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Abstract
Single-case experimental design (SCED) data can be analyzed following different approaches. One of the first historically 
proposed options is randomizations tests, benefiting from the inclusion of randomization in the design: a desirable methodo-
logical feature. Randomization tests have become more feasible with the availability of computational resources, and such 
tests have been proposed for all major types of SCEDs: multiple-baseline, reversal/withdrawal, alternating treatments, and 
changing criterion designs. The focus of the current text is on the last of these, given that they have not been the subject of 
any previous simulation study. Specifically, we estimate type I error rates and statistical power for two different randomization 
procedures applicable to changing criterion designs: the phase change moment randomization and the blocked alternating 
criterion randomization. We include different series lengths, number of phases, levels of autocorrelation, and random vari-
ability. The results suggest that type I error rates are generally controlled and that sufficient power can be achieved with as 
few as 28–30 measurements for independent data, although more measurements are needed in case of positive autocorrela-
tion. The presence of a reversal to a previous criterion level is beneficial. R code is provided for carrying out randomization 
tests following the two randomization procedures.

Keywords Changing criterion design · Randomization test · Power · Simulation study

The changing criterion design (CCD) is one of the designs 
available to researchers planning to conduct a single-case 
experiment1. The CCD has a long-standing tradition in sin-
gle-case experimental design (SCED) research since its for-
mal introduction by Hartman & Hall (1976) half a century 

ago. The design is particularly useful with behavior “where 
an immediate, considerable increase or decrease may be diffi-
cult to achieve or undesired; therefore, gradual shifts toward a 
desired goal are applied” (Klein et al., 2017, p. 52). In practi-
cal terms, this means that after initial baseline measurements, 
the researcher determines—oftentimes in consultation with 
the participant(s)—a criterion that the participant has to meet 
in the subsequent experimental phase when the treatment is 
administered (e.g., drinking five alcoholic beverages with a 
finacial incentive in place). This criterion is either increased 
or decreased during the course of the study, depending on the 
nature of the behavior in question, but it is recommended to 
incorporate mini-reversals to a previous criterion to increase 
internal validity (Klein et al., 2017). Due to this stepwise 
nature of the CCD and the fact that the intervention is usually 
not withdrawn after the initial baseline period, appropriate 
randomization procedures have long been lacking for this 
design relative to other major SCEDs (i.e., phase designs 
[with an initial proposal by Onghena, 1992], multiple base-
line designs [see Levin et al., 2018, for a review of alterna-
tives], and alternation designs [e.g., Onghena & Edgington, 
1994; Manolov, 2019]). Systematic reviews have repeatedly 
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indicated that the CCD as described here is less frequently 
used than these other design options (Shadish & Sullivan, 
2011; Tanious & Onghena, 2021; Smith, 2012) in spite of 
the great value of the design.

Two randomization procedures 
for the changing criterion design

Randomization has been highlighted as a means of 
increasing internal validity (Kratochwill & Levin, 2010) 
and has been recently emphasized again when considering 
the need to upgrade design standards (Kratochwill et al., 
2023). Specifically, Kratochwill et al. (2023) recommend 
being explicit about the randomization procedure used. 
However, when referring to randomization in the design 
and the possibility to use a randomization test, they only 
comment on multiple-baseline, reversal, and alternating 
treatments designs. CCDs are also missing from their 
previous commentary on the What Works Clearinghouse 
standards (Kratochwill et al., 2021), but we consider that 
these designs can also benefit from using randomization in 
the design and having an additional option for data analy-
sis (i.e., randomization tests). Randomization procedures 
have long been unavailable for this design, presumably 
calling into question the scientific credibility of the design 
(Kratochwill & Levin, 2014). Randomization procedures 
specifically for the CCD have only recently been proposed. 
In general, randomization procedures for single-case 
experiments refer to the random assignment of treatments 
to treatment times (Edgington, 1980a, 1987, 1996). For 
the CCD, however, where only one treatment is adminis-
tered and baseline measurements are usually taken only at 
the beginning of the study, that general way of randomiz-
ing does not work. In recent years, three randomization 

procedures have been proposed to fill this gap: the phase 
change moment randomization (Ferron et al., 2023; Ong-
hena et  al., 2019) related to the proposal by Onghena 
(1992) for reversal designs, the blocked alternating crite-
rion randomization (Tanious, 2022), and the completely 
randomized alternating criterion procedure (Tanious, 
2022). The first two procedures preserve the stepwise 
nature of the CCD and are therefore the subject of the pre-
sent simulation study. The third randomization procedure 
does not follow the stepwise nature and should therefore 
be investigated separately. In the following sections, both 
randomization procedures will first be explained and then 
demonstrated with real-life data.

Phase change moment randomization

Phase change moment randomization (PCM; Onghena 
et al., 2019) relies on randomly determining the moment of 
criterion change between adjacent phases. Figure 1 dem-
onstrates this procedure with hypothetical data.

The data depicted in Fig. 1 consist of nine phases: a 
baseline phase with no criterion in place and eight experi-
mental phases with different criteria to be met by the 
participant. With nine total phases, there are eight phase 
change moments that can occur at random moments under 
certain constraints which the researcher determines a pri-
ori. As Onghena et al. (2019) put it, “the random assign-
ment procedure for the changing criterion design involves 
defining a population of potential phase change points and 
randomly selecting the phase change points for the actual 
experiment” (p. 22). The number of permissible randomi-
zations under this procedure depends on a number of a 
priori decisions, such as the total number of measurements 
and the minimal number of measurements per phase.

Fig. 1  Hypothetical data illustrating the phase change moment rand-
omization procedure. Note. The first phase is the baseline, which does 
not include any criterion level. The criterion levels for the interven-

tion phases are marked with a red horizontal line. The blue horizontal 
arrows mark the transitions between phases
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Blocked alternating criterion randomization

Blocked alternating criterion randomization (BAC; Tani-
ous, 2022) relies on the random determination of the order 
in which two adjacent criteria are presented. This procedure 
incorporates mini-reversals by default. Figure 2 demonstrates 
this procedure with the same hypothetical data as for PCM.

The criteria can be segmented into blocks in a similar way 
as originally proposed by Edgington (1980a) for alternating 
treatments designs. Within each block, the order of criterion 
implementation can be determined randomly. The stepwise 
nature of the changing criterion design is best preserved 
when segmenting the criteria into blocks of two (Tanious, 
2022). When segmenting the criteria into blocks of two, the 
number of possible randomizations with the BAC procedure 
equals two to the power of the number of blocks. Thus, for 
the data depicted in Fig. 2, the number of randomizations 
is 24 = 16 . The main a priori decision on which the number 
of randomizations with BAC depends is the number of cri-
teria, which partly depends on the number of total measure-
ments. Finally, it should be noted that in order to segment 
all criteria into blocks of two, an even number of criteria is 
needed. With an uneven number of criteria, the last or any 
other block can be segmented into three criteria, but this is 
not included in the current simulation study.

Similarities and key differences 
between the procedures

Similarities

Before moving on to an example for both procedures and a 
discussion of the simulation conditions, it is important to 
highlight the similarities and key differences between the two 

procedures. The generic steps for executing both procedures 
are the same: choose the design (in this case, CCD), for-
mulate hypotheses, determine the number of measurements 
and set the nominal significance level (alpha), choose a test 
statistic sensitive to the desired effect (in this case, the mean 
absolute deviation [MAD], as suggested by Onghena et al., 
2019), determine the randomization procedure (here, PCM 
or BAC), choose one of the admissible randomizations and 
conduct the experiment, calculate the observed test statistic, 
construct the randomization distribution, and determine the 
p-value (Bulté & Onghena, 2008; Edgington, 1967, 1975; 
Tanious & Manolov, 2023). Within this generic framework, 
the two procedures are situated in the step “determine the 
randomization procedure,” the choice of which has implica-
tions for the subsequent steps “choose one of the possible 
randomizations,” “construct the randomization distribution,” 
and “determine the p-value.”

Conceptual differences

The most notable conceptual difference between the two pro-
cedures is that PCM randomly determines the moment at 
which the change from one criterion to the following occurs, 
whereas BAC randomly determines which criterion is imple-
mented between adjacent phases. In practice, this means 
that with a strict application of PCM, the phase lengths are 
determined by the randomization procedure, even though 
Onghena et al. (2019) refer to the procedures described in 
Edgington (1980b) for response-guided randomization pro-
cedures. Thus, on the one hand, BAC offers the advantage of 
having flexible phase lengths, which may be advantageous 
if the researchers consider it important to reach stability in 
each phase (i.e., for each criterion) before moving on to the 
next one (Hartmann & Hall, 1976; Klein et al., 2017). On the 
other hand, PCM lets the researchers determine a priori the 

Fig. 2  Hypothetical data illustrating the blocked alternating criterion 
randomization procedure. Note. The first phase is the baseline, which 
does not include any criterion level. The criterion levels for the inter-

vention phases are marked with a red horizontal line. The blue arrows 
mark the possible orders between successive blocked pairs of phases
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order in which the criteria are presented and subsequently 
randomizes the moment at which the criterion changes 
occur. When following the BAC procedure, the order of cri-
terion implementation is determined by the randomization 
procedure in a restricted manner determined by the research-
ers a priori, but the phase lengths can be adapted to the 
practical circumstances. Both features of the two procedures 
have important implications in the context of CCDs. CCDs 
rely on the stepwise increase or decrease in target behavior. 
With the PCM procedure, researchers can plan in advance 
the exact manner of this stepwise implementation and the 
extent of criterion increase or decrease between successive 
phases. It could, however, happen that the randomization 
procedure proscribes a criterion change before the partici-
pant reaches the criterion in the current phase for a specified 
number of successive measurements. With the BAC pro-
cedure, the researchers have less flexibility in determining 
the exact degree of criterion increase or decrease between 
successive phases. The criteria will increase or decrease over 
the course of the study to the desired level, but BAC includes 
mini-reversals by default, which may not always be feasible 
in practical or ethical terms.

A second conceptual difference is related to the fact that 
statistical power depends on the number of possible randomi-
zations, and for PCM and BAC this number depends on dif-
ferent factors. Specifically, with PCM, the number of possible 
randomizations depends mainly—but not exclusively—on the 
number of measurements, both the overall number of meas-
urements and the possible criterion change moments related 
to the minimal desired phase length (Michiels & Onghena, 
2019; Onghena, 1992). This allows for obtaining reasonable 
power in experiments with fewer phases if the overall number 
of measurements is sufficiently high. On the contrary, with 
BAC, the number of possible randomizations depends on 
the number of phases and how they are divided into blocks. 
This allows for obtaining reasonable power even with shorter 
phases if the number of phases is sufficiently high.

A third conceptual difference is related to how the base-
line data are treated and how the baseline is incorporated 
into the randomization procedure. For BAC, the base-
line phase is not included in the randomization procedure 
because there is no criterion present in the baseline phase 
that could be randomized. For PCM, relating to the use of 
the baseline data when computing the test statistic, Ong-
hena et al. (2019); Tanious (2022) suggest comparing the 
baseline measurements to their median. Not discarding the 
baseline data also entails that there is an additional moment 
of change in phase (from the baseline to the first intervention 
phase condition), which is related to having more possible 
randomizations. Both including the baseline data and having 
more randomizations is likely to be related to greater statisti-
cal power. However, here we argue that it is preferable not 
to include the baseline in the randomization procedure and 

test statistic calculation for two reasons. First, it has repeat-
edly been recommended to wait for baseline stability before 
introducing the intervention (Ferron et al., 2017; Kazdin, 
2019; Krasny-Pacini, 2023; Ledford et al., 2019), which 
requires flexible baseline length. Second, when it comes to 
calculating the observed test statistic, there is no criterion 
present in the baseline phase that the scores can be compared 
to. Onghena et al. (2019) suggest using the median baseline 
value for that purpose, but that criterion was not present 
when actually collecting the data. Thus, to avoid comparing 
the data to an arbitrary criterion and to have flexible baseline 
length, we consider it preferable to not include the baseline 
in the randomization test procedures. In the current text, the 
illustration provided later follows the idea of excluding the 
baseline data, and thus the same data are used for both BAC 
and PCM.

Computational differences

Apart from these conceptual differences, some a priori 
computational differences between the two procedures are 
noteworthy. These computational differences play a role in 
setting meaningful simulation conditions. The number of 
possible randomizations under the two randomization pro-
cedures is very different, for the same series length and the 
same number of phases. For instance, for n = 20 and four 
phases, there would be 165 randomizations under PCM 
if the minimal phase length is 3 (and the maximal is 11), 
whereas there would only be four randomizations under 
BAC (with the four phases organized into two blocks and 
there being five measurements per phase, although the num-
ber of measurements per phase does not have an influence 
on the number of randomizations for BAC). Similarly, for 
n = 40 and eight phases, there would be 245,157 randomi-
zations under PCM if the minimal phase length is 3 (and 
the maximal is 19), whereas there would only be 16 ran-
domizations under BAC (with the eight phases organized 
into four blocks of two and there being five measurements 
per phase). Consequently, for detecting an effect at � = .05 , 
BAC requires at least n = 30 (if each phase should contain 
at least three measurements) and ten experimental phases 
(i.e., five blocks), leading to 32 randomizations. For this 
series length and this number of phases, there would be 1716 
randomizations under PCM if the minimal phase length is 
3 (and the maximal is 9). Conversely, for detecting an effect 
at � = .05 , PCM only requires n = 15 and four phases, if the 
minimal phase length is 3 (and the maximal is 6), leading to 
20 randomizations.

However, under PCM (but not under BAC), listing sys-
tematically all combinations becomes computationally very 
difficult when the number of phases and/or the number of 
possible phase lengths increases. At the same time, selecting 
random samples of all possible PCM combinations is also 
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not computationally easy, because these random samples 
should all include phases with lengths between the mini-
mal and the maximal value while leading to the same total 
series length. This is computationally challenging because 
the length of the initial phase(s) influences the lengths 
of subsequent phase(s). For instance, for n = 15 and four 
phases, with a minimal phase length of 3 (and maximal of 
6), each phase can theoretically have one of four possible 
lengths: 3, 4, 5, and 6. This means that there are 44 = 256 
possible combinations of these four lengths for four phases. 
However, out of these 256 combinations, only 165 lead to a 
series length of 15 (i.e., there are 165 randomizations in this 
case), as per the formula by Onghena (1992), which will be 
shown by example in the next paragraph. For example, if all 
four phases have a length of 3, the total length will be 12, 
whereas if all four phases have a length of 6, the total will be 
24, none of which leads to a series length of 15. Similarly, 
for n = 19 and five phases, if the minimal phase length is 3 
(and the maximal is 7), each phase can theoretically have 
one of five possible lengths: 3, 4, 5, 6, and 7. This means 
that there are 55 = 3125 possible combinations of these five 
lengths for five phases, but only 70 of them lead to a series 
length of 19 (i.e., there are 70 randomizations in this case).

An example

The following example is taken from a study conducted by 
Fitterling et al. (1988), who used a CCD to shape and main-
tain treatment adherence to aerobic exercise training in five 
patients with vascular headache. Each subject was provided 
with a personalized exercise prescription for three sessions 

per week. The primary dependent variable was self-reported 
aerobic exercise behavior, which was assessed using Cooper 
points, a “standardized measure of the amount of aerobic 
benefit derived from different exercise topographies, inten-
sities, and durations” (Fitterling et al., 1988, p. 11). The 
earned Cooper points, ranging from 0 to 8, were then com-
pared to the criteria set by the researchers throughout the 
study, which included reversals to lower criteria to demon-
strate experimental control. Figure 3 shows the data for par-
ticipant Ann, a 38-year-old female with vascular headache 
onset at age 13.

Ann’s data contain 49 measurements, consisting of a 
baseline phase with 12 measurements and 37 experimental 
measurements distributed over 10 criteria. The following 
paragraphs explain how PCM and BAC use this informa-
tion differently to construct the randomization distribution.

Phase change moment randomization (without 
baseline)

If the n = 37 measurements and each of the I = 10  
phases—excluding the baseline as previously explained—
should have at least k = 3 data points, and there are  
I − 1 = 9 phase change moments, then there are 
(

n − I ∗ k + (I − 1)

(I − 1)

)

=

(

37 − 10 ∗ 3 + 9

9

)

= 11,440 possible ran-

domizations, following Onghena’s (1992) formula. Below is 
a non-exhaustive list of combinations of possible phase 
change moments: each number refers to the measurement 
occasions considering that the first 12 measurements belong 
to the baseline and the first intervention phase starts on the 
13th measurement occasion. Thus, the first number indicates 

Fig. 3  Data from patient Ann in a criterion designed used by Fitterling et al. (1988) to assess the effectiveness of behavioral management of 
exercise training in vascular headache patients
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the phase change from first to second criterion. The combi-
nation actually used in the experiment is marked in bold:

19, 22, 25, 28, 31, 34, 37, 40, 43
16, 19, 22, 25, 28, 31, 34, 37, 40
16, 19, 22, 25, 28, 31, 34, 37, 41
16, 19, 22, 25, 28, 31, 34, 37, 42
…
21, 26, 29, 32, 35, 38, 41, 44, 47
22, 26, 29, 32, 35, 38, 41, 44, 47
23, 26, 29, 32, 35, 38, 41, 44, 47

It is possible to list all randomizations systematically. 
Alternatively, to reduce computational time, which can 
become quite long for a large number of randomizations 
even with present-day computers, a Monte Carlo random 
sample can be taken. Generally, a Monte Carlo random sam-
ple of 1000 randomizations suffices to reach adequate sta-
tistical power (Edgington, 1969). The value of the observed 
test statistic for the actual randomization (i.e., actual phase 
lengths) is 0.41, indicated by the red vertical line in Fig. 4. 
According to the systematic randomization (Fig. 4, left 
panel), the p-value is <.001, as the observed MAD is the 
smallest of all 11,440 MAD values. Similarly, according to 
Monte Carlo randomization (Fig. 4, right panel), the p-value 
is .001, as the observed MAD is also the smallest of all 1,000 
MAD values obtained for the random Monte Carlo samples 
of all possible randomizations. With the PCM procedure, the 

null hypothesis of no treatment effect can thus be rejected at 
the conventional level of � = .05.

Blocked alternating criterion randomization

With the BAC procedure, the 10 experimental criteria can be 
segmented into five blocks of two criteria each. Within each 
block—indicated by square brackets—the order of criterion 
implementation can then be determined randomly. There are 
25 = 32 possible orders of criterion implementation, with the 
one actually used in the experiment marked in bold:

[1,2], [3,4], [3,5], [6,7], [6,8]
[2,1], [3,4], [3,5], [6,7], [6,8]
[2,1], [4,3], [3,5], [6,7], [6,8]
…
[2,1], [4,3], [5,3], [6,7], [6,8]
[2,1], [4,3], [5,3], [7,6], [6,8]
[2,1], [4,3], [5,3], [7,6], [8,6]

The value of the observed test statistic (i.e., for the actual 
order of criterion levels used in the experiment) is 0.41. This 
is the smallest MAD for the 32 possible randomizations, 
and thus, p = 1∕32 = .03 . The randomization distribution 
is presented in Fig. 5. The observed test statistic is indicated 
by the vertical red line. With the BAC procedure, the null 
hypothesis of no treatment effect can also be rejected at the 
conventional level of � = .05.

Fig. 4  Randomization distribution under the phase change moment (PCM) randomization procedure, using a Monte Carlo sample of all possible 
randomizations (left panel) and all possible randomizations (right panel). Note. The observed test statistic is indicated by the red vertical line
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Method

Literature review for informing the simulation 
conditions

In order to determine the simulation conditions, we per-
formed a literature review, using the references from 
Manolov et al. (2020), who extended the review of CCDs 
by Klein et al. (2017). A total of 129 articles were consulted 
(as online supplementary material we provide Appendix A 
available at https:// osf. io/ 2utqm/ containing the references 
to these articles). In case an article included more than one 
CCD plot with data, we only used the first plot, in order 
to have all studies equally represented (except for Schleien 
et al., 1981, in whose study there was only one criterion 
level for the first participant). If a criterion level was dis-
continued to return to baseline and afterwards reinstated 
(e.g., Kowalewicz & Coffee, 2014; McDaniel & Bruhn, 
2016), this was counted as two separate intervention sub-
phases (not counting the intermediate baseline phase). If 
a design included several intervention phases, and each of 
these phases included several criteria (e.g., Luiselli et al., 
2013), each of these criteria was considered as a separate 
intervention phase.

In relation to the number of measurements, we coded the 
following aspects: (a) presence of an initial baseline phase 
and number of baseline measurement occasions; (b) number 
of criterion phases; and (c) number of measurements for 
each of the intervention phases. As a consequence of the 
latter, we quantified the proportion of studies in which all 
intervention phases were of the same length. For 14 of the 

129 studies, after reading the text and inspecting the plots 
(where available), we were not able to exactly tally the num-
ber of measurements for each intervention phase, although 
for some of these studies it was clear from the plots that 
certain intervention phases were longer than others.

According to the results of this coding (Table 1), 15% 
of the CCD data sets reviewed had all intervention phase 
lengths of the same size. The typical intervention phase 
length was found to be between three and six measurements 
(percentiles 25 and 75, respectively), while guidelines actu-
ally recommend at least five data points per intervention 
phase (What Works Clearinghouse, 2022). The number of 
criterion phases was found to be typically between four and 
seven (percentiles 25 and 75, respectively), which aligns bet-
ter with the What Works Clearinghouse guideline requiring 
at least three criterion changes (i.e., four criteria).

Fig. 5  Randomization distribution under the blocked alternation randomization procedure. Note. The observed test statistic is indicated by the 
red vertical line

Table 1  Results of the review of published empirical studies using 
changing criterion designs

Baseline length Criterion phases Criterion 
phase 
lengths

Minimum 0.00 2.00 1.00
Percentile 10 1.00 3.00 2.00
Percentile 25 3.00 4.00 3.00
Median 4.00 5.00 4.00
Mean 5.23 6.14 5.81
Percentile 75 6.25 7.00 6.00
Percentile 90 11.00 12.00 11.00
Maximum 36.00 20.00 87.00
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In relation to the criterion levels, we coded the type of 
criterion used in relation to the target behavior and also the 
specific criterion levels employed. In relation to the former, 
the following categories were used: percentage comple-
tion or percentage of intervals in which the target behavior 
takes place; frequency or rate (e.g., per minute) of the target 
behavior (including number of steps performed in a given 
task); duration or latency (e.g., in seconds or minutes); and 
other (which included a variety of measures such as test 
scores, ratings, amount of substance, distance in feet, weight 
in pounds, loudness in decibels, and muscle tension in 
microvolts). In 46% of the studies, a frequency or a rate was 
recorded, with the most common situation being increases of 
one step across criterion levels. In approximately 21% of the 
studies, a percentage of completion or percentage of inter-
vals was the measure used, with typical difference between 
criterion levels being around 10–25%. In approximately 17% 
of the studies, duration or latency was the focal measure, 
with a typical difference between criterion levels being of 
5–10 units (in seconds or minutes).

Simulation conditions for PCM

Given that PCM and BAC lead to a different number of pos-
sible randomizations for the same series lengths and number 
of phases, it was decided to have somewhat different simu-
lation conditions for the two randomization procedures, in 
order to ensure that (a) there are enough randomizations 
for rejecting a null hypothesis at the .05 level, and (b) the 
randomization test is computationally feasible in terms of 
computation time and coding.

For PCM, the number of intervention phases ranged 
between three (percentile 10 in our review, as per Table 1) 
and seven (percentile 75). The minimum phase length 
(which needs to be pre-established when randomizing under 
PCM) was set to three. This minimum is related both to 
(1) a bare minimum requirement for minimal phase lengths 
that has been mentioned in methodological quality guides 
(Tate et al., 2013; What Works Clearinghouse, 2022); (2) the 
common use of mastery criteria such as three consecutive 
sessions at the criterion level (Manolov et al., 2020); and (3) 
the results of the conducted review. The intervention phase 
lengths ranged from three (percentile 25) to seven (beyond 
percentile 75). The total series lengths ranged from 15 to 
42. The combination of seven phases and a phase length 
of seven (i.e., a series length of 49) was not studied, due 
to computational issues in obtaining either the systematic 
listing of all 906,129 possible randomizations or a Monte 
Carlo sample of combinations of seven phase lengths (with 
a minimum of three and a maximum of 29) leading to a 
series length of 49.

When performing a simulation on PCM, in addition to the 
computational challenges mentioned in the “Similarities and 

Key Differences between the Procedures” section, another 
complication arises. Specifically, a complication that is not 
present when analyzing an actual data set. When there is an 
actual series of, for example, 20 measurements, belonging 
to four phases with lengths 3, 6, 5, 6, the MAD value for 
this combination of phase lengths will be compared to all 
165 MAD values that can be obtained under PCM, in order 
to obtain the p-value. However, when a simulation is per-
formed, there is not a single combination of phase lengths 
that can be considered the “actual data.” In fact, it is possible 
to obtain estimates of type I error rates and statistical power 
for all 165 possible randomizations, as if they were the actual 
data set. Such studies have been carried out for randomiza-
tion tests under the label “data-division-specific” type I error 
and power for reversal designs (Manolov & Solanas, 2008; 
Manolov et al., 2010) and for AB designs (Solanas et al., 
2008). Given that it is not feasible to study or report such 
specific estimates for each possible combination of phase 
lengths, for each possible total series length and number 
of phases, we had to choose which randomization to treat 
as the “actual data” when performing the simulations. On 
the basis of the intervention phase lengths observed in our 
literature review (see the Excel file at https:// osf. io/ pq5kf/), 
we decided to focus on three patterns of phase lengths: uni-
form (i.e., all phases are of the same size), increasing (i.e., 
later phases are longer), and triangular (i.e., middle phases 
are longer than earlier and later phases).

Simulation conditions for BAC

For BAC, the number of criterion levels per block was set to 
2. To be able to obtain a p-value as small as .05, at least five 
blocks are required (i.e., ten intervention phases). We simu-
lated conditions with the number of phases ranging from 10 
to 20 (with the latter being the maximum observed in our 
literature review), not taking into account the baseline. All 
phases were simulated to be of the same size because the 
phase length does not influence the number of randomiza-
tions for BAC, with phase lengths ranging from three to 
six, as for PCM. Thus, the shortest series length simulated 
was 30 (ten phases, each with three measurements) and the 
longest was 120 (20 phases, each with six measurements).

Simulation conditions common to both PCM 
and BAC

Intervention effect conditions

For studying statistical power, criterion changes were intro-
duced across intervention phases. Specifically, the initial 
plan was to implement a one-unit increase (representing fre-
quencies or steps when performing a target behavior), a five-
unit increase (representing duration, typically in seconds), or 
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a ten-unit increase (representing percentages of completion), 
with all values being derived from the previously described 
review of CCDs. The baseline level was equal to 10.

Random variability was simulated around the criterion 
levels established for each phase. This variability was pro-
grammed to represent 10%, 25%, and 50% of the specific 
criterion level. In that sense, larger criterion levels were 
associated with greater variability, and thus this variability 
was not constant for the whole data series.

The initial planning was then modified. Once we started 
obtaining results of the simulation, it was discovered that 
the amount of increase in the criterion levels (and the corre-
sponding increase in the data generated for different phases) 
did not affect statistical power for both procedures, given 
that the random variability was simulated in relation to 
the criterion levels. In that sense, under conditions with an 
increase of five units, a phase with a criterion of 15 is fol-
lowed by a phase with a criterion of 20, and the amount of 
random variability is (in conditions with 10% random error) 
is 1.5 and 2, respectively. Under conditions with an increase 
of one unit, a phase with a criterion of 15 is followed by 
a phase with a criterion of 16, and the amount of random 
variability is (in conditions with 10% random error) 1.5 and 
1.6, respectively. Thus, the proportionate increase in ran-
dom variability associated with a greater difference between 
criterion levels led to the power estimates being practically 
identical for an increase of one or five units. For example, 
for the BAC procedure and data generated with ten phases, 
three measurements per phase, positive autocorrelation of 
.3, and random variability of 10%, the power for an increase 
of 1 was .74, and for an increase of 5 it was .72. Therefore, 
in the Results section, we focus on an increase of five units.

No‑effect condition

In order to study type I error rates, the data were simulated 
at a constant level. That is, there were no shifts programmed 
in the data between any of the phases. In order to represent 
the fact that they belong to different criterion phases, the 
same criterion levels were used as for the intervention effect 
conditions. Thus, when the null hypothesis is true, there is a 
mismatch between the data (which include no change) and 
the criterion levels (which are different across phases). This 
is equivalent to simulation studies for studying type I error 
rates for SCEDs entailing A–B comparisons: the data incor-
porate no difference, but are treated as belonging to different 
phases. Specifically, the mean level of the data was simu-
lated to be equal to the average of all criterion levels. For 
instance, if the criterion levels used for computing MAD are 
5, 10, 15, and 25 for four phases, respectively, the mean level 
of the data is simulated to be the average of 5, 10, 15, and 25 
(that is, 12.5). For PCM, a weighted average of the criterion 
levels is then used, with the weight being the number of 

measurements in each phase. For BAC, all phases had the 
same number of measurements, and thus the weight of each 
criterion level was equal when determining the average level 
of the simulated data series.

Random variability was simulated around this average 
level. Specifically, this random variability was defined as a 
proportion of the average level: 10%, 25%, and 50%. Given 
that, to the best of our knowledge, there are no previous 
stimulation studies on CCDs, it was not possible to repli-
cate values from existing research. Instead, we chose values 
that would represent lower and higher degrees of variability. 
Moreover, when carrying out the simulations, it was veri-
fied that 10% random variability was associated with a ceil-
ing effect (i.e., power estimates close or equal to 1) in most 
simulation conditions, whereas 50% random variability was 
associated with values close to the nominal alpha in some 
simulation conditions (e.g., for the BAC procedure and data 
generated with ten phases, three measurements per phase, 
and positive autocorrelation of .3, the power for an increase 
of 5 was .09). The amount of random variability was con-
stant throughout the whole data series, as the average level 
was also constant in the no-effect conditions.

Common to conditions with and without an effect

Regarding autocorrelation, both independent data (zero 
autocorrelation), positive serial dependence (0.3) and 
negative (−0.3), were simulated. This aligns well with the 
review of SCED research by Shadish & Sullivan (2011), 
who reported an average estimate of approximately −0.1 for 
CCDs, but also considering that an estimate of the average 
does not entail that all autocorrelations are close to zero (see, 
for instance, the review by Solomon, 2014).

Mini-reversals were programmed in some conditions, fol-
lowing the recommendations by Klein et al. (2017). Specifi-
cally, for conditions with at least four intervention phases, 
the penultimate phase entailed a reversal to a previous cri-
terion (e.g., a decrease of five units), whereas the last phase 
again entailed an increase, just as the initial phases entailed 
increases in the criterion level. For BAC, these reversals 
were programmed only for a phase length of three meas-
urement occasions. For PCM, the reversals were also pro-
grammed only for some conditions: specifically, for one con-
dition per number of phases (a series length of 16 when there 
are four phases, a series length of 20 when there are five 
phases, a series length of 24 when there are six phases, and 
a series length of 28 when there are seven phases). A sum-
mary of the simulation conditions is presented in Table 2.

A total of 1000 iterations per simulation condition were 
used, as in Michiels & Onghena (2019); Michiels et al. 
(2020). This is more than the 500 iterations used in Bouw-
meester & Jongerling (2020) and less than the 10,000 itera-
tions used by Levin et al. (2017, 2018, 2021). We performed 
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10,000 iterations for some conditions, and the similarity 
in the estimates obtained to those based on 1000 led us to 
decide to prioritize computational efficiency. The R code for 
the simulations is available at the Open Science Framework 
project: https:// osf. io/ dbfxk/.

Data analysis

MAD was used as test statistic, computing it for the data 
under the actual phase lengths (PCM procedure) or criterion 
levels (BAC procedure) and also under all possible rand-
omizations according to the randomization procedure. The 
p-value was calculated as the number of test statistics as 
small or smaller than the actual one, divided by the total 
number of test statistics in the randomization distribution.

Two main aspects were the object of analysis. On the 
one hand, the type I error rate refers to the proportion of 
iterations in which the randomization test p-value is equal 
to or less than .05 in the no-effect condition. On the other 
hand, statistical power refers to the proportion of iterations 
in which the randomization test p-value is equal to or less 
than .05 in the intervention effect conditions. The estimates 
of both type I error rates and statistical power were based on 
systematic listing of all possible randomizations for BAC. 
For PCM, we used either systematic randomizations (up to 
series length of 36 measurements) or 1000 random Monte 
Carlo samples from all possible randomizations for each 
simulation condition for series with 42 measurements.

Once the type I error rates and statistical power estimates 
were available, analyses of variance (ANOVAs) were per-
formed for identifying the factors that contribute the most to 
the variation in type I error rates and power. Specifically, the 
factors were series length, number of phases, number of ran-
domizations, random variability, autocorrelation, and type of 
data pattern (for PCM). We studied the main effect of each 

of these factors via one-way ANOVAs, and we also studied 
second-order interaction effects from two-way ANOVAs 
crossing the factors number of randomizations, series length, 
random variability, autocorrelation, number of phases (for 
PCM) or number of blocks (for BAC), and phase length pat-
tern and presence/absence of reversal for PCM. The focus 
was placed on the eta-squared values, using as benchmarks 
.01–.05 (small effect), .06–.14 (medium effect), and .15–1.00 
(large effect), rather than on the statistical significance of the 
ANOVAs. This is consistent with the analyses performed 
in previous simulation studies in which several simula-
tion parameters were manipulated (Baek & Ferron, 2020; 
Declercq et al., 2021; Jamshidi et al., 2021; Joo et al., 2019).

For studying the effect of including a reversal phase in 
the design, we applied paired-samples t-tests, comparing 
the same simulation conditions (series length, number of 
phases, degree of autocorrelation, amount of random vari-
ability) with and without reversal. From these t-tests, we 
computed an R-squared value using the formula from Fritz 
et al. (2012): r2 = t2∕(t2 + �) , where � is the degrees of free-
dom. This R-squared value is interpreted the same as the 
eta-squared, as a proportion of variability (in the type I error 
or power estimates) as a function of the simulation factor 
(here, the presence or absence of a reversal).

Results

The full results of the simulation can be downloaded from 
https:// osf. io/ dbfxk/, whereas in the current section we 
will review the main findings. The effect of the simulation 
conditions on the estimates of type I error rates and statis-
tical power is summarized in Tables 3 (main effects) and 4 
(second-order interactions), which expresses the strength 
of association between each simulation factor and these 

Table 2  Summary of the simulation conditions

Blocked alternating criterion
Blocks of two phases 5, 6, 7, 8, 9, 10
Phases 10, 12, 14, 16, 18, 20
Phase lengths 3, 4, 5, 6
Series lengths 30, 36, 40, 42, 48, 50, 54, 56, 60, 64, 72, 80, 

84, 90, 96, 100, 108, 120
Phase change moment
Phases 3, 4, 5, 6, 7
Phase lengths 3, 4, 5, 6, 7 (for uniform phase length pattern)
Series lengths 15, 16, 18, 20, 21, 24, 25, 28, 30, 35, 36, 42
Common to both blocked alternating conditions and phase change moment
Autocorrelation −.3, 0, .3
Random variability 10%, 25%, 50%
Change in the data across criterion phases 0, 5
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estimates as a proportion of variability explained (i.e., an 
eta-squared or an R-squared value).

In light of the presence of autocorrelation in SCED data 
(Barnard-Brak et al., 2021; Shadish & Sullivan, 2011; 
Sideridis & Greenwood, 1997; Solomon, 2014) and its 
prominence in SCED simulation studies on different data 
analytical procedures (e.g., Baek & Ferron, 2013; Bishara 

et al., 2021; De & Onghena, 2022; Hedges et al., 2023; 
Petit-Bois et al., 2016; Smith et al., 2012), including ran-
domization tests (Bouwmeester & Jongerling, 2020; Fer-
ron & Onghena, 1996; Ferron & Sentovich, 2002; Levin 
et al., 2012; Manolov, 2019), it was decided to segment 
the results per level of autocorrelation in Figs. 8, 9, 10, 
11, 12, and 13.

Type I error rates

For both PCM and BAC, type I error rates are very low. For 
most simulation conditions, the estimates are below .05. The 
only exception is for PCM and a triangular pattern of phase 
lengths for series lengths of 20 (and five phases), 24 (and six 
phases), and 28 (and seven phases).

Regarding the factors affecting the type I error rates, for 
PCM, the number of randomizations and the phase length 
pattern has the strongest effect (eta-squared equal to .26 and 
.13, respectively, as per Table 3). Figure 6 provides an illus-
tration of the relation between series length (or lack thereof), 
the type of pattern of combinations between phase lengths, 
and type I error rates. As per Table 4, the interaction effect 
is strongest between the phase length pattern and the number 
of randomizations measurements ( �2=.49), the phase length 
pattern and the number of measurements ( �2=.19), and the 
phase length pattern and the number of phases ( �2=.12), in 
relation to the worse results for the triangular pattern when 
there are more phases (between 5 and 7) and an intermediate 
total number of measurements (between 20 and 28), leading 
to a certain number of randomizations (126 and 1716). The 
left panel includes the whole span of estimates, illustrat-
ing the excessively high values for the triangular pattern, 

Table 3  Summary of the main effect of the simulation conditions on 
the estimates of type I error rates and statistical power, expressed as 
eta-squared values or R-squared values (for reversal only)

Note. BAC – blocked alternating conditions. PCM – phase change 
moment. R – number of randomizations. n – total number of meas-
urements (series length). np – number of measurements per phase. φ 
– degree of autocorrelation. Var – random variability. B – number of 
blocks when using blocked alternating conditions randomization. I – 
number of phases when using phase change moment randomization

Factors for BAC Type I error Statistical power
R 0.10 0.03
B 0.10 0.03
n_p 0.05 0.02
n 0.18 0.05
Var 0.35 0.92
φ 0.00 0.02
Reversal (yes or no) 0.01 0.14
Factors for PCM Type I error Statistical power
R 0.26 0.08
I 0.07 0.01
n 0.11 0.06
Var 0.00 0.86
φ 0.00 0.01
Reversal (yes or no) 0.13 0.51
Phase length pattern 0.13 0.00

Fig. 6  Relation between series length and the phase length pattern 
(green: triangular; red: uniform; blue: increasing) and type I error 
rates for the phase change moment (PCM) randomization procedure. 

The results refer to data with no serial dependence and a random vari-
ability of 25%. The right panel is a zoom of the left panel, focusing 
on type I error rates between 0 and .10
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whereas the right panel zooms in the area with estimates 
between 0 and .10. The commonly used .05 threshold is 
depicted with a dotted horizontal line.

For BAC, the factors most strongly related to the type 
I error rates were the amount of random variability and 
series length (eta-squared equal to .35 and .18, respectively, 
as per Table 3). Figure 7 provides an illustration. Note that 
having longer series is related also to having more phases 
and blocks, although the effect of the latter two on type I 
error rates was not as strong as the effect of series length, as 

shown in Table 3. The interaction between the series length 
and the amount of random variability yielded an eta-squared 
value of .16, whereas for the interaction between the number 
of blocks and the amount of random variability, �2 = .07 (see 
Table 4), illustrating the fact that greater random variability 
is associated with higher type I error rates when there are 
more blocks and measurements. The presence of positive or 
negative autocorrelation did not have any relevant effect on 
type I error rates for either PCM or BAC.

Regarding the effect of the presence of a reversal, it is only 
noteworthy for PCM, with an eta-squared value of .13. Specif-
ically, in the presence of reversals, the problematic type I error 
rates observed for triangular phase length patterns are practi-
cally not present (i.e., the type I error rates are controlled).

Statistical power

Factors affecting power

For both PCM and BAC, power was close to 1 when the 
random variability was 10% of the criterion level in place for 
each phase. When the random variability was 25%, power 
was in general larger than .50; for PCM and series lengths 
of 28 (and four phases), 30 (and five phases), 36 (and six 
phases), and 42 (and six or seven phases). In many simula-
tion conditions, power reached .80 even for a random vari-
ability of 25%. In contrast, for random variability of 50%, 
all power estimates are below .50, and most are below .30.

Regarding the factors affecting statistical power, for 
both PCM and BAC, the amount of random variability 
has the strongest effect (eta-squared equal to .87 and .92, 
respectively). For PCM, the second strongest predictor is 

Table 4  Summary of the interaction effect of the simulation con-
ditions on the estimates of type I error rates and statistical power, 
expressed as eta-squared values

Note. BAC – blocked alternating conditions. PCM – phase change 
moment. R – number of randomizations. n – total number of meas-
urements (series length). φ – degree of autocorrelation. Var – random 
variability. B – number of blocks when using blocked alternating 
conditions randomization. I – number of phases when using phase 
change moment randomization

Factors for BAC Type I error Statistical power
n x B 0.00 0.00
φ x B 0.02 0.00
φ x n 0.08 0.00
n x Var 0.16 0.01
B x Var 0.07 0.00
φ x Var 0.01 0.00
R x φ 0.02 0.00
R x Var 0.07 0.00
reversal x R 0.00 0.00
reversal x n 0.00 0.00
reversal x B 0.00 0.00
reversal x φ 0.00 0.00
reversal x Var 0.00 0.00
Factors for PCM Type I error Statistical power
n x I 0.01 0.00
φ x I 0.00 0.00
φ x n 0.00 0.00
n x Var 0.01 0.02
I x Var 0.00 0.00
φ x Var 0.00 0.00
R x φ 0.00 0.00
R x Var 0.03 0.03
R x pattern 0.49 0.00
n x pattern 0.19 0.00
I x pattern 0.12 0.00
φ x pattern 0.00 0.00
Var x pattern 0.02 0.00
reversal x R 0.06 0.01
reversal x n 0.05 0.01
reversal x I 0.06 0.01
reversal x φ 0.00 0.00
reversal x Var 0.01 0.01

Fig. 7  Relation between series length and the amount of random vari-
ability (green: 10%; red: blue: 25%; red: 50%) and type I error rates 
for the blocked alternating conditions (BAC) randomization proce-
dure. The results refer to data with no serial dependence
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the number of combinations of phase lengths ( �2 = .08 ). 
For BAC, the second strongest predictor is series length 
( �2 = .05 ). Note again that having longer series is related 
also to having more phases and blocks, although the effect 
of the latter two on the power estimates was not as strong 
as the effect of series length, as shown in Table 3. None 
of the second-order interactions of factors account for any 
substantial variability in statistical power (i.e., all �2 ≤ .02 
in Table 4), for either PCM or BAC.

Regarding the effect of the presence of a reversal, it is espe-
cially salient for PCM ( �2 = .50 ), but it is also present for BAC 
( �2 = .14 ). Specifically, in the presence of reversal, power is 
higher (.09 on average for PCM and .01 on average for BAC).

Statistical power for PCM: Further detail

For representing the statistical power for PCM, to avoid 
excessive cluttering and to better zoom in on the differences 
within and between the number of phases and number of 
measurements per phase, the y-axes were set separately for 
each panel. However, figures with axes ranging from 0 to 
1 can be consulted from the online supplementary mate-
rial called Appendix B, available from https:// osf. io/ hry2f.  
Figures 8, 9, and 10 refer to independent data, negative auto-
correlation, and positive autocorrelation, respectively.

In general, statistical power is lowest for positive auto-
correlation for all simulation conditions, whereas power 
increases with the number of measurements per phase. The 
largest increase in power appears when increasing the num-
ber of measurements per phase from 4 to 5. In the presence 
of low variability (10%), power reaches 1 when there are at 
least six measurements per phase, regardless of the number 
of phases. In the presence of low variability (10%) and for 
independent data, power is at least .80 as long as there are 
at least four phases. When there is more variability (25%), 
power reaches .80 when there are seven measurements per 
phase and the data are independent or present a negative 
autocorrelation.

Statistical power for BAC: Further detail

For representing the statistical power for BAC, as for PCM, 
to avoid excessive cluttering and to better zoom in on the 
differences within and between the number of blocks and 
number of measurements per phase, the y-axes were set sep-
arately for each panel. However, figures with axes ranging 
from 0 to 1 can be consulted from the online supplementary 
material called Appendix C, available at https:// osf. io/ 2jqtb/. 
Figures 11, 12, and 13 refer to independent data, negative 
autocorrelation, and positive autocorrelation, respectively.

Fig. 8  Statistical power estimates for phase change moment randomization, according to the number of phases and the number of measurements 
per phase. Independent data. Random variability: upper left - 10%, upper right - 25%, bottom - 50%
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Fig. 9  Statistical power estimates for phase change moment randomization, according to the number of phases and the number of measurements 
per phase. Data with negative autocorrelation. Random variability: upper left - 10%, upper right - 25%, bottom - 50%

Fig. 10  Statistical power estimates for phase change moment randomization, according to the number of blocks and the number of measure-
ments per phase. Data with positive autocorrelation. Random variability: upper left - 10%, upper right - 25%, bottom - 50%
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In general, statistical power is lowest for positive auto-
correlation for all simulation conditions, whereas power 
increases with the number of measurements per phase. The 
largest increase in power appears when increasing the num-
ber of blocks from five to six, and when increasing the num-
ber of data points per phase from three to four. The excep-
tion is positive autocorrelation. More specifically, statistical 
power decreases with a higher number of blocks (e.g., going 
from eight to nine blocks) for high variability (50%). In the 
presence of low variability (10%), power reaches 1 when 
there are at least six blocks with six measurements available. 
The exception is in the presence of positive autocorrelation, 
where power does not reach 1 for any of the conditions. 
In the presence of low variability (10%), statistical power 
is at least .80 for all simulation conditions and at least .90 
for six blocks or more. The exception for both is positive 
autocorrelation.

Discussion

Comparison with previous findings

To the best of our knowledge, this is the first simulation 
study on any data analytical technique applicable to CCDs 

(including randomization tests). However, the current results 
can be related, with reservations, to previous findings. On 
the one hand, it is possible to compare the results of the cur-
rent simulation with the results from a simulation study on a 
randomization test applied to a reversal ABAB design, given 
that the PCM randomization procedure is borrowed from 
reversal designs (Onghena, 1992). Specifically, Manolov and 
Solanas (2008) included conditions such as a series length of 
20 measurements, four phases, and a minimal phase length 
of three, which is also present in the current study. They 
report a reduction of power for positive autocorrelation (as 
compared to negative or zero autocorrelation), which is also 
present in the current results. Power reaches .80 when the 
effect size is relatively large (a standardized mean difference 
of 2), and it is approximately .60 for a standardized mean 
difference of 1.4, whereas for PCM here we found power 
greater than .80 when the random variability is 10% of the 
criterion level and .60 when this variability is 25%.

Additionally, in relation to PCM, Manolov et al. (2010) 
studied conditions with a series length of 30 measurements, 
four phases, and a minimal phase length of five. They report 
that the presence of autocorrelation did not affect type I error 
rates. However, they also report that when the first and last 
phases are shorter (as in the triangular pattern studied here), 
positive autocorrelation is associated with a more liberal 

Fig. 11  Statistical power estimates for blocked alternating conditions randomization, according to the number of blocks and the number of meas-
urements per phase. Independent data. Random variability: upper left - 10%, upper right - 25%, bottom - 50%
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test. This finding is similar to our results of increased type 
I error rates for the triangular pattern of phase lengths, for 
series lengths of 24 and 28. We did not replicate this result 
for a series length of 30, but our conditions with such a 
series length included five or six (rather than four) phases 
and a minimal phase length of three (rather than five, as 
in Manolov et al., 2010). Regarding power, Manolov et al. 
(2010) report lower power when later phases are longer. We 
obtained similar results for designs with four phases (with a 
series length of 24 and 28), when comparing the increasing 
pattern with the uniform pattern.

Finally, in relation to PCM, Levin et al. (2012) report four 
separate but related investigations in their article. Their Inves-
tigation 4 included a design with six phases and 36 measure-
ments in total, which is a condition also included in our study. 
A decrease of power is reported with the increase of positive 
autocorrelation, with power being approximately .80 for inde-
pendent data for a standardized mean difference of 1. In our 
simulations, we obtained a similar estimate of power when the 
random variability was 25% of the criterion level.

On the other hand, it is also possible to compare the 
results of the current study with the results from a simulation 
study on a randomization test applied to alternating treat-
ments design with block randomization (also called rand-
omized block designs) (Onghena & Edgington, 2005), given 

that the randomization procedure is similar to BAC. Specifi-
cally, Levin et al. (2012) report several simulations studies, 
with their Investigations 1 and 2 including a “random pair” 
design with 24 and 12 measurements, respectively, organ-
ized in 12 or 6 blocks (i.e., there is a single measurement per 
condition each time that it occurs). They report an increase 
in power with higher positive autocorrelation, which is at 
odds with our results for the BAC procedure, but we only 
studied up to 10 blocks and at least three measurements per 
phase. The results in terms of controlling type I error rates 
are concordant.

Additionally, in relation to BAC, Manolov (2019) reports 
results on an alternating treatment design with block rand-
omization, for series lengths between 10 and 24, with the 
number of blocks of pairs of conditions ranging from 5 to 12. 
As in Levin et al. (2012), the number of measurements each 
time that a condition occurs is one. In Manolov (2019), type 
I error rates were controlled, with no effect of autocorrela-
tion, as reported in Table 3 here. For a standardized mean 
difference of 1, a power of .80 was not achieved, whereas 
for a standardized mean difference of 2, it was already pre-
sent for as few as six blocks (12 measurements). Here, we 
observed power estimates reaching .80 for six blocks (36 
measurements) when the random variability was 10% of the 
criterion level.

Fig. 12  Statistical power estimates for blocked alternating conditions randomization, according to the number of blocks and the number of meas-
urements per phase. Data with negative autocorrelation. Random variability: upper left - 10%, upper right - 25%, bottom - 50%
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Practical implications

The current recommendations highlight the results obtained 
for positively autocorrelated data, due to two reasons. On the 
one hand, positive serial dependence (i.e., greater similar-
ity across measurements adjacent in time) is more likely 
to be expected on a logical basis (Jones et al., 1977; Sid-
eridis & Greenwood, 1997), although a variety of levels 
has been found in reviews of SCED data (Barnard-Brak 
et al., 2021; Shadish & Sullivan, 2011; Solomon, 2014). 
On the other hand, considering the difficulty in estimating 
autocorrelation precisely in short series (Arnau & Bono, 
2003; Huitema & McKean, 1991; Shadish et al., 2013), a 
conservative approach is warranted, taking into account the 
lower power observed here for conditions with positive serial 
dependence.

For positively autocorrelated data, for PCM, power is 
above .80 even for series as short as 15 measurements, when 
the random variability is not more than 10% of the criterion 
level, whereas 42 measurements are needed to reach this 
power when the random variability is 25%. For independent 
data, power is sufficient already with 28 measurements even 
when the random variability is 25%. Including a reversal to 
a previous criterion level for PCM leads both to controlling 
type I error rates and increasing power.

For BAC, for positively autocorrelated data and random 
variability not higher than 10% of the criterion level, statistical 
power is sufficient (at or above .80) when there are ten phases 
with five measurements each (i.e., for a total series length of 50). 
Additionally, power is above .70 when there are ten phases with 
three measurements each (i.e., for a total series length of 30), and 
power reaches .80 for a series length of 30 for independent data.

According to the results from our review (presented in 
Table 1), considering a median number of phases (five) 
and the median phase length (four) leads to a median series 
length of 20, whereas the corresponding means (6.14 and 
5.81, respectively) lead to an average series length of more 
than 30. Thus, statistical power appears to be sufficient for 
typical CCD conditions only if the data are independent or 
the random variability is low (10%), in terms of the number 
of phases when the PCM procedure is followed and in terms 
of the total series length for both PCM (with a minimum 
phase length of three) and BAC (with a phase length of three 
for all phases). In case there is positive autocorrelation and 
random higher variability (25%), longer series are required: 
for instance, for PCM, the 42 measurements needed would 
represent percentile 75 of the reviewed CCD data (seven 
phases and six measurements per phase).

Based on the results of the current simulation study, sev-
eral recommendations about the two procedures can be made 

Fig. 13  Statistical power estimates for blocked alternating conditions randomization, according to the number of phases and the number of 
measurements per phase. Data with positive autocorrelation. Random variability: upper left - 10%, upper right - 25%, bottom - 50%
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for applied research. For PCM, we recommend including 
a reversal to a previous criterion level, as it had a positive 
effect both on type I error rates and statistical power. By 
comparing the results of simulation conditions with the same 
series length, it appears to be beneficial in terms of statistical 
power to have fewer phases (i.e., with the possibility of them 
being longer) rather than more phases. For BAC, power is 
larger when more measurements per phase are available, 
even when the number of phases is the same. For both PCM 
and BAC, the obvious recommendation of having as many 
measurements as possible can be made. If we wanted to 
compare PCM and BAC for the same number of measure-
ments, in order to decide whether one of the randomization 
procedures is more powerful, the following can be found in 
the results of the simulation (https:// osf. io/ 9hqjr). For 30 
measurement occasions and an autocorrelation of .3, the 
statistical power for BAC (five blocks of two conditions or 
phases, three measurements per phase; 32 possible randomi-
zations) is .72 for 10% random variability and .25 for 25% 
random variability, whereas the statistical power for PCM 
(five phases with a minimum phase length of three meas-
urements; 3876 possible randomizations) is 1.00 and in the 
range .61–.65 for 10% and 25% random variability (for all 
three phase length patterns studied: uniform, increasing, and 
triangular). The PCM results for 30 measurements and six 
phases (6188 possible randomizations) are similar, although 
the power for 25% random variability is in the range .51–.55. 
Thus, for this specific number of measurements (which can 
be considered typical, as the mean number number of phases 
is 6.14 with an average phase length of 5.81, as per Table 1), 
power is greater for PCM. More nuanced results for different 
conditions are presented in the figures.

Additional contribution: R code

R code for carrying out a randomization test for an indi-
vidual CCD study is available at https:// osf. io/ dbfxk/. For 
both PCM and BAC, the first step is to load a data file. The 
required structure of the data file is illustrated in https:// osf. 
io/ dbfxk/. Four columns are necessary with the following 
corresponding column names: (1) “Phase” includes suc-
cessive letters that mark the different phases; (2) “Session” 
includes the measurement occasion, ranging from 1 to n; 
(3) “Scores” includes the obtained measurements; and (4) 
“Criterion” includes the implemented criterion for each 
phase. For PCM, the user has to specify the minimal phase 
length, whereas for BAC, it is necessary to make sure that 
the number of experimental phases is even. Afterwards, the 
code is just copied and pasted into the R console. A p-value 
is obtained, as well as a graphical representation, similar 
to Figs. 4 and 5. For PCM, there is code for a Monte Carlo 
sample of all possible randomizations and two codes for 
using a systematic randomization distribution, as there are 

different ways in which a systematic list of all possible ran-
domizations can be obtained. (The one marked by the letters 
PO is more efficient than the one marked by the letters RM.)

Limitations and future research

Regarding the simulation study, an initial remark refers to 
the definition or specification of random variability when 
generating the data. Random variability was defined around 
the criterion level, given that the important thing in CCDs 
is the matching or close correspondence between the meas-
urements and the criterion level (Kazdin, 1989; Ledford 
& Gast, 2018a) and not the size of the difference between 
the criterion levels. In contrast, the amount of difference 
between criterion levels is usually determined in such a way 
as to make progress feasible for the specific individual and 
behavior studied. This is why the random variability is not 
considered relative to the difference between criterion levels.

The results of the current study are necessarily limited to 
the conditions included in the simulation. Regarding BAC, 
the simulation included only blocks of two criteria and only 
phases of equal lengths, and future research could extend 
these conditions to varying phase lengths. Having different 
phase lengths for the intervention phases is both a methodo-
logical recommendation (Klein et al., 2017) and the likely 
result of the frequent use of a priori established mastery 
criteria for deciding when a criterion level has been suf-
ficiently met (Manolov et al., 2020), However, even with 
this response-guided nature of determining the intervention 
phase length according to the emerging data pattern, the 
resulting intervention phases can have equal lengths (e.g., 
Shrestha et al., 2013). In any case, it should be noted that 
PCM entails determining phases lengths a priori (and phases 
may end up being of the same or different lengths), whereas 
BAC requires randomizing only the order within blocks and 
is applicable regardless of the exact length of the phases 
(equal or not).

Regarding PCM, not all possible combinations (patterns) 
of phase lengths were studied as representing the actual data. 
Future research can focus on data patterns additional to the 
uniform, increasing, and triangular patterns. Moreover, it 
is necessary to dig deeper into the excessively high type I 
error rates for triangular patterns in certain conditions (i.e., 
for some series lengths and number of phases, but not for 
all). In addition, future simulation studies could focus on 
response-guided PCM randomization tests for CCD.

A different line of future research could focus on a ver-
sion of the CCD, called the distributed criterion design, 
including elements of multiple-baseline and reversal designs 
(McDougall, 2006). This version entails studying simulta-
neously the same behavior in different contexts or several 
related behaviors. A randomization procedure could be pro-
posed and tested for this design as well.
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Finally, the present text has not dealt with trend for sev-
eral reasons, related both to the design and to the data ana-
lytical approach studied here. In general, CCDs are used 
for making progressive changes in the target behavior, and 
thus, trends can take place. However, if the design of the 
study is appropriate, a general trend should resemble a 
stepwise pattern (i.e., visually appearing like stairs), with 
relative stability around each step (level). Against the pos-
sibility of a general trend, it would be important to follow 
Klein et al.’s (2017) recommendations to vary phase mag-
nitude (i.e., not all differences between criterion levels are 
the same) and/or implement a mini-reversal (i.e., go back 
to a less stringent criterion). This would help in check-
ing whether the progression of the target behavior may 
be due to a general improving trend or is a function of the 
manipulation.

From a data analytical perspective, the test statistic can 
be expected to detect as unfavorable (i.e., against the idea 
that the measurements match the criterion levels) situations 
in which any trend may make the measurements obtained in 
one phase be closer to the criterion level of another phase. 
Thus, if any potential within- or between-phase trends would 
have fit the data better under any other randomization, then 
the randomization distribution (e.g., Fig. 4) will reflect this. 
Moreover, these quantifications (test statistic and randomiza-
tion distribution) can be complemented with visual inspec-
tion to help in detecting whether there is a general trend, or 
a floor/ceiling effect not related to the criterion levels (i.e., 
the participant reaching the desired final level of the target 
behavior earlier than planned). In any case, more research is 
needed to understand the presence (or lack thereof) of trends 
in empirical CCDs.

Conclusions

Randomization tests can be used for CCD data, using two 
different randomization procedures. Type I error rates are 
generally controlled, except under PCM when the phase-
length pattern has a triangular shape. For the PCM randomi-
zation, statistical power is sufficient for series with at least 
28 measurements if data are independent, which are com-
mon in published CCD research, but more measurements are 
necessary (i.e., 42) if researchers do not want to assume lack 
of autocorrelation. For BAC, more measurements are neces-
sary for having sufficient power than for PCM. User-friendly 
R code is available for performing the randomization test 
using the two randomization procedures.
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