Revised: 27 April 2023

ORIGINAL ARTICLE

WILEY

PSYCHOPHYSIOLOGY

Neural signatures of memory gain through active exploration in an oculomotor-auditory learning task

Stefanie Sturm^{1,2} Jordi Costa-Faidella^{1,2,3} Iria SanMiguel^{1,2,3}

¹Brainlab – Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain

²Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain

³Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain

Correspondence

Iria SanMiguel, Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, P. Vall d'Hebron 171, Barcelona 08035, Spain. Email: isanmiguel@ub.edu

Funding information

Agència de Gestió d'Ajuts Universitaris i de Recerca, Grant/Award Number: FI-2019; Agencia Estatal de Investigación, Grant/Award Number: PSI2017-85600-P and RYC-2013-12577; Center of Excellence María de Maeztu UBNeuro, Grant/Award Number: MDM-2017-0729-18-2M; Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya, Grant/ Award Number: 2017SGR-974

Abstract

Active engagement improves learning and memory, and self- versus externally generated stimuli are processed differently: perceptual intensity and neural responses are attenuated. Whether the attenuation is linked to memory formation remains unclear. This study investigates whether active oculomotor control over auditory stimuli-controlling for movement and stimulus predictabilitybenefits associative learning, and studies the underlying neural mechanisms. Using EEG and eye tracking we explored the impact of control during learning on the processing and memory recall of arbitrary oculomotor-auditory associations. Participants (N=23) learned associations through active exploration or passive observation, using a gaze-controlled interface to generate sounds. Our results show faster learning progress in the active condition. ERPs time-locked to the onset of sound stimuli showed that learning progress was linked to an attenuation of the P3a component. The detection of matching movement-sound pairs triggered a target-matching P3b. There was no general modulation of ERPs through active learning. However, we found continuous variation in the strength of the memory benefit across participants: some benefited more strongly from active control during learning than others. This was paralleled in the strength of the N1 attenuation effect for self-generated stimuli, which was correlated with memory gain in active learning. Our results show that control helps learning and memory and modulates sensory responses. Individual differences during sensory processing predict the strength of the memory benefit. Taken together, these results help to disentangle the effects of agency, unspecific motor-based neuromodulation, and predictability on ERP components and establish a link between self-generation effects and active learning memory gain.

KEYWORDS

active learning, gaze-controlled interface, multisensory associations, self-generation

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2023 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.

1 | INTRODUCTION

We learn faster when we are actively engaged with the material-this is not just a folk wisdom, but it has been reproduced in a plethora of experimental settings (Markant et al., 2016). Active learning benefits for memory are, however, a very diverse phenomenon, and in order to study their cognitive and neural underpinnings, we have to choose a focus. In this study, we have asked ourselves whether memory gain through active learning could be linked to the previously established differences in the neural and perceptual processing of self- versus externally generated stimuli (Baess et al., 2011; Blakemore et al., 1998, 2000; Schäfer & Marcus, 1973). Specifically, we decided to study the effects of being in control over auditory stimuli on the learning progress of visuo-auditory contingencies, in an experimental setup that controls for the conflating factors of predictability and movement. We designed a variation of the classic self-generation paradigm (Schäfer & Marcus, 1973) using eye movement sonification. In a memory task, participants learned associations between movement-sound pairs. Their learning progress was tracked across several stages of learning on a behavioral and neural level.

1.1 | Active learning improves memory

Our first aim was to test whether actively controlling stimuli, beyond effects of movement and predictability, would lead to associative learning benefits on a behavioral level. Previous studies have shown that active control during complex tasks such as spatial navigation, as well as simpler experimental setups such as recognition memory tasks, can facilitate learning (Harman et al., 1999; James et al., 2002; Plancher et al., 2013). A related, somewhat more clearly defined phenomenon is the "production effect": Stimuli produced by oneself are remembered better than externally produced stimuli (Brown & Palmer, 2012; MacLeod et al., 2010). Even minimal amounts of control, such as controlling the pacing of information, have been found to improve memory (Markant et al., 2014). The effects of control are easily conflated with the effects of movement during learning, as in most studies on this question, participants use hand movements in order to control stimuli in the active condition, while not moving at all in the passive condition (Craddock et al., 2011; Harman et al., 1999; Liu et al., 2007; Luursema & Verwey, 2011; Meijer & Van der Lubbe, 2011). Nevertheless, some studies have found memory benefits for active learning even when controlling for the factor of movement (Plancher et al., 2013; Trewartha et al., 2015). Theoretical and experimental accounts of the role of choice during

learning suggest that controlling the flow-the pacing, the order-of information is crucial for the memory gain, as the learner is able to develop hypotheses and test them, or revisit items that they feel unsure about (Gureckis & Markant, 2012; Kruschke, 2008; Markant et al., 2016; Markant & Gureckis, 2010; Schulze et al., 2012). This is corroborated by the fact that motor activity unrelated to strategic control over the learning strategy does not improve memory performance (Voss et al., 2011). In order to get a better view of the role of control in the learning process of arbitrary motor-auditory contingencies, we developed a learning paradigm in which participants had to return several times to the same set of stimuli and were tested on their memory performance in between rounds of learning. We hypothesized that we would encounter a memory advantage for stimuli learned under active exploration. We expect that this memory advantage will express itself in participants learning the associations faster in the active condition.

1.2 | Self-generation effects on sensory processing

A second aim of this study was to investigate the neural mechanisms underlying the putative memory benefits for active learning. To that aim, we isolated neurophysiological effects of control over acoustic stimuli from unspecific neuromodulatory effects caused by movements and effects of stimulus predictability. Control during stimulus generation could modulate brain responses at different levels of learning, and we probed a series of possible mechanisms.

Control over stimuli, accompanied by a Sense of Agency (SoA), is known to impact stimulus processing. Electrophysiological responses to self-generated stimuli tend to be attenuated relative to externally generated stimuli, even when the stimuli evoking the response are physically identical (Blakemore et al., 2000; Gentsch & Schütz-Bosbach, 2011; Hughes et al., 2013b; Hughes & Waszak, 2011; Kilteni et al., 2020; Mifsud et al., 2018; SanMiguel et al., 2013). Although they can be observed in all sensory modalities (auditory: Baess et al., 2011; visual: Hughes & Waszak, 2011; tactile: Kilteni et al., 2020, for some examples), attenuation effects on sensory processing have been extensively studied in the auditory domain, often comparing evoked electrophysiological responses to self-generated and externally generated acoustic stimuli (Horváth, 2015; Schäfer & Marcus, 1973). Using electroencephalogram (EEG), a number of neuro-electrical markers of self-generated processing has been established: An attenuation of certain event-related potentials (ERPs), that is, a diminished amplitude of different peaks that characterize the early cortical processing of self- as opposed

to externally generated sounds. Attenuation for selfgenerated sounds has been observed in the N1 component (Bäß et al., 2008; Elijah et al., 2018; Mifsud et al., 2016; Neszmélyi & Horváth, 2017; Oestreich et al., 2016; Pinheiro et al., 2019; van Elk et al., 2014), the P2 component (Horváth & Burgyán, 2013; Knolle et al., 2012), and the Tb component (Paraskevoudi & SanMiguel, 2022; SanMiguel et al., 2013; Saupe et al., 2013). The nature of these effects is often assumed to be predictive, since efference copies of motor commands are thought to serve as a basis for precise anticipation of sensory stimulation (Miall & Wolpert, 1996). Correctly predicted sensory stimulation is thought to elicit smaller neural responses than wrongly predicted or surprising input, in line with the predictive coding theory of neural processing (Blakemore et al., 1998; Kilner et al., 2007). However, previous research has shown that motor activity during sensory processing also has unspecific modulatory effects that are not related to predictability-just being in motion affects the way we perceive stimuli (Horváth et al., 2012), and movement effects can be a conflating factor when trying to study the effects of predictability and control (Hazemann et al., 1975; Horváth, 2013; Paraskevoudi & SanMiguel, 2021; Press & Cook, 2015). Recent studies that investigated specifically effects of agency, controlling for predictability and movement, have found both attenuation and enhancement effects on the P2 component (Bolt & Loehr, 2021; Han et al., 2021), and modulations of the P3 component have also been observed (Burnside et al., 2019; Kühn et al., 2011). We hypothesized that if the known effects typically observed in the self-generation paradigms on the N1, P2 and P3 component are indeed related to agency and control, we should be able to reproduce them with our design, even though we used an unconventional experimental paradigm: Instead of hand or finger movements, participants used their eye movements to generate sounds. By using a gaze-controlled interface, we were able to compare an experimental condition in which participants controlled a cursor using their eye movements ("agent condition") with a condition in which participants followed a cursor with their gaze ("observer condition"), minimizing the motor differences between conditions. Eye movements are mostly automatic and usually used toward visual goals, and we have no expectations of auditory consequences of our eye movements (Mifsud & Whitford, 2017; Slobodenyuk, 2016). Importantly, two studies using self-generation paradigms have used saccades to generate sounds and found either no attenuation for eye-movement initiated sounds (Mifsud & Whitford, 2017) or weakened attenuation of the N1, but not the P2 component (Mifsud et al., 2016). Electrophysiological responses to gaze fixations have been measured in the context of brain-computer interfaces and

PSYCHOPHYSIOLOGY SPR

gaze-controlled games (Ihme & Zander, 2011; Protzak et al., 2013), and certain markers of voluntary gaze control have been established: Voluntary gaze fixations that were made consciously in order to control an interface were characterized by a slow negative parieto-occipital wave evoked by the fixation which was absent or much decreased in fixations that did not control the interface (Protzak et al., 2013; Shishkin et al., 2016).

1.3 | Modulation of neural responses during learning progress

Rather than control affecting stimulus processing on a basic level, we also considered the possibility that control would specifically modulate learning processes. Repeated presentation of a given movement-sound pair, as was the case in our paradigm, leads to neural changes over time related to the learning progress-we develop internal models of the associations that we have learned (Kilner et al., 2007), and the sound's predictability based on the preceding movement increases gradually. Effects of predictability on ERP components strongly resemble those of self-generation: predictability often leads to sensory attenuation (Alink et al., 2010; Grotheer & Kovács, 2016; Kaiser & Schütz-Bosbach, 2018; Summerfield et al., 2008), and in fact sensory attenuation for self-generated stimuli is more pronounced when the outcome of the self-generated action matches the agents' expectation (Hughes et al., 2013a; Stenner et al., 2014). In fact, salience reduction and with it the reduction of neural responses has been found to be a common feature of a range of perceptual learning phenomena, including phenomena involving both motor-based predictions as well as predictive cues from the environment (Tran & Livesey, 2021). Controlling for temporal predictability can help us to understand the functional separation of modulations of established ERP components by self-generation (Klaffehn et al., 2019). By studying the evolution of ERP components in relation to learning we can shed light on the effects of increased predictability beyond the self-generation effects, which should be observable from the start of the learning process. In line with previous studies, we expected to find an increased attenuation of the N1 (Kaiser & Schütz-Bosbach, 2018) and P2 component during late stages of learning. Furthermore, modulations of the P3 component-with less clear directionality-have been observed as a function of learning (Polich, 2007; Turk et al., 2018). If control was to facilitate learning progress, we would expect stronger or earlier effects of learning when participants have control over the stimuli.

Once a motor-auditory association is established, the increased predictability of sounds that comes with

learning should affect sound processing similarly regardless of whether sounds are presented during learning or during a test trial: we expected that sensory responses-specifically the N1 and P2 componentwould be attenuated during late stages of learning, and we hypothesized that this effect could be modulated by the mode of acquisition of the motor-auditory associations. Previous studies have shown that during memory tests, stimuli that were previously self-generated can cause motor-reactivation even in the absence of movement (Butler et al., 2011). The distinctiveness account of the production effect (Hommel, 2005) suggests that motor activation during learning builds stronger, more distinctive memory traces, which is thought to be reflected in more efficient learning; how we learned something affects how we will process it in the future. Movement during sound processing affects our memory of the sound, but is it necessary for the movement to be causally linked to the sound in order for this effect to come into play? If the latter was indeed necessary, we would expect to see an effect of agency-rather than movement-on the neural processing of the stimulus or the strength of the memory trace. Alternatively, if we do not find modulations by agency, that would give support to the idea that movement does not need to be causal to the stimulus in order to affect its processing or memory encoding (Horváth et al., 2012).

1.4 | Modulation of mismatch responses

Further insight into the neural mechanisms behind the active learning memory advantage can be gained by studying evoked responses to incongruent sounds. In our paradigm, participants are regularly tested on their memory of movement-sound pairs; in those test trials, they are required to passively observe a cursor movement and listen to a sound, and judge whether the two are a matching pair or not, based on their previously learned associations. We hypothesized that control during acquisition strengthens the internal representation of the movement-sound association, so violations of the latter should elicit larger prediction error signals (Knolle et al., 2013a; Mathias et al., 2015). Based on the previous literature, we expected incongruent stimuli to elicit mismatch responses like the N200 or an orienting response like the P3a (Knolle et al., 2013a; Winkler et al., 2009). Alternatively, sounds congruent with learned associations can elicit "matching" responses: The P3b component in particular is thought to reflect the matching of a stimulus with a predicted item, and has been found to be larger with increased predictability (Molinaro & Carreiras, 2010; Roehm et al., 2007; Vespignani et al., 2010). This component is also referred to as "late positive component" (LPC), which is believed to reflect an explicit recollective process (Friedman & Johnson, 2000), typically elicited by designs in which participants have to make a response related to the stimulus (Yang et al., 2019). It is considered part of the classical "old/new" effect; stimuli presented in a test phase which appear familiar to the participant elicit a stronger LPC (Woodruff et al., 2006). The LPC has been found to be a predictor of learning outcomes (Turk et al., 2018). We expected the strength of either the matchingresponses to correctly predicted or the mismatch responses to incongruent sounds to be modulated by the factor of control during the learning phase.

In the present study, our goal was to improve our understanding of how active control over sound stimuli affects their immediate sensory processing and encoding in memory. Toward these aims, we studied the way in which control during learning improves memory, and how it modulates neural responses during sound processing and memory encoding. Last but not least, our goal was to reveal a link between self-generation effects during sound processing and memory benefits of active control.

2 | METHOD

The data that support the findings of this study are openly available in OSF at https://doi.org/10.17605/OSF. IO/4EDZY.

2.1 | Participants

Twenty-five healthy undergraduate university students from the University of Barcelona volunteered in the study. Two participants were excluded from the analysis due to their low behavioral performance, based on a cut-off point determined by simulating the responses of 25 randomly responding individuals and choosing the highest performing one as the threshold (56% correctness in the behavioral task). The final sample included twenty-three participants (14 women, M = 21 years old, range: 18–31). No participant self-reported any hearing impairment, psychiatric disorder or use of nervous system-affecting substances at least 48 hr prior to the experiment. All participants gave written informed consent for their participation after the nature of the study was explained to them and they were monetarily compensated (10 ϵ/h). The study conformed to the Code of Ethics of the World Medical Association (Declaration of Helsinki) with the exception of pre-registration and was accepted by the Bioethics Committee of the University of Barcelona.

2.2 | Experiment design

2.2.1 | Training

Before starting the experiment, participants underwent two stages of training. First, a "free training" session with the purpose of adjusting the eye tracker, allowing the participants to familiarize themselves with the equipment, and learn how to use the gaze-controlled cursor. Participants sat facing a screen at 60 cm distance from their eyes. Their head position was stabilized for eye tracking via a chin and forehead rest, and they were wearing a pair of headphones connected to the experiment computer.

Participants were then instructed to move their gaze across the screen and "explore" the sounds that they were able to trigger by moving the cursor (for details, see section "Gaze-controlled sound generation"). During the free training, the experimenter ensured that the participant understood how to use the gaze-controlled cursor and was familiar with the experiment structure. The duration of the free training was variable but lasted typically around 5 min.

This was followed by a "structured training", which followed the same pattern as an agent experimental block (see next section), but with only 3 instead of 6 test trials.

2.2.2 | Experiment structure

The experiment consisted of two types of trials: acquisition trials and test trials. During acquisition trials, participants had 20s to learn associations between movement directions of a white cursor over a grid of 9 red squares (Figure 1), and 8 different sounds that were played depending on the cursor movements (see section on sound generation below). During test trials, participants were tested on their memory for the movement-sound associations.

The movement-sound associations were learned either as agents or as observers. Agent and observer experimental conditions differed only during acquisition trials. During acquisition trials in the agent condition, the cursor was controlled by the participant's gaze, while in the observer condition the cursor was animated by the computer. In the agent condition, sounds were triggered by the participants' gaze fixations (via the gaze-controlled cursor), while in the observer condition, the cursor was computer animated, so participants had no control over sounds). Thus, in the agent condition, the acquisition process required active exploration. Participants were instructed to perform saccades over the squares and generate as many different sounds as possible. In the observer condition, the cursor was animated using previously recorded eye movements from the same participant, and participants were

- PSYCHOPHYSIOLOGY

asked to follow the cursor's movements and memorize the relationships between movements and sounds. Further details on the gaze-controlled cursor can be found further below under "Visual stimulation and gaze-controlled sound generation".

Following each acquisition trial, participants were tested on their memory of the movement-sound associations in a series of 6 test trials. During test trials, participants were presented with a short animation of the cursor moving from one square to another in a straight line (executing one of the 8 possible movements). After a delay of 750 ms (matching the pattern of acquisition trials, see section "Visual stimulation and gaze-controlled sound generation"), one of the 8 sounds familiar from acquisition, either congruent or incongruent with the previously learned associations, was presented. Fifty percent of test trials presented congruent movement-sound pairs. The order of the animations and sounds was based on a computer-generated, randomized list. At the end of each test trial, participants responded whether the movement and sound were a congruent pair by pressing one out of two buttons on a midi keyboard placed in front of them.

One acquisition trial and 6 test trials were considered a "learning block". During 7 consecutive learning blocks, participants were presented with the same movementsound associations. Groups of 7 learning blocks with contingent movement-sound associations are referred to here as "contingency blocks". After the termination of the 7th learning block, the contingency block was finished and new sounds were loaded, so participants had to start their learning process anew. The sounds used in each contingency block were different from the sounds of the preceding blocks. Contingency blocks alternated between the agent and observer conditions. The order of the conditions was counterbalanced across participants.

In order to make the cursor move in a "gaze-like" style in the observer condition, it was computer-animated using the participant's own movements in acquisition trials of the preceding agent contingency block. In case the experiment started with the observer condition, we used the eye movement recordings from the training block, which always involved active exploration. In order to make eye movements less recognizable to the participant, we randomized the order of previously recorded trials across the learning blocks.

2.2.3 | Visual stimulation and gaze-controlled sound generation

Before the start of the free training and before every agent experimental block, the eye tracker was calibrated collecting fixation samples from known target points in order

FIGURE 1 Experiment structure. (a) Structure of a single learning block, consisting of one 20 s acquisition trial, followed by 6 test trials. During acquisition trials, participants either actively explored (agent condition) or passively observed (observer condition) the relationships between movement directions of a cursor and 8 different sound stimuli. In test trials, participants were tested on their memory of the associations. (b) Structure of a contingency block. Each contingency block consisted of 7 learning blocks. The first three were considered the "late learning stage". (c) Structure of the experiment: The experiment consisted of 14 contingency blocks, 7 of which belonged to the agent condition and 7 of which to the observer condition.

to map raw eye data to the participant's gaze position (standard in-built Eyelink calibration procedure). After the calibration was successful, the experiment screen appeared: a grid of 9 red squares over a black background. Each red square's side had a visual angle of 5° 18′ 0.99″, with gaps of 1° 28′ 0.39″ between squares. The center of each red square was marked by a small black square with a side length of 0° 49′ 0.11″. The gaze position of the participant appeared on the screen as a white dot (radius = 0° 19′ 0.64″). A fixation on a square was defined as the gaze resting within a radius of 0° 29′ 0.47″ around the edges of the square. The distance between the chin and forehead rest and the screen was 60 cm, as suggested by the Eyelink 1000 user manual, which translates to an eye-screen distance of about 70 cm.

During the free training, the structured training and the agent experimental condition, participants were able to generate sounds by moving their gaze from one square on the screen to another, adjacent square. The possible movement directions that could trigger a sound were: vertical up and down, horizontal left and right, and diagonal up-right, up-left, down-right, and down-left. A participant could move their gaze from one square to another, and in order to trigger a sound, a fixation on the target square with a duration of 750 ms was required. In the case that the participant interrupted the fixation before the delay period of 750 ms ended, no sound was played.

2.2.4 | Sound stimuli

Sound stimuli were synthesized speech sounds created with Google text-to-speech API through Python set to a male Spanish speaker with a sampling rate of 16,000 Hz. The sound stimuli were then manually manipulated in Praat using the Vocal Toolkit (Boersma & Weenink, 2023) to have the same duration and flat pitch. Sounds were normalized and resampled to 96,000 Hz. Each sound was a 500 ms/CV/ syllable delivered at 70 dB, formed by a random combination of one of 8 different pitches, vowels and consonants. Pitch (in Hz) was either 90, 120, 150, 180, 210, 240, 270 or 300; the consonant was either [f], [g], [l], [m], [p], [r], [s] or [t]; the vowel was either [a], [e], [i], [o] or [u]. Per participant, 14 sets of 8 different sounds were generated. In each contingency-block, 8 sounds were randomly paired with the 8 possible movement directions.

2.2.5 | Apparatus

An ATI Radeon HD 2400 monitor and Sennheiser KD380 PRO noise canceling headphones were used for presentation of visual and auditory stimuli, respectively. A midi keyboard, the Korg nanoPAD2, was used to record participants' responses. This keyboard was chosen because key presses do not produce any sounds. The presentation of the stimuli and recording of participants' responses was controlled using MATLAB R2017a (The Mathworks Inc.), the Psychophysics Toolbox extension (Brainard, 1997; Pelli, 1997), and the Eyelink add-in toolbox for eyetracker control.

EEG was recorded using Curry 8 Neuroscan software and a Neuroscan SynAmps RT amplifier (NeuroScan, Compumedics, Charlotte, NC, USA). Continuous DC recordings were acquired using Ag/AgCl electrodes attached to a nylon cap (Quick-Cap; Compumedics, Charlotte, NC, USA) at 64 standard locations following the 10% extension of the international 10-20 system (Oostenveld & Praamstra, 2001). Further electrodes were placed on the tip of the nose (online reference), and above and below the left eye (vertical electrooculogram, VEOG). Further two electrodes were placed next to the outer canthi of both eyes referenced to the common reference (horizontal electrooculogram, HEOG). The ground electrode was located at AFz. Impedances were required to be below 10 k Ω during the whole recording session and data were sampled at 500 Hz.

Horizontal and vertical gaze position of the left eye were recorded using the EyeLink 1000 desktop mount (SR Research) at a sampling rate of 1000 Hz.

2.3 | Behavioral data analysis

We analyzed the percentage of correct responses (%Correct) to the question of whether the movementsound pair presented in a test trial was congruent ("Did they match?"). Missing responses were counted as false. Test trials presenting unseen sound-movement pairs were excluded from the analysis to avoid forced guessing. After performing this exclusion, we calculated the percentage Correct of each participant per learning block, distinguishing between associations acquired in the agent and observer condition. We performed a repeated-measures ANOVA with the factors agency (agent/observer) and learning block (seven levels).

During initial stages of learning, participants were expected to perform very poorly on the memory task due to the little exposure to the associations. During late stages, they were expected to be proficient. EEG data analysis

PSYCHOPHYSIOLOGY

2.4.1 | Preprocessing

2.4

EEG data were preprocessed using EEGLAB (Delorme & Makeig, 2004). After a high-pass filter was applied to the data (0.5 Hz high-pass, Kaiser window, Kaiser β 5.653, filter order 1812), the continuous recording of each participant was inspected, and non-stereotypical artifacts were manually rejected. Then, eye movements were removed from the data using Independent Component Analysis (SOBI algorithm). Independent components representing eye movement artifacts were rejected based on visual inspection and the remaining components were projected back into electrode space. A low-pass filter was applied (30 Hz low-pass, Kaiser window, Kaiser β 5.653, filter order 1812). Malfunctioning electrodes were interpolated (spherical interpolation). A-100 ms to 500 ms epoch was defined around each sound both during acquisition and test trials (-100 to 0 ms baseline correction). A 75 µV maximal signalchange per epoch threshold was used to reject remaining artifacts. Participant averages were calculated for each event of interest, as well as the grand averages using all participants. We obtained ERPs for acquisition sounds in agent and observer acquisition mode, as well as early (blocks 1 to 3) and late (blocks 5 to 7) learning stages. For test sound ERPs, we calculated averaged ERPs for test sounds acquired in agent versus observer mode, early versus late learning stages, and congruent versus incongruent test sounds (relative to the associations between movements and sounds learned in acquisition trials). The mean number of trials per subject-level average was 361, with a standard deviation of 185 trials.

2.4.2 | Statistical analyses

Both in acquisition and test sounds, statistical comparisons were conducted to extract agency and learning stage effects and their interactions. In test sounds, we analyzed the effects of congruency and the interaction between congruency and the factors agency and learning stage.

2.4.2.1 | Data-driven approach

A mass-univariate non-parametric randomization procedure was used as a first statistical assessment of the EEG data (Maris, 2004; Maris & Oostenveld, 2007). For this procedure, a Delaunay triangulation was used to define clusters of neighboring electrodes over a 2D projection of the electrode montage, connecting nearby electrodes

PSYCHOPHYSIOLOGY SPR

independently of the physical distance between them. Clusters were defined in order to contain a minimum of two electrodes. Two dimensional (time, electrode) analyses were conducted on the ERP amplitudes between 0 and 400 ms post-stimulus.

For each of the comparisons performed, the amplitude at each time point and electrode underwent a 2-tailed dependent t-test. The significance probability (p-value) of the *t*-statistic was determined by calculating the proportion of 2D samples from 10,000 random partitions of the data that would have a larger test statistic as a result than the actually observed test statistic (Monte Carlo method). Then, clusters were created by grouping adjacent 2D points exceeding a significance level of 0.05 (two-tailed). A cluster-level statistic was calculated by taking the sum of the *t*-statistics within every cluster. The significance probability of the clusters was assessed with the described non-parametric Monte Carlo method. Corrected values of p below .05 were considered significant. For each significant cluster we report its temporal spread, cluster statistic and p value.

Using this procedure, statistical comparisons were conducted both in acquisition and test sounds comparing the agent and the observer conditions (subtracting observer from agent condition) to test for agency effects and comparing the early and late learning stages (subtracting early from late learning stages) to test for learning effects. Subsequently, we tested for interactions between agency and learning stage comparing the difference between agent and observer across learning stages and the difference between learning stages across agency conditions. In test sounds, we tested for effects of congruency contrasting congruent and incongruent sounds. Finally, we investigated if congruency effects were modulated by the factors agency and learning stage by comparing the difference between congruent and incongruent trials (incongruent subtracted from congruent) in the agent versus observer condition, and in the late versus early learning stage.

As discussed frequently (e.g., Sassenhagen & Draschkow, 2019), cluster-based statistical analyses controlling for multiple comparisons (Maris, 2004; Maris & Oostenveld, 2007) may lead to an overestimation of the temporal and spatial characteristics of the effects, so it is recommendable to avoid very specific time–space claims about the data. We are aware of these limitations, and we try to relate the findings from the cluster-based analysis to classic ERP components based on the shapes and scalp topographies of the obtained waveforms.

2.4.2.2 | Targeted-component analysis

As a complementary, ERP-focused approach, we examined the responses for all comparisons of interest in the N1, P2 and P3 time windows at the Fz, Cz and Pz electrodes. The windows were defined after visual inspection of the data by locating the highest negative or positive (depending on the component of interest) peak in the usual latencies and electrodes for each component, and defining a window centered on the peak and adjusted to the width of the component, as reported by previous works (SanMiguel et al., 2013). We observed morphological differences between responses to acquisition sounds and test sounds, thus windows were defined separately for the two types of sounds, based on the peaks observed in either the average of all acquisition sounds or all test sounds. The N1 was measured at the Fz electrode in the window 80-120 ms in acquisition sounds and 110-140 ms in test sounds. The P2 was measured at Cz in the window 180-240 ms in acquisition sounds and 210-270 ms in test sounds. Both components showed reversed polarity at the mastoid electrodes in these windows. The P3 component was measured at the Fz electrode (P3a) and the Pz electrode (P3b), respectively, in the 310-390 ms time-window in acquisition sounds and the 340-400 ms time-window in test sounds.

We ran repeated-measures ANOVAs in order to test for differences on the mean amplitude of each component at the selected electrodes between conditions of interest. Specifically, for the acquisition sounds, we ran a two-way ANOVA with the factors *agency* (two levels: agent and observer) and *learning stage* (two levels: early and late) for each ERP component of interest.

We ran two separate ANOVAs for each component for the test sounds. A one-way ANOVA with the factor movement-sound congruency (levels: congruent and incongruent) and a two-way ANOVA with the factors agency and learning stage. We also analyzed whether the effects of congruency were modulated by agency and learning stage by using the differences between amplitudes in congruent and incongruent trials as the dependent variable in a two-way ANOVA with the factors agency and learning stage.

2.4.2.3 | Correlation analysis

We aimed to identify electrophysiological markers related to the performance benefits associated with active learning among a small set of pre-defined candidate ERP components. Thus, we tested for significant correlations, using Pearson's coefficient, between each participant's effect of agency on the percentage of correct responses and the effect of agency on the N1, P2 and P3 in acquisition sounds (amplitude of acquisition sound ERPs in agent condition—observer condition). Given that agency effects on the behavioral data were restricted to the early learning stage (see results), we

PSYCHOPHYSIOLOGY SPR

9 of 20

used only the performance data from the early learning stage (%Correct in agent–%Correct in passive) for this correlation analysis.

3 | BEHAVIORAL RESULTS

Behavioral results show that active exploration led to faster learning and better memory performance. However, given enough training, passive viewing led to similarly good performance (Figure 2).

A two-way ANOVA was run with the factors agency (agent versus observer) and learning block (1 to 7) and the dependent variable %Correct.

We found a significant main effect of agency $[F_{(1, 22)}=11.865, p<.001, \eta_p^2=0.32]$ and learning block $[F_{(6,132)}=16.534, p<.001, \eta_p^2=0.39]$, and a significant

interaction between the two factors $[F_{(6,132)}=6.635,$ $p < .001, \eta_p^2 = 0.20$]. Post-hoc t-tests (Bonferroni corrected) showed that memory performance in the agent condition was significantly higher than in the observer condition in the first, second and fourth learning block. The effect of agency on percentage Correct was inversely correlated with learning block ($r_{(5)} = -3.922$, p = .01). Post-hoc *t*-tests showed that the difference between agent and observer was significantly larger in the first learning block than in the last learning block $[t_{(22)} = 4.291, p < .001, d = 1.105]$. The effect of learning was significantly smaller in the agent compared to the observer condition $[t_{(22)} = -4.291, p < .001, d = -0.656]$ (subtracting learning block 1 from learning block 7 in agent versus observer condition). This shows that agency accelerates memory encoding for arbitrary audiovisual associations.

FIGURE 2 Effect of agency and learning block on %Correct. (a) %Correct mean and standard error across all participants (N=23) in the agent condition (*solid line*) and observer condition (*dotted line*) across learning blocks. Asterisks mark learning blocks in which significant differences between conditions were found in post-hoc tests. (b) Difference between the agent and observer conditions for each participant across learning blocks (*black dots*), as well as the median and interquartile range across participants (*boxplots*). The difference between the agent and observer conditions is inversely correlated with learning block. An exponential curve was fitted to the data (*blue solid line*) to illustrate the decreasing effect of agency with the progress of learning. The effect of agency decreases rapidly during the first three learning blocks and then remains constantly low in the remaining four learning blocks.

4 | ELECTROPHYSIOLOGICAL RESULTS

For each effect and interaction studied, we present here two complementary approaches: a data-driven analysis using cluster-based permutation tests, and an ERP component driven analysis using ANOVAs to assess effects on targeted ERP components.

4.1 | Acquisition sounds

Learning progress was reflected in ERPs as an attenuation of the P3a component. The cluster-based analysis comparing early and late acquisition sounds (late – early learning stage) revealed a negative cluster with a fronto-central distribution (T=4659.8, p < .01; 220 ms to 400 ms), encompassing the P2 and P3a components (Figure 3a). The targeted-component ANOVA yielded a significant main effect of learning stage on the amplitudes of the P3a component at Fz [$F_{(1,22)}$ =14.436, p < .001, η_p^2 =0.40], reflecting more negative values with increased learning stage.

Regarding the effect of agency, we found more positive ERPs in parietal electrodes in the agent compared to the observer condition (Figure 3b). The cluster-based permutation test comparing the agent and observer conditions detected a significant positive cluster with an occipito-parietal distribution (T=10,900, p < .01; 60 ms to 400 ms). The cluster temporally encompasses

FIGURE 3 Effects of learning stage and agency on acquisition sound ERPs and topographical cluster plots. (a) Grand-averaged ERP wave forms of the late learning stage (*blue*) and the early learning stage (*red*) acquisition sounds, plus the difference wave (early subtracted from late; *black*) at the Fz electrode. The P3a time window is highlighted. The asterisk indicates a significant difference across learning stages. Below, a series of 5 topographical plots shows the difference between late and early learning stage (late – early) across time and sensor space. Electrodes belonging to the significant negative cluster are highlighted in white. (b) Grand-averaged ERP wave forms of the agent condition (*blue*) and the observer condition (*red*) acquisition sounds, plus the difference wave (observer subtracted from agent; *black*) at the P2 electrode. The P3b time window is highlighted. The asterisk indicates a significant difference across agency conditions. Below, a series of 4 topographical plots shows the difference between agent and observer condition (agent – observer) across time and sensor space. Electrodes belonging to the significant positive cluster are highlighted in black.

the P2 and P3 components, revealing overall more positive amplitudes in the agent condition. The targetedcomponent ANOVA detected a significant main effect of agency on the P3b component at Pz [F=25.706, p<.0001, $\eta_p^2=0.54$]. The occipito-parietal distribution of the effect led us to suspect that the observed differences are due to motor differences related to the control of the sound stimuli. To explore this possibility, we conducted further analyses, which can be found in the Supporting Information.

In order to study possible interactions between agency and learning stage using cluster-based permutation tests, we subtracted the early learning stage from the late learning stage in both the agent and observer condition and then ran a cluster-based analysis (late minus early learning stage in agent condition versus late minus early learning stage in observer condition). Studying this interaction, possible confounding factors due to eye movement differences (see discussion in Supporting Information) were eliminated from the data. However, this analysis yielded no significant results. We also tested for interaction effects in the targetedcomponent ANOVAs, but this also did not produce any significant interaction effects. All in all, no interactions between the factors agency and learning stage were detected.

4.2 | Test sounds

Congruency between movement and sound triggered a late positive deflection that was absent in incongruent sounds (Figure 4). The cluster-based permutation test comparing congruent and incongruent test sounds PSYCHOPHYSIOLOGY

detected a significant positive cluster (T=4946.6, p=.004; 240 ms to 400 ms) that starts at occipito-parietal electrodes and spreads across the entire skull. The cluster temporally encompasses the P2 and P3 components, revealing overall more positive amplitudes for congruent sounds. The targeted-component ANOVAs found a significant main effect of congruency on the P3 component in Fz [$F_{(1,22)}$ =12.342, p=.001, η_p^2 =0.36] and Pz [F=20.589, p<.001, η_p^2 =0.48], corresponding to the P3a and the P3b. The effects of congruency were not modulated by agency or by learning stage.

We found no effects of agency nor learning stage on test sounds, and no interactions. Both the cluster-based approach and the targeted-component analysis yielded no significant results.

4.3 | Correlations between neural and behavioral effects of agency

Differences in percentage Correct between the agent and observer condition exhibited a great variability across individuals (M=9.7%, SD=7.1%, range=0%-26%). Thus, active learning was more efficient than learning from observation for some, but not all participants. Aiming to uncover the neural underpinnings of active learning benefits, we tested for possible correlations between the benefit that a participant would have of agent over observer acquisition for their memory of the movement-sound associations during early stages of acquisition, when the active learning benefits were maximal, and the degree to which agency modulated auditory ERPs.

FIGURE 4 Effects of congruency on test sound ERPs. Congruent (*blue*) and incongruent (*red*) test sound evoked grand-averaged ERPs, as well as their difference wave (congruent – incongruent, in *black*) are plotted at the Fz and the Pz electrodes. A series of topographical plots showing the difference between congruent and incongruent sounds across time and sensor space illustrates the spread of the significant positive cluster across time. Sensors exhibiting significant differences across conditions are highlighted in *black*.

We found a significant correlation between agency effects on N1 amplitude of acquisition sounds at Fz and agency effects in memory performance in the early learning stage [$r_{(21)}$ =.43, p=.042]. The stronger the N1 agency effect that a participant experienced, the stronger the memory advantage for the agent versus the observer conditions during early acquisition (Figure 5).

In order to visualize this finding, we decided to split the participants into two groups, using the median of the difference between agent and observer percentage Correct as a cutoff point (M = 7.8%). Participants who had stronger behavioral agency effects than the median were considered "active learners" (N=11), and participants that fell below that median of behavioral effects were considered "indifferent learners" (N=12).

We compared the overall performance (agent + observer condition) of active and indifferent learners. Active learners performed overall better in the behavioral task (M=78%, SD=13%) as compared to indifferent learners (M=68%, SD=11%). A two-sample *t*-test showed that this difference is statistically significant [t₍₂₁₎=3.844, p<.001, d=0.80].

FIGURE 5 Correlation between memory performance and neural responses. (a) On the right, the difference between the N1 amplitude in the agent versus observer conditions is plotted on the *x*-axis, and the difference between the agent and the observer condition in the %Correct during the first learning stage of the memory task is plotted on the *y*-axis. A linear regression is fitted to the data (*blue*). On the left, the performance of each subject in the first learning stage of the agent and the observer condition is plotted. A dotted line shows the diagonal line between the two axes; subjects performing similarly in both conditions fall closer to the diagonal line. The shading of the points indicates the strength of the memory benefit for active learning, with darker shading indicating similar performance in both conditions, and lighter shading indicating a stronger "active learning memory benefit". (b) ERPs contrasting the agent and observer condition at the Fz electrode in participants who exhibited a strong memory benefit in the agent relative to the observer condition (active learners) and in participants that did not exhibit a strong memory advantage for the agent condition (indifferent learners). Below, topographical plots that show the distribution of the effect in the N1 time window.

5 | DISCUSSION

The aim of this study was to investigate the neural mechanisms underlying the benefits of active control for associative learning while controlling for the factors of movement and predictability, which in the existing literature often conflate the effects of agency during learning. Using a gaze-controlled interface in a motor-auditory associative memory task, we showed that control over stimuli alone—controlling for unspecific neuromodulatory effects through movement and stimulus predictability—can lead to learning benefits on a behavioral level.

We found higher movement-sound association memory accuracy for associations studied with active oculomotor control of visual exploration versus objects studied passively. This active-learning advantage for memory occurred despite the fact that visuo-auditory information was matched between the agent and observer study conditions. However, some participants did not seem to follow this pattern, exhibiting small or no differences between the agent and observer learning condition. We found that there were different tendencies amongst participants with respect to their learner type; that is to say, some participants indeed strongly exhibited the expected memory benefit for active learning, while others had a weaker or no effect at all. Interestingly, this behavioral difference was correlated with the individual participant's degree of N1 attenuation, a well-established marker of self-generation during sound perception. We found that the stronger sensory processing differences between self- and externally generated stimuli-represented by the attenuation of the N1 component—a participant exhibited, the more they would benefit from control during learning, and the better their overall performance.

A large body of research shows that, chiefly, being in control of information during learning is beneficial for memory encoding. Beyond the well-known production effect (Brown & Palmer, 2012; MacDonald & MacLeod, 1998; MacLeod et al., 2010), an advantage for active, self-directed over passive learning methods is an established fact in educational contexts (Álvarez-Bueno et al., 2017) and has been observed in different modalities and domains of learning (Butler et al., 2011; Cohen, 1989; Gathercole & Conway, 1988; James et al., 2002; Kuhn et al., 2000; Schulze et al., 2012). Low-intensity exercise or simple motor-activity (such as walking or finger tapping) produces mixed results in relation to memory performance, with some studies finding memory benefits (Schaefer et al., 2010; Schmidt-Kassow, Deusser, et al., 2013; Schmidt-Kassow et al., 2010, 2014; Schmidt-Kassow, Heinemann, et al., 2013) and others memory impairment (Lajoie et al., 1996; Li et al., 2001; Lindenberger et al., 2000; Yogev-Seligmann et al., 2008). In many of the PSYCHOPHYSIOLOGY SPR

studies on the benefits of production for memory the effects of movement and the effects of being in control cannot be interpreted separately (Mama & Icht, 2016; Ozubko et al., 2012; Rummell et al., 2016). Some studies have tried to single out the effect of agency from conflating factors and found benefits for learning and memory (Chi, 2009; Gureckis & Markant, 2012; Markant et al., 2016). In this study we tried to relate self-generation effects during sensory processing to memory benefits of active learning. Taking into consideration the substantial evidence suggesting that self-generation effects are in part due to unspecific neuromodulation through motor activity, we asked ourselves whether or not the established selfgeneration effects would be reproducible in a paradigm that specifically singles out the effect of agency while controlling for movement. Additionally, we used eye movements for sound generation. Eye movements do not trigger sounds in real life, so participants had to learn the associations between their movements and the different sounds from scratch. The fact that the production effect was reproduced in this set-up suggests that agency contributes significantly to the phenomenon, beyond the effects of coincidental proximity to a motor act. Specifically, we found that the attenuation of the N1 component could predict the strength of the active learning memory benefits an individual participant would experience.

The production effect is frequently explained with the distinctiveness account-the idea that retrieval of an event from memory is facilitated if the event is embedded in a network of associations rather than remembered in isolation (Hommel, 2005). An alternative explanatory approach is the idea that being in control is rewarding, that motivation is higher, and that it activates more strongly those areas of the brain that process reward (Leotti & Delgado, 2011), facilitating memory encoding. It has been hypothesized that feeling in control over something makes it self-relevant, which by default might be remembered better (Kim & Johnson, 2012). In experiments comparing the memory encoding of stimuli that are either under the control of the participant or under the control of the experimenter, there is also an inherent information processing advantage in control conditions: Self-directed learners can decide when they want to see what information. They can select the information that has the biggest effect on reducing their uncertainty and optimize the flow of information according to their needs. This makes the learning experience more efficient (Gureckis & Markant, 2012; Markant & Gureckis, 2010; Schulz & Bonawitz, 2007). Despite closely matching the information that participants received in the agent and observer condition of this study, we cannot discard the possibility that differences in information efficiency contribute to the learning advantage that we observed. However, the

correlational finding between the attenuation of the N1 component and the memory performance of individual subjects suggests that whatever differences in performance we find are at least partly due to perceptual differences during learning: The auditory N1 component is a well-studied marker of early auditory processing. It is mainly generated in and around primary auditory cortex (Celesia, 1976; Giard et al., 1994); its amplitude is known to reflect stimulus intensity (louder stimuli trigger a stronger N1 amplitude), and it is known to be attenuated for self-generated stimuli (Bäß et al., 2008; Potter et al., 2017). N1 suppression is frequently interpreted as reflecting an internal predictive mechanism serving the discrimination by the perceptual system of self- and externally generated sensory events (Baess et al., 2011; Horváth, 2015; Horváth et al., 2012; Schäfer & Marcus, 1973; Timm et al., 2013). The attenuation effect is known to be diminished or absent in patients suffering from different psychiatric conditions, most notably schizophrenia (Foxe et al., 2011; Mota et al., 2020), as well as in patients suffering from cerebellar lesions (Knolle et al., 2012, 2013b), which is taken as further evidence of motor-to-auditory forward modeling of sensory consequences.

It is not yet well understood how active production leads to improved memory performance on a neural level, and so far there are few established links between sensorimotor processing and memory gains. Our study contributes to this discussion by delivering evidence toward a link between the way we process a self-generated stimulus and the strength of its memory trace. Linking the differences in memory encoding that were found on a behavioral level to the differences in sensory processing during the learning phases of our experimental task, we were able to establish a connection between self-generation effects on ERP components and the production effect on memory. Memory performance was correlated with the degree of attenuation of the N1 component in self-versus externally generated sounds. We can draw two tentative conclusions from this: That there are individual differences in the strength of the self-generation effect on the N1 component, and that there is a link between the processing of self-generated sounds and their memory encoding. The pattern in our data seems to fit with the interpretation that N1-supression reflects the operation of an internal forward model: the stronger the suppression effect, the stronger the forward model prediction, indicating that the movement-sound relationship has been established in memory. We find better performance in the memory task the stronger the suppression, representing a stronger internal model and better memory for this association.

Due to physical differences between eye movements in the agent and observer condition, we were not able to interpret the effect of agency on acquisition sound ERPs directly. Nevertheless, we were able to study whether the effects of the other two factors, learning stage and congruency, were modulated by agency. Contrary to our expectations, we did not find that the effects of learning progress and identity predictability (i.e., congruency with learned associations) themselves on neural processing were modulated by agency. Observing the change of ERP components over the course of the learning process, we found an attenuation of the P3a component in acquisition. As in each contingency block, the same movement directions were paired with a different set of sounds, it would have been possible to imagine that during early stages of a new contingency block, expectations about sound identities would be carried over from the preceding contingency block, triggering some type of mismatch response, but this was not the case: such a mismatch response would have been visible in the comparison of ERPs in early and late stages of learning (Figure 3). We expected that faster learning through agency during acquisition might speed up this process, which would have led to a stronger attenuation earlier during learning. Studying test sounds, which we manipulated to be either congruent or incongruent with the learned movement-sound associations, we found a late positivity for congruent sounds. A movementsound association strengthened by agency during learning should have reflected in a stronger congruency effect overall. Neither of these effects was modulated by agency during learning.

The P3a component is an orienting response typically associated with novel stimuli (Polich, 2007). We found an attenuation of the P3a with learning. Why was the attenuation effect not enhanced, or established earlier in the learning process, by agency during acquisition? The behavioral results suggest that the effect of agency should be most visible in the early and intermediate stages of learning, while toward the end, both conditions become similar. We could speculate that we would have found an earlier attenuation in the agent condition, had we been able to perform a more fine-grained analysis. Our design allowed us to separate into early and late learning stages. Maybe an analysis using more levels for this factorwhich in our case was not possible due to an insufficient number of trials-would have detected an effect during intermediate stages of learning.

The congruency effects that we found were not exactly what we had anticipated, but they were nevertheless conclusive. We had expected that sounds that were incongruent with the learned associations between movements and sounds would trigger some form of mismatch response, possibly an audio-visual mismatch negativity (avMMN), which has been observed in response to violations of cross-modal predictions, similar to what was found by Winkler and colleagues (Winkler et al., 2009). We hypothesized that the way in which associations have been learned (either passively or as motor-associations) would impact the strength of the prediction error elicited by violations of those learned associations. Specifically, we expected to observe differences in certain ERPs that had previously been linked to deviant or target processing, like the N2b and the P3a (Knolle et al., 2013a). We expected that deviating from an association learned as linked to a motor act will trigger a more efficient processing and yield stronger N2b and P3a responses. What we found instead was that test sounds that were congruent with learned associations between movements and sounds triggered a late positive component with a central distribution, which we could call P3. The P3 is often considered an index of context or internal model updating (Polich, 2007; Reed et al., 2022), and depending on the nature of the experimental task, it has also been observed as a response to target stimuli (Hillyard & Kutas, 1983; Nieuwenhuis et al., 2005; O'Connell et al., 2012; Twomey et al., 2016; Verleger et al., 2017). We found a P3 triggered by congruent sounds, so if we want to integrate this finding into existing theories, we should consider it a marker of model updating based on a positive matchparticipants see an animation, predict the upcoming sound, and when the prediction is matched, the model is reinforced. Alternatively, we could think of this component as a late positive component (LPC). This component has been hypothesized to be correlate of the working memory updating processes (Donchin, 1981; Donchin & Coles, 1988; Polich, 2007). It has been found in experiments where stimuli are task-relevant or responsedependent (Pritchard, 1981; Snyder & Hillyard, 1976). In one experiment, it was elicited when participants had to detect and respond to deviant stimuli, but not when they were instructed to ignore deviants (Maidhof et al., 2010). The LPC may reflect participants detecting a stimulus they had been looking out for (Mathias et al., 2015). Just like in this experiment, Mathias and colleagues found that the LPC was not modulated by active or passive acquisition mode, which they see as support for the idea that the LPC depends on the stimulus' task relevance rather than the degree of deviation from a memory representation.

6 | CONCLUSION

We found that active control during the learning of movement-sound associations using a gaze-controlled interface facilitates memory encoding. We found that the degree of attenuation of the N1 component for selfgenerated sounds correlated with the behavioral performance of each participant: the stronger the sensory processing differences during learning, the stronger the PSYCHOPHYSIOLOGY SPR

memory gain for active learning, and the better the overall performance on the memory task. This finding suggests that memory benefits of active learning are at least in part linked to perceptual differences during sensory processing, and that there may be a continuum of variation in the self-generation N1 attenuation effect across the population that allows us to assess different learner "profiles". Although we did not find across-the-board modulation of neural responses by the factor of agency during learning, we see neural responses being modulated by increasing stimulus predictability, and we found that during memory recall, matching association pairs triggered a target matching response.

AUTHOR CONTRIBUTIONS

Stefanie Sturm: Conceptualization; data curation; formal analysis; investigation; methodology; software; visualization; writing – original draft. **Jordi Costa-Faidella:** Conceptualization; formal analysis; methodology; software; supervision; writing – original draft. **Iria SanMiguel:** Conceptualization; formal analysis; funding acquisition; methodology; project administration; software; supervision; writing – original draft.

ACKNOWLEDGMENTS

This work is part of the project PSI2017-85600-P, funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe"; it has additionally been supported by the MDM-2017-0729-18-2M Maria de Maeztu Center of Excellence UBNeuro, funded by MCIN/ AEI/10.13039/501100011033, and by the Excellence Research Group 2017SGR-974 funded by the Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya. ISM was supported by grant RYC-2013-12577, funded by MCIN/ AEI/10.13039/501100011033 and by "ESF Investing in your future". SS was supported by a grant for the recruitment of new research staff (FI-2019) from the Generalitat de Catalunya.

CONFLICT OF INTEREST STATEMENT None.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in OSF at http://doi.org/10.17605/OSF. IO/4EDZY.

ORCID

Stefanie Sturm [®] https://orcid.org/0000-0002-4105-7164 Jordi Costa-Faidella [®] https://orcid. org/0000-0002-9438-8661 Iria SanMiguel [®] https://orcid.org/0000-0002-7462-8621

PSYCHOPHYSIOLOGY SPR

REFERENCES

- Alink, A., Schwiedrzik, C. M., Kohler, A., Singer, W., & Muckli, L. (2010). Stimulus predictability reduces responses in primary visual cortex. *Journal of Neuroscience*, 30(8), 2960–2966. https:// doi.org/10.1523/JNEUROSCI.3730-10.2010
- Álvarez-Bueno, C., Pesce, C., Cavero-Redondo, I., Sánchez-López, M., Martínez-Hortelano, J. A., & Martínez-Vizcaíno, V. (2017). The effect of physical activity interventions on children's cognition and metacognition: A systematic review and meta-analysis. Journal of the American Academy of Child & Adolescent Psychiatry, 56(9), 729–738. https://doi.org/10.1016/j. jaac.2017.06.012
- Baess, P., Horváth, J., Jacobsen, T., & Schröger, E. (2011). Selective suppression of self-initiated sounds in an auditory stream: An ERP study. *Psychophysiology*, 48(9), 1276–1283. https://doi. org/10.1111/j.1469-8986.2011.01196.x
- Bäß, P., Jacobsen, T., & Schröger, E. (2008). Suppression of the auditory N1 event-related potential component with unpredictable self-initiated tones: Evidence for internal forward models with dynamic stimulation. *International Journal of Psychophysiology*, 70(2), 137–143. https://doi.org/10.1016/j. ijpsycho.2008.06.005
- Blakemore, S.-J., Wolpert, D., & Frith, C. (2000). Why can't you tickle yourself? *Neuroreport*, *11*(11), R11–R16. https://doi. org/10.1097/00001756-200008030-00002
- Blakemore, S.-J., Wolpert, D. M., & Frith, C. D. (1998). Central cancellation of self-produced tickle sensation. *Nature Neuroscience*, 1(7), Article 7. https://doi.org/10.1038/2870
- Boersma, P., & Weenink, D. (2023). Praat: Doing phonetics by computer [Computer program]. Version 6.3.10. http://www.praat. org/
- Bolt, N. K., & Loehr, J. D. (2021). Sensory attenuation of the auditory P2 differentiates self- from partner-produced sounds during joint action. *Journal of Cognitive Neuroscience*, 33(11), 2297– 2310. https://doi.org/10.1162/jocn_a_01760
- Brainard, D. H. (1997). The psychophysics toolbox. *Spatial Vision*, *10*(4), 433–436. https://doi.org/10.1163/156856897X00357
- Brown, R. M., & Palmer, C. (2012). Auditory-motor learning influences auditory memory for music. *Memory & Cognition*, 40(4), 567–578. https://doi.org/10.3758/s13421-011-0177-x
- Burnside, R., Fischer, A. G., & Ullsperger, M. (2019). The feedbackrelated negativity indexes prediction error in active but not observational learning. *Psychophysiology*, 56(9), e13389. https:// doi.org/10.1111/psyp.13389
- Butler, A. J., James, T. W., & James, K. H. (2011). Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations. *Journal of Cognitive Neuroscience*, 23(11), 3515–3528. https://doi.org/10.1162/jocn_a_00015
- Celesia, G. G. (1976). Organization of auditory cortical areas in man. *Brain: A Journal of Neurology*, 99(3), 403–414. https://doi. org/10.1093/brain/99.3.403
- Chi, M. T. H. (2009). Active-constructive-interactive: A conceptual framework for differentiating learning activities. *Topics in Cognitive Science*, 1(1), 73–105. https://doi. org/10.1111/j.1756-8765.2008.01005.x
- Cohen, R. L. (1989). Memory for action events: The power of enactment. *Educational Psychology Review*, 1(1), 57–80. https://doi. org/10.1007/BF01326550

- Craddock, M., Martinovic, J., & Lawson, R. (2011). An advantage for active versus passive aperture-viewing in visual object recognition. *Perception*, 40(10), 1154–1163. https://doi.org/10.1068/ p6974
- Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. *Journal of neuroscience methods*, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
- Donchin, E. (1981). Surprise!... Surprise? *Psychophysiology*, *18*(5), 493–513. https://doi.org/10.1111/j.1469-8986.1981.tb01815.x
- Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating? *Behavioral and Brain Sciences*, 11(3), 357–427. https://doi.org/10.1017/S0140525X00058027
- Elijah, R. B., Le Pelley, M. E., & Whitford, T. J. (2018). Act now, play later: Temporal expectations regarding the onset of selfinitiated sensations can be modified with behavioral training. *Journal of Cognitive Neuroscience*, 30(8), 1145–1156. https://doi. org/10.1162/jocn_a_01269
- Foxe, J. J., Yeap, S., Snyder, A. C., Kelly, S. P., Thakore, J. H., & Molholm, S. (2011). The N1 auditory evoked potential component as an endophenotype for schizophrenia: High-density electrical mapping in clinically unaffected first-degree relatives, first-episode, and chronic schizophrenia patients. *European Archives of Psychiatry and Clinical Neuroscience*, 261(5), 331– 339. https://doi.org/10.1007/s00406-010-0176-0
- Friedman, D., & Johnson, R., Jr. (2000). Event-related potential (ERP) studies of memory encoding and retrieval: A selective review. *Microscopy Research and Technique*, 51(1), 6–28. https:// doi.org/10.1002/1097-0029(20001001)51:1<6::AID-JEMT2 >3.0.CO;2-R
- Gathercole, S. E., & Conway, M. A. (1988). Exploring long-term modality effects: Vocalization leads to best retention. *Memory & Cognition*, 16(2), 110–119. https://doi.org/10.3758/BF03213478
- Gentsch, A., & Schütz-Bosbach, S. (2011). I did it: Unconscious expectation of sensory consequences modulates the experience of self-agency and its functional signature. *Journal of Cognitive Neuroscience*, 23(12), 3817–3828. https://doi.org/10.1162/jocn_a_00012
- Giard, M. H., Perrin, F., Echallier, J. F., Thévenet, M., Froment, J. C., & Pernier, J. (1994). Dissociation of temporal and frontal components in the human auditory N1 wave: A scalp current density and dipole model analysis. *Electroencephalography* and Clinical Neurophysiology, 92(3), 238–252. https://doi. org/10.1016/0168-5597(94)90067-1
- Grotheer, M., & Kovács, G. (2016). Can predictive coding explain repetition suppression? *Cortex*, 80, 113–124. https://doi. org/10.1016/j.cortex.2015.11.027
- Gureckis, T. M., & Markant, D. B. (2012). Self-directed learning: A cognitive and computational perspective. *Perspectives* on *Psychological Science*, 7(5), 464–481. https://doi. org/10.1177/1745691612454304
- Han, N., Jack, B. N., Hughes, G., Elijah, R. B., & Whitford, T. J. (2021). Sensory attenuation in the absence of movement: Differentiating motor action from sense of agency. *Cortex*, 141, 436–448. https://doi.org/10.1016/j.cortex.2021.04.010
- Harman, K. L., Humphrey, G. K., & Goodale, M. A. (1999). Active manual control of object views facilitates visual recognition. *Current Biology*, 9(22), 1315–1318. https://doi.org/10.1016/ S0960-9822(00)80053-6

- Hazemann, P., Audin, G., & Lille, F. (1975). Effect of voluntary self-paced movements upon auditory and somatosensory evoked potentials in man. *Electroencephalography and Clinical Neurophysiology*, 39(3), 247–254. https://doi.org/10.1016/0013-4694(75)90146-7
- Hillyard, S. A., & Kutas, M. (1983). Electrophysiology of cognitive processing. Annual Review of Psychology, 34, 33–61. https://doi. org/10.1146/annurev.ps.34.020183.000341
- Hommel, B. (2005). Perception in action: Multiple roles of sensory information in action control. *Cognitive Processing*, *6*(1), 3–14. https://doi.org/10.1007/s10339-004-0040-0
- Horváth, J. (2013). Attenuation of auditory ERPs to action-sound coincidences is not explained by voluntary allocation of attention. *Psychophysiology*, 50(3), 266–273. https://doi.org/10.1111/ psyp.12009
- Horváth, J. (2015). Action-related auditory ERP attenuation: Paradigms and hypotheses. *Brain Research*, *1626*, 54–65. https://doi.org/10.1016/j.brainres.2015.03.038
- Horváth, J., & Burgyán, A. (2013). No evidence for peripheral mechanism attenuating auditory ERPs to self-induced tones. *Psychophysiology*, 50(6), 563–569. https://doi.org/10.1111/ psyp.12041
- Horváth, J., Maess, B., Baess, P., & Tóth, A. (2012). Action–sound coincidences suppress evoked responses of the human auditory cortex in EEG and MEG. *Journal of Cognitive Neuroscience*, 24(9), 1919–1931. https://doi.org/10.1162/jocn_a_00215
- Hughes, G., Desantis, A., & Waszak, F. (2013a). Attenuation of auditory N1 results from identity-specific action-effect prediction. *European Journal of Neuroscience*, 37(7), 1152–1158. https:// doi.org/10.1111/ejn.12120
- Hughes, G., Desantis, A., & Waszak, F. (2013b). Mechanisms of intentional binding and sensory attenuation: The role of temporal prediction, temporal control, identity prediction, and motor prediction. *Psychological Bulletin*, 139(1), 133–151. https://doi. org/10.1037/a0028566
- Hughes, G., & Waszak, F. (2011). ERP correlates of action effect prediction and visual sensory attenuation in voluntary action. *NeuroImage*, 56(3), 1632–1640. https://doi.org/10.1016/j.neuro image.2011.02.057
- Ihme, K., & Zander, T. O. (2011). What you expect is what you get? Potential use of contingent negative variation for passive BCI systems in gaze-based HCI. In S. D'Mello, A. Graesser, B. Schuller, & J.-C. Martin (Eds.), *Affective computing and intelligent interaction* (pp. 447–456). Springer. https://doi.org/10.1007/978-3-642-24571-8_57
- James, K. H., Humphrey, G. K., Vilis, T., Corrie, B., Baddour, R., & Goodale, M. A. (2002). "Active" and "passive" learning of three-dimensional object structure within an immersive virtual reality environment. *Behavior Research Methods, Instruments,* & Computers, 34(3), 383–390. https://doi.org/10.3758/BF031 95466
- Kaiser, J., & Schütz-Bosbach, S. (2018). Sensory attenuation of selfproduced signals does not rely on self-specific motor predictions. *European Journal of Neuroscience*, 47(11), 1303–1310. https://doi.org/10.1111/ejn.13931
- Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding. Cognitive Processing, 8(3), 159–166. https://doi.org/10.1007/ s10339-007-0170-2
- Kilteni, K., Engeler, P., & Ehrsson, H. H. (2020). Efference copy is necessary for the attenuation of self-generated touch. *IScience*, 23(2), 100843. https://doi.org/10.1016/j.isci.2020.100843

- Kim, K., & Johnson, M. K. (2012). Extended self: Medial prefrontal activity during transient association of self and objects. *Social Cognitive and Affective Neuroscience*, 7(2), 199–207. https://doi. org/10.1093/scan/nsq096
- Klaffehn, A. L., Baess, P., Kunde, W., & Pfister, R. (2019). Sensory attenuation prevails when controlling for temporal predictability of self- and externally generated tones. *Neuropsychologia*, *132*, 107145. https://doi.org/10.1016/j.neuropsychologia.2019.107145
- Knolle, F., Schröger, E., Baess, P., & Kotz, S. A. (2012). The cerebellum generates motor-to-auditory predictions: ERP lesion evidence. *Journal of Cognitive Neuroscience*, 24(3), 698–706. https://doi.org/10.1162/jocn_a_00167
- Knolle, F., Schröger, E., & Kotz, S. A. (2013a). Prediction errors in selfand externally-generated deviants. *Biological Psychology*, 92(2), 410–416. https://doi.org/10.1016/j.biopsycho.2012.11.017
- Knolle, F., Schröger, E., & Kotz, S. A. (2013b). Cerebellar contribution to the prediction of self-initiated sounds. *Cortex*, 49(9), 2449–2461. https://doi.org/10.1016/j.cortex.2012.12.012
- Kruschke, J. K. (2008). Bayesian approaches to associative learning: From passive to active learning. *Learning & Behavior*, *36*(3), 210–226. https://doi.org/10.3758/LB.36.3.210
- Kuhn, D., Black, J., Keselman, A., & Kaplan, D. (2000). The development of cognitive skills to support inquiry learning. *Cognition* and Instruction, 18(4), 495–523. https://doi.org/10.1207/S1532 690XCI1804_3
- Kühn, S., Nenchev, I., Haggard, P., Brass, M., Gallinat, J., & Voss, M. (2011). Whodunnit? Electrophysiological correlates of agency judgements. *PLoS One*, 6(12), e28657. https://doi.org/10.1371/ journal.pone.0028657
- Lajoie, Y., Teasdale, N., Bard, C., & Fleury, M. (1996). Upright standing and gait: Are there changes in attentional requirements related to normal aging? *Experimental Aging Research*, 22(2), 185–198. https://doi.org/10.1080/03610739608254006
- Leotti, L. A., & Delgado, M. R. (2011). The inherent reward of choice. *Psychological Science*, *22*(10), 1310–1318. https://doi.org/10.1177/0956797611417005
- Li, K. Z., Lindenberger, U., Freund, A. M., & Baltes, P. B. (2001). Walking while memorizing: Age-related differences in compensatory behavior. *Psychological Science*, *12*(3), 230–237. https://doi.org/10.1111/1467-9280.00341
- Lindenberger, U., Marsiske, M., & Baltes, P. B. (2000). Memorizing while walking: Increase in dual-task costs from young adulthood to old age. *Psychology and Aging*, 15(3), 417–436. https:// doi.org/10.1037//0882-7974.15.3.417
- Liu, C. H., Ward, J., & Markall, H. (2007). The role of active exploration of 3D face stimuli on recognition memory of facial information. *Journal of Experimental Psychology: Human Perception* and Performance, 33(4), 895–904. https://doi.org/10.1037/009 6-1523.33.4.895
- Luursema, J.-M., & Verwey, W. B. (2011). The contribution of dynamic exploration to virtual anatomical learning. Advances in Human-Computer Interaction, 2011, 965342. https://doi. org/10.1155/2011/965342
- MacDonald, P. A., & MacLeod, C. M. (1998). The influence of attention at encoding on direct and indirect remembering. *Acta Psychologica*, 98(2), 291–310. https://doi.org/10.1016/S0001-6918 (97)00047-4
- MacLeod, C. M., Gopie, N., Hourihan, K. L., Neary, K. R., & Ozubko, J. D. (2010). The production effect: Delineation

18 of 20

PSYCHOPHYSIOLOGY SPR

of a phenomenon. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(3), 671–685. https://doi. org/10.1037/a0018785

- Maidhof, C., Vavatzanidis, N., Prinz, W., Rieger, M., & Koelsch, S. (2010). Processing expectancy violations during music performance and perception: An ERP study. *Journal of Cognitive Neuroscience*, 22(10), 2401–2413. https://doi.org/10.1162/ jocn.2009.21332
- Mama, Y., & Icht, M. (2016). Auditioning the distinctiveness account: Expanding the production effect to the auditory modality reveals the superiority of writing over vocalising. *Memory* (*Hove, England*), 24(1), 98–113. https://doi.org/10.1080/09658 211.2014.986135
- Maris, E. (2004). Randomization tests for ERP topographies and whole spatiotemporal data matrices. *Psychophysiology*, 41(1), 142–151. https://doi.org/10.1111/j.1469-8986.2003.00139.x
- Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of neuroscience methods, 164(1), 177–190. https://doi.org/10.1016/j.jneum eth.2007.03.024
- Markant, D., DuBrow, S., Davachi, L., & Gureckis, T. M. (2014). Deconstructing the effect of self-directed study on episodic memory. *Memory & Cognition*, 42(8), 1211–1224. https://doi. org/10.3758/s13421-014-0435-9
- Markant, D. B., & Gureckis, T. (2010). Category learning through active sampling. In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society. Cognitive Science Society
- Markant, D. B., Ruggeri, A., Gureckis, T. M., & Xu, F. (2016). Enhanced memory as a common effect of active learning. *Mind, Brain, and Education*, 10(3), 142–152. https://doi.org/10.1111/ mbe.12117
- Mathias, B., Palmer, C., Perrin, F., & Tillmann, B. (2015). Sensorimotor learning enhances expectations during auditory perception. *Cerebral Cortex*, 25(8), 2238–2254. https://doi. org/10.1093/cercor/bhu030
- Meijer, F., & Van der Lubbe, R. H. J. (2011). Active exploration improves perceptual sensitivity for virtual 3D objects in visual recognition tasks. *Vision Research*, 51(23–24), 2431–2439. https://doi.org/10.1016/j.visres.2011.09.013
- Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. *Neural Networks*, 9(8), 1265–1279. https:// doi.org/10.1016/S0893-6080(96)00035-4
- Mifsud, N. G., Beesley, T., Watson, T. L., Elijah, R. B., Sharp, T. S., & Whitford, T. J. (2018). Attenuation of visual evoked responses to hand and saccade-initiated flashes. *Cognition*, 179, 14–22. https://doi.org/10.1016/j.cognition.2018.06.005
- Mifsud, N. G., Oestreich, L. K. L., Jack, B. N., Ford, J. M., Roach, B. J., Mathalon, D. H., & Whitford, T. J. (2016). Self-initiated actions result in suppressed auditory but amplified visual evoked components in healthy participants. *Psychophysiology*, 53(5), 723– 732. https://doi.org/10.1111/psyp.12605
- Mifsud, N. G., & Whitford, T. J. (2017). Sensory attenuation of selfinitiated sounds maps onto habitual associations between motor action and sound. *Neuropsychologia*, 103, 38–43. https:// doi.org/10.1016/j.neuropsychologia.2017.07.019
- Molinaro, N., & Carreiras, M. (2010). Electrophysiological evidence of interaction between contextual expectation and semantic integration during the processing of collocations. *Biological*

Psychology, *83*(3), 176–190. https://doi.org/10.1016/j.biops ycho.2009.12.006

- Mota, A., Tomé, D., Campos, C., & Rocha, N. (2020). The auditory N1 in schizophrenia: Comparative analysis with a monoaural stimuli paradigm. *Psychiatria Danubina*, *32*(2), 210–213. https:// doi.org/10.24869/psyd.2020.210
- Neszmélyi, B., & Horváth, J. (2017). Consequences matter: Selfinduced tones are used as feedback to optimize tone-eliciting actions. *Psychophysiology*, 54(6), 904–915. https://doi. org/10.1111/psyp.12845
- Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. *Psychological Bulletin*, *131*(4), 510–532. https://doi.org/10. 1037/0033-2909.131.4.510
- O'Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. *Nature Neuroscience*, 15(12), Article 12. https://doi.org/10.1038/nn.3248
- Oestreich, L. K. L., Mifsud, N. G., Ford, J. M., Roach, B. J., Mathalon, D. H., & Whitford, T. J. (2016). Cortical suppression to delayed self-initiated auditory stimuli in Schizotypy: Neurophysiological evidence for a continuum of psychosis. *Clinical EEG and Neuroscience*, 47(1), 3–10. https://doi.org/10.1177/1550059415 581708
- Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high-resolution EEG and ERP measurements. *Clinical neurophysiology*, *112*(4), 713–719. https://doi.org/10.1016/ s1388-2457(00)00527-7
- Ozubko, J. D., Gopie, N., & MacLeod, C. M. (2012). Production benefits both recollection and familiarity. *Memory & Cognition*, 40(3), 326–338. https://doi.org/10.3758/s13421-011-0165-1
- Paraskevoudi, N., & SanMiguel, I. (2021). Self-generation and sound intensity interactively modulate perceptual bias, but not perceptual sensitivity. *Scientific Reports*, 11(1), Article 1. https:// doi.org/10.1038/s41598-021-96346-z
- Paraskevoudi, N., & SanMiguel, I. (2023). Sensory suppression and increased neuromodulation during actions disrupt memory encoding of unpredictable self-initiated stimuli. *Psychophysiology*, 60(1), e14156. https://doi.org/10.1111/psyp.14156
- Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. *Spatial Vision*, 10(4), 437–442. https://doi.org/10.1163/156856897X00366
- Pinheiro, A. P., Schwartze, M., Gutierrez, F., & Kotz, S. A. (2019). When temporal prediction errs: ERP responses to delayed action-feedback onset. *Neuropsychologia*, 134, 107200. https:// doi.org/10.1016/j.neuropsychologia.2019.107200
- Plancher, G., Barra, J., Orriols, E., & Piolino, P. (2013). The influence of action on episodic memory: A virtual reality study. *Quarterly Journal of Experimental Psychology*, *66*(5), 895–909. https://doi. org/10.1080/17470218.2012.722657
- Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148. https://doi. org/10.1016/j.clinph.2007.04.019
- Potter, T., Li, S., Nguyen, T., Nguyen, T., Ince, N., & Zhang, Y. (2017). Characterization of volume-based changes in cortical auditory evoked potentials and Prepulse inhibition. *Scientific Reports*, 7(1), Article 1. https://doi.org/10.1038/s41598-017-11191-3
- Press, C., & Cook, R. (2015). Beyond action-specific simulation: Domain-general motor contributions to perception. *Trends in*

Cognitive Sciences, *19*(4), 176–178. https://doi.org/10.1016/j. tics.2015.01.006

- Pritchard, W. S. (1981). Psychophysiology of P300. Psychological Bulletin, 89(3), 506–540.
- Protzak, J., Ihme, K., & Zander, T. O. (2013). A passive braincomputer Interface for supporting gaze-based human-machine interaction. In C. Stephanidis & M. Antona (Eds.), Universal access in human-computer interaction. Design methods, tools, and interaction techniques for eInclusion (pp. 662–671). Springer. https://doi.org/10.1007/978-3-642-39188-0_71
- Reed, C. L., Siqi-Liu, A., Lydic, K., Lodge, M., Chitre, A., Denaro, C., Petropoulos, A., Joshi, J., Bukach, C. M., & Couperus, J. W. (2022). Selective contributions of executive function ability to the P3. *International Journal of Psychophysiology*, *176*, 54–61. https://doi.org/10.1016/j.ijpsycho.2022.03.004
- Roehm, D., Bornkessel-Schlesewsky, I., Rösler, F., & Schlesewsky, M. (2007). To predict or not to predict: Influences of task and strategy on the processing of semantic relations. *Journal of Cognitive Neuroscience*, 19(8), 1259–1274. https://doi.org/10.1162/jocn.2007. 19.8.1259
- Rummell, B. P., Klee, J. L., & Sigurdsson, T. (2016). Attenuation of responses to self-generated sounds in auditory cortical neurons. *Journal of Neuroscience*, 36(47), 12010–12026. https://doi. org/10.1523/JNEUROSCI.1564-16.2016
- SanMiguel, I., Todd, J., & Schröger, E. (2013). Sensory suppression effects to self-initiated sounds reflect the attenuation of the unspecific N1 component of the auditory ERP. *Psychophysiology*, 50(4), 334–343. https://doi.org/10.1111/psyp.12024
- Sassenhagen, J., & Draschkow, D. (2019). Cluster-based permutation tests of MEG/EEG data do not establish significance of effect latency or location. *Psychophysiology*, 56(6), e13335. https://doi. org/10.1111/psyp.13335
- Saupe, K., Widmann, A., Trujillo-Barreto, N. J., & Schröger, E. (2013). Sensorial suppression of self-generated sounds and its dependence on attention. *International Journal of Psychophysiology*, 90(3), 300–310. https://doi.org/10.1016/j.ijpsycho.2013.09.006
- Schaefer, S., Lövdén, M., Wieckhorst, B., & Lindenberger, U. (2010). Cognitive performance is improved while walking: Differences in cognitive–sensorimotor couplings between children and young adults. *European Journal of Developmental Psychology*, 7(3), 371–389. https://doi.org/10.1080/17405620802535666
- Schäfer, E. W. P., & Marcus, M. M. (1973). Self-stimulation alters human sensory brain responses. *Science*, 181(4095), 175–177. https://doi.org/10.1126/science.181.4095.175
- Schmidt-Kassow, M., Deusser, M., Thiel, C., Otterbein, S., Montag, C., Reuter, M., Banzer, W., & Kaiser, J. (2013). Physical exercise during encoding improves vocabulary learning in young female adults: A neuroendocrinological study. *PLoS One*, *8*(5), e64172. https://doi.org/10.1371/journal.pone.0064172
- Schmidt-Kassow, M., Heinemann, L. V., Abel, C., & Kaiser, J. (2013). Auditory–motor synchronization facilitates attention allocation. *NeuroImage*, 82, 101–106. https://doi.org/10.1016/j.neuro image.2013.05.111
- Schmidt-Kassow, M., Kulka, A., Gunter, T. C., Rothermich, K., & Kotz, S. A. (2010). Exercising during learning improves vocabulary acquisition: Behavioral and ERP evidence. *Neuroscience Letters*, 482(1), 40–44. https://doi.org/10.1016/j.neulet.2010.06.089
- Schmidt-Kassow, M., Zink, N., Mock, J., Thiel, C., Vogt, L., Abel, C., & Kaiser, J. (2014). Treadmill walking during vocabulary encoding improves verbal long-term memory. *Behavioral and Brain Functions*, 10(1), 24. https://doi.org/10.1186/1744-9081-10-24

- Schulz, L. E., & Bonawitz, E. B. (2007). Serious fun: Preschoolers engage in more exploratory play when evidence is confounded. *Developmental Psychology*, 43(4), 1045–1050. https://doi. org/10.1037/0012-1649.43.4.1045
- Schulze, K., Vargha-Khadem, F., & Mishkin, M. (2012). Test of a motor theory of long-term auditory memory. Proceedings of the National Academy of Sciences of the United States of America, 109(18), 7121–7125. https://doi.org/10.1073/pnas.1204717109
- Shishkin, S. L., Nuzhdin, Y. O., Svirin, E. P., Trofimov, A. G., Fedorova, A. A., Kozyrskiy, B. L., & Velichkovsky, B. M. (2016). EEG negativity in fixations used for gaze-based control: Toward converting intentions into actions with an eye-brain-computer Interface. *Frontiers in Neuroscience*, 10, 528. https://doi. org/10.3389/fnins.2016.00528
- Slobodenyuk, N. (2016). Towards cognitively grounded gazecontrolled interfaces. *Personal and Ubiquitous Computing*, 20(6), 1035–1047. https://doi.org/10.1007/s00779-016-0970-4
- Snyder, E., & Hillyard, S. A. (1976). Long-latency evoked potentials to irrelevant, deviant stimuli. *Behavioral Biology*, 16(3), 319– 331. https://doi.org/10.1016/s0091-6773(76)91447-4
- Stenner, M.-P., Bauer, M., Sidarus, N., Heinze, H.-J., Haggard, P., & Dolan, R. J. (2014). Subliminal action priming modulates the perceived intensity of sensory action consequences. *Cognition*, 130(2), 227–235. https://doi.org/10.1016/j.cogni tion.2013.11.008
- Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M.-M., & Egner, T. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. *Nature Neuroscience*, 11(9), Article 9. https://doi.org/10.1038/nn.2163
- Timm, J., SanMiguel, I., Saupe, K., & Schröger, E. (2013). The N1-suppression effect for self-initiated sounds is independent of attention. *BMC Neuroscience*, 14, 2. https://doi. org/10.1186/1471-2202-14-2
- Tran, D. M. D., & Livesey, E. J. (2021). Prediction-based attenuation as a general property of learning in neural circuits. *Journal* of *Experimental Psychology. Animal Learning and Cognition*, 47(1), 14–24. https://doi.org/10.1037/xan0000280
- Trewartha, K. M., Case, S., & Flanagan, J. R. (2015). Integrating actions into object location memory: A benefit for active versus passive reaching movements. *Behavioural Brain Research*, 279, 234–239. https://doi.org/10.1016/j.bbr.2014.11.043
- Turk, K. W., Elshaar, A. A., Deason, R. G., Heyworth, N. C., Nagle, C., Frustace, B., Flannery, S., Zumwalt, A., & Budson, A. E. (2018). Late positive component event-related potential amplitude predicts long-term classroom-based learning. *Journal of Cognitive Neuroscience*, 30(9), 1323–1329. https://doi.org/10.1162/ jocn_a_01285
- Twomey, D. M., Kelly, S. P., & O'Connell, R. G. (2016). Abstract and effector-selective decision signals exhibit qualitatively distinct dynamics before delayed perceptual reports. *Journal* of Neuroscience, 36(28), 7346–7352. https://doi.org/10.1523/ JNEUROSCI.4162-15.2016
- van Elk, M., Salomon, R., Kannape, O., & Blanke, O. (2014). Suppression of the N1 auditory evoked potential for sounds generated by the upper and lower limbs. *Biological Psychology*, 102, 108–117. https://doi.org/10.1016/j.biopsycho.2014.06.007
- Verleger, R., Cäsar, S., Siller, B., & Śmigasiewicz, K. (2017). On why targets evoke P3 components in prediction tasks: Drawing an analogy between prediction and matching tasks. *Frontiers in Human Neuroscience*, 11, 497. https://doi.org/10.3389/ fnhum.2017.00497

19 of 20

20 of 20

PSYCHOPHYSIOLOGY SPE

- Vespignani, F., Canal, P., Molinaro, N., Fonda, S., & Cacciari, C. (2010). Predictive mechanisms in idiom comprehension. *Journal of Cognitive Neuroscience*, 22(8), 1682–1700. https://doi. org/10.1162/jocn.2009.21293
- Voss, J. L., Warren, D. E., Gonsalves, B. D., Federmeier, K. D., Tranel, D., & Cohen, N. J. (2011). Spontaneous revisitation during visual exploration as a link among strategic behavior, learning, and the hippocampus. *Proceedings of the National Academy of Sciences of the United States of America*, 108(31), E402–E409. https://doi.org/10.1073/pnas.1100225108
- Winkler, I., Horváth, J., Weisz, J., & Trejo, L. J. (2009). Deviance detection in congruent audiovisual speech: Evidence for implicit integrated audiovisual memory representations. *Biological Psychology*, 82(3), 281–292. https://doi.org/10.1016/j.biopsycho.2009.08.011
- Woodruff, C. C., Hayama, H. R., & Rugg, M. D. (2006). Electrophysiological dissociation of the neural correlates of recollection and familiarity. *Brain Research*, *1100*(1), 125–135. https://doi.org/10.1016/j.brainres.2006.05.019
- Yang, H., Laforge, G., Stojanoski, B., Nichols, E. S., McRae, K., & Köhler, S. (2019). Late positive complex in event-related potentials tracks memory signals when they are decision relevant. *Scientific Reports*, 9(1), Article 1. https://doi.org/10.1038/s4159 8-019-45880-y
- Yogev-Seligmann, G., Hausdorff, J. M., & Giladi, N. (2008). The role of executive function and attention in gait. *Movement Disorders: Official Journal of the Movement Disorder Society*, 23(3), 329– 342. https://doi.org/10.1002/mds.21720

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article. **Figure S1:** Percentage Seen across learning blocks. Mean percentage Seen across all participants and contingencies for each learning block (*thick black lines*), as well as the median and interquartile range across participants (*boxplots*) and outliers (*black dots*).

Figure S2: Fixation-evoked potentials. Grand-averaged (N=23) mean ERP activations at the Pz electrode from 800 ms before sound onset to 400 ms post-sound. The agent condition is shown in blue and the observer condition is shown in red (difference shown in black). Below, a progression of topographical plots showing the difference between the conditions (agent – observer) in steps of 200 ms from -800 ms onwards until sound onset. The start of the fixations in the different conditions can be seen as strong positive peaks, in the agent condition around -750 ms and in the observer condition around -400 ms. Clusters of significantly different electrodes are highlighted (positive cluster in black and negative cluster in white). **Data S1:** Supporting information

How to cite this article: Sturm, S., Costa-Faidella, J., & SanMiguel, I. (2023). Neural signatures of memory gain through active exploration in an oculomotor-auditory learning task. *Psychophysiology*, 60, e14337. https://doi.org/10.1111/psyp.14337