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We postulate that waiting times between avalanches in self-organized critical systems are dis-
tributed according to a universal double power-law probability density. This density is defined by
two critical exponents α and β characterizing the distribution of short (∼ δ−α) and long (∼ δ−β)
waiting times, and a crossover parameter δ0 which separates the two behaviours in a sharp shoulder.
This crossover parameter depends on the system properties as well as on the observation conditions.
It can be used as a scaling factor that transforms the distributions into a universal scaling law
as proposed by Per Bak. We use experimental data from labquake catalogues (Acoustic Emission
events) obtained during the uniaxial compression of a number of charcoal samples with different
hardnesses, and different energy thresholds. To obtain good fits it is essential that the catalogues
are long enough to include a representative critical mixture of periods with different avalanche
rates. In all the cases studied, individual maximum likelihood analysis allows the exponents α and
β and the crossover parameter δ0 to be fitted. This parameter shows a clear dependence with the
energy threshold that can be explained from the Gutenberg-Richter law for the avalanche energy
distributions. The observed variations of the exponents α and β fall within the sample-to-sample
variability which suggest that these values could be universal. We estimate mean values α = 0.9±0.1
and β = 2.0 ± 0.3 from the full set of recorded experimental data. These values are close to the
combination α = 1, β = 2, which exhibits a special mathematical cancellation of singularities.

I. INTRODUCTION

Complex systems with spatial and temporal
degrees of freedom that are smoothly driven by
an external field often respond intermittently
by a sequence of stochastic burst events called
avalanches [1]. Those are fast relaxations sepa-
rated by long silent waiting times.
The classical Self Organized Criticality (SOC)

paradigm introduced by Per Bak [2] as well
as other holistic approaches [3] suggest that
some complex systems reach a dynamic non-
equilibrium critical state with lack of characteris-
tic scales. Most of the details of the microscopic
physical interactions in the system become irrel-
evant, and the laws governing avalanche response
are expected to depend on very few dimension-
less parameters (typically exponents) showing a
certain degree of universality.
These approaches usually start by reducing the

complexity of the sequence of burst events to a
temporal point process with avalanches occur-
ring at times tk and exhibiting different avalanche

∗ eduard@fmc.ub.edu; Also at University of Barcelona In-
stitute of Complex Systems (UBICS), Barcelona, Cat-
alonia

properties: location, energy Ek, size, duration,
etc.

Avalanche properties and occurrence times are
considered to be stochastic and, consequently,
they are described by probability densities that
might reflect the existence or not of correlations
between them.

The experimental data (or historical observa-
tions) are recorded in catalogues (for instance a
list of energy events {tk, Ek}) that can be used to
compare with the proposed mathematical laws or
to fit some of their theoretical parameters. The
catalogues are usually constrained to a certain
spatial region R, to a certain temporal window T
and to an energy observation window E (typically
only energies above a threshold Eth are recorded).

The most famous holistic laws in geophysics
is Gutenberg-Richter (GR) law [4] that reveals
that earthquake energies (seismic moments) are
power-law distributed (dP (E) ∝ E−ϵdE) with a
rather universal exponent ϵ ≃ 5

3 ≃ 1.67.

Similarly, Omori law [5] reflects the existence
of time correlations between consecutive earth-
quakes: after a big event in a certain location
there is an increase of the activity rate in the
nearby region above the background rate. These
extra events are called aftershocks and are re-
flected in the fact that (in a given region and
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for a given period of time) waiting times become
statistically shorter than those corresponding to
independent Poissonian events.
A much more recent law reflecting the ex-

istence of time correlations in the earthquake
sequences is the Universal Scaling Law (USL),
introduced by P. Bak et al. [6] and, shortly
afterwards, revised by A. Corral [7]. This
law refers to the distribution of waiting times
(δk = tk+1 − tk, k = 1, · · · , N). The probability
density for observing δ values within a certain in-
terval will be described by dP (δ) = DR,T ,E(δ)dδ.
Not only the physical properties of the systems,

but also the observational limitations of the cat-
alogues influence the recorded waiting times. We
clearly expect that enlarging the observed spa-
tial region R will imply to have more events be-
ing recorded in the catalogue and thus in general
shorter waiting times. Similarly, increasing the
threshold Eth will reduce the number of events
and thus increase the waiting times.
The USL hypothesis proposed that all the de-

pendencies with the time-space-energy observa-
tional window (T −R− E) can be accounted for
by a single scalar parameter, either a characteris-
tic rate rc or a characteristic time δc, so that the
following scaling relation is fulfilled

DR,T ,E(δ)dδ = Φ(δ/δc)dδ/δc = Φ(rcδ)rcdδ (1)

where z = δ/δc (or z = rcδ) is the scaled waiting
time, and Φ(z) is the scaling function that does
not depend on the observational window (T −R−
E).

The validity of the USL as well as the precise
shape of Φ(z) has been extensively discussed [7–
17]. Despite the existence of some exact theorems
that apparently demonstrated that the USL hy-
pothesis could not be correct [9, 13], the real-
ity is that at present it has been incorporated in
many models even for earthquake risk assessment
[18, 19].
It is evident that for a hypothetical Pois-

son process with totally uncorrelated events we
should have Φ(z) = e−z. A log-log plot of the his-
togram of the scaled experimental waiting times
(zk = δk/δ0) will show a flat behaviour for z ≪ 1
and a fast exponential decay for z ≫ 1.
But in reality events are Omori-correlated and,

as explained above, there is an increase in the
frequency of small values of δ relative to the flat
Poisson behaviour. The observed histograms in
the z ≪ 1 region are therefore better described
by the scaling function Φ(z) = z−αe−z. Regard-
ing the decay in the z ≫ 1 region, many recorded
catalogues indeed show histograms with an ex-
ponential decay. However, it was suggested that
when catalogues reflect rich enough mixtures of
temporal windows with high and low activity [20],

the z ≫ 1 tail may transform in a second power-
law Φ(z) ∼ z−β . The main problems for observ-
ing such a mixture of rates can be (i) that most
available catalogues tend to concentrate in spatial
regions where earthquakes occur thus neglecting
the contribution of low rate regions and (ii) that
the recorded time periods are restricted to less
than a century (or even less than 25 years is we
only consider complete catalogues without under-
counting of small events).

Twelve years ago [20] it was proposed that
Acoustic Emission (AE) events (also called hits,
after detection) obtained during the uniaxial
compression of porous materials had strong sta-
tistical similarities with earthquake data. The
so-called labquakes show a power-law (GR like)
distribution of energies, Omori correlations and
waiting times that fulfill the USL. These exper-
iments have several advantages when compared
to earthquakes: (i) there is major control of ex-
perimental parameters and (ii) they allow for a
systematic repetition with samples with a priori
identical properties. This may help in the under-
standing of the statistical sample-to-sample fluc-
tuations that cannot be studied from observations
of real earthquakes.

Among the different studied porous samples, a
recent work [21] focused on charcoal. These sam-
ples allow for the study of large labquake cat-
alogues usually exhibiting time periods of fluc-
tuating rates and with a very well defined GR
exponent ϵ = 1.64, in very good numerical agree-
ment with the values found in real earthquake
catalogues.

In the present work we will present a study of
the compression of 17 commercial charcoal sam-
ples of similar sizes and four different nominal
hardnesses. From each experiment, AE hit cat-
alogues will be built using seven different energy
thresholds. This gives a total of ∼ 100 catalogues
for a systematic statistical analysis.

We will fit the data sets with a pure dou-
ble power-law distribution with three parameters:
two exponents and the crossover parameter δ0.
This parameter will be used to scale the wait-
ing times and to reveal that distributions follow
the universal scaling law. The hypothesis that we
are testing is not only that the behaviours of Φ(z)
are power-law in the z ≪ 1 and z ≫ 1 region but
that the full shape can be described by a pure
double power-law with a sharp crossover at z = 1
(δ = δ0).
The paper is organized as follows. In the next

section II we discuss about theoretical probabil-
ity densities that can be used to model “critical”
avalanche properties with scale invariance. We
compare the mathematical properties of the stan-
dard power-law density with the proposed double
power-law density. In section III we discuss the
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details of the AE detection of labquakes. In sec-
tion IV we show the fit of the double-power-law
model to the data using the maximum likelihood
method and its scaling properties. Finally in sec-
tion V we summarize and conclude.

II. SCALE INVARIANT PROBABILITY
DENSITIES: POWER-LAWS AND

DOUBLE POWER-LAWS

In equilibrium critical phenomena, universal
laws governing the system response are described
by power-law functions f(x) = Axα (where A is
an amplitude, α is a critical exponent and x is
a measure of the relative distance to the criti-
cal point, along the temperature axis (T −Tc)/Tc

or along the external field (H − Hc)/Hc). This
function f(x) fulfills the mathematical condition
of scale invariance:

f(λx) = λαf(x) ∀λ ∈ ℜ+ (2)

where λ is a dilatation factor.
By analogy, when modelling the stochastic

avalanche properties close to a non-equilibrium
critical point, power-law probability densities are
chosen [22]. These are also called Pareto prob-
ability densities [23]. For a generic positive and
continuum property x > 0 (such as the avalanche
size, the avalanche energy, etc.) the probability
of measuring a value in the infinitesimal interval
(x, x+ dx) is given by dP = g(x)dx with

g(x; ϵ, x0) =


0 if x < x0

ϵ− 1

x0

(
x

x0

)−ϵ

if x ≥ x0

(3)

where we indicate the density parameters after
the the semicolon: ϵ is the critical exponent and
x0 is a minimum cutoff. Note that the normal-
ization condition requires on the one hand the
existence of the cutoff x0 > 0 and, on the other
hand, that the exponent fulfills ϵ > 1.

In general not much attention is paid to the
meaning of x0. Often it is justified as having an

experimental origin (minimum detection thresh-
old of the property x) or it can simply be under-
stood as an indication that an avalanche cannot
have its physical properties (size, amplitude, en-
ergy) being null.

Note that if the expected value ⟨x⟩ exists (only
when ϵ > 2) then it turns to be proportional to
the cutoff x0:

⟨x⟩ = ϵ− 1

ϵ− 2
x0 (4)

Thus the expected value of avalanche properties
in critical systems depends on the minimum de-
tection threshold for the observation. The smaller
the avalanches one is able to observe, the smaller
the expected value will be.

A particular unsatisfactory aspect concerning
this theoretical probability density should be
noted: the existence of a cutoff breaks the math-
ematical global scale invariant condition (2). For
any value of x it is possible to find a scaling factor
λ that moves x → λx below x0 and thus violates
condition (2).

The problem is worse if the power-law prob-
ability density is used to model, not the
avalanche properties, but the waiting times be-
tween avalanches δ. In this case, it would be
desirable that the proposed probability density
could be normalized in the interval [0,∞) since,
a priori , there is no physical reason why two
avalanches cannot occur exactly at the same
time in different places of the system. One is
then forced to consider other theoretical proba-
bility densities having a minimum number of non-
universal parameters and being as “scale invari-
ant” as possible.

A very simple candidate is the double power-
law probability density. It was introduced much
more recently than the Pareto probability den-
sity for the study of the income distribution [24]
in economics. Since then it has been used to de-
scribe different phenomena in complex systems
[25, 26].

It can be written as:

g(δ;α, β, δ0) =


(1− α)(β − 1)

(β − α)δ0

(
δ

δ0

)−α

if 0 < δ ≤ δ0

(1− α)(β − 1)

(β − α)δ0

(
δ

δ0

)−β

if δ0 < δ < ∞
(5)

In this case the density has three parameters:
two power-law exponents, α for the small values

of the variable and β for the large values, and
the crosover parameter δ0. The condition for the
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probability density to be normalized in the whole
range 0 ≤ δ < ∞ is that α < 1 and β > 1.

It could be argued that the parameter δ0 in this
case is a characteristic scale of the problem and
thus this is not a probability density describing
a situation without lack of characteristic scales.
But note that the role of δ0 is not very differ-
ent from the role of x0 in the standard power-law
probability density. As we will see, it is essen-
tially controlled by the experimental limitations
of each catalogue (detection threshold, maximum
observation time, etc.). In the case that the ex-
pected value ⟨δ⟩ exists, (when β > 2) one finds
also a similar situation (but not worse) than with
the standard power-law:

⟨δ⟩ = (1− α)(β − 1)

(2− α)(β − 2)
δ0 (6)

It is also interesting to note that the double

power-law probability density includes, as a par-
ticular case, the standard power-law: it corre-
sponds to the case α → −∞. The δ0 parameter,
then, becomes the minimum cutoff.

A property that makes this proposed probabil-
ity density very interesting is the fact that one can
consider the inverse of the waiting times r = 1/δ
as the instantaneous estimates of the avalanche
rates. One cannot measure the instantaneous
rate in a time interval shorter than the interval
between two consecutive avalanches in the cat-
alogue. It seems plausible that a “critical” sys-
tem should have neither any characteristic wait-
ing time nor any characteristic rate. Thus both
distributions for δ and for r should somehow show
good “critical” properties.

If one transforms the double power-law prob-
ability density by changing the variables to δ →
r = 1/δ, one nicely gets a new double power-law

g(r; γ, η, r0) =


(1− γ)(η − 1)

(η − γ)r0

(
r

r0

)−γ

if 0 < r ≤ r0

(1− γ)(η − 1)

(η − γ)r0

(
r

r0

)−η

if r0 < r < ∞
(7)

with an exponent γ = 2−β for small rate values,
η = 2− α for large rate values and r0 = 1

δ0
. The

conditions for the normalization of g(δ) (α < 1
and β > 1) imply that g(r) is also well normalized
(γ = 2− β < 1 and η = 2− α > 1).

Note however that the conditions for the exis-
tence of the expected values ⟨δ⟩ and ⟨r⟩ are dif-
ferent. Depending on the values of α and β (and
the corresponding γ and η) we find the four cases
indicated in the exponent diagram in Fig. 1

Before concluding this theoretical section it
should be mentioned that the combination of ex-
ponents α = 1 and β = 2 (which will be relevant
in the experimental analysis) fullfills a special
mathematical cancellation of singularities that
might have some physical relevance.

When α = 1 the double power-law probability
density is marginally not well defined since the
normalization diverges. When β = 2 the average
⟨δ⟩ is, also, marginally not well defined. Never-
theless, even for a not well normalized distribu-
tion, one could write the average waiting time as

⟨δ⟩ =
∫∞
0

δ g(δ)dδ∫∞
0

g(δ)dδ
=

∫ δ0
0

δ g(δ)dδ +
∫∞
δ0

δ g(δ)dδ∫ δ0
0

g(δ)dδ +
∫∞
δ0

g(δ)dδ
= δ0

∫ 1

0
z1−αdz +

∫∞
1

z1−βdz∫ 1

0
z−αdz +

∫∞
1

z−βdz
(8)

where, in the last equality, we have performed
the change of variables z = δ/δ0 (dz = dδ/δ0).

Now, in the second integral in the numerator and
the denominator, one can perform the change of
variables x = 1/z (dx = −1/z2dz):

⟨δ⟩ = δ0

∫ 1

0
z1−αdz +

∫ 1

0
x−1+β−2dx∫ 1

0
z−αdz +

∫ 1

0
xβ−2dx

= δ0

∫ 1

0
dz +

∫ 1

0
x−1dx∫ 1

0
z−1dz +

∫ 1

0
dx

= δ0 (9)

where, in the last step, we have set α = 1 and β = 2. The divergences in the numerator and
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Figure 1. The coloured area shows the regions of the
α-β diagram where the double power-law probability
density is well defined. Moreover, the four different
colours show the regions where the expected waiting
time values ⟨δ⟩ and the expected instantaneous rate
values ⟨r⟩ exist or not, as indicated by the labels.
The blue, orange and green regions extend towards
the right and towards the bottom.

denominator cancel out and we obtain a finite
⟨δ⟩ = δ0 resolving the ∞/∞ singularity in Eq.6.

III. EXPERIMENTAL

The studied samples have been obtained from
commercial charcoal sticks (Nitram Art Inc.) cor-
responding to four different nominal hardnesses:
H, HB, B and B+. The sticks are elongated par-
allelepipeds with approximately square crossec-
tions between 27 and 44 mm2 .
Each sample has been cut from the stick using

a blade with an approximate height of 9-12 mm
and slightly polished with sand paper to obtain
parallel upper and lower faces. Tab. I shows the
properties of the 17 studied samples. Note that
the density (which varies by more than a 100%)
is clearly correlated with the nominal hardness.
The specimens have been compressed between

two aluminium plates, driven at a constant speed
of 0.02 mm/min by a Zwick/Roell testing ma-
chine with electronic speed control. The compres-
sion plates contain embedded piezoelectric trans-
ducers with 9.5 mm diameter, centered on the
sample, at 2 mm distance from it. The good ul-
trasonic contact between the transducers and the
plates, as well as between the plates and the sam-
ple is ensured by a thin film of Vaseline.
The voltage signals detected by the transduc-

ers are first pre-amplified (60 dB) and sent to
two separate channels of a PCI2 system from Eu-
rophysical Acoustics. Individual AE events are
defined/separated by using a threshold of 23 dB.
The threshold is selected as low as possible, while
ensuring that noise signals are not detected when

Figure 2. Example of the recorded data from sample
HB1 as a function of time. (a) Compressive strain;
(b) force; (c) hit energies; (d) cumulative number
of recorded hits; (e) rate evolution evaluated as the
number of hits every 20 s.

the sample is not being compressed.

AE hits are defined by the standard proce-
dure: hits start when the voltage signal crosses
the threshold, and finish when the voltage re-
mains below threshold for more than 200 µs. The
energy of the hit is measured as the time integral
of the squared voltage during the whole event,
divided by a reference resistance of 10 kΩ. More
details of the experimental setup can be found in
[21].

In each experiment we have selected the hits
only from the channel that recorded a larger
number of them, thus revealing a better acous-
tic contact with the sample, and avoiding dou-
ble counting of large hits that are simultaneously
recorded by both transducers. The number of
hits recorded in each experiment are detailed in
Tab. I. Note that, in general, the number of hits
increases when the hardness decreases, but there
is a high variability. This is due to the fact that
the coupling of the transducers to the sample (as
well as other attenuation factors) can be very dif-
ferent from one experiment to another.

Fig. 2 shows a summary of the results corre-
sponding to a typical experiment (HB1).
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sample nominal crossection height m density AE hits N
name hardness (mm2) (mm) (mg) (g/cm3) Eth = 0.5 aJ
H1 H 34.12 11.49 0.243 619.83 3663 1027
H2 H 34.39 11.35 0.235 602.07 15076 4786
H3 H 33.95 11.45 0.242 622.47 1347 416
H4 H 33.87 10.52 0.214 601.89 860 250
HB1 HB 43.7 10.88 0.197 414.37 8261 1902
HB2 HB 43.82 10.69 0.2 426.96 24687 6630
HB3 HB 43.26 9.88 0.173 404.77 34213 8670
HB4 HB 43.01 10.43 0.184 410.22 21010 5337
B1 B 39.98 11.51 0.174 378.17 10958 3277
B2 B 40.97 11.58 0.179 377.26 101907 36173
B3 B 39.38 9.5 0.145 387.64 57634 18822
B4 B 38.68 9.96 0.144 373.76 206438 75317

B+
1 B+ 27.81 9.57 0.081 303.95 3028 857

B+
2 B+ 34.44 10.98 0.122 322.62 446361 127336

B+
3 B+ 29.39 10.63 0.093 297.67 737122 245314

B+
4 B+ 31.53 10.47 0.093 281.74 1163143 339705

B+
5 B+ 32.87 11.47 0.111 294.42 177679 53930

Table I. List of the 17 studied charcoal samples, detailing its nominal hardness, cross-section, height, mass,
estimated density, number of recorded AE hits, and number of waiting times (N) computed at the minimum
energy threshold of 0.5 aJ.

The upper panel (a) shows the compressive
strain applied by the testing machine, defined as
the sample height divided by the original sample
height. Panel (b) shows the corresponding evo-
lution of the vertical force as a function of time.
Panel (c) shows the energy of the individual hits
Ek as vertical lines on a logarithmic scale. Note
that the plot can only reflect few of the hits, as
many of them overlap. In this particular case
the total number of recorded AE hits is 8261, as
can be seen in panel (d) that shows the evolu-
tion of the cumulative number of hits. Finally in
the bottom panel (e) we show the behavior of the
rate which, for the purpose of this representation,
is estimated as the number of hits in windows
of 20 s. Note that the vertical scale is logarith-
mic and that these estimated rates already span
3 decades.
Shortly after an initial adaptation regime the

samples display an elastic regime with a rather
monotonous increase in the force. In most cases,
already for a compressive strain above 0.95, AE
hits occur due to nucleation and growth of mi-
crofractures in the sample. The samples then typ-
ically enter in a serrated force-deformation curve
which reaches a maximum, after which a first
big collapse occurs. In some cases the collapse
is rather sharp but in others there is a series of
several collapses. The compression experiments
are finished either when the force decreases be-
low a predefined low value (5 N) or when the
compressive strain reaches 0.8.
In order to prepare the catalogues of wait-

ing times, from the hits recorded in each exper-

iment, we consider different energy thresholds,
from Eth =0.5 aJ to Eth =50 aJ. Only hits above
threshold are considered in order to evaluate the
waiting times. For each experiment, the number
of hits with energies above the lowest threshold
Eth =0.5 aJ is indicated in Tab.I. The combina-
tion of 17 experiments and 7 different thresholds
renders a total of nc = 98 avalanche catalogues
(in some cases the large thresholds render no sig-
nals) corresponding to different samples with dif-
ferent hardnesses, which we will systematically
fit with a double power-law model. We will de-
note the sets of waiting times in each catalogue as{
δik
}
, where the index i = 1, · · · , nc indicates the

catalogue and the index k = 1, · · · , N i indicates
the different waiting times in each catalogue.

Although, as explained above, waiting times
can theoretically be infinitesimally small, in prac-
tice there is an experimental limitation that intro-
duces a minimum cutoff in the observed δk values.
In order to separate consecutive AE hits, we have
required that the voltage from the sensors should
remain, at least 200 µs below threshold. This
implies that it is impossible to observe waiting
times below this value. Moreover, even for wait-
ing times above this value, the fact that hits have
a certain duration will introduce a clear under-
counting in the statistics, which will be reflected
as a decrease of the experimental waiting time
histograms for low δ values. Therefore, in order
to fit the proposed double power-law model to
the experimental data set we should modify the
model to include an extra parameter which is the
minimum cutoff δmin.
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g(δ;α, β, δ0, δmin) =



(1− α)(β − 1)[
(β − 1)

(
1− δmin

δ0

)1−α

+ (1− α)

]
δ0

(
δ

δ0

)−α

if δmin < δ ≤ δ0

(1− α)(β − 1)[
(β − 1)

(
1− δmin

δ0

)1−α

+ (1− α)

]
δ0

(
δ

δ0

)−β

if δ0 < δ < ∞

For the following analysis we have estimated for
all the experiments a constant minimum cutoff of
δmin = 2.5 ms.

We will fit the double power-law probability
density, with three free parameters (α, β, and δ0)
but keeping a constant δmin = 2.5 ms, to each
of the nc sets

{
δik
}
, using the Maximum Like-

lihood (ML) method. This method consists in
finding the parameters that maximize the Likeli-
hood function

lnLi =
∑
k

ln
[
g(δik;α

i, βi, δi0, δmin = 2.5)
]

(10)

The advantage of the ML method is that it is
known to be independent of the data representa-
tion. Thus the estimated parameters do not de-
pend at all on the details of how the histograms
are represented. Furthermore the result does not
depend on whether or not a change of variables
is performed on the probability density. Thus
the parameters αi, βi, and δi0 fitted to the val-
ues {δik, k = 1, · · ·Ni} should be exactly compat-
ible with the parameters γi, ηi and ri0 when the
double power-law model (with a maximum cut-
off rmax = 1/δmin) is fitted to the corresponding
values {1/δik, k = 1 · · ·Ni}. The maximization
procedure is performed by the differential evolu-
tion numerical algorithm [27] implemented in the
SciPy library for Python. We systematically fit
the double power-law to both {δik} and {1/δik}
and crosscheck the exact correspondence of the
exponents up to two decimal digits. If discrep-
ancies are found the numerical maximization is
repeated starting from different initial conditions
until the agreement is reached.

IV. RESULTS

Fig.3 shows an example of histograms corre-
sponding to sample HB3. On the upper-left panel
(a) we show the histograms corresponding to the
waiting time distributions calculated with 7 dif-
ferent energy thresholds, as indicated by the leg-
end. On the lower-left panel (c) the correspond-
ing histograms for the rate distributions.

Figure 3. Waiting times and rate distributions cor-
responding to one sample (HB3). (a) Waiting time
histograms for different energy thresholds as indi-
cated by the legend; (b) corresponding scaled wait-
ing times histograms and the corresponding double
power-law fits; (c) instantaneous rate histograms; (d)
corresponding scaled instantaneous rate histograms
and double power-law fits.

At the top of each histogram we show the cor-
responding ML fitted double power-law models.
The values of the fitted δi0 and ri0 = 1/δi0 are used
to scale the histograms as shown in the right pan-
els (b) and (d). The corresponding scaled double
power-law models are represented with overlap-
ping dashed lines.

As can be seen one obtains slightly differ-
ent values of the fitted exponents for each his-
togram. In this particular example we get val-
ues αi ∼ 0.910 − 0.970, βi ∼ 1.671 − 1.983,
γi ∼ 0.015− 0.328 and ηi ∼ 1.030− 1.091. Qual-
itatively similar results are observed for the 17
studied samples.
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Figure 4. (a) Scaled waiting times histograms corre-
sponding to B samples (B1, B2, B3 i B4); (b) Corre-
sponding scaled instantaneous rate histograms. The
histograms corresponding to the same sample (with
different thresholds) are indicated with the same color
as indicated in the legend.

A first interesting observation is the fact that,
after scaling, histograms overlap rather well thus
supporting the USL hypothesis for both g(δ) and
g(r). Note that the scaled distributions for this
sample extend for ∼ 7 decades. Besides it can be
observed that the pure double power-law, with
the cusp at the crossover point, reproduces quite
well the experimental histograms. Although the
differences in the fitted exponents might seem too
large, the qualitative comparison with the scaled
histograms is good.
The observed fluctuations for the exponent γi

(of the order of ∼ 100%) characterizing the distri-
bution of low rates, are significantly large. This
region of rates is the most difficult to study ex-
perimentally. Only long enough catalogues with
enough mixture of rate activity will allow to ob-
serve a good statistical sampling of temporal win-
dows of very low activity.
Fig. 4 illustrates the sample-to-sample variabil-

ity for the case of four samples obtained from the
same original charcoal stick (in this case corre-
sponding to B hardness samples). The samples
have very similar heights, crossections and densi-
ties as shown in Tab. I.
The histograms corresponding to different en-

ergy thresholds of the same sample are repre-
sented with the same color to distinguish them
from the other samples. As can be seen, af-
ter scaling, the sample-to-sample variability (dif-
ferences between colors) is larger than the vari-
ability due to the changes in the energy thresh-
old (observed variations within each color set).
Nevertheless, the overall overlap is rather good
and qualitatively a pure double power-law model
also describes rather well the experimental his-
tograms. This is even true for the large z = δ/δ0
region in (a) that shows a power-law decay. Note
that the overlap of the scaled histograms spans
10 decades but each color set (each sample) spans

fewer decades. This indicates that the different
samples, which are, a priori, equivalent, actually
have relative waiting times z = δ/δ0 which are
quite different from sample to sample. This could
be due to physical reasons (some samples have
different amounts of disorder or are softer than
others) or to the fact that for every experiment
the coupling of the sensors to the sample might
be different. In each experiment the observation
window may change.

This is reminiscent of what was found by Cor-
ral when studying earthquakes [7]. When wait-
ing time data from different regions of the world
were scaled and mixed, the corresponding USL
revealed the existence of the second power law
decay for large z values.
Fig. 5 shows a summary of all the fitted param-

eters. The values are represented as a function of
the energy threshold and using the same color for
the samples with the same hardness. This allows
to easily identify if there is any hidden depen-
dence with hardness.

Panel (a) shows the fitted crossover values δi0.
As can be seen they are clearly dependent on
the energy threshold. The dependence is well
described by a power-law behaviour δ0 ∼ E0.67

(as indicated by the dashed straight line in log-
log plot). This behaviour is compatible with the
existence of a GR exponent ϵ = 5/3 ∼ 1.67.
The number of events with energy above Eth

should decrease as N ∼ E
−(ϵ−1)
th . Given the

fact that catalogues corresponding to the same
sample have the same time duration, it is rea-
sonable to expect that the parameter δ0 estimat-
ing the “mean” waiting time should increase as

δ0 ∼ E
(ϵ−1)
th ≃ E

2/3
th .

There might be a certain dependence of δ0 on
the hardness. The softer samples tend to ex-
hibit lower δ0, but results are not totally conclu-
sive. It could be that given the fact that we are
always compressing at a fixed velocity, samples
with larger number of signals (in general softer
samples) exhibit smaller waiting times. For the
other three hardnesses the sample-to-sample vari-
ability covers the possible observed dependencies.

Panels (b) and (c) show the behaviour of the
exponents αi and βi with the threshold Eth. As
can be seen, although they show a certain disper-
sion, the values are rather constant.

The values of αi in Fig. 5(b) range from 0.7
to 1.0 and they might show a certain dependence
on hardness. At least for the softer samples they
show slightly lower values. With increasing Eth

there is a tendency for the exponents to increase
and a tendency for the overall observed disper-
sion to reduce. The exponent α describes the
small waiting times region. We suggest that these
observed small dependencies could have an obser-
vational origin related to the minimum time δmin
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Figure 5. Summary of the fitted parameters as a function of the energy threshold Eth: (a) crossover parameter
δi0; (b) exponent α

i; (c) exponent βi. Note that the plots of the exponents in panels (b) and (c) have vertical
scales which span 0.5 units and 1.3 units respectively, thus the variability cannot be visually compared.

required to separate events. Such dependence will
disappear when Eth increases and most of the
measured values δik are much larger than δmin.

Note also that α = 1 represents a mathematical
limit, above which the double power-law model
cannot be normalized. This might explain the
tendency of the exponents to concentrate towards
α = 1 from below but never to overcome it.

The values of βi in Fig. 5(c) fluctuate between
1.4 and 2.6, with a large sample-to-sample vari-
ability and no clear dependence with hardness,
nor with Eth. This exponent describes the large
waiting times distribution. Despite the variabil-
ity, it is concentrated around β = 2.

Fig. 6 shows the theoretical regions of the ex-
ponent map presented in Fig.1 with the overlap-
ping values of the measured αi−βi pairs. Despite
the large variability, especially for β, the values
are concentrated around β = 2 and α = 1.

A similar figure could have been plotted on
the γ − η map, with the exponents concentrated
around γ = 0 and η = 1.

There is not a straightforward way to combine
all the experimental information in order to ob-
tain a common set of exponent values. If we
consider the exponents estimated from every cat-

Figure 6. α − β exponent diagram with the fitted
experimental values. Symbols are indicated in the
legend of Fig.5. The coloured regions indicate the
regions discussed in Fig.1. The black dot indicates
the mean for both exponents, ᾱ = 0.86 and β̄ = 2.00.
The ellipses represent the 65% and 95% confidence
levels.
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Figure 7. The black line shows the histogram that
estimates the distribution of all the scaled waiting
times. The red dashed line represents the double
power-law model (USL) with exponents α = 0.86 and
β = 2.00. Few examples of error bars are shown.

alogue as independent estimations we can eval-
uate the mean exponents ᾱ = 0.86 ± 0.10 and
β̄ = 2.00 ± 0.29. These error bars correspond to
the standard deviations. Since α and β values
show statistical correlation (ρ = −0.43) the un-
certainties are better described by ellipses in the
α−β map than by error bars. In Fig. 6 we show
the ellipses corresponding to 95% and 65% con-
fidence levels. Note that both ellipses cover the
α = 1 and β = 2 point.
In order to compare qualitatively the model

with the mean exponents to a “common” his-
togram, we follow the procedure described in [28].
We first identify different z-segments by ordering
the values zimin in an increasing sequence. On
each z-segment, we define logarithmic bins and
in order to estimate the probability density we
normalize the number of counts on each bin by
the number of data recorded in that z-segment
and by the bin size.
The common histogram is plotted in Fig.7 to-

gether with the model with α = 0.86 and β =
2.00. Some examples of error bars of the his-
togram are also shown. They have been esti-
mated as the square root of the variance, assum-
ing that the number of counts in each bin follows
a binomial distribution. The agreement between
the data and the model is quite satisfactory.

V. SUMMARY AND CONCLUSIONS

A double power-law probability density has
been proposed to model the distribution of wait-

ing times between avalanches (δ) in a self-
organized critical system. The properties of this
density have been discussed and compared to
the more standard power-law distribution. The
double power-law is characterized by two criti-
cal exponents α (in the small δ region) and β (in
the large δ region) and a crossover parameter δ0.
This distribution shows an interesting symmetry:
when exchanging the variables r = 1/δ one ob-
tains a distribution of instantaneous rates that is
also a double power-law with exponents γ = 2−β
for small rate values, η = 2−α for large rate val-
ues and r0 = 1

δ0
.

The hypothesis has been tested by studying
labquakes in charcoal samples (with different
hardnesses) under uniaxial compression. Waiting
times catalogues have been obtained considering
different energy thresholds.

The results show that the distribution of wait-
ing times are compatible with the double power-
law hypothesis with exponents α ∈ (0.7, 1.0) and
β ∈ (1.4, 2.6). The distribution of instantaneous
rates can also be described by the correspond-
ing double power-law. The parameter δ0 depends
on the properties of every particular catalogue as
well as on details on the observation conditions
[14] (e.g., energy threshold or the attenuation of
AE). This parameter can be used to scale all the
distributions into a unique Universal Scaling Law.
We have obtained a best common fit of the expo-
nents α = 0.86 ± 0.10 and β = 2.00 ± 0.29. The
computed 95% and 65% confidence error ellipses
contain the values α = 1 and β = 2 which have
been shown to exhibit a particular cancellation of
mathematical divergences.

It will be very interesting to investigate
whether these conclusions can be extrapolated
to avalanches in other self-organized critical sys-
tems, especially to earthquakes.
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