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Abstract

The aim of this paper is to classify wallpaper groups and frieze groups. To
do so, we will first define symmetry groups and some of their invariants. Then,
we will restrict ourselves to plane symmetry groups (the wallpaper groups) and
define when two of these groups are equivalent. Then, we will show that there
are exactly 17 equivalence classes. We will also see a few examples in order to
show how to find the corresponding equivalence class of the wallpaper group for
a given periodic design.

Moreover, we can also restrict the definition of symmetry groups to frieze
groups. Since the defined equivalence relationship will remain valid, we will
repeat the same process to see that there are exactly 7 frieze groups, of which we
will also study some concrete examples. Finally, we will relate wallpaper groups
and frieze groups in the last chapter of this bachelor thesis.
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Introduction

The act of decorating

The love of symmetry, order and pattern is something that feels universal and
very genuine to our living experience. We do not see it in just one particular
culture, or one particular time in history, and it is not just one particular mathe-
matician who appreciates it. There is beauty to see by quite a lot of us, and it feels
inherently human to experience joy through looking at buildings, mosques, tiles,
mandalas or tessellations.

We see consequences of this desire to decorate the places we inhabit with
symmetry in the temples left to us from the Ottomans, in the buildings of the
Vijayanagar Empire, in Roman geometric mosaics, in Sumerian tessellations, in
Kepler’s notes, in traditional Japanese paintings, and a long list of etceteras. Is-
lamic architecture is noteworthy to emphasize above almost any other example,
as it often relies on geometric motifs and mathematical proportions to adorn its
religious buildings, due to the rule against depicting animate beings. One of the
most outstanding instances of this architectural tradition is located in Granada,
the Alhambra palace.

Neither anthropology, nor psychology, nor history can be considered an exact
science, and therefore knowing exactly what the reason is for this interest in pe-
riodic patterns becomes a task that may not be worth pursuing. It is most likely
a combination of reasons and not just one, among which the following stand out.
On the one hand, we enjoy periodicity and symmetry because it is pleasant to
look at. Our brains can process repeating patterns more easily because we only
need to look at bits of it to imagine the rest of it accurately. This is a consequence
of perceptual bias, which in this case tells us that if we can predict what is go-
ing to happen, then it is easier for us to process and remember it [2]. On the
other hand, historians believe that our inclination towards symmetry stems from
our innate connection to nature (and curiosity towards it), as nature itself exhibits
abundant symmetry. This is echoed in physics, where symmetry is observed from
the subatomic scale to the vast expanse of the universe [3].

Measuring symmetry

Let us acknowledge that, for whatever reason, we are drawn to symmetry.
Now, we can begin to inquire whether there exists an "objective" method for de-
termining weather one thing is "more" symmetrical than another thing. The sym-
metries of a set of objects (which could be points, lines, figures, or any other
elements) consist of all transformations that leave the object looking unchanged.
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More accurately, maps from an object to itself that preserve distance. We recall
that every object yields the symmetry of "doing nothing to it", that corresponds to
the identity map.

If we apply more than one of these "appearance preserving maps" (by compo-
sition), the result remains the same design as well. As we will explore, the sets of
symmetries are in fact groups of symmetries, and those are the ones we will study
in this text.



Chapter 1

The 17 wallpaper groups

We see bi-dimensional patterns all over nature, and we create plane patterns our-
selves as well. We use them for architecture, art, music, fabrics, tapestries and of
course, wallpapers. Our aim in this chapter is to classify the 17 "types" of wall-
papers. This may seem unnatural because there are as many wallpapers as one
can design (or imagine). This is true, but what we mean with classifying them is
to examine the different ways we can transform a wallpaper so that the outcome
design is the same as the original. If two designs can be transformed in the same
ways to be left invariant, we will consider these two wallpapers as belonging to
the same type.

Even if we imagine the design or pattern itself when we talk about a wallpaper,
in fact we will refer to its symmetry group, the wallpaper group. That is to say,
we can understand a wallpaper as a design in the affine plane, but we will not
focus on how this notation is formalised. Instead, we will assume that it has been
formalised in some way, and we will look at which transformations respect the
such a formalisation. At all times we will study and classify the groups that form
these transformations and never the designs as such.

The transformations we will apply to wallpapers are translations, rotations and re-
flections (isometries) and we call them symmetries. We will see that for a group of
isometries to be considered it has to contain two linearly independent translations
(and any composition of them). This will be common to every "type" of wallpaper
group (we will end up calling this "types", equivalence classes) and what will give
us the difference between equivalence classes will be the possible combinations of
reflections and rotations we can apply to the patterns.

1



2 The 17 wallpaper groups

To prove that there are in fact seventeen, we have followed "The 17 plane symmetry
groups" by R.L.E. Schwarzenberger [1]. We have filled the parts of his proof that
were unclear to us or that had been omitted to get a more complete version of it.

1.1 Symmetry Groups

Recall we can represent isometries of A2
R as pairs (v, φ) where v ∈ A2

R and
φ : R2 −→ R2 is an orthogonal endomorphism, so that if x is a point in A2

R,
(v, φ)x = v + φx. Isometries are a group with composition, the operation in G is
the composition of symmetries:

((v, φ) · (w, ψ))x = (v, φ) · (w + ψx) = v + φw + φψx = (v + φw, φψ)x (1.1)

and if g = (v, φ), then g−1 = (−φ−1v, φ−1).

Lemma 1.1. If φ ∈ End(R2) is orthogonal, then it is either a vectorial rotation around a
point or a reflexion in a line l ⊂ R2.

Proof. Let M be the matrix of an orthogonal endomorphism in R2. In that case we
have that M−1 = MT, and therefore M · MT = I2x2, the identity two by two matrix.

If M =

[
a b
c d

]
the equality translates to

[
a b
c d

]
·
[

a c
b d

]
=

[
1 0
0 1

]

and therefore, a2 + b2 = 1, c2 + d2 = 1 and ac+ bd = 0 which leads to the following
possible matrices:

Mrot =

[
cos(θ) −sen(θ)
sen(θ) cos(θ)

]
M−1

rot =

[
cos(θ) sen(θ)
−sen(θ) cos(θ)

]
for θ ∈ [0, 2π). and

Mre =

[
cos(θ) sen(θ)
sen(θ) −cos(θ)

]
M−1

re =

[
cos(θ) sen(θ)
sen(θ) −cos(θ)

]
for θ ∈ [0, 2π).

Mrot is the matrix of a rotation of angle θ and Mre is the matrix of a reflection in
the line that forms an angle θ/2 with the horizontal axis.



1.1 Symmetry Groups 3

Definition 1.2. If G is a subgroup of Isom(A2
R), we say that G is a symmetry group.

In the sequel, we will assume an origin of coordinates in A2
R has been once for all

selected, and we will not distinguish between vectors in R2 and points in A2
R. Our

intention now is to attach to each symmetry group some invariants. The reasons
to do this are: on the one hand, to characterize the group in terms of simpler sets
or groups, and on the other hand, to be able to state that if the invariants of two
symmetry groups can be related through an isomorphism, then the two symmetry
groups are also isomorphic. This last result will be proved in section 1.4. For more
information on symmetry groups see [6].

Definition 1.3. As in [1], we will consider the following invariants of symmetry group
G:

i) The lattice T: The subgroup of translations of G

T = {t ∈ R2|(t, id) ∈ G} (1.2)

We can see T as a subset of R2 and also as a subgroup of G, identifying each point t
with the translation (t, id) ∈ G.

ii) The point group H:

H = {φ ∈ End(R2)|∃v ∈ R2 such that (v, φ) ∈ G} (1.3)

We denote by H0 the subgroup of all rotations of H.

iii) The action of H on T: For t ∈ T and φ ∈ H, we have φt ∈ T. The homomorphisms
{φ : T → T, φ ∈ H} define an action of H on T.

iv) The shift vectors: Let φ ∈ H of finite order q (φq = id). Then

(v, φ)q = (v + φv + ... + φq−1v, φq) := (a, id) =⇒ φa = a (1.4)

and we will say that a is a shift vector of φ. We denote the set of all shift vectors of φ

by SV(φ). If there exists v′, another possible choice for v, then (v, φ) · (v′, φ)−1 =

(v − v′, id). Therefore v − v′ ∈ T.

Proposition 1.4. The lattice T is a normal subgroup of G and the quotient group G/T
and H are isomorphic.
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Proof. Let us consider the morphism:

Φ : G −→ H
(v, φ) 7−→ φ

We know that for every morphism Φ, G/ker(Φ) ∼= Im(Φ). In this case ker(Φ) =

{(v, φ) ∈ G|φ = id} = {(v, id) ∈ G} = T. As the kernel of a morphism is always
a normal subgroup we get that T is indeed a normal subgrop of G. On the other
hand, if φ ∈ H, there necessarily exists (v, φ) ∈ G and therefore Im(Φ) = H by
definition of H. All together, we get that G/T and H are indeed isomorphic.

1.2 Wallpaper groups

Definition 1.5. We will say that G is a wallpaper group (or a plane symmetry group, or a
plane group) if there are two linearly independent vectors t1, t2 ∈ R2 such that the lattice
T of G is T = {n1t1 + n2t2 | n1, n2 ∈ Z} and if the point group H is finite.

In this chapter, G will denote a wallpaper group. For examples of periodic patterns
whose symmetry group is a wallpaper group see [7] and [8].

Lemma 1.6. The lattice T must contain a non-zero vector t of minimum length |t|.

Proof. Given c ∈ R, there is a finite number of vectors t ∈ T such that |t| < c.
This follows from the fact that the intersection between T (a discrete set) and the
compact closed disc Bc(0) is finite. Among this finite set of pairs there must be
one that gives a minimum length vector.

Lemma 1.7. The point group H contains only elements of finite order, and the subgroup
H0 is cyclic with generator a rotation θ of angle 2π/q for some integer q > 0.

Proof. As H is finite every element of H is of finite order.

We now want to see that the subgroup H0 of rotations is cyclic. As H0 is finite,
there must be a minimum angle rotation θ of angle αmin. For every other rotation
η, its angle αη must be an integer multiple of αmin, because if not we could write
αη = Nαmin + ακ with N ∈ Z and 0 ̸= ακ < αmin, which would mean η = θNκ,
where κ ̸= id would be a rotation in H0 of smaller angle than θ.
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Lemma 1.8. The subgroup H0 is of order q = 1, 2, 3, 4 or 6 (this is called the crystallo-
graphic restriction). If q = 3, 4 or 6 there is a vector t ∈ T such that

T = {n1t + n2θt | n1, n2 ∈ Z}

Proof. Let t1, t2 be two vectors of mini-
mum length. The angle α between them,
is always greater than or equal to π

3 . We
can see this by constructing a triangle
with sides given by the vectors t1, t2,
and d := t2 − t1. We denote by l the
length of the vectors t1, t2. We can see
this triangle depicted in Figure 1.1. We
see that d = sin(α/2) · 2l = |t2 − t1|.

Figure 1.1: A triangle whose sides are
two lattice vectors of minimum length
forming an α angle.

If
α <

π

3
⇒ α

2
<

π

6
⇒ sin(α/2) <

1
2

.

Therefore, d < l!

We would now like to see that q = 1, 2, 3, 4 or 6. We call θ the rotation of minimum
angle 2π

q . Let t be a vector of minimum length in T

• If q = 2i for some i ∈ Z\{0}, then the angle between t and θt is 2π
2i = π

i ≥
π
3 ⇒ 1

i ≥
1
3 ⇒ i ≤ 3. That is, i = 1, 2 or 3 and therefore q = 2, 4 or 6.

• If q = 2i + 1 for some i ∈ Z, then the angle between −t and θit is π − i 2π
q ≥

π
3 ⇒ 1 − i 2

q ≥ 1
3 . But q = 2i + 1 so − 2i

q ≥ − 2
3 ⇒ 2i

q ≤ 2
3 ⇒ 2i

2i+1 ≤ 2
3 ⇒ 6i ≤

4i + 2 ⇒ i ≤ 1 and therefore q = 1 or 3.

Let us now see that for q = 3, 4, 6, then T = {n1t + n2θt|n1, n2 ∈ Z}. Let w =

n1t + n2θt , for t ∈ T of minimum length. We know that t ∈ T so t = at1 + bt2 for
some a, b ∈ Z. We can rewrite w as

w = n1(at1 + bt2) + n2θ(at1 + bt2) = n1at1 + n1bt2 + n2aθt1 + n2bθt2.

Since θ is a rotation of the symmetry group, θt1 and θt2 are also in T, so w ∈ T.

For the other inclusion we want to see that every vector v in T can be written as
x1t + x2θt for some x1, x2 ∈ Z. We will always have v = x1t + x2θt with x1, x2 ∈ R.



6 The 17 wallpaper groups

Let us suppose that x1, x2 ∈ R \ Z. We have

x1t + x2θt = y1t + y2θt + [x1]t + [x2]θt,

where yi = xi − [xi] if xi − [xi] ≤ 1/2 or yi = xi − ([xi] + 1) if xi − [xi] ≥ 1/2 so
we get yi ≤ 1

2 . The left side of the equation is also in T and [x1]t + [x2]θt is in T
because of the first inclusion. We compute the length of y1t + y2θt:

|y1t+ y2θt| =
√

y2
1|t|2 + y2

2|θt|2 + 2y1y2⟨t, θt⟩ =

√
y2

1|t|2 + y2
2|t|2 + 2y1y2|t|2cos

(
2π

q

)

≤ |t|

√
1
4
+

1
4
+

1
2

cos
(

2π

q

)
≤ |t|.

We only achieve equality when q = 2. If q = 3, 4, 6, we have found a vector of
smaller length than the minimum length vector, and therefore, we have reached a
contradiction.

Lemma 1.9. Let φ ∈ H then,

a. If φ is a rotation, then SV(φ) = 0.

b. If φ is a reflection, there are three possibilities for its shift vectors:

1. SV(φ) = Z · r

2.i) SV(φ) = 2 · Z · r

2.ii) SV(φ) = r + 2 · Z · r

for some r ∈ T.

Proof. We already know that if a is a shift vector of φ then φa = a where a =

(v + φv + ... + φq−1v, φq) for some φ ∈ H of order q and v ∈ R2.

• If φ ̸= id is a rotation and φa = a, then a = 0.

• If φ is a reflection in a line l (φ2 = Id) then a ∈ l because a reflection in
a line only leaves that line invariant. Let a, a′ be shift vectors (in l), then
a − a′ = v + φv − v′ − φv′ = (v − v′) + φ(v − v′) =: w + φw and w ∈ T. This
follows from the fact that if (a, id), (a′, id) ∈ G then (a − a′, id) = (w, id) ∈ G
and therefore, w ∈ T (by definition of T). Let r ∈ T be a non-zero vector
in l of minimum length. We see that T ∩ l = Z · r, because every element
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Figure 1.2: Situation 1 for q = 3 and q = 6 in lemma 1.9

in T ∩ l can be written as α · r and if α /∈ Z, then (α − [α]) · r ∈ T ∩ l and
therefore |(α − [α]) · r| < |r| but r has minimum length. We can conclude
that SV(φ) ⊂ Z · r. We distinguish two different cases:

1. There is a t ∈ T such that r = t + φt: Let v ∈ R2 such that (v, φ) ∈ G and
therefore v + φ(v) ∈ SV(φ) ⊂ Z · r ⇒ v + φ(v) = m · r. We will have

r = v + φ(v)− (m − 1) · r = v + φ(v)− (m − 1) · (t + φ(t))

= (v − (m − 1)t) + φ(v − (m − 1)t)

and because (−(m − 1)t, id) · (v, φ) = (v − (m − 1)t, φ) ∈ G, we have that
r ∈ SV(φ). We write w = v − (m − 1) · t. Let n ∈ Z, then n · r ∈ Z · r. We
have that r = t + φ(t) = w + φ(w) and therefore

n · r = r + (n − 1) · r = w + φ(w) + (n − 1)(t + φ(t))

= [w + (n − 1) · t] + φ[w + (n − 1) · t].

But because t ∈ T, similarly as what we did just before, we have that
((n − 1)t, id) · (w, φ) = (w + (n − 1)t, φ) ∈ G so we can conclude that every
a ∈ T on l is of the form k · r for some k ∈ Z, that is SV(φ) = Z · r. We can
see an example of this situation for cases where the order of φ is 3 or 6 in
figure 1.2.

2. There is no t ∈ T such that r = t + φt. In this case we have two possibili-
ties:

i) SV(φ) = 2Z · r

ii) SV(φ) = r + 2Z · r.

Let us see this: Let c ∈ Z such that c · r ∈ SV(φ). Let v ∈ R2 such that
c · r = v + φ(v). Let n ∈ N, and let’s see that c · r + 2n · r ∈ SV(φ). We have
that, because φ(r) = r,

c · r + 2n · r = v + φ(v) + n · r + n · r = (v + n · r) + φ(v + n · r). (1.5)
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But

(v + nr, φ) = (nr, id) · (v, φ) ∈ G ⇒ (v + n · r) + φ(v + n · r) ∈ SV(φ). (1.6)

Therefore c · r + 2Z · r ⊂ SV(φ).

Reciprocally, let c, d ∈ Z such that d · r, c · r ∈ SV(φ). If d − c were an odd
integer, we would have that d − c = 2k + 1 with k ∈ Z and therefore,

r = d · r − c · r − 2k · r. (1.7)

Because d · r − c · r is the difference between two shift vectors, there exists
t ∈ T with d · r − c · r = t + φ(t). And because 2r = r + r = r + φ(r), we get
that

r = t + φ(t)− k · (r + φ(r)) = t − kr + φ(t − kr), (1.8)

with t − kr ∈ T, which is a contradiction. Therefore, d − c is an even integer
and

d · r = c · r + 2Z · r (1.9)

so SV(φ) ⊂ c · r + 2Z · r. Finally, c · r + 2Z · r = SV(φ). So if c is even we
can choose v so that a = 0 and if c is odd we can choose v so that a = r.

1.3 Equivalence of Plane groups

Definition 1.10. Two plane groups G, G′ with lattices T, T′ are equivalent if there is an
isomorphism G → G′ which maps the subgroup T onto T′.

We study next the relationship between the invariants of G and the invariants
of G′. Our aim in this section is to show that if the two groups, G and G′, are
equivalent then their invariants are related in the way we describe below.

Remarks. i) The restriction of an isomorphism α : G → G′ to the subgroup T =

{(t, id)|∃v(t, v) ∈ G} is injective because α is injective: For t1, t2 ∈ T and t′1, t′2 ∈ T′,
α(t1, id) = (t′1, id) = (t′2, id) = α(t2, id) if and only if t1 = t2. It is also surjective
because by definition the subgroup T of G is sent to the subgroup T′ of G′. We
call λ the restriction α|T : T → T′, its inverse isomorphism is λ−1. We can also
understand λ and λ−1 as linear transformations of R2.

ii) If (v, ϕ) ∈ G is mapped to (v′, ϕ′) ∈ G′ and t ∈ T:

(ϕt, id) = (v + ϕt − v, ϕϕ−1) = (v + ϕt, ϕ) · (−ϕ−1v, ϕ−1) = (v, ϕ)(t, id)(v, ϕ)−1
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and (v, ϕ)(t, id)(v, ϕ)−1 is mapped to (v′, ϕ′)(t′, id)(v′, ϕ′)−1 = (v′, ϕ′)(λt, id)(v′, ϕ′)−1.
Therefore λϕt = λϕ−1λt for t ∈ T and, in particular, for t1, t2, the two vectors that
generate T, so we get ϕ′ = λϕλ−1. As (v, ϕ) ∈ G by definition of H, ϕ ∈ H. From
the fact that ϕ′ = λϕλ−1 for every ϕ ∈ H, the subgroups H, H′ are related by
H′ = λHλ−1 and in particular H′

0 = λH0λ−1.

iii) We showed in the first section that we can understand every ϕ ∈ H as a
transformation ϕ : T → T that sends t to ϕt. We have

T′ ϕ′
−→ T′ ≡ T′ λ−1

−−→ T
ϕ−→ T λ−→ T′

The action of ϕ′ ∈ H′ on T′ is defined by composition of the action of ϕ ∈ H on T
like ϕ′ = λϕλ−1.

iv) If φ ∈ H is of order q, then so is φ′ ∈ H′:

(φ′)q = (λφλ−1)q = λφλ−1λφλ−1...λφλ−1 = λφqλ−1 = λλ−1 = Id.

Let (v, φ) ∈ G be mapped to (v′, φ′) ∈ G′ and let a be a shift vector of G such that
(a, id) = (v, φ)q = (v + φv + ... + φq−1v, φq). Then (v, φ)q is mapped to (v′, φ′)q =

(v′ + φ′v′ + ... + φ′q−1v′, id). On the other hand (a, id) is mapped to (λa, id) =

(a′, id) and they must be equal so we get that if a ∈ T is a shift vector of ϕ ∈ H
then λa ∈ T′ must be a shift vector of ϕ′ ∈ H′.

1.4 Classification theorems

The method to show that there are exactly 17 equivalence classes of wallpaper
groups is to prove that the invariants (i), (ii), (iii), (iv) determine the equivalence
class of G uniquely.

Theorem 1.11. There are 5 equivalence classes of wallpaper group G whose point group
contains no reflections.

Proof. If the point group contains no reflections, then H = H0 and therefore H
is cyclic with generator a rotation θ of angle 2π/q where q = 1, 2, 3, 4 or 6. Let
G, G′ be two plane groups with the same point group H. To show that they are
equivalent in the sense of section 1.3 we first construct an isomorphism λ : T −→
T′ such that θλ = λθ:

- For q = 1, 2 any isomorphism will do.
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Figure 1.3: Example of a
p1 wallpaper group.

Figure 1.4: Example of a
p2 wallpaper group.

Figure 1.5: Example of a
p3 wallpaper group.

Figure 1.6: Example of a p4
wallpaper group.

Figure 1.7: Example of a p6
wallpaper group.

- For q = 3, 4, 6 we define λt = t′ and λθit = θit′ for every t ∈ T. Then λ defines a
linear transformation of R2 such that λθi = θiλ for i = 0, 1, ..., q − 1.

We can write the groups G, G′ as a union of q cosets:

G = T · (0, id) ∪ T · (v, θ) ∪ · · · ∪ T · (v, θ)q−1 (1.10)

G′ = T′ · (0, id) ∪ T′ · (v′, θ) ∪ · · · ∪ T′ · (v′, θ)q−1. (1.11)

We define E : G −→ G′ by sending (t, id)(v, θ)i to (λt, id)(v′, θ)i.

Lets now see that E defines an homomorphism. We want to see that for a, b ∈ G
E(a · b) = E(a) · E(b). We first notice that λt = t′ and λθit = θit′ and therefore:

i) On the one hand, we get (v, θ)i · (t, id) = (θit, id)(v, θ)i (both sides are equal
to (θit + v + vθ + · · ·+ θq−1v, θi) if we use the definition of group multiplication
several times).

ii) On the other hand, we get (v′, θ)i · (λt, id) = (θiλt, id)(v′, θ)i = (λθit, id)(v′, θ)i.
The first equality can be verified if we use the definition of group multiplication
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several times as both sides of it are equal to (v′ + θv′ + · · ·+ θi−1v′ + θiλt, θi) and
the second equality comes from λθit = θiλt.

As a consequence of the decomposition in cosets, every element in G can be
expressed as (t, id)(v, θ)l for some l ∈ Z. Therefore, we can consider (t1, id) ·
(v, θ)l , (t2, id) · (v, θ)m and we can see that:

E((t1, id) · (v, θ)l · (t2, id) · (v, θ)m)
i)
= E((t1, id) · (θlt2, id) · (v, θl) · (v, θ)m) =

E((t1 + θlt2, id) · (v, θ)l+m)
E
= (λt1 + θlλt2, id) · (v′, θ)l+m

= (λt1, id) · (λθlt2, id) · (v′, θ)l · (v′, θ)m = (λt1, id) · (θlλt2, id) · (v′, θ)l · (v′, θ)m =

(λt1, id) · (v′, θ)l · (λt2, id) · (v′, θ)m = E((t1, id) · (v, θ)l) · E(t2, id) · (v, θ)m).

On the other hand, as we are on the case where there are no reflections, all of the
shift vectors are zero, and therefore we have T · (v, θ)q = T · (0, id). We conclude
that E : G −→ G′ is an homomorphism. It has an inverse because λ has an
inverse and E maps T onto T′. Therefore, G and G′ are equivalent and we get one
equivalence class for every value of q: we denote them p1, p2,p3,p4, p6 and we
can see examples of them in figures 1.3,1.4,1.5,1.6 and 1.7 respectively .

Theorem 1.12. There are 3 equivalence classes of wallpaper group G whose point group
contains a single reflection.

Proof.

Figure 1.8: Example of
a cm wallpaper group
(Situation 1).

Figure 1.9: Example of
a pm wallpaper group
(Situation 2 i).

Figure 1.10: Example of a
pg wallpaper group (Situ-
ation 2 ii).
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Figure 1.11: Possible representation for
Situation 1.

If H contains a single reflection then the
point group H has exactly 2 elements:
that reflection and the identity, because
if it had any rotations then it would
have more than one reflection. That is,
the point group H is cyclic of order 2
with generator H = ⟨ρ⟩ where ρ is a re-
flection in a line l. There is a non-zero
vector r ∈ T which lies on l because, as
seen in Section 1.2, if a, a′ ∈ SV(ρ) then
a − a′ = w + ρw for some w ∈ T.

Among all vectors that arise this way we can take one of minimum length and
denote it r. Similarly, there is a non-zero vector s ∈ T perpendicular to l. This
follows from the fact that for any t ∈ T, t − ρt is perpendicular to l, since (ρ(t −
ρt) = −(t − ρt)) and among all vectors that arise this way we take the one of
minimum length s. We get three situations

• Situation 1. ∃t ∈ T such that t + ρt = r.

We want to see that t = 1
2 r + 1

2 s ∈ T and that the pair r, t can be chosen as
a basis for the lattice T (centered rectangular). As r, s are a R-base of R2,
t = αr + βs where α, β ∈ R. Because t + ρt = r, since ρ(v) = v if v ∈ l and
that ρ(v) = −v if v is perpendicular to l, we have that

αr + βs + αr − βs = r ⇒ 2αr = r ⇒ α =
1
2

and therefore,

t =
1
2

r + βs ∈ T ⇒ 2βs = n · s ⇒ β =
n
2

, n ∈ Z.

If n is even, then βs ∈ T and therefore 1
2 r ∈ T!!! which is a contradiction

with the fact that r is of minimum length. If n is odd, then β = k
2 + 1 for

some k ∈ Z and therefore 1
2 r + 1

2 s, as we wanted to see. We denote this
equivalence class by cm and we can see an example of it in figure 1.8.

• Situation 2. There is no t ∈ T such that r = t + ρ(t). We want to see that
in this case the pair of vectors r, s can be chosen as a basis for the lattice T.
That is, T = {nr + ms|n, m ∈ Z}. Let t′ ∈ T, we will have

ρ(t′) + t′ ∈ l ∩ T ⇒ ρ(t′) + t′ = nr, n ∈ Z (1.12)
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Figure 1.12: Possible representation for Situations 2p and 2g

−ρ(t′) + t′ ∈ l⊥ ∩ T ⇒ −ρ(t′) + t′ = ms, m ∈ Z (1.13)

If we add the equations 1.12 and 1.13, we get 2t′ = nr + ms. We want to see
that n, m are necessarily even integers.

– If n = 2k + 1 and m = 2k′ + 1, we get that t′ = kr + k′s + 1
2 r + 1

2 s which
would imply that 1

2 r + 1
2 s ∈ T and therefore r = 1

2 r + 1
2 s + ρ( 1

2 r + 1
2 s)!!!

– If n = 2k + 1 and m = 2k′, we get that t′ = kr + 1
2 r + k′s and therefore

1
2 r ∈ T ∩ l!!! (r of minimum length.)

– If n = 2k and m = 2k′ + 1, we get that t′ = kr + k′s + 1
2 s and therefore

1
2 s ∈ T ∩ l⊥!!! (s of minimum length.)

Therefore, n, m are both even numbers and we get two sub-cases which are
represented in figures 1.9 and 1.10:

– 2m. SV(ρ) = 2Zr and therefore 0 is a shift vector. We denote this
equivalence class by pm.

– 2g. SV(ρ) = r + 2Zr and therefore r is a shift vector. We denote this
equivalence class by pg.

Now let G′ be a plane group that yields the same of the above three situations as
G. Consequently, G′ has lattice T′ and point group H′ generated by a reflection
ρ′l′ in a line l′. We can construct r′, s′, a′ ∈ T′ as above, and define λ by λr = r′,
λs = s′. Then ρ′l′λ = λρ and therefore λa = a′. We can write each group as a
union of two cosets

G = T · (0, id) ∪ T · (v, ρ) (1.14)

G′ = T′ · (0, id) ∪ T′ · (v, ρ). (1.15)
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and define E : G −→ G′ by sending (t, id) · (v, ρ)i to (λt, id) · (v′, ρ′)i for i = 0, 1.

Let us now see that E defines an homomorphism. We want to see that for a, b ∈ G
E(a · b) = E(a) · E(b). We have the following equalities

• (v, ρ) · (t, id) = (v + ρt, ρ) = (ρt, id) · (v, ρ). Similarly, (v′, ρ′l′) · (λt, id) =

(λρt, id) · (v′, ρ′l′).

• (v, ρ)2 = (v, ρ) · (v, ρ) = (v + ρv, ρ2) = (a, id). Similarly, (v′, ρ′l′)
2 = (a′, id).

As a consequence of the decomposition in cosets, every element in G can be ex-
pressed as (t, id)(v, ρ)i for i = 0, 1. Therefore, we can consider (t1, id) · (v, ρ)j, (t2, id) ·
(v, ρ)k ∈ G and j, k = 1, 2 which gives us 4 possibilities:

• j, k = 1:

E((t1, id) · (v, ρ) · (t2, id) · (v, ρ)) = E((t1, id) · (ρt2, id) · (v, ρ) · (v, ρ)) =

E((t1 + ρt2) · (0, id)) = (λt + λρt2, id) · (0, id) =

(λt1, id)(ρλt2, id) · (v′, ρ) · (v′, ρ) = (λt1, id) · (v′, ρ) · (λt2, id) · (v′, ρ) =

E((t1, id) · (v, ρ)) · E((t2, id) · (v, ρ)).

• j, k = 2:

E((t1, id) · (v, ρ)2 · (t2, id) · (v, ρ)2) = E((t1, id) · (a, id) · (t2, id) · (a, id)) =

E((t1 + t2 + 2a, id)) = (λt1 + λt2 + λ2a, id) = (λt1, id) · (a′, id) · (λt2, id) · (a′, id) =

E((t1, id) · (v, ρ)2) · E((t2, id) · (v, ρ)2).

• j = 1, k = 2:

E((t1, id) · (v, ρ) · (t2, id) · (v, ρ)2) = E((t1, id) · (ρt2, id)(v, ρ)(v, ρ)2) =

E((t1 + ρt2, id) · (v, ρ)3) = E((t1 + ρt2, id) · (2v + ρv, ρ)) =

(λt1 + λρt2, id) · (λ2v + λρv, ρ) = (λt1 + ρλt2, id) · (2λv + ρλv, ρ) =

(λt1, i) · (ρλt2, id) · (v′ + ρv′ + ρ2v′, ρ) = (λt1, i) · (ρλt2, id) · (v′, ρ)(v′, ρ)2 =

(λt1, i) · (v′, ρ) · (λt2, id)(v′, ρ)2 = E((t1, id) · (v, ρ)) · E((t2, id) · (v, ρ)2).
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• j = 2, k = 1

E((t1, id) · (v, ρ)2 · (t2, id) · (v, ρ)) = E((t1, id) · (v, ρ) · (v, ρ) · (t2, id) · (v, ρ)) =

E((t1, id) · (v, ρ) · (ρt2, id) · (v, ρ) · (v, ρ)) = E((t1, id) · (ρ2t2, id) · (v, ρ) · (v, ρ) · (v, ρ)) =

E((t1, id) · (ρ2t2, id) · (v, ρ)3) = E((t1 + t2, i) · (2v + ρv, ρ)) = (λt1 + λt2, i) · (λ2v + λρv, ρ) =

(λt1 + λt2, i) · (2λv + ρλv, ρ) = (λt1, id) · (λt2, id) · (λv, ρ)3 =

(λt1, id) · (λt2, id) · (v′, ρ) · (v′, ρ) · (v′, ρ) = (λt1, id) · (v′, ρ)(ρλt2, id) · ·(v′, ρ) · (v′, ρ) =

(λt1, id) · (v′, ρ)2(λt2, id) · ·(v′, ρ) = E((t1, id) · (v, ρ)2) · E((t2, id) · (v, ρ)).

We conclude that E : G −→ G′ is an homomorphism. It has an inverse because
λ has an inverse, and it maps T onto T′. Therefore G and G′ are equivalent. The
three situations correspond to the three equivalence classes denoted cm, pm and
pg.

Theorem 1.13. There are 9 equivalence classes of wallpaper group G whose point group
contains more than one reflection.

Figure 1.13: Example
of a cmm wallpaper
group.

Figure 1.14: Example
of a pmm wallpaper
group.

Figure 1.15: Example of a
pmg wallpaper group.

Proof. If the point group H contains at least two reflections, we can choose ρ (re-
flection in a line l) and we can choose σ (reflection in a line m) such that σ = ρθ

where θ is the generator (of order q) of H0. Then H also contains the product ρσ

and we call αθ the smallest of the angles at the intersection of the lines l, m.

The product ρσ is a rotation around the origin (O) of angle 2αθ . To see this fact we
consider a point P ∈ R2 and we denote P′ = σm(P) and P′′ = ρ(P′). Reflections are
isometries and therefore OP = OP′ = OP′′ and OPP′′ form an isosceles triangle.
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Figure 1.16: Example of
a pgg wallpaper group.

Figure 1.17: Example
of a p31m wallpaper
group.

Figure 1.18: Example of a
p3m1 wallpaper group.

Figure 1.19: Example
of a p4mm wallpaper
group.

Figure 1.20: Example
of a p4mg wallpaper
group.

Figure 1.21: Example of a
p6mm wallpaper group.

Otherwise, the triangles OPP′ and OP′P′′ are also isosceles and we can denote by
x the angle between OP and m (which is the same angle between OP′ and m) and
y the angle between OP′ and l (which is the same angle between OP′′ and l). This
way, we can see that the angle between the lines l, m is x+ y and the angle between
the lines OP and OP′′ is 2x + 2y = 2(x + y). We obtain that ρσ is a rotation of
angle 2αθ .

We have therefore chosen generators ρ, σ ∈ H such that θ = ρσ is a rotation of
angle 2π

q , which generates the group of all rotations in H (we had already seen
in lemmas 1.7 and 1.8 that H0 is cyclic with generator a rotation of angle 2π

q ).
Then the lines l, m make an angle π

q and the reflections ρ, σ determine shift vectors
a = v + ρv in l and b = w + σw in m.

The proof consists in showing that there are 9 possible combinations of point
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groups and shift vectors. That each of them yields a single equivalence class is
proved analogously in theorems 1.11 and 1.12.

As seen in the proof of theorem 1.12, we can choose r, s non-zero vectors in T
which lie on l, m respectively, and which among such, are of minimum length.

• q=2: (see figure 1.22) Then either 1
2 r + 1

2 s ∈ T (in which case both ρ and
σ yield situation 1) or r, s gives a basis for T (in which case there are three
possibilities: both ρ and σ yield situation 2(m), or both yield 2(g), or one
yields 2(m) and one yields 2(g)). As r, s are interchangeable and cannot
be distinguished by any property of G, we have 4 possible combinations
of invariants which are denoted cmm, pmm, pmg, pgg depending on the
combination of situations for the reflections in each of the cases. We can see
an example of each of them in figures 1.13, 1.14,1.15 and 1.16.

• q=3: In this case we want to see that either 1
3 (r + s) ∈ T or T = Zr ⊕ Zs. Let

us assume T ̸= Zr ⊕ Zs and let t = ar + bs where a, b ∈ R\Z. Because r, s
are of minimum length we have (see figure 1.22):

r + σ(r) = js, s + ρ(s) = kr

for j, k ∈ N. Because q = 3, we get that ||r + σ(r)|| = ||r|| and ||s + ρ(s)|| =
||s||. We see that ||r|| = j||s|| and ||s|| = k||r|| and therefore jk = 1 =⇒ j, k =

1. This shows us that the minimum length vectors in both directions have
equal lengths. We rewrite:

r + σ(r) = s

s + ρ(s) = r

}
⇒

{
σ(r) = s − r

ρ(s) = r − s

Therefore, t + σ(t) = (a + 2b)s and t + ρ(t) = (2a + b)r. We conclude that
3a, 3b, a − b ∈ Z and therefore we get two options:

– a) t = ( 1
3 + α)r + ( 1

3 + β)s = 1
3 (r + s) + αr + βs for α, β ∈ Z. As both

sides of the equation have to be in T, we have 1
3 (r + s) ∈ T.

– b) t = ( 2
3 + α)r + ( 2

3 + β)s = 2
3 (r + s) + αr + βs for α, β ∈ Z. As both

sides of the equation have to be in T, we have 1
3 (r + s) = (r + s)− 2

3 (r +
s) ∈ T.

So both in cases a) and b), 1
3 (r + s) ∈ T when q = 3. We conclude that there

are two possible equivalence classes for q = 3 which we name p31m and
p3m1, respectively and we have represented an example of each of them in
figures 1.17 and 1.18.
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• q= 4 We want to see that T = Zs ⊕ Zr. For every t ∈ T there exist a, b ∈ R

such that t = ar + bs . We realize (see figure 1.22) that σ(r) ⊥ r and ρ(s) ⊥ s
so we get

i) s + ρ(s) = n · r for n ∈ Z and s − ρ(s) = nσ(r)

ii) r + ρ(r) = m · s for m ∈ Z and r − σ(r) = m · ρ(s).

From i) we can see that ||s + ρ(s)||2 = n2||r||2 = 2||s||2. Analogously, from
ii) we get that m2||s||2 = 2||r||2. Therefore, 4

m2 = n2 ⇒ 4 = n2m2, so we get
the following two cases:

i) n = ±1. In this case we get t − ρ(t) = ar + bs − ρ(ar + bs) = b(s −
ρ(s)) = bnσ(r) = ±bσ(r) ∈ T. Therefore b ∈ Z because r has minimum
length. Now, t = ar + bs ⇒ t − bs ∈ T ⇒ a ∈ Z.

ii) n = ±2 is seen analogously.

One of the two vectors r, s (without loss of generality say r) is a non-zero
vector of minimum length so that s = r + φr = r + σr. This shows that
only Situation 1 is possible for σ. There are two possibilities for ρ which
correspond to Situations 2m and 2g. This follows from the fact that for
Situation 1 to be possible for ρ we would need a t ∈ T such that t + ρt = r
and t ∈ ⟨s⟩, but we would also need ||t|| = 1

4 ||s|| which is not possible
because s is a vector of minimum length in that direction. So we conclude
that there are two equivalence classes for q = 4; p4mm (example in figure
1.19),and p4mg (example in figure 1.20), respectively.

• q= 6 We want to see that T = Zs ⊕ Zr. Let us take t ∈ T then, t = ar + bs
with a, b ∈ R. We consider a, b ∈ [0, 1/2] as we can take the integer part
of the original coefficients (if a, b = 0, thenab ∈ Z).We see that ∥s − ρ(s)∥ =

∥s∥ because they form an equilateral triangle (see figure 1.22). In the line
generated by ⟨s − ρ(s)⟩ there can not be any element of length smaller than
∥s − ρ(s)∥ = ∥s∥ because if there were any, we could apply the rotation σρ

of angle 60◦, then we would get a vector with smaller length than s in the
same line as s, which is a contradiction.

We get T ∋ t+ ρ(t) = ar + bs− (ar + bρ(s)) = b(s− ρ(s)) ⇒ b(s− ρ(s)) ∈ T.
Then, either b = 0 or b > 1, but this last option can not hold as we agreed
that b ∈ [0, 1/2]. Similarly, a = 0.

Both σ and ρ must be in situation 1: In the case of σ, we can see that r ∈ T
fulfills the condition for s = r+ θr and in the case of ρ, we can see that σ(r) ∈
T fulfills the condition for r = σ(r) + ρ(σ(r)). Therefore we get a single
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equivalence class for q = 6 and we denote it p6mm (we have represented an
example of it in figure 1.21.)

We now suppose that G, G′ are two plane groups which determine lattices T, T′

with vectors a, b, r, s ∈ T and a′, b′, r′, s′,∈ T′ which yield the same case among the
ones above. Let λ : R2 → R2 be the linear transformation such that λr = r′, λs = s′

(and therefore λa = a′, λb = b′) and that fulfills ρ′λ = λρ and σ′λ = λσ. We can
decompose G, G′ as a union of cosets in the following way

G = T · (0, id) ∪ T · (v, ρ) · (v, ρθ) ∪ ... ∪ T · (v, ρθq−1)

G′ = T′ · (0, id) ∪ T′ · (v′, ρ′) · (v′, ρ′θ′) ∪ ... ∪ T′ · (v′, ρ′θ′q−1).

We define E : G −→ G′ by sending (t, id) · (v, ϕ) to (λt, id) · (v′, ϕ′) where ϕ is
i, ρ, ρθ, ... or ρθq−1. If we consider two elements (t1, id) · (v, ϕ1) and (t2, id) · (w, ϕ2),
we want to check that E is an homomorphisim considering the different possibil-
ities for the product (t1, id) · (v, ϕ1) · (t2, id) · (w, ϕ2). If ϕ1 = ϕ2 we have already
proved that E is an isomorphism: for ϕ1 = ϕ2 = ρ2i we have proved it in theorem
1.12 and the rest of the cases have been proved in theorem 1.11. If ϕ1 ̸= ϕ2, we
have q(q − 1) different possibilities but we will only give details for a couple of
them as an example, the rest can be derived analogously.

• Case in which we check elements that correspond to both reflections

E((t1, id) · (w, ρθ) · (t2, id) · (v, ρ)) = E((t1, id) · (ρθt2, id) · (w, ρθ) · (v, ρ)) =

E((t1 + ρt2, id) · (w + ρθv, ρθρ)) = (λt1 + λρθt2, id) · ((w + ρθv)′, (ρθρ)′) =

(λt1 + ρθλt2, id) · (w′ + ρθv′, ρθ′ρ′) = (λt1, id) · (ρθλt2, id) · (w′, ρθ′) · (v′, ρ′) =

(λt1, id) · (w′, ρθ′) · (λt2, id) · (v′, ρ′) = E((t1, id) · (w, ρθ)) · E((t2, id) · (v, ρ)).

• Case in which we check elements that correspond to one of the reflections
and the greatest exponent for θ

E((t1, id) · (v, ρ) · (t2, id) · (w, ρθq−1)) = E((t1, id) · (ρt2, id) · (v, ρ) · (w, ρθq−1)) =

E((t1 + ρt2, id) · (v + ρw, ρρθq−1)) = E((t1 + ρt2, id) · (v + ρw, θq−1)) =

(λt1 + λρt2, id) · ((v + ρw)′, ρ′ρ′θ′q−1) = E((t1, id) · (v, ρ))E((t2, id) · (w, ρθq−1)).

We conclude that the plane groups G and G′ are equivalent.

We can visualize the different equivalent classes in Figure 1.23
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Figure 1.22: Possible representation of the vectors for each of the subcases in the
proof of the third classification theorem.
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Figure 1.23: Summary of the 17 equivalence classes. For the final step
of the classification, we need to consider whether the lines of symmetry
in the principal direction (in case there is a single reflection) or in the
principal directions (in case there are more than one) are reflections or
glide reflections. For the notation of equivalence classes, "p" is denoted
if all the symmetries to consider are in primitive cells, and "c" if we are
talking about centered cells (larger than the primitives). A primitive cell is
a parallelogram which is a fundamental domain for the action of T on the
plane, chosen so that its vertexes are centers for the highest order rotations
in G and a centered cell is a parallelogram chosen so that the reflection axis
are perpendicular to one or to both sides of the cell[9]. Then, the highest
order of rotation is considered (none, 2-fold, 3-fold, 4-fold, 6-fold). Lastly,
each principal direction of symmetry is considered, and an "m" (mirror)
is added for the case of reflections and "g" for the case of glide reflections.
These two principal reflection directions coincide with the lines generated
by the base of the considered lattice T (r and s or r and t, depending on
the case we are at).
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1.5 Examples

Figure 1.24: Alhambra Mosaic, situated on the sides of the north portico of the
Court of the Myrtles. Design commonly known as ’Nasrid bird tiling’.

In figure 1.24, we can see the "Nasrid bird tiling". The starting polygon is an
equilateral triangle, from the sides of which circular arcs are removed and then
placed back on the same side after applying a 180◦ turn. The addition of stars
and hexagons to the figures in an alternating manner results in the highest order
of rotation being q=3. Furthermore, we can observe that this design would not
remain invariant under any reflection or glide reflection, and therefore we can
conclude that it is a mosaic of the equivalence class p3.

Figure 1.25: From The Grammar of Ornament (1856), by Owen Jones. Moresque
No 4 (plate 42), image #5.

In the image of figure 1.25, we can see that given the inclination of the purple
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ornaments with respect to the direction of the flower petals, the design does not
admit any reflection or glide reflection in its planar symmetry group. Therefore,
among the cases of the first classification theorem, this is an example of a design
in the equivalence class of p6. By admitting rotations of 60◦ about the points in
the center of the stars of the pattern, we see that it also allows rotations of 120◦

about these same points and additionally about those marked in blue (the center
of the triangular structures).

Figure 1.26: From The Grammar of Ornament (1856), by Owen Jones. Egyptian
No 8 (plate 11), image #18.

In figure 1.26, we see a design that does not admit any rotations and therefore
falls within the cases of the second classification theorem. We observe that it
allows both reflections and glide reflections in its symmetry group, hence we are
in the case of the equivalence class cm. The lines of both reflections are parallel
and alternate between each other, and are at a distance of half a minimum length
vector in the horizontal direction.

Figure 1.27: Pavement near the Nonnberg Abbey, Salzburg, Austria.
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In the pavement of figure 1.27, we can observe a pattern that allows glide reflec-
tions in the vertical direction in its planar group, but does not admit rotations
about any point. As it does not have any mirror reflection line we can conclude
that this design is pg.

We observe that the compact packing of discs in figure 1.28 remains invariant
under rotations of order 2 but does not admit rotations of higher order. This
patterns also admits reflections. Therefore, we need to differentiate between the
4 subcases. On one hand, we see that there are no glide reflections, which leaves
us with only two possibilities; cmm and pmm. But on the other hand, we see that
there are rotation centers outside the reflection lines, which implies that we are in
the case of a centered cell rather than a primitive cell, and therefore we conclude
that it belongs to the equivalence class cmm.

Figure 1.28: A compact packing of the plane with non-overlapping binary discs
(two sizes of circles) with a radius ratio of 0.6375559772. The packing fraction
(covered unit area / total unit area) is 0.910683. It has been shown that this struc-
ture achieves the densest possible packing at this ratio.

Figure 1.29: Floor tiling on the lower level of the Municipal Building in Prague,
the Czech Republic.
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The tiling in figure 1.29 also remains invariant under rotations exclusively of order
2, but in this case, we observe that it allows both reflections and glide reflections.
Among the 4 subcases for q = 2 of the final classification theorem, the only equiv-
alence class where both types of reflections coexist is pmg, and therefore we can
conclude that we are in that case.

In figure 1.30, we can observe a reflection and its composition with rotations of
order 3. Additionally, we notice that not all rotation centers belong to reflection
lines, hence it is a design of equivalence class p31m.

Figure 1.30: From The Grammar of Ornament (1856), by Owen Jones. Persian No
2 (plate 45), image #19.

Figure 1.31: Arab mosaic with geometric design. Unknown authorship and loca-
tion.
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In figure 1.31, we can observe lines of reflection and their composition with a ro-
tation of order 4. In the points in pink, we have a symmetry of order 4. Such
symmetries result in further rotations of order 2 around certain points of the lat-
tice, namely the order 4 symmetry points themselves, and the midpoints between
any two such rotations along the reflection lines in the principal directions. As the
mosaic does not remain unchanged by any glide reflection, among both cases of
order 4 designs containing reflections, this mosaic belongs to the equivalence class
p4mm.

Figure 1.32: Check pattern. The term originates from the ancient Persian word
"shah", meaning "king" in the Sasanian game of Shatranj (early form of chess
played on a checkered board of alternating colors). Its roots can be traced more
precisely to the phrase "shah mat", translating to "the king is dead", which in
contemporary chess terminology is known as "checkmate".

The highest order rotation leaving the mosaic in figure 1.32 invariant is also of or-
der 4, but in this case we observe that, apart from being invariant under reflections
in the two reflection directions, it is also invariant under glide reflections (at 45◦ to
the reflections). Only reflections have been represented on the diagonals, but by
composition, similarly to the previous example, the design also remains invariant
under glide reflections that diagonally traverse the squares of the check pattern.
In this case, the points that admit order 4 rotations coincide with the intersection
points between horizontal and vertical axis of glide reflections, while the order
2 rotations coincide with the intersection of any two lines of symmetry. Due to
the presence of glide reflections, among the cases of order 4, we are faced with a
design of equivalence class p4mg.
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Figure 1.33: From The Grammar of Ornament (1856), by Owen Jones. Persian No
2 (plate 45), image #8.

The design in the figure 1.33 remains invariant under reflections in 6 different di-
rections. Additionally, centers of rotation of order 6 are interspersed with centers
of rotation of orders 2 and 3. The centers of order 6 are the only ones that are
simultaneously centers of orders 2 and 3, while the other centers of rotation are
either exclusively of order 3 or exclusively of order 2. Their arrangement is repre-
sented in the drawing. As we have demonstrated previously, in the case of having
rotations of order 6 along side with reflections, there is only a single equivalence
class, and therefore, we are facing a pattern of type p6mm.
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Chapter 2

The 7 frieze groups

2.1 Introduction

In the previous chapter, after the definition of symmetry groups and their in-
variants (Section 1.1), we restricted ourselves to classify wallpaper groups, that
is, symmetry groups whose translation subgroup (their lattice) is isomorphic to
Z × Z and which have finite point group. In this chapter, we want to classify
some symmetry groups whose lattice is isomorphic to Z, which are called frieze
groups.

A "frieze pattern" refers to a repetitive decorative motif or design often used in
art, architecture, textiles, or other forms of visual expression. Typically, a frieze
pattern consists of a sequence of shapes, lines, colors, or other visual elements
that repeat in a regular and predictable manner along a surface or border in a
fixed direction. These patterns can range from simple geometric shapes to more
complex and intricate designs, and they are often used to embellish and enhance
the visual appeal of objects or spaces. Frieze patterns have been used throughout
history in various cultures and artistic traditions, and they continue to be popular
in contemporary design for their aesthetic beauty and decorative versatility.

Our aim below will be to adapt sections 1.2, 1.3, and 1.4 to this new type of groups.
In particular, we will first adapt the definition 1.5 of section 1.2 and see what
consequences this change has on the lemmas that follow it. Regarding section 1.3,
nowhere have we used that plane groups are of rank two, and therefore we can
consider the equivalence relationship between groups used in the previous chapter
as it is for the new classification. Finally, with respect to section 1.4, we will recover
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three classification theorems in which we will consider the cases where the point
group H has no reflections, one reflection, or more than one reflection. Finally, we
will look at some examples. Although we will adapt the classification from the
previous chapter, alternative versions (using a different notations) can be found in
[4] and [5].

2.2 Frieze groups

Definition 2.1. F ⊂ Isom(A2
R) is a frieze group if there is a line c ⊂ A2

R which is
invariant under all elements of F and if the lattice T of F is T = {nt|n ∈ Z} for some
t ̸= 0 of R2. The line c will be called the center of the frieze.

In this chapter F will denote a frieze group.

Lemma 2.2. The lattice T contains a minimum length vector v and H contains only
elements of order 2.

Proof. The vector v of minimum length must necessarily be the vector t that gen-
erates the lattice T. Otherwise, if there was v ∈ T with |v| < |t| then v ̸= at for
a ∈ Z.

On the other hand, if φ leaves a line c invariant, we can assume this line is y = 0
and then there are only four possibilities for φ:

Id =

[
1 0
0 1

]
h =

[
1 0
0 −1

]
v =

[
−1 0
0 1

]
r =

[
−1 0
0 −1

]
(2.1)

where the identity matrix Id fixes everything, the horizontal reflection h fixes the
center, the vertical reflection v fixes the perpendicular line to the center and the
rotation r of angle 180◦ only fixes the origin. All of them are indeed of order 2 and
leave c invariant.

The fact that these are the only four possible isometries that leave the center invari-
ant follows from the fact that if M is the matrix of φ in the basis where c = (x, 0),

then M ·
[

1
0

]
= λ ·

[
1
0

]
for λ ∈ R.If

[
1
0

]
is invariant, then

[
1
0

]⊥

=

[
0
1

]
must also

be invariant and therefore, M ·
[

0
1

]
= µ ·

[
0
1

]
. Finally, because M is orthogonal,

λ = ±1 and µ = ±1 so we get the four matrices above.
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Lemma 2.3. Let φ ∈ H then,

a. If φ = r, then SV(φ) = 0

b. If φ = v, then SV(φ) = 0

c. If φ = h there are two possibilities:

2.i) SV(φ) = 2Z · r

2.ii) SV(φ) = r + 2Z · r

Proof. Similarly as in the proof of lemma 1.9,

• if φ is a rotation then its only shift vector is zero.

• If φ = v and x is a shift vector of v, then x = y + v(y) ∈ T. But y + v(y) is
perpendicular to the invariant line for any y, hence x = 0.

• If φ = h, we can choose r ∈ T such that T = Z · r. Following the argument
of theorem 1.9 (which again does not depend on the rank of T), as all vectors
from T are in the centers direction, we can never have t ∈ T such that t +
φt = r, and therefore we are always in what we referred as "Situation 2".
Even if this is the only situation for φ = h, we will still call it "Situation 2"
in order to maintain the notation used in the previous chapter. We have two
possibilities,

i) SV = 2Z · r, which will correspond to mirror reflections when com-
posed with translations. When this is the case we will denote h as hm.

ii) SV = r + 2Z · r which will correspond to glide reflections when com-
posed with translations. When this is the case we will denote h as hg.

2.3 Classification theorems

Theorem 2.4. There are 2 equivalence classes of frieze group F whose point group contains
no reflections.
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Figure 2.1: Example of a f1 frieze group.

Figure 2.2: Example of a fr frieze group.

Proof. If there are no reflections, the possible point groups are H = ⟨id⟩ and H =

⟨id, r⟩. Given two frieze groups F, F′ with the same point group H, to show that
they are equivalent we first consider the isomorphism λ : T −→ T′ that sends t to
t′. We see that rλ = λr.

If H = ⟨id⟩, we can write F = T · (0, id) and F′ = T′ · (0, id) and define E : F −→ F′

by sending (t, id) to (λt, id). In this case, the fact the homomorphism E is an
isomorphism is evident. If H = ⟨id, r⟩, we can write F = T · (0, id) ∪ T · (v, r)
and F′ = T′ · (0, id) ∪ T′ · (v′, r) and define E : F −→ F′ by sending (t, id)(v, r) to
(λt, id)(v′, r). The fact that E defines an isomorphism is seen totally analogously
as in theorem 1.11.

It follows that, F and F′ are equivalent and we get one equivalence class for each
possibility for H. When H = ⟨id⟩ we denote the equivalence class f1 and when
H = ⟨id, r⟩ we denote the equivalence class fr. We have represented an example
of each of them in figures 2.1 and 2.2.

Theorem 2.5. There are 3 equivalence classes of frieze group F whose point group contains
a single reflection.
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Figure 2.3: Example of a fv frieze group.

Figure 2.4: Example of a fm frieze group.

Figure 2.5: Example of a fg frieze group.

Proof. If H contains a single reflection we have two possibilities for H: H = ⟨id, v⟩
or H = ⟨id, h⟩. In the first case, we have seen that there is only one possible
situation for v (SV(v) = 0), and we denote its equivalence class fv (we have
depicted an example of it in figure 2.3). And for the second case of H, we will
get two cases depending on h being in Situation 2i) or 2ii) and we denote the
equivalence class of each sub-case by fm (figure 2.4) and fg (figure 2.5)).

Now let F′ be a frieze group that yields the same of the above three situations as
F. Then, F′ has lattice T′ and the point group H′ is generated by v′ or h′. We
define λ : T −→ T′ by λt = t′ for every t ∈ T . Then v′λ = λv and h′λ = λh and
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therefore λa = a′. For ρ = v or ρ = h we can write each group as a union of cosets:

F = T · (0, id) ∪ T · (w, ρ) (2.2)

F′ = T′ · (0, id) ∪ T′ · (w, ρ) (2.3)

and define E : F −→ F′ by sending (t, id) · (w, ρ)i to (λt, id) · (w′, ρ′)i for i =

0, 1 The fact that E is an isomorphism is seen as in theorem 1.12. Therefore the
three equivalence classes for frieze groups whose point group contains a single
reflection are fv, fm, fg.

Theorem 2.6. There are 2 equivalence classes of frieze group F whose point group contains
more than one reflection.

Figure 2.6: Example of a fvm frieze group.

Figure 2.7: Example of a fvg frieze group.

Proof. If the point group H of F contains two reflections then necessarily H =

⟨id, v, h⟩. In figures 2.6 and 2.7 we can see that H = ⟨id, v, h⟩ = ⟨id, v, r⟩ = ⟨id, h, r⟩.
The two equivalence classes correspond to the two possible situations for h, and
we denote them fvm, and fvg respectively. We have represented an example of
each of them in figures 2.6 and 2.7.
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We now suppose that F, F′ are two frieze groups which determine lattices T, T′

generated by vectors t, t′ which yield the same case among the ones above. Let
λ be the linear transformation such that λt = t′ and fulfills v′λ = λv. We can
decompose F, F′ as a union of cosets in the following way:

F = T · (0, id) ∪ T · (u, v) ∪ T · (w, h) (2.4)

F′ = T′ · (0, id) ∪ T′ · (u′, v′) ∪ T′ · (w′, h′) (2.5)

and we define E : F −→ F′ by sending (t, id) · (u, ρ) to (λt, id) · (u′, ρ′) for ρ = v or
h. The fact that E defines an isomorphism can be seen analogously as in theorem
1.13. The two equivalence classes for frieze groups whose point group has more
than one reflections are labelled fvm and fvg.

We can visualize the different equivalence classes in the table of figure 2.8

Figure 2.8: Summary of the 7 equivalence classes. For the notation of equivalence
classes, they all start with "f" so they do not get mixed up with the equivalence
classes of the wallpaper groups.Then, a "v" is added in order to indicate if there
is a vertical reflection in the point group H of the considered pattern. Lastly,
the horizontal direction of symmetry is considered, and an "m" is added for the
case of mirror reflections and "g" for the case of glide reflections. If no horizontal
reflections are admitted, an "r" is placed in the cases for which the pattern admits
a 180◦ rotation.
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2.4 Examples

Figure 2.9: Egyptian Border Design from the book "History of Egyptian Art",
published in 1878. These flowered friezes were found painted inside Egyptian
tombs.

In figure 2.9, we can see an Egyptian flowered frieze pattern. We see that the only
motions in its symmetry group are the translations generated by ⟨t⟩. No reflections
or rotations are admitted and therefore its equivalence class is f1. Other examples
of this equivalence class are RRRRRRRRRRR or GGGGGGGGGGGG.

Figure 2.10: Greek-style ornament. Source unknown.

In figure 2.10, we can observe that the pattern, in addition to being invariant
under translations, it also remains invariant under rotations. It is noteworthy
that the distance between two rotations is half the length of the shortest vector
that generates the lattice. As there are no reflections admitted in its symmetry
group, its equivalence class is fr. Other examples of this equivalence class are
SSSSSSSSSSSS or NNNNNNNNNNN.

In the desing of figure 2.11, we can observe that the only transformations, apart
from translations, that leave the design looking unchanged are vertical reflec-
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tions. Once again, the reflections are spaced at a distance of half the length of
the minimum translation vector. Other examples of this equivalence class are
VVVVVVVVVVV or AAAAAAAAAAAA.

Figure 2.11: Greek design found in the decoration of clay vases.

In figures 2.12 and 2.13, we can see two very similar designs of Celtic origin,
neither of which admits rotations about any point on the center c. What differen-
tiates them (and therefore places them in different equivalence classes) is the fact
that, although both remain invariant under the same vector transformations (h),
in the case of 2.12 , the shift vector of this transformation characterizes a mirror
reflection, whereas in the case of 2.13, it results in glide reflections. Therefore,
their equivalence classes are respectively fm and fg. Other examples of the fm
equivalence class are EEEEEEEEEEE or BBBBBBBBB and other examples of the fg
equivalence class are pbpbpbpbpb or DMDWDMDWDMDW.1

Figure 2.12: Celtic knot border design.

Figure 2.13: Celtic knot border design.

1We assume W and M are obtained from each other by a reflection.
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In the design of figure 2.14, we can see that, apart from translations, the sym-
metry group also includes vertical and horizontal reflections, particularly mirror
reflections (Situation 2i)). As a result, there are rotations around the points where
the vertical reflections intersect with the horizontal reflection direction. As a con-
sequence, we can conclude that this design has fvm as equivalence class. Other
examples of this equivalence class are OOOOOOOOOO or HHHHHHHHHH.

Figure 2.14: Traditional antique korean pattern

In the image of figure 2.15, we see that once again there are two directions of
reflections, vertical and horizontal. However, in this case, the point group contains
vertical reflection v, horizontal reflection in situation 2ii) (which results in a glide
reflection in the direction of the invariant line), and rotation. Therefore, we are
dealing with the equivalence class fvg. Other examples of this equivalence class
are MWMWMWMWMWMW or MOWOMOWOMOWO.

Figure 2.15: Unknown source.



Chapter 3

Wallpaper groups as frieze groups

Since both wallpaper groups and frieze groups are symmetry groups, it is natural
to consider how they might be related. Our goal now is to deduce the type of frieze
group generated by each of the translation directions of the wallpaper groups and
to see if we can find any relationship between their equivalence classes.

3.1 The plan

We want to present a table that shows the equivalence classes of each wallpaper
group, their translation directions, and the type of frieze group corresponding to
each of these directions. The same notation used in the examples of the classifi-
cation theorems in section 2.4 has been applied. We will illustrate the procedure
with a couple of examples, and the rest will be derived in a similar manner. As
during this chapter wallpaper groups and frieze groups will coexist, we will refer
to them as in the previous chapters, G and F. The difference is that in this case the
lattices and point groups of each one will be denoted as TG or TF and HG or HF

depending on whether we are understanding the wallpaper pattern as a wallpaper
pattern or as a frieze pattern in a specific direction.

We begin by looking at the translation direction of vector r (figure 3.1) from an
example in the equivalence class of wallpaper group pg (the same image used
in theorem 1.12). We observe that the glide reflection in this direction remnants
(purple line) and that of course since there was no rotation in the point group of
the wallpaper group, this frieze pattern is not invariant by any rotation. Therefore,
the point group HF of this frieze pattern contains a single horizontal reflection in
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Figure 3.1: pg wallpaper pattern as
fg frieze pattern (direction r)

Figure 3.2: pg wallpaper pattern as
f1 frieze pattern (direction s)

situation 2ii), that is, an horizontal glide reflection. We also see that when this
wallpaper group is seen as a frieze group, the translation vector, t that generates
the lattice TF = {nt|n ∈ Z} is of the same size and direction as r, meaning if
previously the lattice was TG = {n1r + n2s|n1, n2 ∈ Z}, we can now understand
TF as the subset of vectors such that n2 = 0, this is, TF = {n1r|n1 ∈ Z}

When instead of considering the direction r, we rotate the image and move along
the invariant line generated by s (figure 3.2), we see that the only symmetries in
our symmetry group will be the translations generated by a vector of the same
length and direction as s. That is to say, the new lattice TF can be understood as a
subset of the first TG, for which n1 = 0. Therefore we get that TF = {n2s|n2 ∈ Z}

We can therefore conclude that the equivalence class of the frieze group corre-
sponding to the direction r is fg, and the one corresponding to the direction s is
f1.

Figure 3.3: p4mm wallpaper pattern as fvm frieze pattern (direction r)n

Similarly, we now look at the direction r of the equivalence class of the wallpaper
group p4mm (figure 3.3). If TG = {n1r + n2s|n1, n2 ∈ Z}, now TF = {n1r|n1 ∈ Z}.
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We see that the invariant line is also a line of horizontal mirror reflection h, and
what were previously invariant directions (vector s) are now lines of a vertical
reflection v. The 2-fold rotations appear around the points of intersection between
h and the composition of v with possible translations. In this case, since p4mm is a
wallpaper group equivalent in both directions, when looking for the frieze group
corresponding to the direction s, everything remains the same but rotated by 90◦.
That is, both base directions are entirely equivalent and result in frieze groups that
fall into the equivalence class of fvm.

3.2 The table and comments on the table

Wallpaper
E.C.

direction
(basis vector)

Frieze
patterns E.C.

Wallpaper
E.C.

direction
(basis vector)

Frieze
patterns E.C.

p1 t1 f1 cmm r fvm

t2 f1 s fvm

p2 t1 fr pmm r fvm

t2 fr s fvm

p3 t1 f1 pmg r fvg

t2 f1 s fm

p4 t1 fr pgg r fg

t2 fr s fg

p6 t1 fr p3m1 r fm

t2 fr s fm

cm r fm p31m r fm

s fv s fm

pm r fm p4mm r fvm

s fv s fvm

pg r fg p4mg r fvg

s f1 s fvm

p6mm r fvm

s fvm

Table 3.1: Table of frieze patterns equivalence classes for each of the basis direc-
tions of each of the wallpaper groups equivalence classes. E.C. stands for equiva-
lence class.



42 Wallpaper groups as frieze groups

The following notation has been in the table 3.1: The first and the fourth columns
refer to the equivalence class of the wallpaper groups. These are then subdivided
into the two base directions considered in the classification theorems of section
1.4. Then, each direction is associated with its frieze pattern equivalence class.

If the highest order of rotation of the wallpaper group under consideration is 3,
no translation direction will result in a frieze pattern that contains r in its point
group. This aligns well with our expectations since 2 is not a divisor of 3.

For a similar reason, in wallpaper groups without reflections where the highest
order of rotation is even, we end up with friezes that also have no reflections but
do contain r in their point group, HF. That is, they fall into the fr equivalence
class.

Similarly, from wallpaper groups whose point group contains a single reflection,
only frieze groups containing a single reflection emerge. In the cases cm and pm,
the reflection direction corresponds to a mirror reflection and therefore results in a
single vertical reflection in the direction of one of the basis vectors fv and a single
horizontal mirror reflection in the direction of the other vectorfm (the basis vectors
are always perpendicular). In the case of pg, we have the equivalence class fg in
one direction (as we could expect) and f1 in the other (since v ∈ H in the friezes
does not have two situations as h does).

For cases where the point group contains more than one reflection, we will con-
sider two separate groups of equivalence classes of wallpaper groups:

• If the highest order of rotation is even, when the coexisting reflections are
exclusively in situations 1 or 2i), both directions end up in the equivalence
class fvm. However, when one of the directions has a glide reflection, in the
corresponding frieze group for that direction we have the equivalence class
fvg.

• If the highest order of rotation is 3, since neither of the frieze group directions
admit r in its point group, we revert to the equivalence classes of friezes
where there is a single reflection (in all cases h) which is in situation 2i) or 2ii)
depending on the situation of the reflection in the corresponding wallpaper
group.

Remark 3.1. We cannot know the equivalence class of a wallpaper group only
knowing the equivalence classes of the frieze groups in each of the base direc-
tions. For example, the wallpaper group classes p2 and p6, give rise to fr in both
directions or cm and pm give rise to fm and fv in each of the directions.
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Remark 3.2. In general, given a wallpaper group with lattice T, we could take
any translation vector t ∈ T and associate a frieze group to it. Determining the
equivalence class of this frieze group with center an arbitrary invariant direction
of the wallpaper group goes beyond the possibilities of this thesis. Although it is
an exercise that we have considered for some examples, we have not been able to
make enough significant progress to find a general method. Still, we have already
discussed the impossibility of finding the equivalence class of a wallpaper group
from the equivalence classes of the frieze groups associated to the base directions.
Another interesting question would be to determine which is the minimum num-
ber of directions such that, if their associated frieze group classes are known, we
can determine unambiguously the wallpaper group from which such friezes arise.
Have we had more time, these two topics are what we would have liked to study.
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