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A B S T R A C T 

To explain both the dynamics of a globular cluster and its production of gravitational waves from coalescing binary black 

holes, it is necessary to understand its population of dynamically formed (or, ‘three-body’) binaries. We provide a theoretical 
understanding of this population, benchmarked by direct N -body models. We find that N -body models of clusters on average have 
only one three-body binary at any given time. This is different from theoretical expectations and models of binary populations, 
which predict a larger number of binaries ( ∼5), especially for low- N clusters ( ∼100), or in the case of two-mass models, low 

number of black holes. We argue that the presence of multiple binaries is suppressed by a high rate of binary–binary interactions, 
which efficiently ionize one of the binaries involved. These also lead to triple formation and potentially gravitational wave 
captures, which may provide an explanation for the recently reported high efficiency of in-cluster mergers in models of low-mass 
clusters ( � 10 

5 M �). 

Key words: black hole physics – gra vitational wa ves – binaries: general – stars: kinematics and dynamics. 
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 I N T RO D U C T I O N  

he first detection of a gra vitational wa ve (GW) signal (Abbott
t al. 2016 ) was one of the key milestones for the advent of the
ultimessenger era of astrophysics. This has allowed the direct study 

f, among others, dark systems such as black hole (BH) binaries. To
ate, 90 GW signals from mergers of binary compact objects have 
een detected (Abbott et al. 2021 ; The LIGO Scientific Collaboration 
021 ) – of which the vast majority are binary black holes (BBH)
which requires us to tackle the question of the origin of these

ources. 
Dynamical interactions in the dense cores of stellar clusters have 

een put forward (Portegies Zwart & McMillan 2000 ) as one of
he most likely formation channels for BBH mergers (Antonini & 

ieles 2020 ; Kremer et al. 2020 ; Kumamoto, Fujii & Tanikawa
020 ; Banerjee 2021 ; Chattopadhyay et al. 2022 ; Mapelli et al. 2022 ;
odriguez et al. 2022 ). Current GW constraints are compatible with 
 majority of massive mergers having formed dynamically (Antonini 
t al. 2023 ). The predictions for the production of BBH mergers in
his channel hinge on the population of BBHs, which points towards 
he importance of fully characterizing the demographics of these 
ystems. Because the majority of massive stars form in binaries or
igher order multiples (Sana et al. 2012 ; Moe & Di Stefano 2017 ), a
arge fraction of BHs end up with a companion after stellar evolution
hereafter ‘primordial BBHs’). It has been suggested, ho we ver, that 
n massive clusters the binaries that result in BBH mergers are 
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ominated by the three-body 1 BBHs (Chattopadhyay et al. 2022 ; 
orniamenti et al. 2022 ). A possible explanation of this is due to
rimordial binaries typically having a smaller semi-major axis, and 
hus a smaller interaction cross-section, than three-body binaries 
Barber, Chattopadhyay & Antonini 2023 ). It is, therefore, important 
o study the demographics of three-body binaries to understand 
ynamical mergers. 
Goodman ( 1984 ) showed that in steady post-collapse evolution, 

he number of three-body binaries, N b , depends on the total number
f stars in the cluster, N , as N b ∝ N 

−1/3 . These models predict that
 handful of binaries is expected in single-mass clusters of a few
undred stars. Ho we ver, N -body models of such clusters find instead
hat there is typically only one binary present (Giersz & Heggie
994b ). The aim of this paper is to understand the demographics of
he population of three-body binaries in single-mass and two-mass 
tar clusters, where the latter are intended to understand the behaviour 
f clusters with stellar-mass BHs. We do this by revisiting the model
or steady post-collapse evolution and by comparing this to results 
rom direct N -body calculations. 

The paper is organized as follows: in Section 2 we revisit the
heory for the population of three-body binaries. In Section 3 ,
e present the N -body simulations, of single-mass and two-mass 
odels. In Section 4 , we compare the predictions and the N -body
odels. The cause of the aforementioned discrepancy is discussed 
 We note that Tanikawa, Hut & Makino ( 2012 ) showed that their formation 
ends to involve more than three particles, but for historic reasons we prefer 
o refer to dynamically formed binaries from single bodies as three-body 
inaries 
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2 Unless explicitly stated otherwise, throughout this paper we assume that the 
binary fraction is sufficiently small such that the mean mass within the cluster 
is well approximated by the mass of the single stars and that N is equal to the 
sum of the number of single stars and the number of binaries. The corrections 
to our results when relaxing this assumption are quantified at the end of this 
section. 
3 The fractional energy change per interaction is lower when considering all 
interactions, but we use the result for resonant encounters because 	 is not 
well-defined for non-resonant encounters (Hut 1993 ). 
4 This quantity is reminiscent of the dimensionless central potential W 0 of 
King’s model (King 1966 ), and for W 0 � 5 indeed W 0 � | φ0 | /σ 2 

c . 
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n Section 5 . In Section 6 , we discuss its implications for GW
bservations. 

 T H E  NUMBER  O F  THREE-BODY  BINARIES  

N  STEADY  POST-COLLAPSE  E VO L U T I O N  

n this section, we revisit the models for steady post-collapse evolu-
ion of both single-mass (Goodman 1984 ) and two-mass (Breen &
eggie 2013 ) clusters. 
Throughout this paper we consider star clusters in the post-core-

ollapse evolutionary phase, when binary formation and hardening
s ongoing and there is a balance between the energy production by
inaries in the core and energy transport by two-body relaxation
H ́enon 1975 ). Furthermore, we assume that this post-collapse
volution can be approximated by a steady evolution of the cluster
arameters, i.e. we ignore gra v othermal oscillations that occur in
ingle-mass models with N � 8000 stars (Bettwieser & Sugimoto
984 ; Breeden, Cohn & Hut 1994 ) and in two-mass models where
he number of BHs is N BH � 2000 (Breen & Heggie 2012 ). Both
f these assumptions allow us to express relations between several
luster properties, which are discussed below and summarized in
ables 1 and 2 . 

.1 Single-mass clusters 

n post-collapse, we expect the cluster to be nearly isothermal
ithin the half-mass radius r h , so that the one-dimensional velocity
ispersion is similar within the core and within r h . For a cluster with
ass M and energy E in virial equilibrium with a virial radius r v =
GM 

2 /(4 E ) and positions and velocities sampled from a Plummer
 1911 ) model, we have r h � 0.8 r v and the one-dimensional velocity
ispersion, σ , then obeys 

2 = 

1 

3 
〈 v 2 〉 = 

1 

3 

GM 

2 r v 
� 

2 

15 

GNm 

r h 
. (1) 

here G is the gravitational constant, m is the mass of the stars,
nd 〈 v 2 〉 is their mean-square velocity. The central dispersion can be
xpressed in terms of σ by defining a numerical coefficient α1 

2 
c = α1 σ

2 . (2) 

Next, we define the relation between r h and the core radius, r c .
he corresponding equation can be obtained for the steady post
ollapse evolution via H ́enon’s principle (H ́enon 1975 ) by noting
hat the energy flow through r h needs to be provided by the core.
he exact form of the r h / r c ratio requires one to specify the energy-
enerating mechanism. This deri v ation has already been carried out
n Heggie & Hut ( 2003 , p. 265) and Breen & Heggie ( 2013 ) (although
he former did not keep the numerical pre-factors) when the bulk of
he energy is set to come from binary hardening via three-body
rocesses. By assuming that the mean mass, the Coulomb logarithm
ln � � ln (0.11 N ), Giersz & Heggie 1994a ] in the denominator of
he central relaxation time-scale, and the dimensionless ratio of the
entral potential ( | φ0 | ) to the central velocity dispersion, | φ0 | /σ 2 

c , all
re constant, they obtain 

 h /r c � α2 N 

2 / 3 , (3) 

here α2 is a constant. If the assumptions abo v e are relax ed, the final
atio would include a dependence on ( | φ0 | /σ 2 

c ) / ln � but, since both
hese quantities scale weakly with N , we are justified in taking α2 as
 constant. In Section 4 , we determine α2 and a possible additional
 -dependence from N -body simulations. 
NRAS 527, 8369–8381 (2024) 
We complement the abo v e relations with the relation for the
umber of stars in the cluster core, N c . Starting from the definition
f the core radius (Heggie & Hut 2003 , p. 71) 

4 πG 

9 
ρ0 r 

2 
c = σ 2 

c (4) 

e then use the fact that, for the isothermal model and King ( 1966 )
odels with high concentration, the central density can be expressed

n the average density within the core as ρ0 � 1.9 ρc , allowing us to
btain a measure of the mass contained within the core radius. Then,
he number of components (singles + binaries) within the core, N c ,
s 2 

 c = 0 . 98 
α1 

α2 

(
N 

10 2 

)1 / 3 

(5) 

he αi parameters in this theoretical prediction are of order unity
nd their values and possible N -dependences will be determined in
ection 4 by fits to N -body models. 
The binaries that we are concerned with are those that do not

reak up after an encounter with a typical single star of the cluster,
eaning that their binding energy x = Gm 

2 /(2 a ) is greater than
 h � mσ 2 

c (where a is the semimajor axis of the binary). We refer
o these binaries with the usual nomenclature of hard binaries, as
pposed to soft binaries which have x < x h , and a > a h = Gm 

2 /(2 x h ).
eggie ( 1975 ) showed that hard binaries become on average more
ound (that is, they harden) after an interaction with a third star. The
ractional increase of x is on average 	 � 0.4 for resonant encounters 3 

Spitzer 1987 ) and the released energy results in a velocity kick
f the single star and the centre-of-mass of the binary. Since each
ncounter gives the binary a momentum kick that scales with x , at
ome moment x is sufficiently large such that the subsequent velocity
ick of the binary is abo v e the escape velocity from the centre of
he cluster. From conservation of energy and linear momentum and
ssuming equal masses, it can be shown that the upper limit of the
inding energy of three-body binaries is x ej = 

6 
	 

m | φ0 | = 15 m | φ0 |
Goodman 1984 ), which corresponds to a semimajor axis of a ej =
m 

2 /(2 x ej ). In order to obtain the total number of binaries, we will
ompute the distribution of (hard) binaries per unit volume and per
nit z ≡ x/ ( mσ 2 

c ) and integrate it from z h = 1 to z ej = 15 | φ0 | /σ 2 
c ,

here | φ0 | /σ 2 
c is a dimensionless central potential, which is a

easure of the (instantaneous) central concentration 4 This approach
esults in a scaling law for the number of hard binaries (Goodman
984 ) that we will reproduce with a detailed analysis of the numerical
re-factors. 
The first model for the energy distribution of three-body binaries

n post-collapse evolution was presented by Retterer ( 1980 ) and was
ater refined by Goodman & Hut ( 1993 ). We will re-derive the binary
istribution using the Goodman & Hut pre-factors, because they are
ased on a large set of scattering experiments by Heggie & Hut
 1993 ). We begin by considering the net creation rate of binaries per
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Table 1. Scaling laws for single-mass cluster properties in the steady post 
core-collapse evolutionary phase. The coefficients α1 and α2 are found from 

the N -body simulations. 

Value Scaling law Coefficients 

Velocity dispersion in the core σ 2 
c = α1 

2 
15 

GmN 
r h 

α1 � 1.4 

Half-mass to core radius ratio r h 
r c 

= α2 N 

2 / 3 α2 � 0.13 

Net creation rate of binaries 
 b = 0 . 75 G 

5 m 5 n 3 c 
σ 9 

c 

Binary hardening rate ż = 3 . 8 G 

2 m 2 n c 
σ 3 

c 

Core radius 4 πG 

9 ρ0 r 
2 
c = σ 2 

c 
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Table 2. Scaling laws for two-mass cluster properties in the steady post core- 
collapse evolutionary phase. The coefficients α1,BBH and α2,BBH are found 
from the N -body simulations. 

Value Scaling law Coefficients 

Velocity dispersion in the core σ 2 
c , BH = α1 , BH 

2 
15 

GM BH 
r h , BH 

α1, BH � 1.5 

Half-mass to core radius ratio r h , BH 
r c , BH 

= α2 , BH N 

2 / 3 
BH α2, BH � 0.088 

Net creation rate of binaries 
 b = 0 . 75 
G 

5 m 5 BH n 
3 
c , BH 

σ 9 
c , BH 

Binary hardening rate ż = 3 . 8 
G 

2 m 2 BH n c , BH 

σ 3 
c , BH 

Core radius 4 πG 

9 ρ0 , BH r 
2 
c , BH = σ 2 

c , BH 
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nit volume (Goodman & Hut 1993 ) 

 b = 0 . 75 
G 

5 m 

5 n 3 c 

σ 9 
c 

, (6) 

nd the hardening rate (Heggie & Hut 1993 ) defined as the rate of
nergy generation of the binaries 

˙ = 3 . 8 
G 

2 m 

2 n c 

σ 3 
c 

. (7) 

ince this hardening rate is independent of z itself, the steady post-
ollapse distribution of hard binaries is uniform in z between the 
inimum and maximum binding energy. The distribution per unit 

olume, f ( z), is 

 ( z) = 


 b 

ż 
= 0 . 20 

G 

3 m 

3 n 2 c 
σ 6 

c 

. (8) 

ssuming that z ej 	 z h and that the rele v ant binary physics happens
ithin the volume V c of the cluster core, the total number of binaries

s 5 

 b = 

∫ z ej 

z h 

f ( z) V c d z � 3 . 0 
G 

3 m 

3 n 2 c 

σ 8 
c 

V c | φ0 | . (9) 

The abo v e equation can be simplified by using the scaling la ws in
able 1 to obtain 6 

 b = 2 . 8 
α2 

α1 

| φ0 | 
σ 2 

c 

(
N 

10 2 

)−1 / 3 

. (10) 

he ratio | φ0 | /σ 2 
c is dimensionless and thus only depends on N . In

ection 4.1 , we quantify this dependence and show that it is very
eak. By neglecting it, Goodman ( 1984 ) found that the scaling of

he number of binaries with the number of stars in the cluster could
e approximated as N b ∝ N 

−1/3 . 

.2 Two-mass clusters 

n the post-collapse evolution of a cluster, the most massive stars
ave already ended their evolution, so the stellar population can 
e approximated by two distinct mass bins: that of heavy stellar-
ass BHs with masses of m BH � 20 M � and that of light stars with
 Compared to Goodman ( 1984 ), we use an updated value of the numerical 
refactor, so their prediction for the number of binaries is roughly three times 
arger than ours. 
 So far we have assumed that N � N s + N b , with N s the number of single 
tars, and that the mean mass within the core, m c , is equal to the mean mass 
f the cluster, that is, m � m c . If we explicitly keep the m / m c dependence in 
he abo v e equations, we obtain that the result for r h / r c (equation 3 ) and N b 

equation 9 ) need to be multiplied by m / m c and ( m / m c ) 3 , respectively. The 
esult for N c (equation 5 ) would remain unchanged. 

w  

d
t  

e

7

d
e
G

 � � 0 . 5 M �. Due to the large difference between these bins, we
ill assume that all BHs have the same mass m BH and all stars have

he same mass m � 
 m BH . Each of these mass bins contribute a
otal of M BH and M � to the total cluster mass, respectively. We will
ontinue referring to the heavy and light components as BHs and
tars, respectively, but we note that we are considering Newtonian 
ravity in the point-mass limit. 
To describe the two-mass cluster, we need two extra parameters 

ith respect to the single-mass case: the mass ratio, μ ≡ M BH / M ,
hich sets what fraction of the cluster mass is in BHs, and the

tellar-mass ratio, q ≡ 〈 m 〉 / m BH , which sets how massive the BHs
re with respect to the average mass of stars and BHs, 〈 m 〉 , in the
luster. Both of these quantities are defined such that μ, q ∈ (0, 1).
ome authors (for example, Breen & Heggie 2013 ) give alternative
efinitions of these parameters with respect to the mass of stars, M � 

nd m � , instead of total and average mass. Both of these definitions
re interchangeable, and converge in the limit of a small number
f BHs. We prefer the definition given above as it simplifies the
quations that follow. 

The clusters of interest will be those in which the light stars form
he bulk of the cluster mass 7 , M � 	 M BH . This allows us to compare
ur results to the two-mass model of Breen & Heggie ( 2013 ). Their
odels assume that equipartition between stars and BHs cannot be 

chieved, which applies if (Spitzer 1969 ) 

M BH 

M � 

(
m BH 

m � 

)3 / 2 

> 0 . 16 . (11) 

After core collapse, the BHs in a two-mass cluster behave as
 denser BH subsystem embedded in a larger star cluster. The
entral region of the cluster will then be populated mainly by
Hs, whose evolution is powered by BBHs. This energy is then

ransferred outwards in the BH subsystem until it is deposited in
he cluster of stars surrounding the BHs. In order to obtain the
quations relating the cluster properties, we will make use of the
odel of Breen & Heggie ( 2013 ). These scaling laws, which are the

nalogues of equations ( 1 )–( 5 ) for two-mass clusters, are summarized
n Table 2 . The results are equi v alent to what we would have found if
e considered the BH sub-cluster in isolation, with the only key
ifference being the central potential term, which here includes 
he contribution of both the stars and the BHs. We reproduce the
quations here, for completeness 
MNRAS 527, 8369–8381 (2024) 

 Although this is a standard assumption, there is a sparkling interest in low- 
ensity clusters near dissolution where most of the mass is in BHs (see for 
xample Banerjee & Kroupa 2011 and the discussion about Palomar 5 in 
ieles et al. 2021 ). Nevertheless, we will not focus on such systems. 
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Table 3. Values of the input parameters in the N -body runs of the single-mass 
clusters. Each row in the table represents a different cluster model, which is 
run multiple times (as shown in the last column) to obtain sufficient statistical 
significance. 

N t f / τ dyn Num. of runs 

128 143 64 
256 227 32 
512 376 16 
1024 642 8 
2048 1120 4 
4096 1986 4 
8192 3567 4 
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2 
c , BH = α1 , BH σ

2 
BH = α1 , BH 

2 

15 

GM BH 

r h , BH 
(12) 

r h , BH 

r c , BH 
= α2 , BH N 

2 / 3 
BH (13) 

4 π

9 
Gρ0 , BH r 

2 
c , BH = σ 2 

c , BH (14) 

 c , BH = 0 . 98 
α1 , BH 

α2 , BH 

(
N BH 

10 2 

)1 / 3 

(15) 

As in Section 2.1 , the number of binaries can be computed from the
ntegral equation ( 9 ) of their binding energy distribution. To compute
he number N BBH of BBHs, we will use the form in equation ( 8 ) but
hanging the variables to their counterparts in the BH sub-cluster,
.g. m �→ m BH . This reco v ers the same form of the two-mass binary
inding energy distribution from Retterer ( 1980 ), i.e. 

 BBH � 3 . 0 
G 

3 m 

3 
BH n 

2 
c , BH 

σ 8 
c , BH 

V c , BH | φ0 | (16) 

hich we can express as 

 BBH = 2 . 8 
α2 , BH 

α1 , BH 

| φ0 | 
σ 2 

c , BH 

(
N BH 

10 2 

)−1 / 3 

(17) 

In parallel to the result for the single-mass case, we obtain
he prediction that the number of BBHs scales as N BBH ∝ N 

−1 / 3 
BH ,

lthough in this case the contribution of the | φ0 | /σ 2 
c , BH term is larger.

n the following section we will test the abo v e equations against
 -body models. 

 DESCRIPTION  O F  T H E  N - B O DY  M O D E L S  

e simulate a set of single-mass and two-mass clusters and compare
heir global properties and the number of three-body binaries to the
heory presented in the previous section. To isolate the dynamics
f binary formation and disruption, we neglect primordial binaries,
tellar, and binary star e volution, post-Ne wtonian physics, and the
alactic tidal field. We sample initial positions and velocities from
 Plummer ( 1911 ) model using the MCLUSTER implementation from
 ̈upper et al. ( 2011 ). The exact choice of initial positions and
elocities is not important for this study, as we will only consider the
volution beyond core collapse, after which the information about
he initial conditions is erased (Lynden-Bell & Eggleton 1980 ). Our
imulations are run in H ́enon units, i.e. G = M 0 = −4 E 0 = 1
H ́enon 1971 ), where M 0 is the initial cluster mass and E 0 is the
nitial energy of the cluster. For our assumption of virial equilibrium,
he initial virial radius is r v , 0 = −GM 

2 
0 / (2 W 0 ) = 1, where W 0 =

1/2 is the gravitational energy. The corresponding unit of time is
dyn = ( r 3 v , 0 /GM 0 ) 1 / 2 . 

We use the direct N -body code PETAR (Wang et al. 2020b ), which is
 high-performance code used for the modelling of large- N collisional
ystems. It is based on a hybrid method: a Barnes–Hut (Barnes & Hut
986 ) tree method for long-range forces and a few-body integrator for
hort-range interactions. The integrator for close interactions, SDAR

Wang, Nitadori & Makino 2020a ), combines an explicit Hermite
ntegrator for weakly perturbed binaries and a slo w-do wn method
or more compact subgroups. 

The centre of the cluster as well as r c are defined following
asertano & Hut ( 1985 ) and McMillan, Hut & Makino ( 1990 ), with
 h determined from the bound stars in a reference frame where the
ensity centre of the cluster is in the origin. We consider binaries
s pairs of close stars whose binding energy is greater than mσ 2 

c –
NRAS 527, 8369–8381 (2024) 
hich is proportional to the average kinetic energy of single stars in
he core – and that are bound to the cluster. 

.1 Single-mass models 

e have run a family of single-mass models with logarithmically
paced N , in the range 128 ≤ N ≤ 8192, where each model is run
everal times for statistical significance. The input N and number of
uns are shown in Table 3 . Within the aforementioned simplifications,
ingle-mass models are scale-free, and thus N is the only parameter
hat defines the post-collapse evolution of the cluster. The simulations
re run through core collapse, which happens at τ cc � 16 τ rh,0 for
lummer models (Cohn 1980 ), with τ rh,0 being the initial relaxation

ime-scale (Spitzer & Hart 1971 ), 

rh = 0 . 138 
N 

ψ ln � 

√ 

r 3 h 

GM 

, (18) 

 v aluated at the start of the simulation, where ψ = 1 and ln � is
he Coulomb logarithm with � � 0.11 N for single-mass models
Giersz & Heggie 1994a ). The data for the post-collapse evolution
s then taken starting from t 0 = 1.1 τ cc up until t f = t 0 + 20 τ rh,0 , at
onstant intervals of 4 N -body times. Values found for the cluster
roperties are averaged over all snapshots between the times t 0 and
 f , with their corresponding error bars being the standard deviation
mong different runs. The fittings are done with linear regressions,
here we take the uncertainties into account by weighting the data
oints with the inverse squared value of their errors. 

.2 Two-mass models 

or the two-mass N -body models, we take our data from t 0 = 1.1 τ cc 

o t f = t 0 + 2 τ rh,0 . We use a lower number of τ rh,0 than in the single-
ass models because in the two-mass models the binary phenomena

appen within the BH subcluster and thus the rele v ant time-scale is
horter. The impact of the adopted simulation time is discussed in
ection 6.1 . For the core-collapse time-scale of two-mass clusters,
e use the result of Kim & Lee ( 1997 ) 

cc = 5 . 3 

(
m � 

m BH 

)2 (
N � 

N BH 

)1 / 2 

τrh , 0 , (19) 

s well as their expression for τ rh,0 (equation 18 , but setting � =
.4 N ). The values of the three parameters N BH , q , and μ for the set
f simulations that we have run is summarized in Table 4 . We set
 ∈ [5 × 10 4 , 1 × 10 5 , 2 × 10 5 ] and store the snapshots every
ight N -body times. For the mass ratio q we adopt q ∈ [1/50, 1/25],
o approximate metal-poor (log 10 ( Z / Z �) � −1.5) and metal-rich
log 10 ( Z / Z �) � −0.5) clusters, respectiv ely. F or the mass fraction μ,



Demographics of three-body BBHs in star clusters 8373 

Table 4. Values of the input parameters in the N -body runs of the two-mass 
clusters. Each row in the table represents a different cluster model, which is 
run multiple times (as shown in the last column) to obtain sufficient statistical 
significance. 

N q μ N BH Num. of runs 

5 × 10 4 1/50 0 .025 25 4 
5 × 10 4 1/25 0 .025 50 4 
5 × 10 4 1/50 0 .05 50 4 
5 × 10 4 1/25 0 .05 100 4 
5 × 10 4 1/50 0 .1 100 4 
5 × 10 4 1/25 0 .1 200 4 
1 × 10 5 1/50 0 .025 50 2 
1 × 10 5 1/25 0 .025 100 2 
1 × 10 5 1/50 0 .05 100 2 
1 × 10 5 1/25 0 .05 200 2 
1 × 10 5 1/50 0 .1 200 2 
1 × 10 5 1/25 0 .1 400 2 
2 × 10 5 1/50 0 .025 100 1 
2 × 10 5 1/25 0 .025 200 1 
2 × 10 5 1/50 0 .05 200 1 
2 × 10 5 1/25 0 .05 400 1 
2 × 10 5 1/50 0 .1 400 1 
2 × 10 5 1/25 0 .1 800 1 
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2 (equations 1 and 2 ) as a function of N for the single- 
mass N -body models (crosses with error bars). Fits for a constant α1 and an 
N -dependent α′ 

1 are shown with grey and red lines, respectively. 

Figure 2. Ratio r h / r c equation ( 3 ) as a function of N for the single-mass 
N -body models (crosses with error bars). Fits for a constant α2 and an N - 
dependent α′ 

2 are shown with grey and red lines, respectively. 
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e have chosen μ ∈ [0.025, 0.05, 0.1]. Note that, for all combinations
f these parameters, our clusters a v oid gra v othermal oscillations
Breen & Heggie 2012 ) and satisfy the above criteria for Spitzer
nstability (Spitzer 1969 ), such that the evolution should be well- 
escribed by the theory of Breen & Heggie ( 2013 ). 

 C O M PA R I N G  T H E  STEADY  POST-COLLAPSE  

O D E L  TO  N - B O DY  SIMULATIONS  

.1 Single-mass clusters 

n this section, we calibrate and compare the theoretical predictions 
f the single-mass model of Section 2.1 to the N -body models of
ection 3.1 . We also allow the theory to include slight additional
 -dependences in the α1 , α2 parameters (that we label as α′ 

1 and α′ 
2 ,

espectively). In Fig. 1 , we show the ratio α1 = σ 2 
c /σ

2 as a function
f N . We find that a constant α1 equation ( 2 ) is a good approximation
nly for N � 10 3 , and α′ 

1 increases slightly at larger N . A scaling
′ 
1 = 1 . 1( N/ 10 2 ) 0 . 06 describes the N -body data well. This increase is

ikely due to the increase of r h / r c with N , leading to a higher central
ensity and dispersion, relative to the global values, for clusters with 
arger N . 

The r h / r c ratio is shown Fig. 2 . The scaling of equation ( 3 ) is a good
pproximation for constant α2 for N � 10 3 –10 4 , whereas it deviates
lightly at lower values of N , which, as discussed in Section 2.1 , may
e due to the weak N -dependence of the Coulomb logarithm in the
enominator of the central relaxation time-scale and in the | φ0 | /σ 2 

c 
erm. A scaling of α′ 

2 = 0 . 19( N/ 10 2 ) −0 . 09 provides a good fit to the
 -body data. 
From these scaling laws, we are able to accurately predict the 

umber of stars in the core (Fig. 3 ). The prediction for N c with
onstant αi equation ( 5 ) has the same form than the one given in
oodman ( 1984 ), 

 c = 10 
( α1 

1 . 3 

)( α2 

0 . 13 

)−1 
(

N 

10 2 

)1 / 3 

, (20) 

hich yields a rough estimate of N c from the N -body models within
 50 per cent o v er two orders of magnitude in N . Using the N -
ependent expressions for α′ 
1 and α′ 

2 yields 

 

′ 
c = 0 . 58 

(
N 

10 2 

)0 . 17 

N c (21) 

hich accurately describes the N -body data. Furthermore, in Fig. 4
e show the ratio | φ0 | /σ 2 

c as a function of N , which can be
pproximated by the power-law relation 

| φ0 | 
σ 2 

c 

� 7 . 2 

(
N 

10 2 

)0 . 1 

. (22) 

Now all ingredients of the expression for the number of binaries
ave been discussed, it is time to combine them and compare to N b 

e find in the simulations. We obtain 

 b = 1 . 9 
( α2 

0 . 13 

)( α1 

1 . 3 

)−1 
( | φ0 | /σ 2 

c 

7 . 2 

)(
N 

10 2 

)−1 / 3 

(23) 
MNRAS 527, 8369–8381 (2024) 
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M

Figure 3. Number of stars in the cluster core as a function of N for the 
single-mass N -body models (crosses with error bars). Using αi independent 
of N (grey) we are able to roughly match the N -body models, whereas using 
the N -dependant α′ 

i coefficients (red) yields a very accurate match. 

Figure 4. Ratio | φ0 | /σ 2 
c equation ( 22 ) as a function of N for the single-mass 

N -body models (crosses with error bars). 
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models (crosses with error bars). The theory o v er-predicts the number of 
binaries. 

Figure 6. Ratio σ 2 
c , BH /σ

2 
BH equation ( 12 ) as a function of N BH for the two- 

mass N -body models (crosses with error bars). Fits for a constant α1,BH and 
an N -dependent α′ 

1 , BH are shown with grey and red lines, respectively. 
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hich can be corrected by the deviations from the scaling laws above
o yield 

 

′ 
b = 1 . 7 

(
N 

10 2 

)−0 . 17 

N b , (24) 

uch that a cluster with ∼100 stars is expected to have ∼3 binaries. 
In Fig. 5 , we show both the prediction for N b and the N -body

esults. The prediction equation ( 24 ) approximately reproduces the
umber of binaries in the core at large N ( N � 10 3 ), whereas in the
mallest clusters N b is o v er-predicted by an order of magnitude. It
ould be reasonable to consider binaries outside of the core, as the
nteractions with single stars increase the apocentre of their orbits as
he y evolv e in their lifec ycle. When we consider all binaries within r h ,
he number of binaries in the N -body models is higher, and increases
lightly with N , that is, the opposite N -dependence. The simulations
re compatible with the clusters only having a single central binary
t any point in time, which spends a fraction of its lifetime outside
he core. 
NRAS 527, 8369–8381 (2024) 
.2 Two-mass clusters 

n this section, we compare the theoretical prediction of the two-
ass model of Section 2.2 to the N -body models of Section 3.2 .
he velocity dispersion within the BH sub-cluster’s core is shown

n Fig. 6 , where we find reasonable agreement for a constant α1,BH 

quation ( 12 ), but a slight decline of α1,BH with N BH is preferred,
qui v alent to the single-mass case. For the ratio r h,BH / r c,BH in the BH
ub-cluster (Fig. 7 ), we find that the scaling law of equation ( 13 )
s a valid approximation to the data. Similarly to the single-mass
ase, the deviation at low N BH can be attributed to the weak N BH 

ependency of the Coulomb logarithm. Ho we ver, in the two-mass
ase the deviation is larger due to the smaller number of BHs in the
ore. 

From these relations, we can predict the number of BHs in the
ub-cluster core (Fig. 8 ). As in the single-mass case, constant αi ,BH 
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Figure 7. Ratio r h,BH / r c,BH equation ( 13 ) as a function of N BH for the two- 
mass N -body models (crosses with error bars). Fits for a constant α2,BH and 
an N -dependent α′ 

2 , BH are shown with grey and red lines, respectively. 

Figure 8. Number of BHs in the sub-cluster core as a function of N BH for the 
two-mass N -body models (crosses with error bars). Using αi ,BH independent 
of N BH (grey) we are able to roughly match the N -body models, whereas 
using the N BH -dependant α′ 

i , BH coefficients (red) yields a good match. 
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quation ( 15 ) give a rough approximation to N c,BH , 

 c , BH = 16 
(α1 , BH 

1 . 5 

)( α2 , BH 

0 . 088 

)−1 
(

N BH 

10 2 

)1 / 3 

(25) 

ith the discrepancy being largest at lower N BH . Using the corrected
′ 
i , BH yields 

 

′ 
c , BH = 0 . 76 

(
N BH 

10 2 

)0 . 23 

N c , BH , (26) 

hich accurately reproduces the results from the N -body models 
or N BH � 50, although it slightly o v erpredicts the results for the
ub-clusters with the fewest black holes in the core ( N c,BH � 7). 

The abo v e scaling la ws are complemented by a fit to | φ0 | /σ 2 
c , BH 

Fig. 9 ). From the three parameters of the model, we find that this
alue only correlates strongly with μ. The best-fitting power law is 

| φ0 | 
σ 2 

c , BH 

� 35 
( μ

0 . 025 

)−0 . 62 
. (27) 

lthough this equation may be taken to imply a very deep central
otential, this is not the case. The apparently large value is an artefact
f expressing the potential in units of the central velocity dispersion
f the BHs. Using Breen & Heggie ( 2013 , equation 4), we can write
t in terms of the central (total) velocity dispersion, yielding a much
maller value 

| φ0 | 
σ 2 

c 

� 4 
( μ

0 . 025 

)−0 . 22 
(

q 

1 / 25 

)0 . 4 

. (28) 

Using the calibrations for the scaling laws (equations 12 –15 ), we
an e v aluate the prediction for the number of BBHs of equation ( 17 )
o obtain 

 BBH = 6 
( α2 , BH 

0 . 088 

)(α1 , BH 

1 . 5 

)−1 
( 

| φ0 | /σ 2 
c , BH 

35 

) 

×
( μ

0 . 025 

)0 . 62 
(

N BH 

10 2 

)−1 / 3 

. (29) 

his can be corrected with the deviations from the scaling laws as 

 

′ 
BBH = 1 . 3 

(
N BH 

10 2 

)−0 . 23 

N BBH . (30) 

Although the two-mass steady post-collapse model is able to 
escribe the other properties of the N -body model, it o v er-predicts
he number of BBHs (Fig. 10 ). This result is very similar to the
ingle-mass case, although in this case the discrepancy is larger. In
eneral, the discrepancy is most notable in models with smaller μ
nd smaller N BH . 

 T H E  CAUSE  O F  T H E  D E A RT H  O F  BINARIES:  
IN  A RY – B I N  A RY  I N T E R AC T I O N  

n the previous sections, we find that the theoretical predictions for
he population of binaries are unable to describe the number of three-
ody binaries in the N -body runs, even if all the other elements of the
odel do match the simulations. This discrepancy had already been 

bserved in Giersz & Heggie ( 1994b ), but no cause was definitively
MNRAS 527, 8369–8381 (2024) 
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Figure 10. Number of BBHs as a function of N BH and μ for the two-mass 
N -body models (crosses with error bars). The number of BBHs is roughly 
constant and the theory vastly o v erpredicts the number of binaries. 
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dentified. In this section, we search for an explanation for the
iscrepancy between the theory and the N -body models. Because
inary formation is well understood (Heggie 1975 ), we should search
or a missing ingredient in the model for binary evolution. The models
f Retterer ( 1980 ) and Goodman & Hut ( 1993 ) assume that the
inding energies of binaries evolve because of interactions between
inaries and single stars, and binary–binary interactions are ignored
ith the argument that they are rare. Ho we v er, the y start to play a

ole if the binary fraction in the core is abo v e some critical value.
he most likely outcome of a binary–binary interaction is that at least
ne of the binaries is ionized ( ∼ 95 per cent of the outcomes for the
cattering experiments in Antognini & Thompson 2016 ), which can
xplain the dearth of binaries. Because the total number of binaries
n the N -body models is O(1), ignoring interactions among binaries
s a justified assumption for clusters with N c 	 1. Ho we ver, as we
ave shown in Fig. 3 , N c � 20 for N � 10 3 , whilst the theory predicts
 b � 2. In fact, the predicted binary fraction in the core is f b =
 b / N c � 0.6( N /10 2 ) −0.9 . Therefore, if the model for the binary energy
istribution in the steady post-collapse model is correct, then binary–
inary interactions would be important, so we need to understand
heir effect on shaping the energy distribution of binaries. 

We start by estimating the critical binary fraction in the core,
bo v e which binary–binary interactions become more frequent than
inary–single interactions. The interaction cross-section for a binary
ith a single goes as  bs ∝ Gr p m tot /v 

2 
bs , where v bs is the relative

elocity, r p � a is the rele v ant minimum distance (with a the
emimajor axis of the binary), and m tot = 3 m is the total mass of
he interacting binary and single. Assuming equipartition, the typical
elativ e v elocity among binaries, v bb , is a factor of 

√ 

3 / 4 lower than
mong binaries and singles ( v bb = 

√ 

3 / 4 v bs ). Then, taking m tot =
NRAS 527, 8369–8381 (2024) 
 m and r p = 2 a for binary–binary interactions, we estimate that the
ross-section for these is  bb � 3.6  bs . The ratio of the rate of
inary–binary interactions to the rate of binary–single interactions,
 bb / 
 bs , is 


 bb 


 bs 
� 

N 

2 
b  bb v bb 

N b N s  bs v bs 
� 3 . 1 f b (31) 

his estimate shows that binary–binary interactions are expected to
e more frequent than binary–single interactions for 8 f b � 0.3 in the
ore. Although this may seem high, the core contains of order 10 stars,
o this criterion is already met if three binaries are created. This is
pproximately the number of hard binaries predicted by Goodman &
ut ( 1993 ) for clusters N � 100, and we note that their models
redict an even higher formation rate of soft binaries which have a
arger cross-section for interactions and can therefore also contribute
o binary ionization in a way that is not captured by the Goodman &
ut ( 1993 ) model. We will therefore test whether binary–binary

nteractions can reduce the number of binaries seen in the N -body
odels. 

.1 Single-mass models 

s stated abo v e, the most likely outcome of a binary–binary interac-
ion is that at least one of the binaries is ionized. If the time-scale for
his ionization mechanism is shorter than the time needed to form
ew binaries, then the predicted uniform binding energy distribution
quation ( 8 ) is never realized. Instead, one would find a decline
n binaries at higher z, because they are destroyed at some point
uring their life-cycle. Furthermore, this deviation should be larger
t smaller N , where the theory predicts the highest binary fraction. In
ig. 11 we show the histogram of binary binding energies within the
ore during the steady post-collapse evolution of three cluster models.
s predicted, we observe that the predicted uniform distribution is
ot realized, supporting the idea that binaries are destroyed before
hey reach the maximum binding energy. 

The qualitative difference of binary–binary interactions with
espect to binary–single interactions is the possibility of formation
f stable triple systems (Zevin et al. 2019 ). Although the formation
f stable triples via binary–single interactions is not energetically
orbidden, the probability of such process is zero (Heggie & Hut
003 , p. 211). Thus, the existence of dynamically formed stable triple
ystems is a necessary (but not sufficient, Section 6.2 ) condition to
onfirm the importance of binary–binary interactions in a cluster.
he formation of triples can easily be measured in an N -body model,
here we identify triples as bound states of three stars that verify the

tability criterion from Mardling & Aarseth ( 2001 ). The results for
he average number of stable, dynamically formed triples N t in the
ingle-mass model is shown in Fig. 12 , where we see that not only
uch triples are present, but their number is an inverse function of
he number of stars of the cluster. 

In order to gauge the impact of binary–binary interactions in the
inary population, we will estimate the relative importance of the
riple formation rate – assuming the theoretically expected binary
istribution function in equation ( 8 ) – with respect to the net binary
ormation rate 
 b equation ( 6 ). For triple formation in binary–binary
nteractions to be negligible, this ratio should be much smaller than
ne. We can estimate the triple formation rate with the corresponding
ross-sections. We will use the results of Antognini & Thompson
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Figure 11. Distribution of the binding energies of the binaries as a function 
of N for the single-mass N -body models. The theory (dotted lines) does 
not match the observed distribution (full lines), with the discrepancy being 
highest at lower N and higher z. 

Figure 12. Number of dynamically formed stable triples N t as a function of 
N (crosses with error bars) in the single-mass N -body model. The non-zero 
value of N t implies the presence of binary–binary interactions. 
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 2016 ), where the authors considered scattering experiments of 
qual-mass, circular binaries in the Newtonian point-particle limit. 
heir quoted result for the cross-section of stable triple formation is 

( a 1 , a 2 , v) = π
(
a 2 1 + a 2 2 

)( ˆ v 2 

0 . 567 
+ 

ˆ v 6 

0 . 0279 

)−1 

(32) 

he cross-section depends on the semimajor axes a 1 , a 2 of the
ncoming binaries and the ratio ˆ v of their relative velocity to their 
ritical velocity, ˆ v = v/ 
√ 

Gm ( a 1 + a 2 ) / ( a 1 a 2 ) . The total rate of 
riple formation in binary–binary encounters per unit volume can 
e obtained in the ‘n-sigma-v’ formalism by the integration of these
 ariables using, respecti vely, the distribution of z equation ( 8 ) and
he distribution for the relative velocities. If we assume that the
istribution of velocities in the core is Maxwellian with a dispersion
f σ c , then the dispersion of relativ e v elocities among singles is
 

2 σc . If we then take binaries to be twice as massive and assume
quipartition between singles and binaries, we obtain that the relative 
elocities of binaries also follow a Maxwellian distribution with a 
ispersion of σ c ( f Maxwell ( v) ∝ v 2 /σ 3 

c exp ( −0 . 5 v 2 /σ 2 
c )). Therefore,

he triple formation rate is 

 t, bb = 

•
f ( z 1 ) f ( z 2 ) 

2 
f Maxwell ( v) ( z 1 , z 2 , v ) v d z 1 d z 2 d v (33) 

The ratio 
 t,bb / 
 b is then expressed only as a function of N by
sing the scaling relations in Table 1 and shown in Fig. 13 . The
atio is greater than one for N � 2000 and declining approximately
s N 

−0.8 . This supports the idea that binary–binary interactions are
estroying three-body binaries faster than they form, and that this 
ffect is especially relevant in lower-mass clusters. In turn, this gives
 theoretical explanation for the observed presence of a single three-
ody binary in N -body simulations, as every time a new binary forms
t is rapidly destroyed in a binary–binary interaction. 

.2 Two-mass models 

n Section 5.1 , we showed that, for single-mass models, binary–
inary interactions are non-ne gligible ev en when no primordial 
inaries are present. We will now argue that this is a general
rediction that also applies to the population of BBHs in two-mass
odels. 
As before, we show in Fig. 14 that a uniform BBH binding energy

istribution is not realized, with the discrepancy being greatest at 
ower N BH and higher z. Contrary to the single-mass case, here the

odels with lower N BH have higher z ej because of their smaller μ (see
quation 29 ). Furthermore, we show that BBH–BBH interactions 
appen by looking at the formation of stable triple BH systems.
MNRAS 527, 8369–8381 (2024) 
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Figure 14. Distribution of the binding energies of the BBHs as a function 
of N BH and μ for the two-mass N -body models with N = 50 000 and q = 

1/50. The theory (dotted lines) does not match the observed distribution (full 
lines), with the discrepancy being highest at lower N BH , μ and higher z. 

Figure 15. Number of dynamically formed stable BH triples N t,BH as a 
function of N BH and μ (crosses with error bars) in the two-mass N -body 
model. The non-null value of N t,BH implies the presence of BBH–BBH 

interactions. 

Figure 16. Dimensionless ratio of the BH triple formation rate 
 t,bb to 
the BBH formation rate 
 b as a function of the number of BHs N BH (top 
panel) and the mass fraction μ (bottom panel). This ratio is much greater 
than one, which points towards the non-negligible relevance of BBH–BBH 

interactions when modelling the three-body BBH population. The ratio scales 
approximately as 
 t, bb / 
 b ∝ μ−1 . 2 N 

−1 . 2 
BH . 
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ndeed, in Fig. 15 we can see that stable BH triple formation happens
or all clusters, independently of their number size, BH mass fraction
r mass ratio. In the two-mass case, the values of N BH correspond to
he smaller end of the range of N in the single-mass case, so we do
ot observe the decrease in the number of triples that is seen at large
 in the single-mass models. The presence of stable triples in N -
ody models without primordial binaries had already been noticed
efore, e.g. Aarseth ( 2012 ) and Banerjee ( 2018 ). Although stable
ith respect to their internal kinematics, the triples that form in our
odels are rather soft and can easily be destroyed via interactions
ith unbound singles. 
In parallel to our argument in the previous section, we evaluate

he rate of BBH–BBH interactions. We use the same form than in
quation ( 33 ), although we will now use the scaling relations in
quations ( 12 )–( 15 ) to obtain the ratio of rates as a function of N BH 

nd μ. This ratio of rates is shown in Fig. 16 . As can be seen,
he ratio is much larger than one for all values of the number of
Hs, mass ratio or mass fraction, which explains the discrepancy
etween the observed and predicted number of binaries in Fig. 10 .
e can therefore conclude that BBH–BBH interactions are a key

ngredient to shape the distribution of three-body BBHs. In the next
ection, we discuss possible caveats in our arguments and alternative
nterpretations. 
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 DISCUSSION  A N D  C O N C L U S I O N S  

.1 Validity of the assumptions 

n order for the binaries to populate the binary binding energy distri-
ution in the absence of binary–binary interactions (Figs 11 and 14 ),
he properties of the cluster must evolve slowly with time. The 
riterion for this is that the time-scale at which the cluster expands,
exp , is larger than the binary lifecycle, τbin � ( z ej − z h ) / ̇z � z ej / ̇z .
e can define the time-scale for expansion similarly to τ bin by 

ssuming that τexp � r h / ̇r h . Using H ́enon’s principle (H ́enon 1975 ),
e can relate the energy production of the core to its global properties

s 

˙
 � ζ

| E| 
τrh 

(34) 

ith ζ � 0.1 (H ́enon 1965 ; Alexander & Gieles 2012 ). If we assume
hat the cluster energy scales as E ∝ GM 

2 / r h and that the mass-loss
s negligible, we obtain 

exp = 

| E | 
Ė h 

� 

τrh 

ζ
. (35) 

his can be compared to the binary lifecycle, which we find from the
caling laws of Section 4.1 

bin � 

z ej 

ż 
� 300 

(
ψ log � 

10 

) (
N 

10 2 

)−1 . 2 
τrh , 

� 300 
(

N 

10 2 

)−0 . 2 
τdyn . (36) 

e also give the value of this time-scale in terms of the dynamical
ime τ dyn by using that τ rh / τ dyn � 0.1 N /( ψ log � ) (Heggie & Hut
003 ). The binary time-scale is approximately a constant number of
 -body times, weakly decreasing with N . This somewhat counter- 

ntuitive result is a consequence of the larger central concentration 
f high- N models, leading to a faster evolution of the binaries.
lternatively, if we had considered homologous evolution ( r c ∝ r h 

nd N c ∝ N ), this time-scale would increase strongly with N ,
bin ∝ N 

2 τ dyn . 
For the single-mass case, we find τ exp > τ bin for N � 800, so

e are justified in taking the slow evolution approximation in larger 
lusters. For smaller clusters, the expansion leads to a decrease in 
he binding energy distribution, as equation ( 8 ) 

 ( z) ∝ 

m 

3 n 2 c 

σ 6 
c 

∝ 

r 3 h N 

2 
c 

N 

3 r 6 c 

∝ N 

5 / 3 r −3 
h (37) 

his implies that, for a fixed N , the expansion of the cluster would
ead to a lowering of the binding energy distribution with time, so we
ould find a pile-up of binaries at large z, because these were formed

arlier when f ( z) was higher. We actually see a lack of binaries at large
, making the absence of binaries even more important for N � 800.

Another time-scale to consider is the duration of our simulations, t f 
t 0 . If this time-scale is much shorter than the binary lifetime τ bin , the

inaries would not have enough time to populate the binding energy 
istribution, even in the absence of binary–binary interactions. The 
uration of the simulations is t f − t 0 = 20 τ rh,0 . Because the cluster
xpands, the actual number of elapsed relaxation times is less than 20.
e can estimate the instantaneous relaxation time-scale by assuming 

hat (H ́enon 1965 ) 

rh ( t) = 

{
τrh , 0 t < τcc 

( t/τcc ) τrh , 0 t > τcc 
(38) 

o we obtain 

 f − t 0 = 〈 τrh 〉 
∫ t f 

t 0 

d t 

τrh ( t) 
= 12 〈 τrh 〉 (39) 
hich we can compare to equation ( 36 ) to show that t f − t 0 > τ bin 

or N � 380, so this condition is fulfilled in all models but the least
assive ones. A similar calculation for the two-mass models yields 

ignoring the variation of the Coloumb logarithms) 

t f − t 0 

τbin 
� 0 . 3 

(
N BH 

10 2 

)0 . 8 (
q 

1 / 50 

)1 . 1 ( μ

0 . 025 

)−1 . 3 
(40) 

hich is larger than unity for models with N BH � 150 (450) for q =
/25 (1/50) and μ = 0.025. This shows that our two-mass models
ay not have been evolved for long enough to be comfortably in

he regime where the binding energy distribution is well populated 
nd so may explain why we do not see an obvious decrease in
he number of stable triples with N BH in Fig. 15 as in the single-

ass case. To check whether there is evolution of the binary energy
istribution, we compared f ( z) in the first half to f ( z) in the second
alf of the simulation interval. The two distributions are statistically 
ndistinguishable for all N BH , suggesting that the simulation time 
s long enough for f ( z) to have reached its steady post-collapse
hape. 

Yet another possible caveat is the convergence of the data points
o the true underlying distribution. For low- N models, we have many
uns and therefore the convergence is attained, but for the most
assive models, we have only a handful of runs (see Table 3 ). In

his case, the binary lifetime is longer than the N -body simulation
ime-scale and thus convergence is attained by combining multiple 
napshots from the few runs. 

.2 Alternati v e pathways towards stable triple formation: 
binary–single–single triple formation’ 

inary–binary interactions are not the only mechanism towards 
table triple formation. Alternatively, one could consider triple 
ormation in a binary–single–single interaction, in the same way 
s three-body binary formation, but with one component being a 
re-existing binary. To estimate the rate of hard binary formation 
n three-body encounters, Heggie & Hut ( 2003 ) consider the rate
t which two unbound stars approach closer than a h and multiply
hat rate by the probability that a third star is present within
he volume, which is roughly n c a 3 h . We can estimate the rate of
riple formation due to binary–single–single interactions, 
 t,bss , by 
 similar argument, although performing the change n c �→ n b and
 h �→ 3 a h (so that the outer orbit of the triple is about ∼3 a h ). Then,
he ratio of the rate of triple production o v er binary formation
s roughly 
 t, bss / 
 b ∼ n b (3 a h ) 3 / ( n c a 3 h ) = 27 /N c � 3( N/ 10 2 ) −1 / 3 ,
here we use the scaling N c ( N ) from equation ( 20 ) and, as seen

n the N -body models, we assume that there is a single binary in
he core. Therefore, the production of triples due to binary–single–
ingle interactions could be of similar importance as binary–binary 
nteractions. This applies to soft triples with large outer semimajor 
xis of 3 a h . The formation rate of ‘hard’ triples is a factor of 27 lower.
he N -dependence in 
 t,bb / 
 b is steeper ( N 

−0.8 , see Figs 13 and 16 )
o we conclude that binary–single–single triple formation may occur, 
ut that triple formation via binary–binary encounters dominates for 
he smallest- N clusters. In addition, we showed in Fig. 16 that triple
ormation in binary–binary encounters is more important in two- 
ass models, whereas the abo v e scaling for binary–single–single 

riple formation should be the same for two-mass models, but with
 replaced by N BH . 
MNRAS 527, 8369–8381 (2024) 
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.3 The effect of galactic tides 

o far we have neglected the effect of the galactic tidal field. Here,
e discuss how our results would be affected by the inclusion of
alactic tides. We start by considering the flow of energy through
he cluster’s half-mass radius, which is go v erned by the coefficient

equation ( 35 ). It is shown in Gieles, Heggie & Zhao ( 2011 ) that
he value of ζ in tidally limited clusters and isolated clusters is
qual to within 20 per cent, and that the first half of evolution
s similar in tidally limited and isolated clusters. Furthermore, the
uthors estimate that two thirds of Milky Way globular clusters are
n this first expansion phase. Per H ́enon’s principle, this energy flow
s balanced by the production of energy in the core, and therefore
he density profile within a few r h and the o v erall results of this
ork are independent of the underlying host galaxy potential. The
nly difference that the tidal stripping introduces is the possibility of
 v aporation pathways where the mass-loss rate of stars is higher
han the mass-loss rate of BHs, such that the cluster evolves
o a 100 per cent BH cluster ( μ → 1, see Banerjee & Kroupa
011 ; Gieles et al. 2021 ). As stated in Section 2.2 , we do not
onsider high- μ clusters, although we roughly expect them to behave
ike the single-mass models in the limit μ → 1. Nevertheless,
bserv ations point to wards most clusters in the Milky Way having
 small BH mass fraction of less than 1 per cent (Dickson et al.
023 ). 

.4 Implications for GW astronomy 

n this work, we did not include post-Newtonian terms; however,
ere we discuss how the high rate of binary–binary encounters
Section 5 ) and the resulting stable triples could lead to GW inspirals
y captures. These captures happen when two BHs have a close
pproach, radiate away orbital energy and merge in a short time-
cale due to the emission of GWs (Samsing 2018 ). According to
he scattering experiments by Zevin et al. ( 2019 ), binary–binary
nteractions are roughly five times more likely than binary–single
nteractions to produce such mergers due to their more complex
esonant intermediate states. 

The binary–binary interactions described in this paper have at
east one binary near the hard–soft boundary. During a resonant
ntermediate state, two of the BHs can enter a highly eccentric orbit
hat ends in a GW capture. This orbit, therefore, starts with a large
emimajor axis ( a ∼ a h ), which requires a nearly radial orbit ( e ∼ 1)
o trigger a GW capture. We can use the capture criterion by Samsing
 2018 ) to quantify what the eccentricity, e , must be 

 − e � 

(
4 . 6 Gm 

ac 2 

)5 / 7 

. (41) 

o put it in context, for a 10 5 M � cluster with r h = 1pc, a capture
etween two 10 M � BHs would start at ∼60 au and 1 − e ∼ 10 −6 .
s the binary inspirals, this eccentricity may be radiated away. To

stimate this, we find the peak GW frequency f from Wen ( 2003 ), 

 = 

1 

π

√ 

2 Gm BH 

a 3 

(1 + e) 1 . 1954 

(1 − e 2 ) 3 / 2 
, (42) 

hich together with the Peters’ equations (Peters 1964 ) allows us
o compute the eccentricity when the binary enters the LIGO-Virgo-
AGRA frequency band ( f � 10 Hz). What we find is that, due to the

arge initial value of a , the eccentricity is radiated away before the
W emission becomes observable and thus the waveform appears
early circular. For the above values of M , r h , a , and m BH , we find a
erger that has circularized to e 10 Hz ∼ 10 −2 , which is currently
NRAS 527, 8369–8381 (2024) 
ot detectable (Lower et al. 2018 ), but it is predicted that third
eneration GW detectors should be able to find this population of
BH mergers, if it exists. Furthermore, if we assume that after each

esonant intermediate state the eccentricity is sampled from a thermal
istribution (Heggie 1975 ), about ∼ 63 per cent ( ∼ 0 per cent ) of
aptures that start with an initial semimajor axis of a h ( a ej ) have a
emaining e 10 Hz < 0.1 at 10 Hz. The sampling of e has a chance of
roducing mergers that form in the LIGO-Virgo-KAGRA band, f >
0Hz, with a probability of ∼ 12 per cent ( ∼ 46 per cent ). 

An alternative path to mergers via binary–binary interactions is
he formation of stable triples. Stable triples with sufficiently high
ccentricity can have large jumps in the eccentricity of the inner
rbit (Lidov-Kozai cycles, per Kozai 1962 ; Lidov 1962 ). As above,
xtreme values of the eccentricity may lead to GW captures. Per
he same argument, the involved semimajor axes may be sufficiently
arge that the eccentricity may be of the order of e 10 Hz ∼ 10 −2 

hen the binary enters the LIGO-Virgo-KAGRA band. Modelling
ith post-Newtonian terms is required to quantify the importance of
ergers via these two channels. 
The short time-scale of the abo v e processes implies that the
erger happens at a location near the multiple-body interaction. This

onstitutes an explanation for the finding that the majority of mergers
ccur in-cluster – as opposed to ejected binaries – in N -body models
f low-mass clusters ( M � 10 5 M �, Rastello et al. 2019 ; Banerjee
021 ; Barber, Chattopadhyay & Antonini 2023 ). These models have
 � 1.5 × 10 5 , and for their initial mass function and metallicity
� 0.04 and q � 1/50 such that N BH � 100, which is similar

o the values considered in our two-mass N -body models. As we
xplored different q and μ, our results can account for the different
etallicities and other parameters in the more realistic models. The

igh fraction of in-cluster mergers found in these N -body models
re in contrast to fast models that assume a single active binary,
uch as CBHBD (Antonini et al. 2023 ), that predicts an in-cluster
erger fraction of ∼ 40 per cent . Although their assumption of a

ingle, hard binary in the core at any given time is supported by
ur N -body models, we here show that an important ingredient is
issing in these fast models that would increase the contribution

f dynamically assembled BBH mergers in relatively low-mass star
lusters. 

Banerjee (priv. communication) indeed finds in-cluster mergers
hat form with a high a ( � 100 au ) and extremely radial orbit, which
early circularize at 10 Hz. These mergers may be a signature of
inary–binary interactions at the hard–soft boundary. These binaries
ontribute to the eccentricity distribution by increasing the expected
ate of mergers at lower eccentricities ( e � 10 −2 ). Such mildly
ccentric mergers could be disentangled from quasi-circular mergers
n future GW detectors, such as the Einstein Telescope (Maggiore
t al. 2020 ) and Cosmic Explorer (Evans et al. 2021 ). In conclusion,
e present an additional step towards a complete prediction for the

ate of dynamically formed BBH mergers that can be detected in
urrent and upcoming GW experiments. 
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