtained effects (or the absence of these 
effects). Furthermore, in a more comprehensive “randomi-
zation test approach” equal attention should be paid to the 
definition, calculation, and interpretation of the test statistic 
that is used to quantify the intervention effect (Heyvaert & 
Onghena, 2014a), to the importance of randomization for 
excluding confounding factors and for deriving a valid proba-
bilistic statement (Edgington, 1996), and to the possibility of 
test inversion for deriving randomization-based confidence 
intervals (Michiels et al., 2017).

In terms of the conditions for application, the valid use of 
randomization tests depends on two complementary require-
ments. One requirement is to actually use randomization in 
the design, which is a desirable methodological feature (Kra-
tochwill & Levin, 2010; Tate et al., 2013). Moreover, as stated 
by Levin et al. (2018), the presence of randomization in the 
design is necessary for the exchangeability assumption that 
each value in the randomization distribution is equally likely 
to have occurred in the absence of an intervention effect given 
that in the absence of randomization, this assumption may 
not be tenable if there is trend and/or autocorrelation in the 
data. Another requirement is to perform the data divisions (for 
obtaining the reference distribution) in a way consistent with 
the random assignment procedure (Edgington, 1980a, 1980b). 
With the term “data division”, we refer to the specific way in 
which the series of measurements, whose order is maintained 
fixed, as actually obtained, is divided into different conditions 
(e.g., baseline and treatment). For instance, in the context of 
a multiple-baseline design, it is possible to decide at random 
for each tier3 when the intervention begins, out of a set of 
possible values, and also to decide at random for which tier 
the intervention is introduced first (see the Koehler–Levin 
procedure; Koehler & Levin, 1998; Levin et al., 2018). In such 
a case, the data divisions4 to be performed once the data are 

gathered should mirror this randomization scheme and not, for 
instance, be performed as if there were only a random order 
of tiers and a fixed intervention start point for each tier (i.e., 
Wampold–Worsham procedure; Levin et al., 2018; Wampold 
& Worsham, 1986).

One noteworthy feature of randomization tests is that the 
effect size measure (to which a p value is later associated) is to 
be chosen prior to gathering the data according to the type of 
intervention effect expected (Ferron & Ware, 1995; Heyvaert 
& Onghena, 2014b). Although choosing (and reporting pub-
licly) the data analytical approach before data collection has 
recently been emphasized in the context of SCEDs (Johnson 
& Cook, 2019; Manolov et al., 2022; Porcino et al., 2020), this 
emphasis is characteristic in relation to randomization tests for 
SCEDs (Edgington, 1975, 1980b). This historical emphasis 
in the context of randomization tests has to be considered in 
light of the traditional use of response-guided experimentation 
and visual analysis (as reviewed Lane & Gast, 2014; Ledford 
et al., 2019; Maggin et al., 2018), which entails repeatedly 
assessing multiple data features such as level, trend, imme-
diacy, and overlap (highlighted by Parker et al., 2006, as a 
strength of visual analysis) in the course of data collection, 
regardless of any initial expectations. With randomization 
tests it is possible to accommodate several data patterns (e.g., 
change in trend, change in variability; Levin et al., 2021), 
whereas the other data analytical methods are mainly applica-
ble to immediate effects (change in level, as in the BC-SMD, 
or change in slope as in the multilevel models). In the context 
of this flexibility and versatility, we here propose a general 
framework for defining the test statistic for different possible 
data patterns.

A unified framework: Response functions

Test statistics used in the SCED literature

Randomization tests can be devised for any test statistic 
that is chosen prior to looking at the data; the test statistic 
should represent the expected experimental effect as closely 
as possible to have a sensitive test (Ferron & Ware, 1995; 
Heyvaert & Onghena, 2014b). Several possible test statistics 
have been studied for specific expected effects, including 
quantifications of immediate effects (Michiels & Onghena, 
2019) and delayed effects (Levin et al., 2017). In terms of 
the focal data feature and the test statistic, level differences 
(e.g., using means) have been most frequently discussed and/
or investigated (e.g., Edgington, 1975; Ferron & Ware, 1995; 
Onghena, 1992), which is consistent with level being com-
monly the focus of the data analysis in the SCED context 
(Tanious & Onghena, 2021). A mean difference would be a 
sensible choice when stable baseline data are expected and 
the effect is expected to be abrupt and sustained.

3 The term “tier” is used to refer generically to participants, behav-
iors, or settings, in order not to have to list all three every time that 
we refer to multiple baseline designs.
4 For instance, if for a given tier including 15 measurements the inter-
vention is decided at random to start either at measurement occasion 6 
or 7, there are two possible randomizations before data collection and 
two possible ways to divide the data once gathered, before computing 
the test statistic for each data division: (a) having five baseline meas-
urements and ten intervention phase measurements; and (b) having six 
baseline measurements and nine intervention phase measurements. For 
a multiple-baseline design, the total number of data divisions (randomi-
zations) entails taking into account the number of possible intervention 
start points per tier and the number of tiers (see Levin et al., 2018).
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However, all visually analyzed data features (Kratochwill 
et al., 2013) have been discussed and/or tested as test statis-
tics. Specifically, it is possible to quantify (as a test statistic) 
a change in slope and a change in variability (Levin et al., 
2021), nonoverlap (Heyvaert & Onghena, 2014a), and con-
sistency (Tanious et al., 2019). A change in slope could be 
the choice of a test statistic when a progressive linear effect 
is expected, whereas a nonoverlap index in case the measure-
ment of the target variable is expressed in ordinal terms and 
an interval or ratio scale cannot be assumed.

The flexibility in choosing a quantification of the magni-
tude of effect corresponds to the fact that the randomization 
test can include any complex statistic (Edgington, 1980b). 
For instance, the main quantification could stem from a sta-
tistical model such as multilevel models, with the randomi-
zation test being used for obtaining the p values (Michiels 
et al., 2020). Finally, different test statistics are possible 
according to the kind of SCED. For instance, a quantifica-
tion of the distance between data paths has been suggested 
as a test statistic in alternating treatment designs (Manolov, 
2019), and a quantification of the distance between the pre-
defined criterion level and the actual measurements has been 
suggested as a test statistic in a changing criterion designs 
(Onghena et al., 2019).

What the test statistic should represent: 
Prototypical patterns of intervention effects

There are several possible kinds of treatment effect. In 
terms of the time dimension, the effect can be immediate 
or delayed (Riley-Tillman et al., 2020; Tate & Perdices, 
2019); temporary or permanent (Houle, 2009). In terms of 
the way in which the final behavioral level is reached, the 
effect can be abrupt or gradual (Levin et al., 2021; Swan 
& Pustejovsky, 2018). Moreover, it is possible to combine 
these different patterns of effect, which would lead to the 
following prototypes:

(1) An immediate and abrupt change that is permanent. 
This could be understood as the simplest kind of effect, 
representing also what is quantified in the between-case 
standardized mean difference (or design-comparable 
effect size) as described in Hedges et al. (2012, 2013) 
and Shadish et al. (2014). The aim of presenting a more 
general framework is to offer analytical options beyond 
this data pattern.

(2) An immediate and abrupt change that is temporary
(3) An immediate and gradual change that is permanent
(4) An immediate and gradual change that is temporary
(5) A delayed and abrupt change that is permanent
(6) A delayed and abrupt change that is temporary
(7) A delayed and gradual change that is permanent
(8) A delayed and gradual change that is temporary

The immediate effects are depicted on Fig. 1, whereas 
the delayed effects are depicted in Fig. 2. These figures 
are simplifications, representing only one possible dura-
tion of the temporary effects and one possible latency. 
On the one hand, the duration of the delay or latency 
(i.e., after how many intervention phase measurement 
occasions does the effect begin) and the duration of the 
temporary effect (i.e., after how many intervention phase 
measurement occasions does the effect begin to disap-
pear or wear off) can be specified. On the other hand, 
these two aspects can be incorporated in an exploratory 
approach (i.e., checking the consequences of varying the 
latency and varying the duration of the effect). Similarly, 
note that, just like there are different ways in which the 
intervention effect can appear, there are also different 
ways in which it can disappear: in an abrupt or gradual 
way. Finally, these patterns represent situations in which 
the aim is to increase the target behavior, but the current 
text (and the later proposal of “response functions”) is 
applicable to the desired change being either an increment 
or a reduction.

An additional comment is warranted on the variety of 
data patterns depicted in Figs. 1 and 2. In some situa-
tions, effects are desired to be permanent, in the sense 
that the gains are not lost with time. This agrees with the 
assessment of maintenance in the context of social valida-
tion (Snodgrass et al., 2018). Nevertheless, a progressive 
effect (e.g., an improving trend during the intervention 
phase) could be expected to reach an asymptote, as no 
further improvement is possible, and such a data pattern 
would not suggest that the effect has been lost with time. 
In that sense, it is relevant whether a temporary effect 
is conceptualized as “disappearing” or as “not showing 
further improvement”. Moreover, in some situations (e.g., 
when the target behavior is an emotion or a secondary 
effect of a medicine), a temporary effect as depicted in 
the upper right panel of Fig. 1 may be expected or even 
desired. Additionally, delayed effects may still be toler-
ated when there is an expectation (and previous evidence) 
of a transition state or an extinction burst (Brogan et al., 
2019; Katz & Lattal, 2021). Finally, a delayed and abrupt 
change that is temporary (upper right panel of Fig. 2) 
may not be considered convincing, unless there is a clear 
expectation on the basis of theory or previous research 
about such a data pattern.

Exploratory approach in the context 
of the prototypical effects

In the context of several possible prototypical effects, we 
are not suggesting a completely ad hoc exploration of 
all possibilities. Instead, we consider that existing theo-
retical knowledge and empirical evidence regarding the 
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research domain (including type of intervention and fea-
tures of the target behavior) should be used when making 
explicit the expectations regarding the potential delay, 
progression, and duration of the effect. Specifically, when 
referring to delayed effects, in order to reduce the prob-
ability of confirmation bias, the amount of latency has 
to be defined beforehand, instead of being the result of 
the visual inspection of the graphed data. Similarly, for 
temporary effect, the duration of the effect (expressed as 
the number of measurement occasions) has to be defined 
before gathering and analyzing visually the data. In case 

there is no sound reason5 why a given number of values 
should be considered as the obvious choice, an option is 
to try out different latencies and different durations and 
check how the results differ under these different opera-
tional definitions of delayed and temporary effects. Such 
an exploratory approach is reasonable in case there is no 
specific delay or duration that has already been reported 
in the literature and is intended to be confirmed. Finally, 
the p values should be corrected for multiple testing if 
they are used as probabilistic statements. In contrast, in a 
pure exploratory approach, the p values can also be used 
as mere descriptive measures.

Defining the response function and incorporating 
the exploratory approach

We refer to the general framework for representing different 
kinds of effects as using “response functions”. A response 
function is a vector of constants describing the predicted 

Fig. 1  Prototypical immediate effects

5 For instance, when discussing immediate effects, the focus is usu-
ally put on the last three baseline phase measurements and the first 
three intervention phase measurements (Horner & Kratochwill, 
2012), although some authors also suggest using five measurements 
(e.g., Barton et  al., 2019; Wolfe et  al., 2019). Actually, it has been 
acknowledged that the value of three is an arbitrary choice (Kratoch-
will et al., 2013). Logically, there is no sound reason why two or four 
measurements per phase should not be considered as well.
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response. Thus, the specific choice of a response function 
would depend on the kind of effect expected.

We present the idea in the context of a simple example 
of a hypothetical design with five baseline measurements 
and five intervention phase measurements, representing the 
number of aggressive behaviors performed by a child on the 
playground. We first illustrate the use of a response function 
for the eight prototypes.

(1) An immediate and abrupt change that is permanent: 
the response function would be {0, 0, 0, 0, 0, 1, 1, 1, 
1, 1} (see upper left panel of Fig. 1). Such a response 
function would include all baseline data and all inter-
vention phase data, as the expectation is for the effect 
to continue until the end of the phase.

(2) An immediate and abrupt change that is temporary: the 
response function could be {0, 0, 0, 0, 0, 1, 1, 1, 0, 0} 
(see upper left right of Fig. 1). In this case, given that the 
expectation is for the effect to be only temporary, the last 

intervention phase measurements are coded differently. 
Specifically, “temporary” is here arbitrarily defined as 
referring to the first three intervention phase data points 
and it disappears in an abrupt way. Here we can explore 
a different number of measurement occasions during 
which the immediate effect lasts (e.g., 1–5).

(3) An immediate and gradual change that is permanent: 
the response function could be {0, 0, 0, 0, 0, 1, 2, 3, 4, 
5}, representing an immediate change in slope (Levin 
et al., 2021; Wampold & Furlong, 1981). For a graphi-
cal representation, see the lower left panel of Fig. 1. 
The idea is that the specific values of the response 
function for a gradual change depend on the length of 
the intervention phase (i.e., when there are nA baseline 
phase measurements and nB intervention phase meas-
urements, the value 0 is repeated nA times, followed by 
integers from 1 to nB). As explained below, nonlinear 
gradual effects can also be incorporated in the response 
function.

Fig. 2  Prototypical delayed effects
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(4) An immediate and gradual change that is temporary: 
the response function could be {0, 0, 0, 0, 0, 1, 2, 
3, 2, 1} (see lower right panel of Fig. 1). Just like 
before, “temporary” is here arbitrarily defined as 
referring to the first three intervention phase data 
points and it disappears in the same gradual way 
in which it appeared. Once again, an exploratory 
approach can be used here in defining the duration 
of the effect, as expressed in the number of sessions.

(5) A delayed and abrupt change that is permanent: it is 
possible to represent a delayed change in level by omit-
ting some of the initial intervention phase values (Levin 
et al., 2017; see also Brogan et al., 2019, for a similar 
suggestion when discussing transition states). Another 
option is to use a quantification such as the “mean base-
line reduction” that focuses only on the last three meas-
urements of each phase (Olive & Smith, 2005). In order 
not to discard any baseline data, the response function 
for a delayed effect could be {0, 0, 0, 0, 0, 0, 0, 1, 1, 
1} (see upper left panel of Fig. 2). This specific coding 
reflects an expectation that the onset of the effect will 
be after two intervention phase measurement occasions. 
Another option is to explore several different possible 
delays or latencies.

(6) A delayed and abrupt change that is temporary: the 
response function could be {0, 0, 0, 0, 0, 0, 0, 1, 1, 
0} (see upper right panel of Fig. 2). In this specific 
example, there is again a delay of two measurement 
occasions, and after two more, the effect of the inter-
vention disappears. The exploratory approach can be 
applied both to the latency and to the duration of the 
effect.

(7) A delayed and gradual change that is permanent: the 
response function could be {0, 0, 0, 0, 0, 0, 0, 1, 2, 
3} (see lower left panel of Fig. 2). The exploratory 
approach can again be applied to the latency of the 
effect.

(8) A delayed and gradual change that is temporary: the 
response function could be {0, 0, 0, 0, 0, 0, 0, 1, 2, 1} 
(see upper left panel of Fig. 2). In this specific example, 
there is again a delay of two measurement occasions, 
and after two more, the effect of the intervention disap-
pears. The exploratory approach can be applied both to 
the latency and to the duration of the effect.

It should be noted that there are several options for defin-
ing a response function to represent each of the effects, whose 
ideal versions are shown in Figs. 1 and 2. For instance, it is 
possible to represent an intervention effect that reaches an 
upper asymptote (e.g., using the response function {0, 0, 0, 0, 
0, 1, 2, 3, 3, 3}). Additionally, the response functions can be 
adapted to accommodate for the expectation of a general lin-
ear trend. This can be achieved by adding 1, 2, …, n (where 

n is the number of measurements in the baseline and inter-
vention phases being compared), to the previously presented 
response functions. Both of these options have been incorpo-
rated in the software developed (described later). Moreover, 
the default options of the software can be overruled by the 
user, by means of specifying user-defined functions.

From these eight examples, it is easy to infer how the 
constants have to be modified to model other experimen-
tal effects, including nonlinearity and gradual decay. For 
instance, a response function such as {0, 0, 0, 0, 0, 2, 4, 8, 16, 
32} can be used for representing a kind of nonlinear trend.

Pearson’s correlation coefficient as a quantification 
of effect

The null hypothesis of the randomization test (i.e., no effect 
of the intervention) can be understood as the independent 
and the dependent variable being uncorrelated. In that sense, 
a general test statistic should be sensitive to deviations from 
this null model. Accordingly, if we want to quantify the lin-
ear association between the observed data and the predicted 
response function, then Pearson’s product-moment correlation 
coefficient is a common choice (see e.g., Chapters 8 and 9 on 
Correlation and Trend Tests in Edgington & Onghena, 2007). 
Note that it is not a problem if the response function only con-
sists of 0s and 1s. If Pearson’s correlation coefficient is used for 
quantifying the relation between a quantitative variable (e.g., 
the measurements of the target behavior) and a binary variable 
(e.g., the response function for an immediate and abrupt effect 
that is permanent), it is called the point-biserial correlation 
coefficient. Using this coefficient is equivalent to computing a 
mean difference in terms of the p value that would be obtained 
from the corresponding statistical test (Edgington & Onghena, 
2007; Ruscio, 2008). In other words, the correlation coeffi-
cient can be used in the general case, whereas the difference 
between means only in the special case (if one of the variables 
is binary). Note that the fact that Pearson’s correlation is a 
quantification of a linear relation; it does not mean that the data 
pattern should be linear because the data pattern is represented 
by the response function. For instance, in case the measure-
ments were {3, 3, 3, 3, 3, 7, 13, 25, 49, 97}, and the response 
function was defined as {0, 0, 0, 0, 0, 2, 4, 8, 16, 32}, the value 
of Pearson’s correlation coefficient would be 1.

Even though we here propose using the correlation 
coefficient as a quantification of the magnitude of effect 
and also as a test statistic, researchers are free to com-
pute an additional quantification of effect, according to 
the data pattern expected. Examples of such quantifica-
tions include: (a) for the data pattern on the top left panel 
of Fig. 1, a mean difference; (b) for the data pattern on 
the bottom left panel of Fig. 1, a slope difference; (c) for 
the data pattern on the top left panel of Fig. 2, a mean 
difference, excluding the initial measurements for the 
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intervention phase (as suggested in Levin et al., 2017); and 
(d) for the data pattern on the bottom left panel of Fig. 2, 
a mean difference, excluding the initial measurements for 
the intervention phase.

Pearson’s correlation coefficient as a test statistic 
in a randomization test

Once the observed value of Pearson’s correlation coef-
ficient is computed, it can be located in the randomiza-
tion distribution, constructed according to the randomiza-
tion scheme for selecting the point of change in phase. 
For instance, if there are 15 measurement occasions and a 
minimum of three measurement occasions per phase, the 
intervention can be chosen (at random) to start anywhere 
between measurement occasions 4 and 13, both inclusive. 
This would lead to ten possible data divisions. Once the 
random selection of the intervention start point is per-
formed, the data are gathered. Afterwards, the test statis-
tic is computed for all (for instance, ten) admissible data 
divisions. The randomization distribution would contain 
ten values of the test statistic: the value for the actual data 
division (called “the observed value of the test statistic”) 
and the values for the remaining possible data divisions 
(called “pseudovalues” or “potential values”). These ten 
values are ordered. Afterwards, a rank or a p value can be 
assigned to the statistic.

Exceptional results

Carrying out a randomization test entails a quantification of 
the degree to which the value of the test statistic chosen is 
exceptional if the null hypothesis of no intervention effect 
is true. On the basis of the randomization in the design, 
all possible divisions of the data (i.e., moments of phase 
change) are equally likely under the null hypothesis. Thus, 
the actually obtained value for Pearson’s correlation coef-
ficient is compared to the correlation coefficient values that 
would have been obtained for all the admissible points of 
change in phase. The aim is to quantify the degree to which 
the former is expected to happen in absence of an effect. 
If the probability is small (e.g., equal to or smaller than a 
predefined value such as .05), then the results are consid-
ered “statistically significant”. That is, such a large value 
of r would be unexpected if there was no treatment effect.

Illustrations of the use of response functions

In the current section, we will illustrate the use of response 
functions and Pearson’s correlation coefficient as a test sta-
tistic, along with the possibility of applying an exploratory 

approach. The data for the illustration were gathered by te 
Brake et al. (2023), studying the effect of beat frequency to 
adjust running cadence (steps per minute) in recreational 
runners, with the aim of increasing this target behavior. 
A multiple-baseline design across participants was used 
and the seven participants were randomly assigned, follow-
ing the Wampold–Worsham procedure (Levin et al., 2018; 
Wampold & Worsham, 1986) to one of the seven possible 
baseline lengths. Specifically, the baselines could last from 
four to ten measurement occasions, whereas the measure-
ment occasions for the intervention phase were fixed to 
eight for all participants. According to this randomization 
procedure, there are 7 !  = 5040 possible randomizations (or 
orders of the seven participants). For the current illustra-
tion, we will focus on three of the seven participants sepa-
rately (i.e., studying each A-B comparison individually), 
considering that their baseline had a minimum length of 
four and a maximum of ten. We will use different response 
functions to show how different data patterns (potentially 
present in the data for the different participants) can be 
accommodated. Nevertheless, in an actual multiple-base-
line study, in case the participants have similar features, 
and their target behaviors and interventions are identical, it 
would be logical to use the same response function for all 
participants, assuming that the expectation about the data 
pattern is the same for all of them.

Immediate permanent or temporary change in level 
(abrupt effect)

Figure 3 represents the raw data for participant 4, suggesting 
that there is a clear immediate change in level, which lasts 
until the end of the intervention phase. As an initial illustra-
tion, we will suppose that the expected effect is an immedi-
ate, abrupt, and permanent change in level. In this case, the 
response function is a binary variable containing as many 0s 
as baseline measurement occasions and as many 1s as inter-
vention phase measurement occasions. Beyond the specific 
features of the data depicted in Fig. 3, we could also check 
whether the effect could be temporary, exploring immediate 
abrupt effects that last between one and five sessions. For 
representing these temporary effects via response functions, 
the number of 1s is going to be one, two, three, four, or five, 
according to the specified duration of the effect. These 1s are 
preceded by as many 0s as baseline measurement occasions 
and they are also followed by 0s, until the end of the inter-
vention phase. The response functions for the actual point 
of change in phase for participant 4 are included in Table 1. 
Note that for each admissible intervention start point, the 
number of baseline 0s and the number of intervention phase 
1s and 0s varies according to the length of the phases.

The result of using Pearson’s correlation coefficient 
as a test statistic, quantifying the relation between the 
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response function and the measurements of the target 
behavior, is depicted in Fig. 4. In this plot, each admis-
sible point for change in phase is represented on the 
abscissa (X-axis). On the ordinate (Y-axis), the value of 
Pearson’s correlation for the actual point of change in 
phase and for all admissible points of change in phase 
are represented. The Y-axis ranges theoretically between 
− 1 and + 1. A horizontal line is included for 0. Posi-
tive values (above the horizontal line) are “favorable” 
results; that is, results in line with the expected effect or 
the alternative hypothesis (here, a reduction of the target 
behavior). In general, regardless of whether the desired 
result is an increase or a decrease of the target behavior, 
if the actual result agrees with the desired one, it would 
be represented above the horizontal line. Furthermore, the 
value of the actual test statistic is depicted in green, given 
that a favorable result is obtained. (In case an unfavora-
ble result were obtained, it would have been depicted in 
red.) For the results represented in Fig. 4, the most salient 
aspect is that the current data division is associated with 
the largest value of the test statistic, regardless of whether 

the immediate abrupt effect is considered as permanent or 
temporary. Considering that the value of Pearson’s cor-
relation coefficient between the response function and the 
measurements is largest for the actual data division, out 
of six possibilities, the p value would be 1/6 ≈ 0.167, the 
smallest possible for this A-B comparison. Therefore, the 
result is consistent with the expectation of an immediate 
and abrupt effect (regardless of whether it is sustained or 
temporary). The result is not statistically significant if 
we compare the p value to the commonly used nominal 
alpha of .05, but such a level of significance cannot be 
achieved only from a single A-B comparison with few 
possible intervention start points. In contrast, statistical 
significance can be achieved when considering all A-B 
comparisons (i.e., all participants) in the multiple-base-
line design. For readers interested in the application of 
randomization tests to multiple baseline design, we rec-
ommend the following articles by Levin and colleagues 
(Levin et al., 2017, 2018; Levin & Gafurov, 2019). The 
logic of the randomization to be performed prior to gath-
ering the data and the (same) randomization to be carried 

Fig. 3  te Brake et al. (2023) data for participant 4
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out for obtaining the reference distribution would be the 
same as described in these articles, with the main differ-
ence being the test statistic used (which in the current 
proposal is Pearson’s correlation coefficient, computed 
using the measurements and the response function as the 
two variables).

Immediate gradual effect

The raw data for participant 3 are depicted in Fig. 5, sug-
gesting an immediate effect, which is gradually increasing. 
For illustrative purposes, we will suppose that an immediate 
gradual effect was expected, expressed as a change from a 
stable baseline to a nonzero slope in the intervention phase.

Via a randomization test, it is possible to quantify the 
degree to which the observed linear increase of the target 
behavior in the intervention phase is likely to be obtained 
in absence of an intervention effect. The response functions 
for the actual point of change in phase for participant 3 are 
included in Table 2. Figure 6 represents the results for a per-
manent and a temporary effect (e.g., a positive slope that dis-
appears gradually). Looking at the practically identical val-
ues of Parson’s correlation coefficient, the permanent effect is 
similarly large for all admissible intervention start points. In 
consequence, the p value is 1, and it suggests that there is no 
evidence for a gradual effect. This is because once the eight 
actual intervention phase measurements are included, their 

higher values (compared to the initial baseline measurements) 
lead to large differences also for previous potential interven-
tion start points. Actually, if we were looking for an imme-
diate abrupt (rather than gradual effect), the p value would 
have been the smallest possible, 1/5 = 0.20. In contrast to the 
lack of evidence of an immediate gradual effect sustained in 
time, the actual intervention start point is associated with the 
largest gradual increase if only the initial three-to-five inter-
vention phase measurements are considered. This is because 
the initial intervention phase measurement occasions suggest 
a progressive effect, whereas in the latter ones apparently an 
upper asymptote is reached.

Delayed abrupt effect

The raw data for participant 5 are depicted in Fig. 7, sug-
gesting that there is either a gradual or a delayed increase 
of the target behavior in the intervention phase. For illus-
trative purposes, we will suppose that delayed abrupt 
change in level was expected.

The response functions for the actual point of change 
for participant 5 are included in Table 3. Figure 8 repre-
sents the results for a delayed effect. The strongest evi-
dence is for a delay of the intervention effect of one or two 
measurement occasions, which is when the value of Pear-
son’s correlation coefficient is the largest (i.e., the p value 
is the smallest possible, 1/3 ≈ 0.33). Longer delays are not 

Table 1  Response functions for the te Brake et al. (2023) data for participant 4, representing immediate abrupt effects: permanent and temporary

Session Phase Immediate abrupt 
permanent

Immediate 
abrupt
temporary 1

Immediate 
abrupt
temporary 2

Immediate 
abrupt
temporary 3

Immediate 
abrupt
temporary 4

Imme-
diate 
abrupt
tempo-
rary 5

1 Baseline 0 0 0 0 0 0
2 Baseline 0 0 0 0 0 0
3 Baseline 0 0 0 0 0 0
4 Baseline 0 0 0 0 0 0
5 Baseline 0 0 0 0 0 0
6 Baseline 0 0 0 0 0 0
7 Baseline 0 0 0 0 0 0
8 Baseline 0 0 0 0 0 0
9 Baseline 0 0 0 0 0 0
10 Intervention 1 1 1 1 1 1
11 Intervention 1 0 1 1 1 1
12 Intervention 1 0 0 1 1 1
13 Intervention 1 0 0 0 1 1
14 Intervention 1 0 0 0 0 1
15 Intervention 1 0 0 0 0 0
16 Intervention 1 0 0 0 0 0
17 Intervention 1 0 0 0 0 0
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supported by the evidence. This aligns well with the visual 
inspection of the data, suggesting that the change in level 
occurs (or stars being clearer) at the third intervention 
phase measurement occasion.

Fig. 4  Results of the exploratory randomization approach, using Pearson’s correlation as test statistic, for the te Brake et al. (2023) data for par-
ticipant 4. Exploring an immediate and abrupt effect

Software use

The freely available Shiny app (https:// manol ov. shiny 
apps. io/ Respo nseFu nction) was created, implementing the 

https://manolov.shinyapps.io/ResponseFunction
https://manolov.shinyapps.io/ResponseFunction
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proposal for the exploratory randomization approach. The 
input data file is a simple text file with two columns. One 
column is called “phase” and it contains the letters A and B, 
denoting the baseline and intervention phase, respectively. 
The other column is called “score” and it contains the meas-
urements of the target behavior. An example data set with 
the organization of the data file is presented when opening 
the website. The data file can be created, for instance, with 
Microsoft Excel and copied and pasted as a plain text file 
(with a .txt extension). The example datasets available at 
https:// osf. io/ qsr42/ are the ones corresponding to the illus-
trations used in the current text.

On this website, the user can specify the minimal baseline 
phase length and minimal intervention phase length. These 
first two aspects are relevant for determining the admissi-
ble starting points for the randomization. Additionally, it is 
necessary to specify the minimum and maximum values of 
the score for the time series plot, in order to have a graphi-
cal representation with the appropriate Y-axis scale (Dart & 
Radley, 2018).

The next step is to specify, by clicking in the left panel 
of the website, the expected data pattern. This step requires 

Fig. 5  te Brake et al. (2023) data for participant 3

Table 2  Response functions for the te Brake et  al. (2023) data for 
participant 3, representing immediate gradual effects: permanent and 
temporary (with a gradual offset)

Session Phase Immediate 
gradual 
permanent

Immediate 
gradual
tempo-
rary 3

Immediate 
gradual
tempo-
rary 4

Immediate 
gradual
temporary 5

1 Baseline 0 0 0 0
2 Baseline 0 0 0 0
3 Baseline 0 0 0 0
4 Baseline 0 0 0 0
5 Baseline 0 0 0 0
6 Baseline 0 0 0 0
7 Baseline 0 0 0 0
8 Baseline 0 0 0 0
9 Intervention 1 1 1 1
10 Intervention 2 2 2 2
11 Intervention 3 3 3 3
12 Intervention 4 2 4 4
13 Intervention 5 1 3 5
14 Intervention 6 0 2 4
15 Intervention 7 0 1 3
16 Intervention 8 0 0 2

https://osf.io/qsr42/
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previous theoretical or empirical knowledge related to the 
content domain. Specifically, the user selects (a) whether 
the aim is to increase or decrease the target behavior; (b) 
whether the effect is expected to be immediate or delayed; 
(c) whether the onset is expected to be abrupt or grad-
ual; (d) whether an improving (linear) baseline trend is 
expected or not; and (e) for immediate gradual temporary 
effects, whether the offset of the effect is expected to be 
abrupt, gradual, or as an asymptote. We did not include 
the option to select explicitly (i.e., a priori) whether the 
effect is expected to be permanent or temporary because 
we assumed that effects are expected to last throughout the 
duration of the intervention phase. In contrast, we included 
permanent and temporary effects as possible outputs (part 
of an exploratory a posteriori approach) when working 
with immediate vs. delayed and abrupt vs. gradual effects. 
After the user performs the selection of the expected data 
pattern by clicking, the response functions are generated 
internally automatically. That is, the user is not required 
to create a separate file with the response function. Only 
a text file with the datasets (i.e., the previously mentioned 
two columns) is needed, as illustrated by the welcome 
screen of the website.

The output of the website is a series of plots, accom-
panied by the rank of the value of the test statistic for the 

actual point of change in phase. Specifically, for a predicted 
immediate and abrupt effect, a permanent effect is compared 
to several durations for a temporary effect. Analogously, 
for an immediate and gradual effect, a permanent effect is 
compared to several durations for a temporary effect. For 
a delayed, abrupt, and permanent effect, several possible 
latencies are compared. Equally, for a delayed, gradual, and 
permanent effect, several possible latencies are compared.

Finally, it is also possible to specify a user-defined 
response function that depicts some other kind of 
expected effect, apart from the previously mentioned 
default response functions. For making this possible, 
the researcher needs to load a simple text file, with 
only one line, containing the numbers that define the 
response function for the intervention phase. The line 
has to contain as many numbers as the maximum possi-
ble intervention phase length. These numbers need to be 
separated by commas. For the baseline phase, the value 
of zero is assumed for all measurement occasions. For 
instance, if a nonlinear increase is expected during the 
intervention phase, following a quadratic model, the val-
ues for response function would be {1, 4, 9, 16, 25, 36, 
49, 64, 81, 100, 121, 144}, for a maximum of 12 inter-
vention phase measurement occasions. This example of a 
response function is presented when opening the website.

Fig. 6  Results of the exploratory randomization approach, using Pearson’s correlation as test statistic, for the te Brake et al. (2023) data for par-
ticipant 3. Exploring an immediate gradual effect
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In summary, the website provides two complementary 
pieces of information: a time series plot of the raw data 
(in order to visually inspect whether the actually observed 

data pattern resembles the expected data pattern) and a 
quantification (and a graphical representation) of the 
degree to which the expected effect could have equally 

Table 3  Response functions for the te Brake et al. (2023) data for participant 3, representing a delayed abrupt permanent effect, with a different 
amount of the delay

Session Phase Delayed 1 Delayed 2 Delayed 3 Delayed 4 Delayed 5

1 Baseline 0 0 0 0 0
2 Baseline 0 0 0 0 0
3 Baseline 0 0 0 0 0
4 Baseline 0 0 0 0 0
5 Baseline 0 0 0 0 0
6 Baseline 0 0 0 0 0
7 Intervention 0 0 0 0 0
8 Intervention 1 0 0 0 0
9 Intervention 1 1 0 0 0
10 Intervention 1 1 1 0 0
11 Intervention 1 1 1 1 0
12 Intervention 1 1 1 1 1
13 Intervention 1 1 1 1 1
14 Intervention 1 1 1 1 1

Fig. 7  te Brake et al. (2023) data for participant 5
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occurred at different moments in time (not coinciding 
with the actual moment of intervention). Specifically, in 
relation to the latter point, smaller ranks can be under-
stood as (or converted to) smaller p values and would 
indicate that the effect actually observed is (among) the 

largest possible considering all admissible intervention 
start points. The website also allows exploring tempo-
rary effects (when the onset is immediate and abrupt or 
gradual) and also different amounts of delay (when the 
effect is delayed).

Fig. 8  Results of the exploratory randomization approach, using Pearson’s correlation as test statistic, for the te Brake et al. (2023) data for par-
ticipant 5. Exploring a delayed effect
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Discussion

Applicability of the response function framework

Each of the illustrations provided refers to a single A-B 
comparison. Nonetheless, our proposal is also applicable to 
methodologically stronger designs, such as multiple-baseline 
and ABAB (withdrawal/reversal) designs, each of which 
includes several A-B comparisons. This is because it is pos-
sible to select at random the moment of change in phase for 
an A-B design (i.e., random intervention start point design; 
Levin et al., 2019), a multiple-baseline design (Levin et al., 
2018) or an ABAB design (Onghena, 1992). In the multiple-
baseline and ABAB designs, the basic effect is computed as 
many times as there are A-B comparisons (Horner & Odom, 
2014) and the aim is to check whether the intervention effect 
is replicated. One way of integrating the results of several 
replications (within a participant in a reversal design and 
across participants in a multiple-baseline design) is to count 
whether the effect is present in at least 75% of the attempts 
(Cook et al., 2015; Maggin et al., 2013). Another way is by 
counting the proportion of effect sizes (computed across all 
A-B comparisons) that are equal to or more extreme than 
the observed value of the effect size (test statistic) if the null 
hypothesis is true. This is the logic of the randomization test, 
which is applicable to any kind of test statistic, including 
Pearson’s correlation coefficient, quantifying the associa-
tion between the response function and the measurement of 
the target behavior. Thus, for multiple-baseline and ABAB 
designs, there would not be a different coding required for 
the response function, but merely a repetition of the coding 
for each separate A-B comparison.

The illustrated response functions can be used for alterna-
tion designs, if the focus is put on level, given that there are 
no phases, and it is not possible to refer to a within-phase 
trend. For instance, an ABABBABAAB alternating treat-
ments design can be represented by a response function such 
as {0, 1, 0, 1, 1, 0, 1, 0, 0, 1} (with 0s representing Condi-
tion A, and 1s representing Condition B). In any case, other 
analytical alternatives exist for alternation designs (Lanovaz 
et al., 2019; Manolov & Onghena, 2018), even in the context 
of randomization tests (Levin et al., 2012; Manolov, 2019).

For changing criterion designs, specific randomization 
tests have been suggested (Ferron et al., 2019; Onghena 
et al., 2019; Tanious, 2022). In case the emphasis is, as 
usual, on the degree to which the data match the pre-estab-
lished criteria (i.e., immediate and abrupt effects with no 
trend), the response functions would not be necessary, and 
the existing procedures would suffice.

The response functions represent a general framework 
that allows, for instance, including the study of immediate 
effects (see Manolov & Onghena, 2022) as a special case. 
Response functions can be defined to study both (a) different 

number of values per phase being compared; and (b) differ-
ent latencies of effect; and (c) different focal data aspects, 
whose immediate or delayed appearance is analyzed. For 
instance, regarding point “a”, if there are five measurements 
per phase, the response function could be defined as {NA, 
NA, 0, 0, 0, 1, 1, 1, NA, NA} to focus on only three values 
per phase. Regarding point “b”, if a latency of two measure-
ment occasions is expected, and all data are to be used, the 
response function could be defined as {0, 0, 0, 0, 0, 0, 0, 1, 
1, 1}. Regarding point “c”, if the focus of the analysis is an 
immediate change in slope, including only four measure-
ments per phase, the response function could be defined as 
{NA, 0, 0, 0, 0, 0, 1, 2, 3, NA}.

Recommendations for applied researchers

When to apply the exploratory approach

As an initial option, we are echoing the usual recommenda-
tions (Edgington, 1975; Heyvaert & Onghena, 2014a, 2014b; 
Levin et al., 2021) for choosing the test statistic according to 
the available theoretical and empirical basis for the subject 
matter at hand. In context of the current proposal, what will 
be chosen according to the a priori expectations is not the test 
statistic itself (which would be Pearson’s correlation coef-
ficient quantifying the relation between the measurements 
and the response function), but rather the response function. 
This would also correspond well with the importance of pre-
registration in relation to the data analytical plan (Cook et al., 
2022; Manolov et al., 2022; Porcino et al., 2020). This is con-
sistent with a hypothetico-deductive or a static approach to 
data analysis, although it may not be feasible when an explor-
atory or dynamic approach is followed (Johnson & Cook, 
2019). Therefore, the more exploratory approach would be 
restricted to the operational definition of the delay or the 
duration of the effect. Thus, there would be a combination 
between expectations (regarding the data pattern) and explo-
ration (regarding the specific temporal aspects of the effect).

Nonetheless, a different scenario should not be discarded. 
It is possible that the researchers have a first a priori specifica-
tion, which ends up having insufficient correspondence with 
the actually observed data pattern. In such a case, a further 
exploration of alternative response functions is possible. Next 
cases can use the best response function of previous cases. 
Another scenario might be to specify multiple response func-
tions a priori and test them all, correcting for multiple testing.

Is there a place for p values?

P values and null hypothesis statistical testing have been 
objects of controversy and criticism in the context of social 
and behavioral sciences (Cohen, 1990, 1994; Gigerenzer, 
2004; Nickerson, 2000) and more specifically in the SCED 
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context (Branch, 2014; Perone, 1999). Nevertheless, most 
of the criticism has been directed towards their incorrect 
use and interpretation, and not so much in relation to their 
intrinsic features. Specifically, if we focus on their informa-
tive value, most criticism refers to p values not answering 
the questions that researchers are asking, although it is not 
clear what these questions are (Lakens, 2021). Additionally, 
it is not clear that suggested alternatives such as effect-size 
measures and confidence intervals6 (Wilkinson et al., 1999) 
are free from misinterpretations and misuses (Cortina & 
Landis, 2011; Greenland et al., 2016). Thus, there have been 
suggestions (Lakens, 2021) and efforts (Wasserstein et al., 
2019; Wasserstein & Lazar, 2016) to promote the correct use 
and interpretation of p values.

In the current context, we consider that the information 
that the p value provides (i.e., the probability7 of a result as 
extreme as or more extreme than the one actually observed, 
in case the null hypothesis of ineffective intervention is true) 
is useful. However, a p value is not sufficient when evalu-
ating intervention effectiveness, as it has to be considered 
together with the effect size (here, the value of the test sta-
tistic), visual analysis (to check whether the initial chosen 
response function represents well the actually observed data 
pattern), and an assessment of social validity (Horner et al., 
2005; Kazdin, 1977). Finally, it should be highlighted that 
the current proposal does not consist in suggesting a way 
of obtaining p values (randomization tests have been sug-
gested several decades ago in the SCED context; Edgington, 
1967, 1975), but rather on the representation of different 
possible data patterns when defining the test statistic in the 
randomization test.

Reporting

Researcher degrees of freedom when making data analytical 
decisions (Wicherts et al., 2016) are a reality, when there is 
no gold standard or a sound basis for specific expectations. 
In the context of the need for an exploratory element in the 
data analytical approach, concerns can arise. One of these 
concerns refers to overfitting, or presenting the results for a 
response function and a specific operational definition of the 
temporal component (latency for delayed effects or duration 
for temporary effects) that is only applicable to the data at 
hand. This is also related to selective reporting (Kratochwill 
et al., 2018; Laraway et al., 2019; Tincani & Travers, 2022) 
of the results that present the best fit, even though they could 
be only one of the instances checked. The problem would 

arise only if we assume that such selective reporting takes 
place. Our recommendation is to report, in a transparent way, 
the data analytical process, including the initial expectations, 
how they affected the a priori choice of a response function, 
and whether any modifications to this choice took place once 
the data were gathered and visually inspected. Considering 
the crucial importance of the justification of the data analyti-
cal approach (Tate et al., 2013; Tincani & Travers, 2022), 
selective reporting is made less likely, as the researchers 
may not have a solid basis for any specific expectations. 
They would need to declare the exploratory nature of the 
analysis in case such an approach is followed. An explora-
tory approach may seem too lenient, but it appears to be a 
better option than selecting only one response function and 
sticking to it regardless of whether there is any basis for this 
choice and whether this response function is adequate for the 
data at hand. Checking, and reporting, the degree to which 
the conclusions change according to the operative definition 
may be more informative.

Limitations

Selecting a response function prior to gathering the data 
reflects the common requirement, in the context of rand-
omization tests, to choose the test statistic before data col-
lection, according to the expected effect (Edgington, 1975; 
Heyvaert & Onghena, 2014a, 2014b; Levin et al., 2017). 
This entails following a deductive approach based on previ-
ous research. Thus, deciding whether the response function 
should include baseline trends depends on whether spon-
taneous improvement prior to the intervention is likely on 
the basis of theory or frequent in empirical studies (e.g., 
in rehabilitation; Krasny-Pacini & Evans, 2018). Similarly, 
deciding whether the response function should allow for a 
delayed effect may be related, for instance, to existing evi-
dence of extinction bursts (Katz & Lattal, 2021; Shahan, 
2022). Finally, whether the effect is expected to be abrupt or 
gradual (e.g., when studying academic performance; Mag-
gin et al., 2018) depends on the kind of intervention and 
target behavior. Thus, a potential limitation of the proposal 
of using response functions is the possibility that there is not 
enough knowledge accumulated to guide the a priori choice. 
In that sense, the response functions would not be applica-
ble in exploratory research or for formative data analysis 
(Johnson & Cook, 2019). Similarly, the application of the 
randomization test logic to response-guided experimen-
tation may require adaptations, such as deciding when to 
change the condition once stability has been achieved (see 
Edgington, 1975). In any case, if a researcher is unwilling 
to determine the phase lengths before gathering the data or 
to wait for a random selecting of the moment of change in 
phase once stability has been obtained, the current proposal 
cannot be used.

6 Randomization-based confidence intervals can be obtained by 
inverting the randomization test (Michiels et al., 2017).
7 Or equivalently, the proportion of possible results (under the ran-
domization scheme) that are as extreme as or more extreme than the 
actually obtained result, in case the null hypothesis is true.



3932 Behavior Research Methods (2024) 56:3915–3936

1 3

The main assumption underlying the use of the response 
functions is that they reflect well the actual data pattern. If 
this is not the case, the value of Pearson’s correlation coef-
ficient would be smaller and the p value associated with it 
would be larger. Thus, the result of the randomization test 
would correctly indicate that the initial expectations about 
the type of data pattern is not met. This is not necessarily a 
limitation. The mismatch between what is expected and what 
is actually obtained could lead to post hoc modifications in 
the initial data analytical plan, as would be the case regardless 
of whether response functions are used or an alternative data 
analytical technique is employed (e.g., if the plan is to use the 
between-case standardized mean difference by Hedges et al., 
2012, 2013, but trends are observed in the data).

Any use of a randomization test requires not only the 
presence of randomization in the design before gathering the 
data but also having at least 20 possible randomizations for 
enabling a p value as small as 0.05. For a multiple-baseline 
design and following the Koehler–Levin procedure this can 
be achieved with as few as three participants and two pos-
sible (nonoverlapping) intervention start points per partici-
pant (a total of 3 !  ×  23 = 6 × 8 = 48 randomizations), whereas 
following the Wampold–Worsham procedure this is achieved 
by selecting one of the 4 !  = 24 possible orders of four par-
ticipants with fixed intervention start points (Levin et al., 
2018). For a reversal design with I = 4 phases (Onghena, 
1992), it is possible to obtain 20 randomizations with a 
series length of n = 15 measurements and a minimal phase 
length of k = 3 measurements, as derived from the expression 
(

n − I × k + (I − 1)

(I − 1)

)

=

(

15 − 4 × 3 + 3

3

)

 . For an alter-

nating treatments design with block randomization (Ong-
hena & Edgington, 2005), five blocks of two conditions (i.e., 
n  = 10) are needed to achieve  25 = 32 possible 
randomizations.

Future research

The current text presents an approach to defining a test 
statistic in randomization tests that takes into account 
the predicted response function. The rationale for this 
approach is discussed and it is illustrated with real data, 
apart from implementing it in user-friendly software. 
However, we did not carry out a simulation study for 
studying the statistical power of the randomization test 
for different response functions, different definitions of 
the temporal aspect of delayed and temporary effects, and 
different data patterns (and also for different number of 
participants and number of measurements). Furthermore, 
it is possible to use different test statistics, apart from 
Pearson’s correlation coefficient: for instance, the sum 
of squared or absolute deviations between the measure-
ments and the response function. We do consider that 

such a study would be a necessary next research step. 
A different possible test for the proposal would be its 
application prospectively in an empirical study. Before 
such tests with simulated and real data are performed, 
the current text should be considered an initial step in 
the definition of a general framework for test statistics 
for randomization tests.
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