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Abstract

The main aim of this project is to provide a comprehensive introduction to a
particular type of stochastic processes known as Lévy processes. While widely
employed in financial markets, in recent decades, applications in physical fields
such as quantum mechanics have been found. This research aims to present Lévy
processes within a theoretical framework, delving into their nature and funda-
mental properties. Furthermore, it will explore how these processes can be related
to quantum mechanics, investigating potential connections and offering a gener-
alization of the Schrödinger equation based on them.

Resum

L’objectiu principal d’aquest projecte és proporcionar una introducció a un
tipus particular de processos estocàstics coneguts com a processos de Lévy. Tot
i ser àmpliament emprats en els mercats financers, en les dècades recents s’han
trobat aplicacions en camps de la física com la mecànica quàntica. Aquesta recerca
pretén presentar els processos de Lévy dins d’un marc teòric, aprofundint en la
seva naturalesa i propietats fonamentals. A més, explorarà com aquests processos
es poden relacionar amb la mecànica quàntica, investigant connexions potencials i
oferint una generalització de l’equació de l’equació de Schrödinger basada en ells.
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Chapter 1

Introduction

Humans beings are constantly surrounded by random events in their daily
lives. From unpredictable traffic to fluctuations in market prices, some events
cannot be predicted deterministically using mathematics.

Although ancient civilisations such as China and Greece already had the con-
cept of probability, it was not until the first half of the 17th Century that Pierre
Fermat (1601-1665) and Blaise Pascal (1623-1662) laid the foundations of mod-
ern probability theory [5]. Mathematicians such as Jacob Bernoulli (1654-1705),
Thomas Bayes (1702- 1761) or Carl Friedrich Gauss (1777-1855) made notable con-
tributions to the theory in the centuries that followed.

In this work, we explore two fields developed in the first half of the 20th Cen-
tury: Lévy processes and quantum mechanics, with the aim of finding a con-
nection between them. While Lévy processes describe the evolution of random
phenomena over time, quantum mechanics deals with the fundamental behaviour
of particles at the microscopic scale. By studying how these two fields intersect, we
hope to gain new insights into the underlying nature of randomness in quantum
systems.

Raised in a family of mathematicians, Paul Pierre Lévy (Paris, 1886-1971) was a
French mathematician and engineer who can be considered as the forefather of the
modern theory of stochastic processes [6]. He studied processes with stationary
(change depends only on the time span of observation) and independent (changes
over non-overlapping intervals are independent) increments, now known as Lévy
processes.

In the first part of this project we will focus on describing these processes and
presenting the necessary concepts that will be needed in the second part. Chapters
1, 2 and 3 are mainly based on [1], [3] and [4], which cover Lévy processes much
more extensively.

The main aim of the second part of the project, based mainly on [11], [14]
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2 Introduction

and [15], is to give an introduction to quantum mechanics and generalize the
well-known Schrödinger- equation, which is a fundamental equation of quantum
mechanics that describes how the quantum state of a physical system changes
with time, based on Lévy processes.

The stochastic interpretation of quantum mechanics provides a powerful in-
terdisciplinary approach to the study of complex quantum systems and could
provide new insights into the understanding of both fields.

1.1 Motivation

As a student of mathematics and physics, I have always been interested in
modelling and understanding random phenomena. During my undergraduate
studies, I really enjoyed the subjects of probability and statistics, and found their
possible applications in physics fields very fascinating.

However, I have often observed that there is a lack of communication between
mathematicians and physicists. This disconnect between disciplines can lead to
missed opportunities for deeper understanding and more comprehensive expla-
nations of natural phenomena. It is often surprising to see how concepts from one
field can improve the understanding and analysis of problems in the other.

As I explored these interdisciplinary challenges, one subject that really capti-
vated me during my studies was quantum mechanics. The enigmatic behaviour
of particles at the quantum level, governed by probabilistic principles, fascinated
me deeply. This fascination led me to choose the topic of my final degree project.

1.2 Probability space

First of all, we need to introduce the space in which our stochastic processes
will be defined. We will begin defining basic concepts that will be essential
throughout the project.

Definition 1.1. Let Ω be a non-empty set and F a collection of subsets of Ω. F is
called σ-algebra if:

• Ω ∈ F .

• B ∈ F ⇒ Bc ∈ F .

• {Bn, n ∈ N} ⊂ F ⇒ ⋃∞
n=1 Bn ∈ F .

The pair (Ω,F ) is called a measurable space. We can define a mesure on (Ω,F ) as
a mapping µ : F → [0, ∞] satisfying:
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• µ(∅) = 0.

• µ(
⋃∞

n=1 Bn) = ∑∞
n=1 µ(Bn) for mutually disjoint sets {Bn, n ∈ N} ⊂ F .

The quantity µ(Ω) is called the total mass of µ. We call events to elements of F
and a measure on (Ω,F ) of total mass 1 is called probability measure P. The triple
(Ω,F , P) is called probability space.

Definition 1.2. The Borel σ-algebra B(Rd) is the smallest σ-algebra of subsets of Rd

containing all the open sets.

Definition 1.3. Let (S1,F1) and (S2,F2) be measurable spaces. A mapping
f : S1 → S2 is called (F1,F2) measurable if f−1(B) ∈ F1 for all B ∈ F2. In case
S1 ⊆ Rn, S2 ⊆ Rm and F1 = B(S1), F2 = B(S2), f is Borel measurable. Given
a probability space (Ω,F , P) mesurable mappings from Ω to Rd are known as
random variables.

Definition 1.4. We define the law of a random variable X as the Borel probability
measure pX = P ◦X−1. If two random variables X and Y have the same probability

law, then we say that they are identically distributed and denote it by X d
= Y.

Definition 1.5. Let (S,F ) be a measurable space. A measurable function f : S →
Rd is called simple if for n ∈ N, Bj ∈ F for 1 ≤ j ≤ n and aj ∈ Rd,

f =
n

∑
i=1

ajχBj ,

where χBj denotes the indicator function. We denote by ∑(S) the linear space of
all simple functions on S.
The integral respect the measure µ is the linear mapping Iµ : ∑(S)→ Rd given by

Iµ( f ) =
n

∑
i=1

ajµ(Bj).

Alternatively, for arbitrary measurable functions, Iµ( f ) = Iµ( f+)− Iµ( f−), and we
say f is integrable if |Iµ( f+)| < ∞ and |Iµ( f−)| < ∞. In this case,

Iµ( f χB) =
∫

B
f (x)µ(dx),

where B ∈ F . In the case of a probability space σ-algebra B(Rd) the integral Ip is
called expectation and denoted by E. Then for a random variable X and a function
f : Rd → Rm,

E( f (X)) =
∫

Ω
f (X(ω))P(dω) =

∫
Rm

f (x)px(dx).

The expected value is the arithmetic mean of the possibles values that our random
variable can take.
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Theorem 1.6. (Dominated convergence) Let { fn : S → Rd, n ∈ N} be a sequence of
measurable functions converging pointwise to f (a.e.) and g ≥ 0 an integrable function
with | fn(x)| ≤ g(x) (a.e.) for n ∈ N, then we have

lim
n→∞

∫
S

fn(x)µ(dx) =
∫

S
f (x)µ(dx).

Theorem 1.7. (Fubini’s theorem) Let (S1,F , µ1) and (S2,F , µ2) be measurable spaces
and f : S1 × S2 → R a F1 ⊗F2- measurable function. If we have∫ ∫

| f (x, y)|µ1(dx)µ2(dy) < ∞,

then we can separate the integral as∫
S1×S2

f (x, y)(µ1 × µ2)(dx, dy) =
∫

S2

[
∫

S1

f (x, y)µ1(dx)]µ2(dy)

=
∫

S1

[
∫

S2

f (x, y)µ2(dy)]µ1(dx).

Now we will revise the types of convergence of random variables and the
relationship between these convergences in Figure 1.1. Let {Xn, n ∈ N} be a
sequence of Rd- valued random variables and X a Rd- valued random variable.

• X(n) converges to X almost surely if limn→∞ X(n)(ω) = X(ω) for all ω ∈
Ω−N , with N ∈ F and P(N )=0.

• X(n) converges to X in Lp (1 ≤ p < ∞) if E(|X(n)−X|p) = 0. The particular
case p = 2 is called mean convergence.

• X(n) converges to X in probability if limn→∞ P(|X(n)− X| > a) = 0 for all
a > 0.

• X(n) converges to X in distribution if

lim
n→∞

∫
Rd

f (x)pX(n)(dx) =
∫
Rd

f (x)pX(dx) f or all f ∈ Cb(R
d).

where Cb(R
d) is the subspace of all bounded measurable continuos functions

of the Banach space Bb(R
d)(see appendix).

Definition 1.8. If a random variable X is taking values in Rd with law pX, its
characteristic function ϕX : Rd → C is given by

ϕX(u) = E(ei(u,X)) =
∫

Ω
ei(u,X(ω)) P(dω) =

∫
Rd

ei(u,y) pX(dy),

for u ∈ Rd.
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Figure 1.1: Relationship between the differents types of convergence

Proposition 1.9. (Lévy continuity) Let {ϕn, n ∈ N} be a sequence of characteristic
functions such that for all u ∈ Rd, ϕn → ψ(u) as n → ∞, where ψ : Rd → C is
a function continuous at 0. Then the function ψ is the characteristic function of a
probability distribution.

Definition 1.10. (Kac’s theorem) The random variables X1, ...Xn are independent
if and only if

E(exp[(i
n

∑
j=1

(uj, Xj)]) = ϕX1 ...ϕXn .

1.3 Lévy-Khintchine formula

In this part we will get to the important Lévy-Khintchine formula. This for-
mula shows the correspondence between infinitely divisible distributions and pro-
cesses with independent and stationary increments. First of all we will get to the
notion of stochastic process and then we will define the convolution of measures
which is strictly linked to infinite divisibility.

Definition 1.11. A stochastic process is a sequence of random variables
X = {X(t), t ≥ 0} defined on the same probability space (Ω,F , P). Two stochastic
processes X = {X(t), t ≥ 0} and Y = {Y(t), t ≥ 0} are independent if the σ-algebras
σ(X(t1), ..., X(tn)) and σ(Y(s1), ..., Y(sm)) are independent for all n, m ∈ N and
0 ≤ t1 < ... < tn < ∞, 0 ≤ s1 < ... < sm < ∞.
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The finite-dimensional distributions of a stochastic process X are the family of prob-
ability measures (pt1,t2,...tn , t1, t2, ...tn ∈ R+, t1 ̸= t2 ̸= ... ̸= tn, n ∈ N) defined on
Rnd by

pt1,t2,...,tn(H) = P((X(t1), X(t2), ..., X(tn)) ∈ H) f or H ∈ B(Rnd).

Theorem 1.12. (Kolmogorov’s existence criteria) Let (pt1,t2,...tn , t1, t2, ...tn ∈ R+, t1 ̸=
t2 ̸= ... ̸= tn, n ∈ N) be a family of probability measures satisfying the following
Kolmogorov consistency criteria

1. pt1,t2,...tn(H1 × H2 × ...× Hn) = ptπ(1),tπ(2),...tπ(n)(Hπ(1) × Hπ(2) × ...× Hπ(n)),

2. pt1,t2,...tn,tn+1(H1 × H2 × ...× Hn ×Rd) = pt1,t2,...tn(H1 × H2 × ...× Hn),

for H1, H2, ..., Hn ∈ B(Rd) and π a permutation of {1,2,...,n}. Then there exists a proba-
bility measure P on (Ω,F ) such that the co-ordinate process X defined by

X(t)(ω) = ω(t), f or t ≥ 0, ω ∈ Ω,

is a stochastic process on (Ω,F , P) having pt1,t2,...tn as its finite- dimensional distributions.

Definition 1.13. (convolution of measures) We denoteM1(R
d) the set of all Borel

measures on Rd. For µ1,2 ∈ M1(Rd) and B ∈ B(Rd) the convolution of two
probability measures is given by

(µ1∗µ2)(B) =
∫
Rd

χB(x + y)µ1(dx)µ2(dy)

=
∫
Rd

µ1(B− x)µ2(dx) =
∫
Rd

µ2(B− x)µ1(dx),

where we have used Fubini’s theorem and χB(x + y) = χB−x(y).

Proposition 1.14. The convolution µ1∗µ2 is a probability measure on Rd.

Proof. See [1], page 22.

Definition 1.15. A random variable X with values in Rd and law µX is infinitely
divisible if, for all n ∈ N, there exist independent and identically distributed (i.i.d)
random variables Y(n)

1 , ..., Y(n)
n with

X d
= Y(n)

1 + ... + Y(n)
n .
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Examples of infinite divisible random variables are Gaussian, Poisson and Com-
pound Poisson random variables that will be introduced when we introduce the
Lévy-Khintchine formula.

Definition 1.16. The following three statements are equivalent:

1. X is infinitely divisible.

2. µX has a convolution nth root. For n ∈ N, each root is the law of a random
variable.

3. ϕX has an nth root that is a characteristic function of a random variable for
each n ∈ N.

Proof. 1 −→ 2 is straightforward.

2 −→ 3 Let Y be a random variable with law (µX)
1
n . Then for u ∈ Rd,

ϕX(u) =
∫

...
∫

ei(u,y1+...+yn)(µX)
1
n (dy1)...(µX)

1
n (dyn) = ψY(u)n,

where ψY(u) =
∫
Rd ei(u,y)(µX)

1
n (dy).

3 −→ 1 Let Y(n)
1 , ..., Y(n)

n be independent copies of the given random variables.
Then,

E(ei(u,X)) = E(ei(u,Y(n)
1 )) · · ·E(ei(u,Y(n)

n )) = E(ei(u,Y(n)
1 +···+Y(n)

n )).

Definition 1.17. (Lévy measure) Let ν ∈ M1(R
d − 0). ν is called Lévy measure if∫

Rd−0
(|y|2 ∧ 1)ν(dy) < ∞, (1.1)

or alternatively, ∫
Rd−0

|y|2
1 + |y|2 ν(dy) < ∞, (1.2)

Since |y|2 ∧ 1 ≤ |y|2 ∧ ϵ for 0 < ϵ ≤ 1 we see that ν((−ϵ, ϵ)c) < ∞.

We will now introduce the main part of this section. The Lévy-Khintchine for-
mula, first introduced by Paul Lévy and Alexandre Khintchine in the 30s, gives an
important correspondence between infinitely divisible random variables and their
characteristic function being a fundamental result in probability theory.
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Theorem 1.18. (Lévy-Khintchine formula) We say that µ ∈ M1(Rd) is infinitely
divisible if there exists a vector b ∈ Rd, a positive symmetric d x d matrix A and a Lévy
measure ν on Rd-{0} such that

ϕµ(u) = exp{i(b, u)− 1
2
(u, Au) +

∫
Rd−0

[ei(u,y) − 1− i(u, y)χB̂(y)]ν(dy)}, (1.3)

where u ∈ Rd and B̂ = B1(0).
Conversely, any mapping of the form (1.3) is the characteristic function of an infinitely
divisible probability measure on Rd.

The triple (b, A, ν) is called the characteristics of the process. We will give a
proof of this theorem straightforward, but it is interesting to see how the formula
is descomposed in the reference [3].

In fact, if we define ln(ϕµ(u)) = Γ(u) as the characteristic exponent, this can be di-
vided into three addends Γ(1), Γ(2) and Γ(3) where each of them is the characterisc
exponent of a independent Lévy process X(1), X(2)and X(3).

• Γ(1)(u) = i(b, u)− 1
2 (u, Au) is the characteristic exponent of X(1)

t =
√

ABt −
bt, (t ≥ 0) where B = {Bt, t ≥ 0} is a Brownian process.

• We introduce an independent Poisson point process ∆ = {∆t, t ≥ 0} and define

∆(2)
t = {∆t i f |∆t|≥1

0 otherwise .

∆(2) is a Poisson point process with measure ν(2)(dy) = χ{|y|≥1}ν(dy). We

now consider the partial sum X(2) = ∑s≥t ∆(2)
s (t ≥ 0). As this process has

stationary independents increments, X(2) is a compound Poisson process and
its characteristic exponent is given by

Γ(2) =
∫
Rd
(1− ei(u,y))χ{|y|≥1}ν(dy),

• For small values of ∆ we introduce

∆(3)
t = {∆t i f |∆t|<1

0 otherwise .

It is also a Poisson point process independent of ∆(2) with characteristic mea-
sure ν(3)(dy) = χ{|y|<1}ν(dy). Por every ϵ > 0 we consider the process of
compensated partial sums

X(ϵ,3)
t = ∑

s≤t
χ{ϵ<|∆s|<1}∆s − t

∫
Rd

yχ{ϵ<|y|<1}ν(dy),
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with the characteristic exponent

Γ(ϵ,3)(u) =
∫
Rd
(1− ei(u,y) + i(u, y))χ{ϵ<|y|<1}ν(dy),

and when ϵ goes to 0 the characteristic exponent is given by

Γ(3)(u) =
∫
Rd
(1− ei(u,y) + i(u, y))χ{|y|<1}ν(dy).

Proof. We will prove that µ ∈ M1(Rd) is infinitely divisible. We have to see that
the right part of the introduced Lévy-Khintchine formula is actually a characteris-
tic function. We take {U(n), n ∈ N} ∈ B(Rd) a sequence monotonic decreasing to
{0} and we define

ϕn(u) = exp[i(b−
∫

U(n)c∩B̂
yν(dy), u)− 1

2
(u, Au) +

∫
U(n)c

(ei(u,y) − 1)ν(dy)],

for all u ∈ Rd, n ∈ N. Each ϕn is the convolution of a normal distribution with
an independent compound distribution, so it is the characteristic function of a
probability measure µn and

ϕµ(u) = lim
n→∞

ϕn(u),

We need to use Lévy’s continuity formula to show that ϕµ is a characteristic func-
tion. Therefore, we have to show that ϕµ is continuos at 0. We have that

ϕµ(u) =
∫
Rd−{0}

[ei(u,y) − 1− i(u, y)χB̂(y)]ν(dy)

=
∫

B̂
[ei(u,y) − 1− i(u, y)]ν(dy) +

∫
B̂c
(ei(u,y) − 1)ν(dy).

Now we have to use (1.1), Taylor’s theorem, Cauchy-Schwarz inequality and dom-
inated convergence to get

|ϕµ(u)| ≤
1
2

∫
B̂
|(u, y)|2ν(dy) +

∫
B̂c
|ei(u,y) − 1|ν(dy)

≤ |u|
2

2

∫
B̂
|y|2ν(dy) +

∫
B̂c
|ei(u,y) − 1|ν(dy).

It is clear that ψµ(u)→ 0 as u→ 0 which means µ is infinitely divisible.

Clearly, ϕµ(u) = eη(u), where η : Rd → C is called the Lévy symbol. The
following theorem gives us a correspondence between the map η and the Lévy-
Khintchine formula.

Theorem 1.19. The symbol η is a Lévy symbol if and only if η is continuos, hermitian
and a conditionally positive definite function with η(0) = 0.

Proof. See [1], page 32



Chapter 2

Lévy processes

2.1 Lévy processes

We will define the conditions a stochastic process must satisfy in order to be a
Lévy process.

Definition 2.1. A stochastic process X = {X(t), t ≥ 0} defined on a probability
space (Ω,F , P) is a Lévy process if:

• X(0)=0 (a.s).

• X has stationary and independent increments.

– X has independent increments if for n ∈ N and 0 ≤ t0 < t1 < t2 <
... < tn+1 < ∞ the random variables {X(tj+1) − X(tj), 1 ≤ j ≤ n} are
independent.

– X has stationary increments if for n ∈ N and 0 ≤ t0 < t1 < t2 < ... < tn+1

< ∞, X(tj+1)− X(tj)
d
= X(tj+1 − tj)− X(0).

• X is stochastically continuos.

lim
t→s

P(|X(t)− X(s)| > a) = 0 ∀a > 0, s ≥ 0. (2.1)

Proposition 2.2. If X is a Lévy process, then X(t) is infinitely divisible for t ⩾ 0.

Proof. We can write

X(t) = Y(n)
1 (t) + · · ·+ Y(n)

n (t) f or n ∈ N

and each

Y(n)
k (t) = X(

kt
n
)− X(

(k− 1)t
n

)

which are identically and independently distributed.

10
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Theorem 2.3. If X is a Lévy process, we have that

ϕX(t)(u) = etη(u), f or u ∈ Rd. (2.2)

where η : Rd → C is the Lévy symbol of X(1).

Proof. We suppose X is a Lévy process for each u ∈ Rd, t ≥ 0. We define ϕu(t) =
ϕX(t)(u). Using the second property of Lévy processes

ϕu(t + s) =E(ei(u,X(t+s))) = E(ei(u,X(t+s)−X(s))ei(u,X(s)))

E(ei(u,X(t+s)−X(s)))E(ei(u,X(s))) = ϕu(t)ϕu(s).
(2.3)

Now
ϕu(0) = 1, (2.4)

by the first property. The unique continuous solution to (2.3) and (2.4) is given by
ϕu(t) = etα(u) where α : Rd → C. By Proposition 2.2, X(1) is infinitely divisible so
α is a Lévy symbol.

Therefore we obtain the Lévy-Khintchine formula for a Lévy process X = {X(t), t ≥
0} given by

E(ei(u,X(t)) = exp
(

t{i(b, u)− 1
2
(u, Au) +

∫
Rd−0

[ei(u,y) − 1− i(u, y)χB̂(y)]ν(dy)}
)

,

for t ≥ 0, u ∈ Rd, where (b, A, ν) are the characteristics of X(1).
We will now see some examples of Lévy processes that have already appeared

in the proof of the Lévy-Khintchine formula.

Example 2.4. (Brownian motion and Gaussian processes): A stochastic process
B = {B(t), t ≥ 0} is called Brownian motion if it has continuos sample paths and
B(t) ∼ N(0, tI), t ≥ 0. According to [2], it can be seen as a Lévy process with
characteristics (0, a, 0). The characteristic function of a Brownion motion for each
u ∈ Rd, t ≥ 0 is given by

ϕB(t)(u) = e−
1
2 t|u|2 .

Example 2.5. (The Poisson process): It is a Lévy process with characteristics
(0, 0, λδ1) where λ1 is a Dirac mass concentrated on 1 [2]. The Poisson distribution
with parameter λ > 0 is the probability measure on integers with characteristic
function

ϕN(t) =
∞

∑
k=0

eitke−λ λk

k!
= exp(−λ(1− eit), t ∈ R.
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Example 2.6. (Compound Poisson process) Given a sequence of i.d.d. random
variables {W(n), n ∈ N} with law µW with each W(n) independent of a Poisson
process N of intensity λ, we define the compound Poisson process as

Y(t) = W(1) + · · ·+ W(N(t)),

where t ≥ 0 and Y(t) ∼ π(λt, µW).

The Poisson distribution is infinitely divisible so there exists a unique increas-
ing right- continuous process N with values in N ∪ {0} and stationary and inde-
pendents increments where each N(t) ∼ π(λt) and

P(N(t) = n) =
(λt)n

n!
e−λt, n ∈ N∪ {0}.

2.2 Convolution semigroups of probability measures

We will introduce the concept of semigroups and their generators more deeply
and generally in chapter number 3, but now we will try to describe an important
characterization of Lévy processes.

Definition 2.7. Given a family {pt, t ≥ 0} of probability measures on Rd, we say
it is weakly convergent to δ0 if

lim
t→0

∫
Rd

f (y)pt(dy) = f (0) f or f ∈ Cb(R
d).

This family is called convolution semigroup if they also satisfy

1. p0 = δ0.

2. ps+t = ps ∗ pt , for 0 ≤ s ≤ t < ∞.

Proposition 2.8. Given a stochastic process X with law pt for each X(t) and X(0)=0 (a.s),
then (pt, t ≥ 0) is weakly convergent to δ0 if and only if X is stochastically continuos at
t=0.

Proof. A proof can be found at [1] page 63.

Theorem 2.9. If {p(t), t ≥ 0} is a weakly convolution semigroup of probability measures,
then there is a Lévy process X satisfying that X(t) has law p(t) for t ≥ 0.
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Proof. According to [4], p is a infinitely divisible distribution. We can construct
the corresponding Lévy process in law. We consider (Ω,F ) and

Xt(ω) = ω(t), f or ω ∈ Ω, t ≥ 0,

in Kolmogorov’s theorem 1.12. For n ∈ N, 0 ≤ t0 < t1 < ... < tn and H0, H1, ..., Hn ∈
B(Rd) we define

pt0,t1,...,tn(H0 × H1 × ...× Hn)

=
∫

H1

pt0(dy0)
∫

H2

pt1−t0(dy1 − y0)...
∫

Hn

ptn−tn−1(dyn − yn−1)

=
∫
Rd

∫
Rd

...
∫
Rd

χH0(y0)χH1(y0 + y1)...χHn(y0 + y1 + ... + yn)

× pt0(dy0)pt1−t0(dy1)...ptn−tn−1(dyn).

(2.5)

pt0,t1,...,tn is extended to a probability measure on B((Rd)n+1). By Kolmogorov’s
theorem we get a unique measure P on F such that

P(X(t0) ∈ H0, X(t1) ∈ H1, ..., X(tn) ∈ Hn) = pt0,t1,...tn(H0 × H1 × ...× Hn)

Each X(t) has law pt. We have to see now that X satisfies the three conditions to be
a Lévy process. That X(0)=0 (a.s) and X stochastically continuos are straighforward
using proposition 2.8. To show the second condition, for any f ∈ Bb((R

d)n+1)

E( f (X(t0), X(t1), ..., X(tn)))

=
∫
Rd

∫
Rd

...
∫
Rd

f (y0, y0 + y1, ..., y0 + y1 + ... + yn)

× pt0(dy0)pt1−t0(dy1)...ptn−tn−1(dyn),

and this is exactly the same as equation (2.5) for f = χHi , 0 ≤ i ≤ n. Fixing u ∈ Rn

we define

f (x0, x1, ..., xn) = exp[i
n

∑
j=1

(uj, xj − xj−1)],

for x ∈ Rn and the second condition can be deduced.



Chapter 3

Semigroups and generators

In this part we will introduce Markov processes, which are a subclass of Feller
processes that will be seen in this chapter. Markov processes are stochastic pro-
cesses with the property that the future state of the process depends only in the
present state and not on the sequence of events that preceded it. This means
that the present, future and past states are conditionally independent. Therefore,
Lévy processes are a particular Markov process. We can associate semigroups and
generators to these processes which will be essential for the second part of our
project.

3.1 Filtration

Let (Ω,F , P) be a probability space. Given F a σ-algebra of subsets of Ω, the
family {Ft, t ≥ 0} of σ-subalgebras of F is called filtration if

Fs ⊆ Ft, f or s ≤ t.

Then (Ω,F , P) is said to be filtered. Any stochastic process X = {X(t), t ≥ 0} is
adapted to its own filtration FX

t = σ{X(s); 0 ≤ s ≤ t}, i.e, it is FX
t -measurable.

Clearly,

E(X(s)|Fs) = X(s) a.s.

3.2 Markov processes

A stochastic process is Markovian if the future prediction of the process only
depends on the present behaviour and not in past history of the process.

14
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Definition 3.1. An adapted process X = {X(t), t ≥ 0} is Markovian or a Markov
process if

E( f (X(t))|FS) = E( f (X(t))|XS) a.s. (3.1)

for all f ∈ Bb(R
d), 0 ≤ s ≤ t < ∞.

Bb(R
d) is a Banach space with respect to the norm

∥ f ∥ = sup{| f (x)|, x ∈ Rd},

for each f ∈ Bb(R
d).

We associate a family of operators {Ts,t, 0 ≤ s ≤ t < ∞} to each Markov process
X. Each operator is given by

(Ts,t f )(x) = E( f (X(t))|X(s) = x),

for f ∈ Bb(R
d) and x ∈ Rd.

A Markov process X is normal if Ts,t(Bb(R
d)) ⊆ Bb(R

d). Any normal Markov
process satisfies the following six conditions:

1. Ts,t is a linear operator on Bb(R
d) for 0 ≤ s ≤ t < ∞.

2. Ts,s = I for s ≥ 0.

3. Tr,sTs,t = Tr,t for 0 ≤ r ≤ s ≤ t < ∞.

4. f ≥ 0→ Ts,t f ≥ 0 for 0 ≤ s ≤ t < ∞, f ∈ Bb(R
d).

5. Ts,t is a contraction, ||Ts,t|| ≤ 1 for 0 ≤ s ≤ t < ∞.

6. Ts,t(1) = 1 for t ≥ 0.

Proof. 1. For f , g ∈ Bb(R
d), 0 ≤ s ≤ t < ∞,

(Ts,t( f + g))(x) =E(( f + g)(X(t))|X(s) = x)

= E( f (X(t))|X(s) = x) +E((gX(t))|X(s) = x)

= (Ts,t f )(x) + (Ts,tg)(x).

2. For f ∈ Bb(R
d), 0 ≤ s ≤ t < ∞,

(Ts,s f )(x) = E( f (X(s))|X(s) = x) = f (x).

3. Using (3.1) and for f ∈ Bb(R
d), x ∈ Rd,

(Tr,t f )(x) = E( f (X(t))|X(r) = x) = E(E( f (X(t))|Fs)|X(r) = x)

= E(E( f (X(t))|X(s))|X(r) = x) = E(Ts,t f (X(s))|X(r) = x)

= (Tr,s(Ts,t f ))(x).
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4. Straightforward.

5. For f ∈ Bb(R
d), 0 ≤ s ≤ t < ∞,

||Ts,t f || = supx∈Rd |E( f (X(t))|X(s) = x)| ≤ supx∈RdE|( f (X(t))||X(s) = x)

≤ supx∈Rd | f (x)|supx∈RdE(1|X(s) = x)

= || f ||.

6. For 0 ≤ s ≤ t < ∞, x ∈ Rd

(Ts,t1(x)) = E(1(X(t))|X(s) = x) = x.

We can rewrite the prescription of an arbitrary Markov process for 0 ≤ s ≤ t <
∞, A ∈ B(Rd), x ∈ Rd and f ∈ Bb(R

d) as

(Ts,t f )(x) =
∫
Rd

f (y)ps,t(x, dy), (3.2)

where
ps,t(x, A) = (Ts,tχA)(x) = P(X(t) ∈ A|X(s) = x),

is a probability measure.

The next theorem for normal Markov processes will be of use later on.

Theorem 3.2. (The Chapman-kolmogorov equations) If X is a normal Markov pro-
cess, then for each 0 ≤ r ≤ s ≤ t < ∞, x ∈ Rd, A ∈ B(Rd),

pr,t(x, A) =
∫
Rd

ps,t(y, A)pr,s(x, dy). (3.3)

Proof. the mappings y → ps,t(y, A) are integrable because X is normal. Applying
the conditions for a normal Markov process and (3.2),

pr,t(x, A) = (Tr,tχA)(x) = (Tr,s(Ts,tχA))(x)

=
∫
Rd
(Ts,tχA)(y)pr,s(x, dy) =

∫
Rd

ps,t(y, A)pr,s(x, dy).

We have started with a Markov process X and then obtained the Chapman-
Kolmogorov equations. Conversely, we can begin introducing a family of map-
pings and define a Markov process on a certain space.
So let {ps,t; 0 ≤ s ≤ t < ∞} : Rd × B(Rd) → [0, 1] be a family of mappings. We
call them normal transition family if
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1. The maps x → ps,t(x, B) are measurable for each B ∈ B(Rd).

2. ps,t(x, ·) is a probability measure on B(Rd) for each x ∈ Rd.

3. The Chapman-Kolmogorov equations (3.3) are satisfied.

With this definition the next theorem can be presented:

Theorem 3.3. If {ps,t; 0 ≤ s ≤ t < ∞} is a normal transition family and µ is a probabil-
ity measure onRd, then there exists a probability space (Ω,F , Pµ), a filtration {Ft, t ≥ 0)
and a Markov process (X(t), t ≥ 0) on that space satisfying:

1. P(X(t) ∈ B|X(s) = x) = ps,t(x, B) (a.s.) for 0 ≤ s ≤ t < ∞, x ∈ Rd,
B ∈ B(Rd).

2. X(0) has law µ.

Proof. An extensive proof of the theorem can be found in [1], page 147.

A Markov process is called time-homogeneous if

Ts,t = T0,t−s, f or 0 ≤ s ≤ t < ∞.

By (3.2) this is verified when

ps,t(x, A) = p0,t−s(x, A).

for 0 ≤ s ≤ t < ∞, x ∈ Rd, A ∈ B(Rd). The third condition of any normal Markov
process takes the form

Ts+t = TsTt, f or s, t ≥ 0. (3.4)

The second condition can be written as

T0 = I,

and the Chapman-Kolmogorov equations take the form

pt+s(x, A) =
∫
Rd

ps(y, A)pt(x, dy),

for each s, t ≥ 0, x ∈ Rd, A ∈ B(Rd). Any family of linear operators on a Banach
space satisfying (3.4) is called a semigroup. The semigroup totally determines the
process if the transition probabilities are normal.

Definition 3.4. A homogeneous Markov process X is called Feller process if

1. Tt : C0(Rd) ⊆ C0(Rd) for all t ≥ 0.

2. limt→0 ||Tt f − f || = 0 for all f ∈ C0(Rd).

where C0(Rd) ⊆ Bb(R
d) is the subspace of continuos functions that vanish at

infinity. The semigroup associated with X is called a Feller semigroup. Indeed,
every Lévy process is a Feller process. Proof can be found in [1] page 151.
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3.3 Sub-Markov processes

Sub-Markov processes are more general processes. We have seen that Markov
processes are linked to normal transition families. If the second property of this
family is weakened to
2’: for each 0 ≤ s ≤ t < ∞, x ∈ Rd, ps,t(x, ·) is a finite measure on B(Rd), with
ps,t(x,Rd) ≤ 1.

3.4 Semigroups and their generators

Definition 3.5. A family {Tt, t ≥ 0} of linear operators on the real Banach space B is
called a semigroup if

1. Ts+t = TsTt for s, t ≥ 0,

2. T0 = I,

3. ||Tt|| ≤ 1 for t ≥ 0,

4. limt→0 ||TtΨ−Ψ|| = 0 for Ψ ∈ B.

Lemma 3.6. If {Tt, t ≥ 0} is a semigroup, the map t → Tt is strongly continuous from
R+ to L(B), the algebra of all bounded linear operators in B, this means lims→t ∥TtΨ− TsΨ∥ =
0 for all t ≥ 0, Ψ ∈ B.

Proof. As {Tt, t ≥ 0} is a semigroup is strongly continuous at zero. Fixing t ≥ 0,
Ψ ∈ B for all p > 0 we get∥∥Tt+pΨ− TtΨ

∥∥ =
∥∥Tt(Tp − I)Ψ

∥∥ ≤ ∥∥Tp
∥∥∥∥(Tp − I)Ψ

∥∥ ≤ ∥∥(Tp − I)Ψ
∥∥

where we have used 1., 2. and 3. of the definition of semigroup.

We will know introduce the concept of generator associated to a semigroup.
So let {Tt, t ≥ 0} be an arbitrary semigroup in a Banach space B. We define

DA = {Ψ ∈ B; ∃ϕψ ∈ B such that lim
t→0

∥∥∥∥Ttψ− ψ

t
− ϕψ

∥∥∥∥ = 0}, (3.5)

which is a linear space and we can define a linear operator A in B by

AΨ = ϕψ,

so for ψ ∈ DA,

Aψ = lim
t→0

Ttψ− ψ

t
.

A is called the infinitesimal generator of the semigroup {Tt, t ≥ 0}.
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3.5 Semigroups and generators of Lévy processes

In this section we will talk about the connection between Lévy processes and
the generators and semigroups described above. Given an adapted Lévy process
X = {Xt, t ≥ 0} on a probability space (Ω,F , P) we saw the relation

E(ei(u,X(t))) = etη(u), u ∈ Rd,

where η is the Lévy symbol. X is a Feller process (see proof in [1] page 151) and if
{Tt, t ≥ 0} is the associated Feller semigroup, then

(Tt f )(x) =
∫
Rd

f (x + y)µt(dy) = E( f (X(t) + x)), f or f ∈ Bb(R
d), x ∈ Rd, (3.6)

where µt is the law of X(t).

3.5.1 Translation-invariant semigroups

We introduce the translation group {τp, p ∈ Rd} acting in a function f ∈
Bb(R

d) as (τp f )(x) = f (x− p). Then,

(Tt(τp f ))(x) =E((τp f )(X(t) + x)) = E( f (X(t) + x− p))

= (Tt f )(x− p) = (τp(Tt f ))(x).

This means that Ttτp = τpTt.

These translation-invariant semigroups give us another way of characterising
Lévy processes as a class of Markov processes. Before introducing the theorem,
we need to see some preliminary results.

Theorem 3.7. (Riesz representation theorem) Let X be a locally compact Hausdorff
space and let I be a positive linear functional on C0(Rd). Then there exists a unique
regular Borel measure µ such that

I( f ) =
∫

f dµ, f or f ∈ C0(R
d).

A proof of this theorem can be found in [7] pages 191-193.

Theorem 3.8. A semigroup {Tt, t ≥ 0} associated with a Feller process X with X(0)=0
(a.s) is translation invariant if and only if X is a Lévy process.
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Proof. The semigroup associated with a Lévy process is translation invariant as
we have seen. Now let {Tt, t ≥ 0} be a translation-invariant Feller semigroup
associated with a Feller process X with transition probabilities {pt, t ≥ 0}. Then
using (3.2),

(τp(Tt f ))(x) =
∫
Rd

f (y)pt(x− p, dy), f or p, x ∈ Rd, f ∈ C0(R
d),

and also

(Tt(τp f ))(X) =
∫
Rd
(τp f )(y)pt(x, dy)

=
∫
Rd

f (y− p)pt(x, dy) =
∫
Rd

f (y)pt(x, dy + p).

This means that ∫
Rd

f (y)pt(x− p, dy) =
∫
Rd

f (y)pt(x, dy + p),

because the translation invariance. Now applying the Riesz representation theo-
rem, both measures must be equal, i.e.,

pt(x− p, B) = pt(x, B + p), f or t ≥ 0, p, x ∈ Rd, B ∈ B(Rd). (3.7)

Let qt be the law of X(t) for each t ≥ 0, defined as qt(B) = pt(0, B) for B ∈ (Bd). By
(3.7), pt(x, B) = qt(B− x) for x ∈ Rd. Applying Chapman-Kolmogorov equations
(theorem 3.2) we deduce that

qt+s(B) = pt+s(0, B) =
∫
Rd

pt(y, B)ps(0, dy) =

=
∫
Rd

qt(B− y)qs(dy) f or s, t ≥ 0.

This shows that {qt, t ≥ 0} is a convolution semigroup of probability measures. It
is vaguely continuos, since {Tt, t ≥ 0} is a Feller semigroup and

lim
t→0

∫
Rd

f (y)qt(dy) = lim
t→0

(Tt f )(0) = f (0) f or f ∈ C0(R
d).

By theorem 2.9, the co-ordinate process on (Ω,F , P) is a Lévy process.

3.5.2 Representation of semigroups and generators

We will now focus on the infinitesimal generators of Lévy processes. We will
talk about pseudo-differential operators acting on Schwartz space S(Rd,C) (see
appendix). Let f ∈ S(Rd). We define its Fourier transform as

f̂ (u) = (2π)
−d
2

∫
Rd

e−i(u,x) f (x)dx, f or u ∈ Rd
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and analogously,

f (x) = (2π)
−d
2

∫
Rd

ei(u,x) f̂ (u)du, f or x ∈ Rd.

Theorem 3.9. Let X be a Lévy process with Lévy symbol η and characteristics (b, a, ν).
Let {Tt, t ≥ 0} be the associated Feller semigroup and A be its infinetesimal generator.
Then,

1. For each f ∈ S(Rd), x ∈ Rd, t ≥ 0,

(Tt f )(x) = (2π)
−d
2

∫
Rd

ei(u,x)etη(u) f̂ (u)du,

so that Tt is a pseudo- differential operator with symbol etη .

2. For each f ∈ S(Rd), x ∈ Rd,

(A f )(x) = (2π)
−d
2

∫
Rd

ei(u,x)η(u) f̂ (u)du,

and A is a pseudo-differential operator with symbol η.

3. For each f ∈ S(Rd), x ∈ Rd,

(A f )(x) = bi∂i f (x)+
1
2

aij∂i∂j f (x)+
∫
Rd−{0}

[ f (x+ y)− f (x)− yi∂i f (x)χB̂]ν(dy),

Proof. 1. Applying Fourier inversion to (3.2) we find that for all t ≥ 0, f ∈
S(Rd), x ∈ Rd,

(Tt f )(x) = E( f (X(t) + x)) = (2π)
−d
2 E(

∫
Rd

ei(u,x+X(t)) f̂ (u)du),

and since f̂ ∈ S(Rd) ⊂ L1(Rd),

|
∫
Rd

ei(u,x)E(ei(u,X(t))) f̂ (u)du| ≤
∫
Rd
|ei(u,x)E(ei(u,X(t)))|| f̂ (u)|du

≤
∫
Rd
| ˆf (u)|du,

and applying Fubini’s theorem,

(Tt f )(x) = (2π)
−d
2

∫
Rd

ei(u,x)E(ei(u,X(t))) f̂ (u)du

= (2π)
−d
2

∫
Rd

ei(u,x)etη(u) f̂ (u)du.
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2. For f ∈ S(Rd), x ∈ Rd, by result (1)

(A f )(x) = lim
t→0

1
t
[(Tt f )(x)− f (x)] = (2π)

−d
2 lim

t→0

∫
Rd

ei(u,x) etη(u) − 1
t

f̂ (u)du,

using mean value theorem and the inequality |η(u)| ≤ C(1 + |u|2) we get
that ∫

Rd
|ei(u,x) etη(u) − 1

t
f̂ (u)|du ≤

∫
Rd
|η(u) f̂ (u)|du

≤ C
∫
Rd
(1 + |u|2)| f̂ (u)|du < ∞,

since (1 + |u|2) f̂ (u) ∈ S(Rd,C). Using convergence theorem we get the
result.

3. We apply Lévy-Khinchine formula to result (2), for f ∈ S(Rd), x ∈ Rd,

(A f )(x) =(2π)−
d
2

∫
Rd

ei(x,u){i(b, u)− 1
2
(au, u)

+
∫
Rd−{0}

[ei(u,y) − 1− i(u, y)χB̂(y)]ν(dy)} f̂ (u)du.

3.6 Lp-Markov semigroups

We have studied the link between Feller processes and associated Feller semi-
groups acting in the Banach-space C0(Rd). Now we will see the processes associ-
ated to semigroups induced in Lp(Rd).

3.6.1 Self-adjoint semigroups

We consider a Hilbert space H (see appendix) and {Tt, t ≥ 0} a strongly con-
tinuos semigroup in H. {Tt, t ≥ 0} is said to be self-adjoint if Tt = T∗t for t ≥ 0.

Theorem 3.10. There is a correspondence between the generators of self- adjoint semi-
groups in H and linears operators A in H such that -A is positive and self-adjoint.

Proof. See [9], pages 99-100.

Definition 3.11. A Lévy process X = {X(t), t ≥ 0} taking values in Rd with laws
{qt, t ≥ 0} is symmetric if qt(A) = qt(−A) for every A ∈ B(Rd).
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Theorem 3.12. If X is a Lévy process, the associated semigroup {Tt, t ≥ 0} is self-adjoint
in L2(Rd) if and only if X is symmetric.

Proof. We suppose that X is symmetric, so we have that qt(A) = qt(−A) for every
A ∈ B(Rd). Then for f ∈ L2(Rd), x ∈ Rd, t ≥ 0,

(Tt f )(x) = E( f (x + X(t))) =
∫
Rd

f (x + y)qt(dy)

=
∫
Rd

f (x + y)qt(−dy) =
∫
Rd

f (x− y)qt(dy) = E( f (x− X(t))).

So for f , g ∈ L2(Rd) we get

⟨Tt f , g⟩ =
∫
Rd
(Tt f )(x)g(x)dx =

∫
Rd
E( f (x− X(t)))g(x)dx

=
∫
Rd
[
∫
Rd

f (x− y)g(x)dx]qt(dy)

=
∫
Rd
[
∫
Rd

f (x)g(x + y)dx]qt(dy)

= ⟨ f , Ttg⟩.

Conversely, suppose {Tt, t ≥ 0} is self-adjoint. For a similar argument to the one
above, ∫

Rd
E( f (x + X(t)))g(x)dx =

∫
Rd
E( f (x− X(t)))g(x)dx.

We define a sequence of functions {gn, n ∈ N} ⊂ S(Rd) ⊂ L2(Rd) by

gn(x) = n−
d
2 exp(−πx2

n
),

and taking the limit

lim
n→∞

∫
Rd
E( f (x± X(t)))gn(x)dx = E( f (±X(t))).

This last result can be found in [8] page 58. We then deduce that E( f (X(t))) =

E( f (−X(t))) and taking f = χA where A ∈ B(Rd),

P(X(t) ∈ A) = P(X(t) ∈ −A),

and this means that X is symmetric.

Corollary 3.13. If A is the infinitesimal generator of a Lévy process with a Lévy symbol
η, -A is positive and self-adjoint if and only if

η(u) = −1
2
(u, au) +

∫
Rd−{0}

[cos(u, y)− 1]µ(dy).

where u ∈ Rd, a is a positive symmetic matrix and µ is a symmetic Lévy measure.

This last corollary will be helpful for the part we develop in chapter 5.



Chapter 4

Introduction to quantum
mechanics

We have seen the theoretical classical framework of Lévy processes. The main
aim of this project is to find a connection between these conceptual results and the
non deterministic theory of quantum mechanics. Many times, due to lack of works
between physicists and mathematicians, it is complicated to understand physical
theories within more general mathematical frameworks. Linking both worlds can
be challenging due to excessive abstraction of mathematical tools, leading to a lack
of mathematical rigor to present phisical concepts.

We will begin doing a little introduction to quantum mechanics, and on the
last section of the project we will see its connection with Lévy processes. Quantum
mechanics can be principally described by 5 main postulates that will be introduced
while we provide basic concepts of the theory. We will principally follow [11] on
this chapter.

4.1 Quantum state vectors

In classical mechanics, the position r and the momentum p (the product of the
mass and velocity of an object) of a system can be completely determined knowing
the initial state conditions. However, things are completely different in quantum
mechanics. According to Heisenberg uncertainty principle, there is a limit on the
precision that two conjugate dynamical variables (r, p) can be measured, i.e., we
cannot know both the position and speed of a particle with perfect accuracy. This
is an intrinsic characteristic of quantum mechanics and not a lack of precision
in measurement tools. According to the statistical interpretation adopted in [12],
predictions of quantum mechanics refer to statistical sets. We associate to each set

24
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a wave function that contains all possible information that can be known about
the systems of the set. The system can be described by the wave function Ψ(r, t)
depending on position coordenate r, and time t as

Ψ = c1Ψ1 + c2Ψ2, f or c1, c2 ∈ C.

where Ψ1 and Ψ2 are the wave functions of two states of the system. The set of
wave functions forms a infinite dimensional vector space over the complex C. The
scalar product between two wave functions Ψ(r, t) and Φ(r, t) is defined as

⟨Φ|Ψ⟩ :=
∫

Φ∗(r, t)Ψ(r, t)dr.

where Φ∗(r, t) denotes complex conjugate. The scalar product has the following
properties:

1. ⟨Φ|Ψ1 + cΨ2⟩ = ⟨Φ|Ψ1⟩+ c⟨Φ|Ψ2⟩ for c ∈ C.

2. ⟨Ψ|Φ⟩∗ = ⟨Ψ|Φ⟩.

3. ⟨Ψ|Ψ⟩ =
∫
|Ψ(r)|2dr ≥ 0.

4. ⟨Φ|Ψ⟩ = 0←→ Ψ and Φ are orthogonal.

If the wave function is normalized then

⟨Ψ|Ψ⟩ =
∫
|Ψ(r)|2dr = 1,

where |Ψ(r)|2 can be seen as probability density function so the integral,∫
ν
|Ψ(r)|2dr,

gives the probability to measure the position r of the particle inside the volume ν

at a given time t. Square integrable wave functions form a wave function subspace.
This subspace is a separable Hilbert space (see appendix) denoted as H = L2(R3).
Every Ψ ∈ L2(R3) admits a numerable basis of independent square integrable
functions as

Ψ =
∞

∑
i=1

ciϕi,

for ci ∈ C, ϕi ∈ L2(R3). The basis is orthonormal if

⟨ϕi|ϕj⟩ = δi,j,

where

δij =

{
1, if i = j.

0, if i ̸= j.
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The wave function Ψ(r) is a particular representation of an abstract reality given by
a state vector called ket containing necessary information to describe the statistical
set, i.e.,

|Ψ⟩ = c1 |Ψ1⟩+ c2 |Ψ2⟩ f or c1, c2 ∈ C and |Ψ1⟩ , |Ψ2⟩ ∈ L2(R3).

This ket has associated a bra that can be interpreted as an element of the dual space
L2(R3)∗ so

⟨Ψ| = c∗1 ⟨Ψ1|+ c∗2 ⟨Ψ2| f or c∗1 , c∗2 ∈ C and ⟨Ψ1| , ⟨Ψ2| ∈ L2(R3)∗.

We can summarise this part with the first postulate.

Postulate I: Each physical state corresponds to an vector ket of an abstract
Hilbert space L. Vectors |Ψ⟩ and c |Ψ⟩, c ̸= 0 represent the same state.

4.2 Dynamic variables and operators

We consider a system of n particles. Classicaly, a dynamical variable A({qi}, {pi}, t)
depends on the set of 3n cartesian coordinates {qi} and the conjugate moments
{pi} and its temporary evolution is given by

dA
dt

=
∂A
∂t

+ ∑
i
(

∂A
∂qi

dqi

dt
+

∂A
∂pi

dpi

dt
).

4.2.1 Operator algebra

In quantum mechanics, we associate a quantum operator Â to each classical
dynamical variable A. This operator transforms the state |Ψ⟩ in another state
Â |Ψ⟩ =

∣∣ÂΨ
〉
. The operator is lineal if

Â(c1 |Ψ1⟩+ c2 |Ψ2⟩) = c1Â |Ψ1⟩+ c2Â |Ψ2⟩ ,

for c1, c2 ∈ C, |Ψ1⟩ , |Ψ2⟩ ∈ L2(R3). For each lineal operator Â there exists an
adjoint or hermitian conjugate operator Â† defined as

⟨Ψ|Â†|Φ⟩ = ⟨Φ|Â|Ψ⟩∗ = ⟨ÂΨ|Φ⟩, f or any |Ψ⟩ , |Φ⟩ ∈ L2(R3).

It is verified that

(Â†)† = Â, (B̂Â)† = B̂† Â†, (cÂ)† = c∗ Â†,
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where Â and B̂ are linear operators and c ∈ C. We will call Â hermitian if

Â† = Â,

and we will say the operator Â is positive definite if

⟨Ψ|Â|Ψ⟩ ≥ 0,

We define the commutator of two operators as

[Â, B̂] = ÂB̂− B̂Â,

and we say that the operators commute if ÂB̂ = B̂Â. The equation

Â |ϕn⟩ = an |ϕn⟩ , f or ϕn ∈ L2(R3), an ∈ C,

is called the eigenvalue equation of the operator Â. It will be really important when
we introduce the Schrödinger equation.

Postulate II: Every dynamical variable A is associated to an observable Â con-
taining complete eigenvalue basis |ϕn⟩,

Â |ϕn⟩ = an |ϕn⟩ , ∑
n
|ϕn⟩ ⟨ϕn| = I.

4.3 Quantification rules

Considering a system of particles we postulate that the observable associated to
a dynamical variable A(qi, pi, t) is obtained by replacing the cartesian coordenates
as

A(qi, pi, t)→ Â(q̂i, p̂i, t).

This quantification rule supposes that the observables q̂i and p̂i exist. The two
observables do not commute and direct substitution can lead to a non hermitian
operator, which is absurd. This happens when we have terms like q̂1 p̂1 in A. As q̂1

and p̂1 are hermitian by assumption,

(q̂1 p̂1)
† = p̂†

1 q̂†
1 = p̂1q̂1 = q̂1 p̂1.

so q̂1 p̂1 is not hermitian. We can solve the problem replacing q1 p1 by 1
2 (p1q1 + q1 p1)

which is classically equivalent and the observable Â = 1
2 ( p̂1q̂1 + q̂1 p̂1) is hermitian,

as required for an observable.
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Postulate III: The observables q̂i and p̂i, corresponding to the cartesian vari-
ables of position and their canonical conjugate momenta exist and satisfy the fol-
lowing commutation relations,

[q̂i, q̂j] = 0, [ p̂i, p̂j] = 0, [q̂i, p̂j] = ih̄δi,j I,

where h̄ = h
2π ≈ 1.054× 10−34 J · s is the reduced Planck’s constant.

4.3.1 Representation of coordinates and momentum

To simplify notation, let’s assume the case of a single particle in one dimension.

Representation of coordinates

We consider as basis vectors the eigenstates |x⟩ of the position operator x̂,
which is the simplest example of an observable with continuous spectrum and
satisfies

x̂ |x⟩ = x |x⟩ .

Two states are normalized as

⟨x′|x⟩ = δ(x′ − x),

forming a complete set

I =
∫ ∞

−∞
|x⟩ ⟨x| dx,

and consequently, any arbitrary state |Ψ⟩ can be written as

|Ψ⟩ = I |Ψ⟩ =
∫ ∞

−∞
|x⟩ ⟨x|Ψ⟩dx =

∫
|x⟩Ψ(x)dx.

where the wave function is defined as Ψ(x) = ⟨x|Ψ⟩. In the coordinate represen-
tation, the scalar product can be seen as

⟨Φ|Ψ⟩ =
∫
⟨Φ|x⟩⟨x|Ψ⟩dx =

∫
Φ(x)∗Ψ(x)dx.

Let’s consider now a dynamic variable f (x), that only depends on position, and
the associated observable f (x̂). It is clear that f (x̂) |x⟩ = f (x) |x⟩. But how can
we represent p̂ only knowing that [x̂, p̂] = ih̄I? We have to introduce a translation
operator T̂a (recall section 3.5.1) defined as

T̂a |x⟩ = |x + a⟩ ,

This operator displaces the wave functions of the states, because

T̂a |Ψ⟩ =
∫ ∣∣x′ + a

〉
⟨x′|Ψ⟩dx′ =

∫
|x⟩ ⟨x− a|Ψ⟩dx.
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so the value of the wave function of the state T̂aΨ in x is Ψ(x− a). We define the
derivative operator as

D̂x = lim
a→0

I − T̂a

a
,

acting the following way

D̂x |Ψ⟩ = lim
a→0

1
a

∫
|x⟩ {⟨x|Ψ⟩ − ⟨x− a|Ψ⟩}dx =

∫
|x⟩ { ∂

∂x
⟨x|Ψ⟩}dx.

The wave function of state D̂xΨ is the derivative of the wave function Ψ, i.e.,

(D̂xΨ)(x) =
∂

∂x
Ψ(x),

and

[x̂, D̂x] |Ψ⟩ =
∫
|x⟩ {x ∂

∂x
⟨x|Ψ⟩ − ∂

∂x
(x⟨x|Ψ⟩)}dx = −

∫
|x⟩ ⟨x|Ψ⟩dx = − |Ψ⟩ .

This means [x̂, D̂x] = −I and the momentum operator can be written as

p̂ = −ih̄D̂x,

so
( p̂Ψ)(x) = −ih̄

∂

∂x
Ψ(x).

Momentum representation

In momentum representation, states and observables are expressed in terms of
the eigenstates of the momentum operator p̂,

p̂ |p⟩ = p |p⟩ , ⟨p′|p⟩ = δ(p′ − p), I =
∫
|p⟩ ⟨p| dp.

Analogous to coordinate representation,

|Ψ⟩ =
∫ ∞

−∞
|p⟩ ⟨p|Ψ⟩dp =

∫
|p⟩Ψ(p)dp.

The same way, we have to introduce a momentum translation operator

B̂b |p⟩ = |p + b⟩ .

Operating we can represent the operator x̂ in this coordinates as

(x̂Ψ)(p) = ih̄
∂

∂p
Ψ(p).
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Eigenstate equation

The eigenstate equations in coordinate and momentum representation take the
form

−ih̄
∂

∂x
⟨x|p⟩ = p⟨x|p⟩; ih̄

∂

∂p
⟨p|x⟩ = x⟨p|x⟩,

respectively, and their normalized solutions are plane waves

⟨x|p⟩ = (2πh̄)−
1
2 exp(ipx/h̄),

and

⟨p|x⟩ = (2πh̄)−
1
2 exp(−ipx/h̄).

Particle in 3 dimension

We can generalize what we have seen to a particle moving in R3. We will
just present the important results so that we do not repeat the same arguments
as above. The eigenstates of the position operator r̂ = (x̂, ŷ, ẑ) are those of the
standard basis of the direct product space

|r⟩ = |x⟩ ⊗ |y⟩ ⊗ |z⟩ .

In analogy to the one dimensional case, the momentum operator in coordinate
representation can be written as

p̂ = ( p̂x, p̂y, p̂z) = −ih̄∇,

where ∇ = ( ∂
∂x , ∂

∂y , ∂
∂z ) is the gradient operator. The eigenstates of p are plane

waves

⟨r|p⟩ = ⟨x|px⟩⟨y|py⟩⟨z|pz⟩ = (2πh̄)−
3
2 exp(ip · r/h̄).

On the other hand, in momentum representation,

r̂ = ih̄(
∂

∂px
,

∂

∂py
,

∂

∂pz
) = ih̄∇p,

and the eigenstates can be written as

⟨p|r⟩ = (2πh̄)−
3
2 exp(−ip · r/h̄).
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4.4 Measurement postulate

In accordance with the previous postulates, the eigenvectors |ϕn⟩ of an observ-
able Â,

Â |ϕn⟩ = an |ϕn⟩ ,

constitute a complete orthonormal basis for the state space of the physical system.
Since the eigenvalues are real, we can define the following family of projectors

Π(a) := ∑
an≤a
|ϕn⟩ ⟨ϕn| .

Postulate IV-A: The result a of a measurement of the observable Â on a sys-
tem in the state |Ψ⟩ is one of the eigenvalues an of Â. Furthermore, the relative
probability that the outcome lies within the interval (α, α + ∆](∆ > 0) is

PΨ{a ∈ (α, α + ∆]} = ∥[Π(α + ∆)−Π(α)] |Ψ⟩∥2 = ∑
α<an≤α+∆

|⟨Φn|Ψ⟩|2.

The quantities cn = ⟨Φn|Ψ⟩ are called probability amplitudes and they are the
components of the development of the state |Ψ⟩ in the eigenbasis of Â. As a
consequence of postulate IV-A, the expected value of a large number of Â mea-
surements over identical systems of a statistical set in the finite-norm state |Ψ⟩
is

⟨Â⟩ = ∑
n

anPΨ(an) = ∑
n

an
|⟨Φn|Ψ⟩|2

∑n |⟨Φn|Ψ⟩|2
=

∑n an⟨Ψ|Φn⟩⟨Φn|Ψ⟩
∑n⟨Ψ|Φn⟩⟨Φn|Ψ⟩

=
⟨Ψ|Â|Ψ⟩
⟨Ψ|Ψ⟩ .

In quantum mechanics, any measurement involves the interaction of the quantum
system with a macroscopic object (the measuring device) which profoundly alters
the state of the system. The state will be in a superposition of states until mea-
sured, and the measurement will make the wave function to collapse to a given
value. In the case of a discrete, non-degenerate spectrum, two sequential mea-
surements of the same observable will always give the same value assuming the
second immediately follows the first. This is presented as

Postulate IV-B: After a filtering preparation that assures that the measurement
of an observable Â gives as result the eigenstate an, the system is in the eigenstate
|Φn⟩ of Â corresponding to that eigenvalue. If the same filtration is carried out
again, the system remains unchanged and the measurement of Â gives the same
value an again.



32 Introduction to quantum mechanics

4.4.1 Commuting observables

We say two observables Â and B̂ commute, if there exists a complete basis of
states |an, bm, r⟩ which are simultaneously eigenstates of Â and B̂,

Â |an, bm, r⟩ = an |an, bm, r⟩ ; B̂ |an, bm, r⟩ = bm |an, bm, r⟩ ,

where the additional index r is necessary only when the associate subspace is
degenerate. Using the commutator introduced in 4.2.1, two observables Â and B̂
commute when

[Â, B̂] = ÂB̂− B̂Â = 0.

4.4.2 Heisenberg’s uncertainty principle

In general, the results of measurements of an observable Â over a system in
the state Ψ, which we assume to be normalised, fluctuate around the mean value

⟨Â⟩ := ⟨Ψ|Â|Ψ⟩ = ∑
n

an|⟨Φn|Ψ⟩|2 = ∑
n

anPΨ(an).

The variance is used to measure fluctuations in the results and it is defined as

varÂ := ∑
n
(an − ⟨Â⟩)2PΨ(an) = ⟨Ψ|(Â− ⟨Ψ|Â|Ψ⟩)2|Ψ⟩ .

and the standard deviation ∆Â =
√

varÂ is understood as the uncertainty of the
measure. Let’s suppose that two observables satisfy the relation

[Â, B̂] = ih̄Ĉ.

which is true for canonical conjugate variables as we saw in Postulate III. Operat-
ing , see [11] page 27, we get to the inequality

∆Â∆B̂ ≥ h̄
2

∣∣ ⟨Ψ|Ĉ|Ψ⟩∣∣.
In the case that Â and B̂ are canonical conjugates, say x̂ and p̂x, we get

∆x̂∆ p̂x ≥
h̄
2

.

This result is the well known Heisenberg’s uncertainty principle and characterises the
limitations when measuring two canonical conjugates. For example, if we know
the position of a particle precisely, ∆x̂ = 0, then the momentum is completely
undetermined, ∆ p̂x = ∞.
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4.5 Unitary transformation

We say that a linear operator U is unitary if its hermitian conjugate is equal to
its inverse

U† = U−1 or U†U = UU† = I.

It is satisfied that [U, U†] = 0. The product of unitary operators is also unitary, as

(U1U2)
† = U†

2 U†
1 = U−1

2 U−1
1 = (U1U2)

−1.

Every unitary operator can be written as

U = exp(iG),

where G is an hermitian operator, see [11] page 223. Every unitary operator de-
fines an unitary transformation that transforms the state Ψ in Ψ′,i.e,

UΨ = Ψ′.

For every pair of states Ψ1 and Ψ2 we have that

⟨Ψ1|Ψ2⟩ = ⟨Ψ|U†U|Ψ2⟩ = ⟨UΨ1|UΨ2⟩ = ⟨(Ψ′)1|(Ψ′)2⟩.

From this equation we can deduce that unitary transformations can be considered
as the generalisation of the orthogonal transformation of an Euclidean space as
vectors Φn of an orthonormal basis are transformed into Φ′n. Given an operator Â,
we define the transformed operator Â′ as

⟨Ψ1|Â|Ψ2⟩ =
〈
Ψ′1

∣∣Â′∣∣Ψ′2〉 ,

so,
Â′ = UÂU†.

This means that if a system is described by the state and some observables Â,
then the transformants Ψ′ and Â′ constitute an equivalent representation of the
system.
As mentioned, unitary transformations are associated with changes of the state
space basis. Suppose we have an orthonormal basis of eigenstates Φn for a certain
operator Â,

Â |Φn⟩ = an |Φn⟩ ,

and we consider a new orthonormal basis

B̂ |Φn⟩ = bn |Φn⟩ .
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Let U be the unitary transform that transform the vectors of the original basis into
the ones of the new basis,

U |Φn⟩ =
∣∣Φ′n〉 , (U† = U−1).

In the basis ϕ′n the components ⟨Φ′n|Ψ⟩ of a vector Ψ,

⟨Φ′n|Ψ⟩ = ⟨UΦn|Ψ⟩ = ⟨Φn|U−1Ψ⟩,

are the same as the components of U−1 in the original basis. Analogously, the
elements of an operator Ĉ in the new basis,〈

ϕ′m
∣∣Ĉ∣∣ϕ′n〉 = ⟨ϕm|U−1ĈU|ϕn⟩

are the same as the operator U−1ĈU in the original basis.

4.6 Schrödinger equation

Once we have seen this little introduction to the basic concepts of quantum
mechanics we are ready to introduce the Schrödinger equation and the last postu-
late. This part will be fundamental for the last chapter of our work, where we will
deeply focus on this particular equation.

Postulate V: The time evolution or time dependence of a physical state is found
by solving the dime-dependent Schrödinger equation

ih̄
∂

∂t
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩ ,

where |Ψ(t)⟩ is the state of the system at time t and Ĥ is the Hamiltonian operator,
than can depend on time or not.

The classical no relativistic hamiltonian is given by

Ĥ =
p̂2

2m
+ V(r̂),

where m is the mass of the particle, V(r̂) a conservative potential and p̂ the mo-
mentum operator. In the coordinate representation the Schrödinger equation al-
lows to write

ih̄
∂

∂t
⟨r|Ψ(t)⟩ = ⟨r|Ĥ|Ψ(t)⟩ =

∫
dr′

〈
r
∣∣Ĥ∣∣r′〉 ⟨r′|Ψ(t)⟩

=
∫

dr′δ(r− r′)(− h̄2

2m
∇′2 + V(r̂))⟨r′|Ψ(t)⟩,
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where introducing the wave function,

Ψ(r, t) := ⟨r|Ψ(t)⟩,

we get the Schrödinger equation given by the equation

ih̄
∂

∂t
Ψ(r, t) = −( h̄2

2m
∇2 + V(r))Ψ(r, t). (4.1)

where − h̄2

2m∇2 is called the kinetic operator. In the last chapter of this project
we will try to relate this fundamental equation of quantum mechanics with Lévy
processes and semigroups we introduced in the first part.



Chapter 5

Quantum Lévy processes

This will be the last chapter of the work. In chapters 1, 2 and 3 we have
seen the theoretical classical framework of Lévy processes. We began revising
classical probability theory and defining stochastic processes to present the Lévy-
Khintchine formula. In chapter 2 we gave the definition of Lévy processes and in
chapter 3 we talked about Markovian processes which are more general stochastic
processes which include Lévy processes. In chapter 4, we changed completely the
topic and made a little introduction to quantum mechanics.
The main idea of the last part was to prepare the reader for this last section where
we will try to find a link between Lévy processes and quantum mechanics. The de-
cision to delve into this intersection arises from the profound implications it holds
for both fields of study and the potential insights it may offer into the nature of
stochastic processes and quantum phenomena. By seeking a connection between
these two seemingly disparate fields, we aim to uncover new perspectives and
insights that may enhance our understanding of both stochastic processes and
quantum mechanics.
Exploring how concepts from Lévy processes, such as randomness and fluctua-
tion, relate to fundamental principles in quantum mechanics, such as superposi-
tion and uncertainty, has the potential to enrich both fields and pave the way for
novel discoveries.
For example, in quantum mechanics, as we have seen, the principle of superposi-
tion states that a quantum system can exist in multiple states simultaneously until
measured. This concept bears resemblance to the notion of randomness and vari-
ability in Lévy processes, where the process can exhibit multiple potential paths or
trajectories at any given time. Moreover, the Heisenberg’s uncertainty principle in
quantum mechanics states that there is a fundamental limit to the precision with
which certain pairs of physical properties, such as position and momentum, can
be simultaneously known. This uncertainty can be analogously reflected in Lévy

36
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processes, where the inherent randomness introduces uncertainty in predicting
the future behavior of the process.
To sum up, deeper studies between the quantum world and stochastic processes
not only could provide a deeper understanding of both fields, but may lead to the
development of more accurate models for describing complex quantum systems
subject to stochastic influences, thus advancing our ability to predict and control
quantum behavior in real-world applications.
There are several works that have worked in this field such as [13], [14], [15] and
[16]. In this chapter we will mainly focus on [14] and [15]. These works find a
relation between Lévy processes and the Schrödinger equation. We will develop
this idea in the following sections.

5.1 A Schrödinger equation based in Lévy processes

That the Schrödinger equation is somehow related to some underlying stochas-
tic process has been known and studied in the last decades. Works such as [17]
and [18], studied the non relativistic Schrödinger equation related to fluctuations
powered by Gaussian Brownian stochastic processes. Brownian motion has been
broadened to many areas in physics, such as, diffusion problems or even astro-
physics.
On the other hand, Lévy processes, which have been vastly studied in mathemat-
ical finance, have not been really studied in physics. However, new interests for
them begin to emerge, as the statistical characteristics of the collective motion of
charged particle accelerator beams could strongly be linked to our processes.
In this last chapter we will try to present the Schrödinger equation showing the
relation with the concepts we have defined in the theoretical part of this project,
such as, the Lévy Kintchine formula and semigroups and their generators. The
Schrödinger equation will be generalized to the entire family of Lévy processes
and we will compare it to the previously studied equation based only in Brow-
nian motion. As a recall, we saw in theorem 1.18, that Brownian motion was a
Lévy process with characteristics (0, a, 0). So given the "Brownian-Schrödinger"
equation, we will generalize it so it works for any Lévy process.
There are many advantages of this new formulation. First of all, the widening
of the increment laws from the stable to the infinitely divisible case will offer the
possibility of having realistic variances [14]. Furthermore, the possible presence
of a Gaussian component in the Lévy-Khintchine formula, could be understood
as a small correction to the quantum mechanical Schrödinger equation. Before
starting with our generalization, we should present an important tool in quantum
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mechanics.

5.2 Non relativistic propagators

In quantum mechanics, the propagator is a function that specifies the probabil-
ity amplitude for a particle to travel from one place to another in a given period of
time. To present the propagator associated to our Schrödinger equation we shall
begin defining the classical action.

Definition 5.1. The principle of least action is the condition that determines the optimal
path q(t) out of all possibles paths a particle could follow.

There exists a quantity S that can be computed for each path. The classical
path q(t) is that for which S is minimum. Figure 5.1 shows the possible paths a
particle could follow. S is given by

S =
∫ tb

ta

L(q̇, q, t)dt. (5.1)

where for a particle of mass m subjected to a potential V(q, t),

L =
m
2

q̇2 −V(q, t), (5.2)

is the Lagrangian for the system, which is a scalar function that gives information
of the evolution of the system.

Figure 5.1: Possible paths that a particle could follow [19].
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Let’s take the red path q(t) of Figure 5.1 and let’s suppose that the path is
varied by δq(t). The condition that the end points of q(t) are fixed requires that

δq(t1) = δq(t2) = 0,

and the condition that q(t) is an extremum of S means

δS = S[q + δq]− S[q] = 0.

Using equation (5.1),

S[q + δq] =
∫ t2

t1

L(q̇ + δq, q + δq, t)dt =
∫ t2

t1

[L(q̇, q, t) + δq̇
∂L
∂q̇

+ δq
∂L
∂q

]dt

= S[q] +
∫ t2

t1

[δq̇
∂L
∂q̇

+ δq
∂L
∂q

]dt.

By integrating by parts, the integration in S becomes,

δS = [δq
∂L
∂q̇

]t2
t1
−

∫ t2

t1

δq[
d
dt
(

∂L
∂q̇

)− ∂L
∂q

]dt.

Since δq(t) = 0 at the end points, the first part is 0, and the extremum will be
given by

d
dt
(

∂L
∂q̇

)− ∂L
∂q

= 0.

which is known as the classical lagrangian equation. From now on let’s denote
the path q(t) as x(t) and the end points as a and b instead of 1 and 2.

Definition 5.2. The quantum mechanical amplitude rule denotes how much each trajec-
tory contributes to the total amplitude to go from a to b.

The probability P(b, a) to go from xa to xb at times ta and tb is the absolute
square P(b, a) = |K(b, a)|2 of an amplitude K(b, a), known as the kernel, to go
from a to b, where

K(b, a) = ∑
paths f rom a to b

ϕ(x(t)),

and the contribution of a path has a phase proportional to the action of S,

ϕ(x(t)) = Ae(i/h̄)S[x,t],

where A is a constant and h̄ = h
2π ≈ 1.054 × 10−34 J · s is the reduced Planck’s

constant. Now we are interested in constructing the amplitude function summing
all paths. We first choose a subset of all paths. We divide time into steps of width
ϵ. This gives a set of values ti spaced an interval ϵ between ta and tb. At each time
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ti we select a point xi. We construct a path by connecting all the points and define
a sum over them by taking a multiple integral over all values of xi for i between 1
and N − 1, where

Nϵ = tb − ta; ϵ = ti+1 − ti; t0 = ta, x0 = xa; tN = tb, xN = xb;

and the resulting equation is

K(b, a) ∼
∫

...
∫ ∫

ϕ(x(t))dx1dx2...dxN−1.

Now we must give a normalizing factor A. It can be seen in [18] chapter 4.1 how
this is obtained and it turns out to be A−N , where

A =

√
2πih̄ϵ

m
.

With this factor the following limit exists and we can write

K(b, a) = lim
ϵ→0

1
A

∫
...

∫ ∫
e(i/h̄)S[b,a] dX1

A
dX2

A
...

dXN−1

A
,

where

S[b, a] =
∫ tb

ta

L(ẋ, x, t).

Now that we have seen how the kernel is obtained we will study the propagator of
our particular case, i.e, a non-relativistic free particle. Non-relativistic means that
its velocity is much smaller that light speed and free stands for that the particle is
not bound by an external force. The Lagrangian for the free particle reduces from
(5.2) to

L =
m
2

ẋ2.

Using the equation we found for the Kernel we get that

K0(b, a) = lim
ϵ→0

(
m

2πih̄ϵ
)N/2 ×

∫
...

∫
exp

{
{ im

2h̄ϵ

N

∑
i=1

(xi − xi−1)
2}
}

dx1dx2...dxN−1.

To calculate this integral notice that

(
m

2πih̄ϵ
)2/2

∫ ∞

−∞
exp

{
{ im

2h̄ϵ
[(x2 − x1)

2 − (x1 − x0)
2]}

}
dx1

= (
m

2πih̄2ϵ
)1/2 exp

{
{ im

2h̄2ϵ
(x2 − x0)

2}
}

.

The result is multiplied by

(
m

2πih̄ϵ
)1/2 exp

{
{ im

2h̄ϵ
(x3 − x2)

2}
}

,



5.3 Formulation of the equation 41

and after integrating over x2 we get

(
m

2πih̄3ϵ
)1/2 exp

{
{ im

2h̄3ϵ
(x3 − x0)

2}
}

Iterating N − 1 steps we get the result

(
m

2πih̄Nϵ
)1/2 exp

{
{ im

2h̄Nϵ
(xN − x0)

2}
}

and taking into account that Nϵ = tN − t0 the Kernel is

K0(b, a) = (
m

2πih̄(tb − ta)
)1/2 exp

{
{ im(xb − xa)2

2h̄(tb − ta)
}
}

This is the amplitude for a particle to reach a particular point and in particular,
the kernel K(b, a) = K(xb, tb; xa, ta) = Ψ(xb, tb) is actually a wave function. Since
the wave function is an amplitude, it satisfies the rules for combination of events
occurring in succession in time. Therefore, the wave function satisfies

Ψ(xb, tb) =
∫ ∞

−∞
K(xb, tb; xc, tc)Ψ(xc, tc)dxc.

This last result means that the total amplitude to arrive at (xb, tb), (that is Ψ(xb, tb)),
is the integral over all possible values of xc of the total amplitude to arrive to the
point (xc, tc),(i.e.Ψ(xc, tc)), multiplied by the amplitude to go from b to c,(K(xb, tb; xc, tc)).

5.3 Formulation of the equation

Now that we have presented the concept of propagator we will begin with
the non relativistic Schrödinger equation associated to its propagator K0(b, a) =

G(x, t|y, s) defined in (5.3). We change the notation of variables xa, ya, ta, tb to make
equations more clear. To simplify the calculations we will only work in one spatial
component. As seen in chapter 4.6. the Schrödinger equation has the form

ih̄
∂

∂t
Ψ(x, t) = − h̄2

2m
∂2

∂x
Ψ(x, t),

where we do not consider any potential energy. As we have seen its propagator is

G(x, t|y, s) =
1√

2πi(t− s)h̄/m
exp(− (x− y)2

2i(t− s)h̄/m
), (5.3)

and we can write
Ψ(x, t) =

∫ ∞

−∞
G(x, t|y, s)Ψ(y, s)dy.
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We will compare it with the Fokker-Planck equation of a Brownian motion process,
with diffusion coefficient D, probability density function q(x, t) and propagator
p(x, t|y, s). More information about how this equation is obtained can be found in
[20] pages 63-95.

∂

∂t
q(x, t) = D

∂2

∂x
q(x, t), (5.4)

p(x, t|y, s) =
1√

4π(t− s)D
exp(− (x− y)2

4(t− s)D
), (5.5)

q(x, t) =
∫ ∞

−∞
p(x, t|y, s)q(y, s)dy.

Considering,

D ↔ h̄
2m

; t↔ it,

the two structures can be transformed one into the other.

5.3.1 Gaussian distribution formulation

We are going to analyze the role a Gaussian distribution plays in our formu-
lation. The probability function and the characteristic function of a Gaussian law
N (µ, σ2) = N (0, a2) are

q(x) =
e−

x2

2a2

√
2πa2

; φ(u) = e−
a2u2

2 ;

and satisfy the relations

φ(u) =
∫ ∞

−∞
q(x)eiuxdx,

q(x) =
1

2π

∫ ∞

−∞
φ(u)e−iuxdu,

so the propagators (5.3) and (5.5) have the characteristic functions

e−iD(t−s)u2
= [φ(u)]i(t−s)/τ, e−D(t−s)u2

= [φ(u)](t−s)/τ,

respectively, where φ(u) = e−Dτu2
= e−τh̄u2/2m is the characteristic function of a

Gaussian law N (0, 2Dτ) and τ is a time constant so that the exponent is dimen-
sionless. Using the relations seen above,

G(x, t|y, s) =
1

2π

∫ ∞

−∞
[φ(u)]i(t−s)/τe−iu(x−y)du, (5.6)

p(x, t|y, s) =
1

2π

∫ ∞

−∞
[φ(u)](t−s)/τe−iu(x−y)du,
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we have written the propagator as a function of the characteristic function of a
Gaussian law. Now we can write the total wave function as

Ψ(x, t) =
∫ ∞

−∞
G(x, t|y, s)Ψ(y, s)dy

=
∫ ∞

−∞
dy

ψ(y, s)
2π

∫ ∞

−∞
e−iDu2(t−s)e−iu(x−y)du,

and the Schrödinger equation can be written as

i
∂

∂t
ψ(x, t) =

∫ ∞

−∞
dy

ψ(y, s)
2π

∫ ∞

−∞
Du2e−iDu2(t−s)e−iu(x−y)du

= D
∫ ∞

−∞
dy

ψ(y, s)
2π

∫ ∞

−∞
(i

∂

∂x
)2e−iDu2(t−s)e−iu(x−y)du

= −D
∂2

∂x

∫ ∞

−∞
dy

ψ(y, s)
2π

∫ ∞

−∞
e−iDu2(t−s)e−iu(x−y)du

= −D
∂2

∂x
ψ(x, t).

5.3.2 Non Gaussian distribution formulation

We will now take a non Gaussian distribution to reproduce the Schrödinger
equation. Let’s consider an infinitely divisible law with characteristic function
φ(u) and η(u) = ln(φ(u)) its logarithmic characteristic. Infinitely divisibility
guarantees that φt/τ is a valid characteristic function for every t. The law of the
corresponding Lévy process is [φ(u)](t−s)/τ. Following the same procedure as in
the last section, the wave function can be written as

Ψ(x, t) =
∫ ∞

−∞
dy

ψ(y, s)
2π

∫ ∞

−∞
[φ(u)]i(t−s)/τe−iu(x−y)du,

and the differential equation is

i
∂

∂t
ψ(x, t) = − 1

τ
η(

∂

∂x
)ψ(x, t)

=
∫ ∞

−∞
dy

ψ(y, s)
2π

∫ ∞

−∞
(−η(u)

τ
)[φ(u)]i(t−s)/τe−iu(x−y)du,

(5.7)

where ln[φ( ∂
∂x )] = η( ∂

∂x ) is a pseudo-differential operator with symbol η(u) defined
through the use of the Fourier transforms seen in chapter 3.5.2 about the repre-
sentation of semigroups and generators.

5.3.3 The role of the pseudo-differential operator

Let’s consider a one dimensional Lévy process X(t). The characteristic function
of its increments in ∆t is [φ(u)]∆t/τ where [φ(u)] is an infinitely divisible law. The
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symbol η(u) = ln(φ(u)) then satisfies the one dimensional Lévy-Khintchine formula

η(u) = iγu− β2

2
u2 +

∫
R
[eiux − 1− ixuχ[−1,1](x)]ν(dx).

Comparing with the theorem 1.18 we can notice that b = γ and A = β and in
this case β, γ ∈ R and ν(∗) is the Lévy measure of our infinitely divisible law
satisfying (1.13). As seen in chapter 3.4 to every Lévy process we associate a
semigroup {Tt, t ≥ 0} acting on the space of measurable bounded functions. The
infinitesimal generator of the semigroup is defined as

A f = lim
t→0

Tt f − f
t

,

where f ∈ Bb(R) and A ∈ DA defined in (3.5). In our particular case A = η( ∂
∂x )

so

[η(
∂

∂x
) f ](x) = γ(

∂

∂x
f )(x) +

β2

2
(

∂2

∂x
f )(x)

+
∫
R
[ f (x + y)− f (x)− y(

∂

∂x
f )(x)χ[−1,1]]ν(dy).

So the pseudodifferential operator η( ∂
∂x ) of (5.7) is the generator of a underly-

ing Lévy process. We are interested in a real Schrödinger equation and we saw in
chapter 4.3 that quantum operators are hermitian. Hermitian operators are closely
related to self-adjoint operators. The last ones are more general than the hermi-
tian ones, but in finite-dimensional complex spaces coincide. Therefore, we are
interested in extending the generator A = η( ∂

∂x ) to the Hilbert space L(R). Then,
as we saw in chapter 3.6.1, our operator η( ∂

∂x ) is self-adjoint if and only if, X(t) is
a centered and symmetric Lévy process with Lévy symbol

η(u) = −β2

2
u2 +

∫
R
(cos(ux)− 1)ν(dx).

where ν(∗) is a symmetric Lévy measure. The integro-differential form is then
simplified to

(A f )(x) = [η(
∂

∂x
) f ](x)

=
β2

2
(

∂2

∂x
f ) +

∫
R
[( f (x + y)− f (x)]ν(dy).

−η( ∂
∂x ) is not only self-adjoint, but also positive on L(R). This means that−( f , η( ∂

∂x f )) ≥
0 for every f ∈ L(R), so its spectrum lies in [0, ∞).
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5.4 Complete Lévy-Schrödinger equation

Now that we have seen the form that the pseudodifferential equation takes,
equation (5.7) takes the form

i
∂

∂t
Ψ(x, t) = −

η( ∂
∂x )

τ
ψ(x, t)

= − β2

2τ

∂2ψ(x)
∂x

− 1
τ

∫
R
[Ψ(x + y)−Ψ(x)]ν(dy).

(5.8)

If X(t) is just a Gaussian process then η(u) = − β2

τ and A = η( ∂
∂x ) = β2

2
∂2

∂x . In
this case, the process evolution equation reduces to the Fokker-Planck equation

(5.4) with D = β2

2τ . We can see the operator − h̄η( ∂
∂x )

τ as the kinetic operator of the
process and this can also be extended to non Gaussian Lévy processes.
We can introduce a constant α with the dimensions of action so that our "Lévy-
Schrödinger" equation takes the form

iα
∂

∂t
Ψ(x, t) =H0Ψ(x, t) = −α

τ
η(

∂

∂x
)Ψ(x, t)

= −α
β2

2τ

∂2

∂x
ψ(x, t)− α

τ

∫
R
[Ψ(x + y, t)−Ψ(x, t)]ν(dy).

where the free Hamiltonian operator Ĥ0 has dimensions of energy. It is self-adjoint
and positive on L2(R) so it is a good kinetic energy operator. Finally we can add
a potential V(x) and get the final complete "Lévy - Schrödinger" equation

iα
∂

∂t
Ψ(x, t) = ĤΨ(x, t) = (Ĥ0 + V(x))Ψ(x, t)

= −α
β2

2τ

∂2

∂x
ψ(x, t)− α

τ

∫
R
[Ψ(x + y, t)−Ψ(x, t)]ν(dy) + V(x)Ψ(x, t).

.

(5.9)

This Schrödinger equation contains two parts. On the one hand the usual kinetic
energy − αβ2

2τ
∂2

∂x related to the Gaussian part and on the other hand the jump part
which is given by an integral with symmetric Lévy process ν.
If the underlying process is purely Gaussian the Lévy measure vanishes reducing
to a Brownian Schrödinger equation. If the initial process is totally non Gaussian,
then β = 0 and we get a jump "Lévy- Schrödinger" equation. In general, both
terms are present and if we introduce ω = 1

τ , α = h̄ and β2 = ατ
m , then (5.9) takes

the form

ih̄
∂

∂t
Ψ(x, t) = − h̄2

2m
∂2

∂x
Ψ(x, t)− h̄ω

∫
R
[Ψ(x + y, t)−Ψ(x, t)]ν(dy) + V(x)Ψ(x, t).

In this case the jump term can be considered as a correction to the usual Schrödinger
equation seen in (4.1).



Chapter 6

Conclusions

In summary, this project has successfully achieved its stated objectives. It has
provided a solid introduction to Lévy processes, focusing on the fundamental
concepts necessary to establish a connection with quantum mechanics. While it is
acknowledged that there are deeper aspects of Lévy processes, such as the Lévy-
Itô decomposition or stochastic integration, that have not been covered in this
work, the focus has been on essential concepts that facilitate the understanding
and formulating of the the Schrödinger equation based on these processes. For
further reading on Lévy processes the reader may consult [1] or [3], which have
been the main sources of the theoretical part.

Formulating the Schrödinger equation using Levy processes represents a sig-
nificant generalization of the well-studied case of Gaussian processes (Brownian
motion). This generalization expands our understanding of quantum mechanics
by providing a broader framework that can capture a wider range of physical
phenomena, especially those exhibiting non-Gaussian behavior or jump character-
istics.

It is important to note that this work is primarily aimed at readers with a strong
background in mathematics but not necessarily in physics. Therefore, an introduc-
tion to quantum mechanics was included in chapter 4 to aid in understanding the
connection between Lévy processes and the formulation of the Schrödinger equa-
tion.

For those interested in delving deeper into Lévy processes in the context of
quantum mechanics, further reading such as [21] is recommended, where quan-
tum groups are introduced, and a more rigorous connection between stochastic
processes and quantum mechanics is established.
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Chapter 7

Appendix

Definition 7.1. (Hölder’s inequality) Let p, q > 1 be such that

1
p
+

1
q
= 1.

Let f ∈ Lp(S) and g ∈ Lq(S) and define ( f , g) : S → R by ( f , g)(x) = ( f (x), g(x))
for x ∈ S. Then ( f , g) ∈ L1(S) and

||( f , g)||1 ≤ || f ||p||g||q.

The case p = q = 2 is known as the Cauchy-Schwarz inequality.

Definition 7.2. (Banach space) A banach space is a complete normed space. A
normed space is a pair (X, ∥ ∗ ∥) where X is a vector space over a field K. We say
it is complete if every Cauchy sequence has a limit in X with respect to the metric
d(x, y) = ||x− y||.

Definition 7.3. (Hilbert space) A Hilbert space is a real or complex inner product
space that is also a complete metric space with respect to the distance function
induced by the inner product.
A complex vector space H is a complex inner product space if there is an inner
product ⟨x, y⟩ associating a complex number to each pair x, y ∈ H and satisfying:

1. The inner product is conjugate symmetric, i.e, the inner product of a pair
of elements is equal to the complex conjugate of the inner product of the
swapped elements,

⟨y, x⟩ = ⟨x, y⟩.

2. The inner product is linear in its first argument. For all a, b ∈ C and
x1, x2, y ∈ H,

⟨ax1 + bx2, y⟩ = a⟨x1, y⟩+ b⟨x2, y⟩.
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3. The inner product of an element with itself is positive definite, i.e.,

⟨x, x⟩ > 0 i f x ̸= 0.

⟨x, x⟩ = 0 i f x = 0.

The norm is the real-valued function

∥x∥ =
√
⟨x, x⟩,

and the distance between two points x, y ∈ H is given by

d(x, y) = ∥x− y∥ =
√
⟨x− y, x− y⟩.

Definition 7.4. (Schwartz space) For d ∈ N let Nn := N×N× ...×N be the d-fold
cartesian product. The Schwartz space is defined as

S(Rd,C) := { f ∈ C∞(Rd,C) : ∀α, β ∈ Nd, || f ||α,β < ∞},

where C∞(Rd,C) is the space of smooth functions and

|| f ||α,β := supx∈Rd |xα(Dβ f )(x)|.
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