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Abstract
In this paper we apply the modal interval theory to the actuarial field to study the analysis and
control of solvency in non-life insurance portfolios. The advantages of modal intervals over
classical intervals are the interpretative field and the extension of the calculation possibilities
that modal intervals offer. To achieve this, we will analyse and propose some properties of
modal interval probability that allow us to ensure that the cumulative distribution function
and the probability density function of the aggregated cost with which we will work are
modal interval functions and, therefore, they can be correctly interpreted from this new point
of view.

Keywords Modal intervals · Interval probability · Aggregated cost · Convolution
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1 Introduction

Inaccuracy and uncertainty have been studied using different tools: rough sets (Pawlak 1982;
Yao 1998; Zhan et al. 2015), grey numbers (Deng 1982; Yang and John 2012), intervals
(Moore 1996), fuzzy sets and fuzzy numbers (Zadeh 1965) and others. Clearly, the most
used are fuzzy sets and intervals. In this paper we will use intervals to deal with probability.

Classical intervals were introduced by Moore (1996) and began to be used as a working
tool from the mid-20th century to deal with uncertainty and inaccuracy. However, classical
intervals presented some structural and interpretative deficiencies that were not solved until
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the appearance ofmodal intervals (Gardeñ et al. 2001).Modal intervals provided an important
step in the operational sense, as usingmodal intervals we can solve some problemswhich had
no solution in the field of classical intervals. Moreover, using modal intervals we can apply
the semantic theorems (Sainz et al. 2014) which give interpretive meaning to the calculations.
In this paper, we will extend the classical interval probability to a new probability, the modal
interval probability.

A formal foundation of interval probability fulfilling the Kolmogorov properties were
introduced by Weichselberger (2000). Wang (2008, 2010, 2015) used generalized intervals,
which conceptually lead to modal intervals, to study interval probability generalized. Nowa-
days we can find some other studies about interval probability (Yager 2013; Augustin et al.
2014; Jamison and Lodwick 2020; Xu et al. 2019).

One of the most discussed topics in the actuarial literature is the study of the solvency of
non-life insurance portfolios, and its analysis using collective risk model is one of the most
widely used methods (Wüthrich 2015). The model analyses the total cost assumed by the
insurer in a given period of time, S, considering the portfolio as a collective. The policies in
the portfolio generate a random number of claims, denoted by N , each of themwith a random
individual claim amount, denoted by Xi . The classical assumptions of the model impose that
the amounts are independent of the number of claims (N and all Xi independent), and that
the individual claim amounts are independent and identically distributed random variables
(Gerber 1979; Dickson 2016; Panjer and Willmot 1992). It is usual to assume that if N is
a Poisson distribution, then S is a compound Poisson distribution. The literature dealing
with modifications of the classical independence hypotheses is extensive, either accepting
the dependence between claim amounts or admitting dependence between the frequency and
the severity of the model (Albrecher et al. 2014; Castañer et al. 2019; Cossette et al. 2019;
Denuit et al. 2006; Garrido et al. 2016).

Lack of information, inaccurate information or measurement errors in the data used to
estimate the parameters of the distributions of X and N make the parameters defining the
model uncertain, so it is desirable to include methodologies that capture this uncertainty. The
uncertainty in insurance risk process can be introduced via fuzzy random variables (Shapiro
2004; Huang et al. 2009; Shapiro 2013; Villacorta et al. 2021; Popova and Wu 1999) and
in general through the imprecise probability approach. Model uncertainty arises when only
an interval is known for certain parameters of a model, or when certain aspects of a model
cannot be accurately determined (Dedu et al. 2014; Erreygers and De Bock 2019; Niemiec
2007; Cairns 2000; Major 1999).

In this paper we model both the parameter defining the severity of occurrence of claims
and the probabilities associated with each individual claim amount as modal intervals, not as
certain and known values. We focus our attention on the cumulative distribution function of
the aggregated cost, which due to the previous assumptions, will also be a modal interval.

After this introduction, the rest of the paper is structured as follows. In Section 2, we
present the main ideas about classic and modal intervals; In Section 3, the modal interval
probabilities are defined and studied. In Section 4, all the previous concepts are applied to
the calculus of the cumulative distribution function of the aggregated cost and a general
expression of this function is presented assuming uncertain probabilities for the number
and the amount of claims. A numerical example illustrates the theoretical development and
special attention is paid to the interpretation of the obtained values. The paper ends with
some concluding remarks.
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2 Modal Intervals

If a and a are two real numbers such that a ≤ a, the classical interval bounded by a and a
is represented by

[
a, a

]
and is defined as

[
a, a

] = {
x ∈ R such that a ≤ x ≤ a

}
. The set of

classic intervals is denoted by I (R).
Given any real continuous function f (x1, . . . , xn), its extension upon the classical inter-

vals X1, . . . , Xn is defined as the interval

Y =
[
min
xk∈Xk

f (x1, . . . , xn) , max
xk∈Xk

f (x1, . . . , xn)

]
. (1)

Obviously, these min and max will exist as the real function f is continuous, and its
domain is topologically closed and bounded.

The semantic interpretation of this calculus is one of the following

∀x1 ∈ X1, . . . ,∀xn ∈ Xn, ∃y ∈ Y such that y = f (x1, . . . , xn) ,

or
∀y ∈ Y , ∃x1 ∈ X1, . . . , ∃xn ∈ Xn such that y = f (x1, . . . , xn) .

Using the above definition Eq. 1, basic operators +,−, ·, / can easily be computed using
the bounds of the intervals. Thus,

[
a, a

] + [
b, b

] = [
a + b, a + b

]
,

[
a, a

] − [
b, b

] = [
a − b, a − b

]
,

[
a, a

] · [
b, b

] = [
min

{
a · b, a · b, a · b, a · b} ,max

{
a · b, a · b, a · b, a · b}] ,

[
a, a

]
/
[
b, b

] =
[
min

{
a

b
,
a

b
,
a

b
,
a

b

}
,max

{
a

b
,
a

b
,
a

b
,
a

b

}]
if 0 /∈ [

b, b
]
.

The calculus minxk∈Xk f (x1, . . . , xn) and maxxk∈Xk f (x1, . . . , xn) are not always easy
to evaluate. This fact carries an obvious problem when evaluating the intervalar extension of
the function f . To solve this handicap, if all the real operators in the function f are basic
operators, that is +,−, · or /, instead of evaluate the interval Y defined above in (1), a new
intervalar extension of the function f will be evaluated by replacing each basic operator in f
by its corresponding basic intervalar operator. Thus, the new interval Z obtained using this
replacement verifies Y ⊆ Z and the only valid semanic is

∀x1 ∈ X1, . . . ,∀xn ∈ Xn, ∃z ∈ Z such that z = f (x1, . . . , xn) .

Following Gardeñ et al. (2001), a modal interval a is a pair which consists of a classic
interval and a quantifier, that is, a = ([

a, a
]
, Q

)
where Q ∈ {∀, ∃}. The modal interval a is

said to be proper if a = ([
a, a

]
, ∃)

and it is said to be improper if a = ([
a, a

]
,∀)

.
We always represent a modal interval using the canonical notation, consisting in express

the proper interval
([
a , a

]
, ∃)

as
[
a, a

]
identifying the proper interval

([
a, a

]
, ∃)

with the
classical interval

[
a, a

]
, and expressing the improper interval

([
a, a

]
,∀)

as
[
a, a

]
. Using

this notation, the interval [5, 7] is the proper interval ([5, 7] , ∃) and the interval [4, 2] is
the improper interval ([2, 4] ,∀) . The set of modal intervals is denoted by I ∗ (R), that is,
I ∗ (R) = {[

a, a
]
such that a, a ∈ R

}
without the restriction a ≤ a.
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We define the modal interval extension of a real function f over the modal intervals
x1 = ([

x1, x1
]
, Q1

)
, . . . , xn = ([

xn, xn
]
, Qn

)
and we define and represent it as

f ∗ (x1, . . . , xn) =
[
min
xp∈xp

max
xi∈xi

f
(
xp, xi

)
, max
xp∈xp

min
xi∈xi

f
(
xp, xi

)
]

, (2)

where xp are the proper intervals in x1, . . . , xn and xi are the improper intervals in x1, . . . , xn.
Using Eq. 2, the basic modal interval operators +,−, ·, / can be computed not so easily

as we did with classic intervals, specially · and / as it must be considered the modality of
the operators (Sainz et al. 2014). Moreover, it is obvious that for almost real functions, the
calculus of min

xp∈xp
max
xi∈xi

f
(
xp, xi

)
and max

xp∈xp
min
xi∈xi

f
(
xp, xi

)
is really difficult. That is why

if f is a rational real function, instead of evaluate the modal interval extension f ∗, we
will replace every real operator +,−, ·, / by its corresponding modal interval operator. The
new modal interval z = ([

z , z
]
, Q

)
obtained using this replacement verifies the inclusion1

f ∗ (x1, . . . , xn) ⊆ z and the semantic interpretation for this calculus is

∀xp ∈ xp, Qz ∈ z, ∃xi ∈ xi such that z = f
(
xp, xi

)
, (3)

this interpretation is known (Sainz et al. 2014) by semantic theorem for f ∗.
We must add an important new operator nonexistent in classical interval analysis: the dual

operator, defined as
dual

([
a, a

]) = [
a, a

]
, (4)

thus, dual
([
a, a

]
, ∃) = ([

a, a
]
,∀)

and dual
([
a, a

]
,∀) = ([

a, a
]
, ∃)

.

Modal intervals solve some shortcomings from classical intervals:

• The opposite of a classic interval
[
a, a

]
is

[−a,−a
]
which is not a classic interval,2

but is a modal interval. Using the dual operator defined above Eq. 4, the opposite of an
interval

[
a, a

] ∈ I ∗ (R) is −dual
([
a, a

])

• The solution [x, y] of the interval equation [a, b]+ [x, y] = [c, d] must satisfy a+x = c
and b+ y = d . For instance, the solution of the interval equation [1, 5]+ [x, y] = [3, 8]
is [2, 3]. On the other hand, the interval equation [3, 5]+ [x, y] = [6, 7] has no solution
in the set of classic intervals, but it has solution in the set of modal intervals, [3, 2], an
improper interval.

• The solution of an interval equation [a, b] + [x, y] = [c, d] exists on I (R) only if
b − a ≤ d − c, but even the interval equation has a solution, this solution cannot be
obtained by any interval computation on I (R). This problem is overcome by the use of
modal intervals. There is no classical interval computation to obtain it, but using modal
intervals, the solution to the equation

[a, b] + [x, y] = [c, d] should be computed as [x, y] = [c, d] − dual ([a, b]) . (5)

Thus, the solution of the equation: [1, 5]+[x, y] = [3, 8] should be evaluated as [x, y] =
[3, 8] − dual ([1, 5]) = [2, 3] and the solution of the equation [3, 5] + [x, y] = [6, 7]
should be computed as [x, y] = [6, 7] − dual ([3, 5]) = [3, 2] .

• Modal intervals provide a complete semantic interpretation of the calculus of any real
continuous function, as we have described in the semantic theorem (see Eq. 3). Thus, the

1 The inclusion relationship between modal intervals is a generalization of the inclusion relationship between
classic intervals, thus given two modal intervals a and b, a = [

a, a
]
and b = [

b, b
]
it will be a ⊆ b := a ≥ b

and a ≤ b.
2 Let us remark that the opposite of an interval

[
a, a

]
is not − [

a, a
]
, as − [

a, a
]
is

[−a,−a
]
.
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interpretation of the equation[1, 5] + [x, y] = [3, 8] whose solution is [x, y] = [2, 3] is

∀p ∈ [1, 5] ,∀q ∈ [2, 3] , ∃r ∈ [3, 8] such that p + q = r ,

and the interpretation of the equation [3, 5] + [x, y] = [6, 7] whose solution is [x, y] =
[3, 2] is

∀p ∈ [3, 5] , ∃r ∈ [6, 7] , ∃q ∈ [2, 3] such that p + q = r .

• If 0 /∈ [
a, a

] ∈ I ∗ (R), its inverse is 1
dual([a,a]) , that is

[
a, a

] · 1
dual([a,a]) = [1, 1], hence

if 0 /∈ [a, b], the interval equation [a, b] · [x, y] = [c, d] has always solution in I ∗ (R)

and its solution becomes from the equivalence

[a, b] · [x, y] = [c, d] ⇔ [x, y] = [c, d]

dual [a, b]
, (6)

for instance, the solution to the interval equation [2, 5] · [x, y] = [−3,−1] should be
evaluated as [x, y] = [−3,−1]

dual([2,5]) , that is [x, y] = [− 3
5 ,− 1

2

]
.

• If we identify every interval
[
a, a

]
with the point

(
a, a

)
in R

2, classical intervals are
represented inMoore’s semi-plane:

{
(x, y) ∈ R

2 such that x ≤ y
}
(Moore 1996).Modal

intervals extend this graphical representation toR2 where proper intervals are represented
above the straight line y = x , improper intervals are represented below the straight line
y = x and point-wise intervals remain on this line, as it is shown in Fig. 1.

3 Modal Interval Valued Probability Measure

In this section, we introduce an extension of real probability measures to the field of modal
intervals. This extension will be useful in situations where the probabilities of a random
variable are imprecise and quantified using intervals.

In the following, by a partition of a set � we will mean a finite or numerable collection
of pair-wise disjoint subsets whose union is �. In what follows � will be a nonempty set.

Definition 1 Let A be a family of subsets of �. A is an algebra if it satisfies the following:

P1. A 
= ∅,

P2. if A ∈ A then Ac ∈ A, where Ac denotes the complement of A, that is Ac = � − A,
P3. if A, B ∈ A then A ∪ B ∈ A.

Fig. 1 Extension of Moore’s semiplane to the interval plane

123



   37 Page 6 of 17 Methodology and Computing in Applied Probability            (2025) 27:37 

It follows from the definition of algebra:

P4. ∅,� ∈ A,

P5. if A, B ∈ A then A ∩ B ∈ A.

Property P3 applies by induction to the union of any finite number of events. Sometimes, it
is convenient to consider countable unions of events. In this case, we say thatA is a σ -algebra,
if instead of P3 is verified:

P3’. if Ai ∈ A, i ∈ N then
⋃

i∈N
Ai ∈ A.

Property P5 goes to P5’ by putting countable intersections. Obviously, all σ -algebra is an
algebra, but not the inverse.

If A is a σ -algebra of parts of �, the pair (�,A) will be called a measurable space. The
subsets of� that belong toAwill be calledmeasurable sets or events. Ameasure on the space
(�,A) is any function ρ : A → R+ such that ρ (∅) = 0 and for any finite or numerable
collection of disjoint sets {Bi }i∈N ⊂ A, ρ (∪i B) = �iρ (Bi ). A measurable space consists
in the triplet (�, A, ρ) , where ρ is a measure in the space (�, A). A probability measure
in the space (�, A) is a measure which verifies ρ : A → [0, 1] and ρ (�) = 1. Probability
measures can be denoted by Pr� although we will usually omit the subscript � when the
context makes it obvious. Themeasure space (�,A, ρ) is called a probability measure space.

Definition 2 Let I ∗ ([0, 1]) = {[a, a
] ∈ I ∗ (R) such that 0 ≤ a ≤ 1 ,0 ≤ a ≤ 1}. Let

(�,A) be a measurable space. A modal interval valued probability measure (MIVPM) on
(�,A) is a function P : A → I ∗ (R) that satisfies the following:

A1. P (�) = [1, 1] ,
A2. ∀A ∈ A, P (A) = [

a, a
] ≥ [0, 0] ,

A3. If {Ai }i∈N ⊂ A and Ai ∩ A j = ∅ for all i 
= j , then P (∪i∈NA) = �i∈NP (Ai ) .

Example 1 Let � = {1, 2, 3} and P (∅) = 0, P (1) = [0.1, 0.3], P (2) = [0.2, 0.4], both
P (1) and P (2) proper intervals, and P (3) = [0.7, 0.3] an improper interval. P (1) , P (2)
and P (3) can not have the same modality. Then,

• P ({1, 2}) = [0.1, 0.3] + [0.2, 0.4] = [0.3, 0.7] proper interval,
• P ({1, 3}) = [0.1, 0.3] + [0.7, 0.3] = [0.8, 0.6] improper interval,
• P ({2, 3}) = [0.2, 0.4] + [0.7, 0.3] = [0.9, 0.7] improper interval,
• P ({1, 2, 3}) = [0.1, 0.3] + [0.2, 0.4] + [0.7, 0.3] = [1, 1] = P (�).

Proposition 1 The calculus established in Axiom A3 of Definition 2 is semantically inter-
preted in the following way.

If ∀i ∈ {1, . . . , k} P (Ai ) are proper intervals and ∀ j ∈ {k + 1, . . . , n} P (
A j

)
are

improper intervals, then:

• If P
(∪n

i=1Ai
)
is a proper interval, the interpretation of the calculus P

(∪n
i=1Ai

) =∑n
i=1 P (Ai ) is:

{∀pi ∈ P (Ai )}i=1,...,k , ∃p ∈ P
(∪n

i=1Ai
)
,
{∃p j ∈ P

(
A j

)}
j=k+1,...,n such that p =

∑n
s=1 ps .• If P

(∪n
i=1Ai

)
is an improper interval, the interpretation of the calculus P

(∪n
i=1Ai

) =∑n
i=1 P (Ai ) is:

{∀pi ∈ P (Ai )}i=1,...,k ,∀p ∈ P
(∪n

i=1Ai
)
,
{∃p j ∈ P

(
A j

)}
j=k+1,...,n such that p =

∑n
s=1 ps .
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Proof As a consequence of the application of the ∗-semantic interval theorem (Sainz
et al. 2014, Theorem 3.3.1) to the calculus P

(⋃n
i=1 Ai

) = ∑n
i=1 P (Ai ). ��

Example 2 Let (�,A) be a measurable space, and P : A → I ∗ ([0, 1]) a MIVPM.
If A1, A2, A3 ∈ A are mutually disjoint events with probability values P (A1) =

[0.20, 0.25], P (A2) = [0.60, 0.20] and P (A3) = [0.15, 0.40] then, as P
(⋃3

i=1 Ai

)
=

∑3
i=1 P (Ai ) it will be P

(⋃3
i=1 Ai

)
= [0.95, 0.85], an improper interval.

As P (A1) and P (A3) are proper intervals, P (A2) and P
(⋃3

i=1 Ai

)
are improper inter-

vals, it follows the semantic interpretation:
∀p1 ∈ [0.20, 0.25] ,∀p3 ∈ [0.15, 0.40] ,∀p ∈ [0.85, 0.95] , ∃p2 ∈ [0.20, 0.60] such that
p = p1 + p2 + p3.

The following properties can be deduced from the axioms established in the above Defi-
nition 2, as their proofs are simple deductions from those axioms.

1. P (∅) = [0, 0], as ∅ ∪ ∅ = ∅ and ∅ ∩ ∅ = ∅ and applying A3,
2. if A ⊆ B then P (A) ≤ P (B), as A ⊆ B ⇒ B = A ∪ (B ∩ Ac) and then P(B) =

P(A) + P(B ∩ Ac). As the interval probability is positive, it follows P(B) ≥ P(A),
3. ∀A ∈ A P (A) ≤ [1, 1], as A ⊆ � and P(A) ≤ P(�) = [1, 1],
4. ∀A ∈ A P (Ac) = [1, 1] − dual (P (A)), as � = A ∪ Ac and P(�) = P(A) + P(Ac)

that is [1, 1] = P(A) + P(Ac). Using modal interval properties, the symmetric of an
interval A is −dual(A), and it follows P(Ac) = [1, 1] − dual(P(A)).

Except in those cases in which P (A) = [0, 0] or P (A) = [1, 1], it is easy to prove that
P (A) and P (Ac) can not have both the same modality. This fact proves that classic intervals
are not a good tool to deal with interval probability, as the use of improper intervals and
consequently modal intervals is essential for the treatment of interval probability.

Let (�,A) be a measurable space, and P a MIVPM. If A1, . . . , An ∈ A are such that
A1 ∪ · · · ∪ An = � then the modality of every P (A1) , . . . , P (An) can’t be the same for all
them.

Example 3 Let (�,A) be a measurable space, and P : A → I ∗ ([0, 1]) a MIVPM. Let
A1, A2, A3 ∈ A be mutually disjoint events such that A1 ∪ A2 ∪ A3 = �.

If the interval values of the probabilities P (A1) and P (A2) are known: P (A1) =
[0.15, 0.25] and P (A2) = [0.45, 0.55] then, as P (A1) + P (A2) + P (A3) = [1, 1], it
will be P (A3) = 1 − dual (P (A1) + P (A2)), that is P (A3) = [0.40, 0.20], which is
semantically interpreted as:

∀p1 ∈ [0.1, 0.3] ,∀p2 ∈ [0.5, 0.6] , ∃p3 ∈ [0.1, 0.4] such that p1 + p2 + p3 = 1.

For a given event A ∈ A, we define a conditional probability measure P(· | A) such that
P(B | A) is the conditional probability of B given A for any event B ⊆ �.

Definition 3 If P is a modal interval probability, the modal interval conditional probability
measure P(· | A) for an event A ⊆ � with P(A) > [0, 0] is defined by:

P(B | A) = P(B ∩ A)

dual (P (A))
,

for any event B ⊆ �.

From Definition 3, the equality P(B ∩ A) = P(B | A) · P (A) is fulfilled (see Eq. 6).
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Proposition 2 The modal interval conditional probability P(· | A) is a probability measure,
that is:

1. ∀B ∈ A P(B | A) ∈ I ∗ ([0, 1]),
2. ∀B ∈ A P(B | A) ≥ [0, 0],
3. P (� | A) = [1, 1],
4. For any countable mutually disjoint events, Bi ∩ Bj = ∅ for all i 
= j , it will be

P
(⋃n

i=1 Bi | A) = ∑n
i=1 P (Bi | A) .

Proof 1. and 2. as a consequence of Definitions 2 and 3.

3. P (� | A) = P(�∩A)
dual(P(A))

= P(A)
dual(P(A))

= [1, 1],

4. Applying Definition 3 P
(∪n

i=1Bi | A) = P((∪n
i=1Bi)∩A)

dual(P(A))
and using the laws of the

algebra of sets, it follows that
(∪n

i=1Bi
) ∩ A = ∪n

i=1 (Bi ∩ A) and consequently

P
(∪n

i=1Bi | A) = P(∪n
i=1(Bi∩A))

dual(P(A))
. Thus, applying Axiom 3 in Definition 2, we

have P
(∪n

i=1Bi | A) =
∑n

i=1 P(Bi∩A)

dual(P(A))
, which is P

(∪n
i=1Bi | A) = 1

dual(P(A))
·

(∑n
i=1 P (Bi ∩ A)

)
.

Finally, we can apply the distributive law in modal intervals as all the modal intervals are
positive and hence they belong to the same distributive zone (Gardeñ et al. 2001; Sainz
et al. 2014). Thus, P

(∪n
i=1Bi | A) = ∑n

i=1
P(Bi∩A)

dual(P(A))
and it will be P

(∪n
i=1Bi | A) =

∑n
i=1 P (Bi | A) .

��
Example 4 Let (�,A) be a measurable space, and P : A → I ∗ ([0, 1]) a MIVPM. Let
A1, A2, A3 ∈ A be events such that A1 ∪ A2 ∪ A3 = �.

The following interval values of the probabilities are known: P (A1) = [0.10, 0.25],
P (A2) = [0.20, 0.40] and P (A3) = [0.60, 0.40] and we also know that P (A1 ∪ A2) =
[0.40, 0.60], P (A1 ∪ A3) = [0.70, 0.65] and P (A2 ∪ A3) = [0.80, 0.80].

If {B1 = A1∪A2, B2 = A3} aremutually disjoint eventswith probability values P (B1) =
[0.40, 0.60] and P (B2) = [0.60, 0.40] then, applying Definition 3

P (A1 | B1) = P (A1 ∩ B1)

dual (P (B1))
= P (A1)

dual (P (B1))
= [0.10, 0.25]

[0.60, 0.40]
=

=
[
0.10

0.40
,
0.25

0.60

]
= [

0.25, 0.416̇
]
.

4 An Application of Modal Interval Probabilities to Non-life Insurance
Collective Risk Theory

The actuarial literature discusses two methods for estimating the total amount paid by the
insurer on a non-life insurance portfolio: the individual risk model, which considers the
portfolio as the sum of individual policies, and the collective risk model, which analyses
the sum of claims incurred regardless of the policy causing the claim (Bowers et al. 1987;
Bühlmann 1970). In this paper, we assume the stochastic version of the collective risk model,
i.e. covering a one-year time period. The alternative would be to work with a dynamic multi-
period version of the collective risk model.
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We denote the total claims from all policies over a period as S, the frequency of claims as
N and the severity of each claim as Xi . The classic assumptions of the collective risk model
are that the severity of claims is independent of the frequency, the severity of one claim is
independent of the severity of the other claims and the severity follows the same distribution
over the period. That is, Xi are assumed to be independent and identically distributed and
also independent of N (Gerber 1979; Dickson 2016).

Under the above hypothesis, the total amount of claims can be obtained as the independent
sum of N random variables,

S =
{∑N

i=1 Xi i f N > 0
0 i f N = 0.

(7)

being S a compound distribution and, in particular, if N is a Poisson distribution, we call S a
compound Poisson distribution. The compound Poisson distribution is a popular choice for
aggregate claims modeling because of its desirable properties (Teugels and Ramsey 2006).
We assume that X takes positive integer values, then, obviously, S is a discrete random
variable. The probabilities of N , P[N = k], are denoted by qk , and the probabilities of X
are denoted by px = P[X = x].

In order to calculate the cumulative distribution of the aggregated cost FS(a, px , qk) =
P[S ≤ a], different methods are used in the actuarial literature (Kass et al. 2002). An obvious
method is to use the conditioning techniques. For N = k the probability that the total cost S
takes a value less than or equal to a is the probability that X1 + · · · + Xk ≤ a, that is, the
k-fold convolution of FX at the point a, denoted by C∗k

X (a) = P[X1 + · · · + Xk ≤ a].
The conditional distribution of S, given N = k is used to obtain the cumulative distribution

of S,

FS(a, px , qk) = P[S ≤ a] =
kmax∑

k=0

P[S ≤ a | N = k] · qk,

or considering the definition of the k-convolution of X ,

FS(a, px , qk) = P[S ≤ a] =
kmax∑

k=0

C∗k
X (a) · qk, (8)

being kmax the value that accumulates a 99.99% probability. As usual in actuarial studies, we
consider that the distribution of N is a right-truncated distribution, symbolizing its maximum
value as kmax .

Equivalently, the probability function of S, fS(a, px , qk) = P[S = a], can be obtained
using convolution formulas,

fS(a, px , qk) = P[S = a] =
kmax∑

k=0

c∗k
X (a) · qk, (9)

being
c∗k
X (a) = P[X1 + · · · + Xk = a] = P[S = a | N = k].

Due to fluctuations, lack of information introducing errors into themodels, or numerical or
measurement errors, both the frequency of claims and the amount of claims incurred may not
be certain values. Modal intervals are useful for handling "weak information" in insurance
practice, where there is uncertainty about parameters. Certain scenarios in insurance practice
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where the information could be presented in this form are, for example, when historical
data is limited or when expert judgment is used instead of precise measurements. Another
situation is when there is insufficient data on rare events, such as catastrophic claims or
pandemics, and actuaries must estimate potential impacts or, for new insurance products
with limited past data, modal intervals help incorporate expert opinions to support more
robust risk assessments.

To capture the uncertainty affecting the parameters, we consider that the probabilities of
N and X are modal interval probabilities. Then, from now on, P[N = k] = qk = [qk, qk],
and P[X = x] = px = [px , px ]. Note that we use bold letters to denote intervals. Therefore
c∗kX (a) and C∗k

X (a) are modal interval probabilities,

c∗kX (a) = P[S = a | N = k] = [c∗k
X (a), c∗k

X (a)], (10)

C∗k
X (a) = P[S ≤ a | N = k] = [C∗k

X (a),C∗k
X (a)]. (11)

FromEqs. 8 and 9, and taking into account Eqs. 10 and 11, the probability density function
and the cumulative distribution function of S, can be easily obtained,

fS(a, px, qk) = P[S = a] =
kmax∑

k=0

[c∗k
X (a), c∗k

X (a)] · [qk, qk] =

=
[ kmax∑

k=0

c∗k
X (a) · qk,

kmax∑

k=0

c∗k
X (a) · qk

]

, (12)

FS(a, px, qk) = P[S ≤ a] =
kmax∑

k=0

[C∗k
X (a),C∗k

X (a)] · [qk, qk] =

=
[ kmax∑

k=0

C∗k
X (a) · qk,

kmax∑

k=0

C∗k
X (a) · qk

]

, (13)

being fS(a, px, qk) =
[
fS(a), fS(a)

]
and FS(a, px, qk) =

[
FS(a), FS(a)

]
modal interval

probabilities.
Regarding the frequency of the model, let us assume that the number of claims, N , follows

a Poisson distribution, N ∼ Po (λ). In order to introduce the uncertainty, we assume that the
claim frequency, λ = E (N ), is a modal interval, λ = [λ1, λ2]. From (Adillón et al. 2020),
the probability density function of N ∼ Po (λ) is:

qk(λ) = λk

k! e
−dual(λ), (14)

being

q0(λ) = [e−λ1 , e−λ2 ], q1(λ) = [λ1e−λ1 , λ2e−λ2 ], q2(λ) = [ λ21
2 e

−λ1 ,
λ22
2 e

−λ2 ], . . .
Claim amounts are often modelled as continuous random variables, but in this paper we

discretize them. Discretizing the variable allows the total claim cost to follow a discrete
distribution, which simplifies the model and enhances the comprehensibility of its semantic
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Table 1 Distribution of X x px = [px , px ]
1 [0.15, 0.25]
2 [0.20, 0.15]
3 [0.40, 0.45]
4 [0.25, 0.15]

interpretation. If the individual claim amount, X , follows a discrete distribution with positive
integer values with probability density function pX = [px , px ], x = 1, 2, . . . and N ∼
Po (λ), S follows a discrete distribution with non-negative integer-values with probability
density function fS(a, px, qk(λ)), a = 0, 1, 2, . . . and cumulative distribution function
FS(a, px, qk(λ)), a = 0, 1, 2, . . . being FS(0, px, qk(λ)) = fS(0, px, qk(λ)) = q0(λ) =
[e−λ1 , e−λ2 ].

In the following Example 5, applying the above theoretical background, we present a
numerical application that allows us to see the effect that the inclusion of uncertainty in the
model through the use of modal intervals has on the probabilities of the aggregated cost.

Example 5 Let us assume that the number of claims in a non-life insurance portfolio follows a
Poisson distribution, N ∼ Po (λ), being the parameter λ a modal interval, λ = [0.95, 1.05].
The distribution of the claim amount, X , is defined in Table 1,

The cost of each claim can take the values 1, 2, 3, 4, being the probabilitiesmodal intervals.
In the example, p1 = P[X = 1] = [0.15, 0.25] and p3 = P[X = 3] = [0.4, 0.45] are
proper intervals and p4 = P[X = 4] = [0.25, 0.15] and p2 = P[X = 2] = [0.2, 0.15] are
improper intervals. The probabilities of N , qk(λ) = [qk, qk], are obtained from Eq. 14, and
included in Table 2.

From the distribution of X , the values of c∗kX (a) and C∗k
X (a), for k = 2, 3, 4 are listed in

Tables 3, 4 and 5. Using formulas Eqs. 12 and 14, and the results obtained in Tables 2, 3, 4 and
5, the probability density function of S, fS(a, px, qk(λ)), and the cumulative distribution
function of S, FS(a, px, qk(λ)) , are in Table 6. In Fig. 2 the cumulative distribution function
of S is plotted.

Table 2 Distribution of N ,
number of claims, if N ∼ Po (λ)

and E(N ) = λ = [0.95, 1.05]
with kmax = 7

k qk(λ) = [qk , qk ]
0 [0.38674, 0.34993]
1 [0.36740, 0.36743]
2 [0.17451, 0.19290]
3 [0.05526, 0.06751]
4 [0.01312, 0.01772]
5 [0.00249, 0.00372]
6 [0.00039, 0.00065]
7 [0.00005, 0.00009]
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Table 3 k-convolution function
for k = 2 a c∗2X (a) C∗2

X (a)

2 [0.0225, 0.0625] [0.0225, 0.0625]
3 [0.0600, 0.0705] [0.0825, 0.1375]
4 [0.1600, 0.2475] [0.2425, 0.3850]
5 [0.2350, 0.2100] [0.4775, 0.5950]
6 [0.2600, 0.2475] [0.7375, 0.8425]
7 [0.2000, 0.1350] [0.9375, 0.9775]
8 [0.0625, 0.0225] [1.0000, 1.0000]

Table 4 k-convolution function
for k = 3 a c∗3X (a) C∗3

X (a)

3 [0.003375, 0.015625] [0.003375, 0.015625]
4 [0.013500, 0.028125] [0.016875, 0.043750]
5 [0.045000, 0.101250] [0.061875, 0.145000]
6 [0.096875, 0.132750] [0.158750, 0.277750]
7 [0.165000, 0.216000] [0.323750, 0.493750]
8 [0.216000, 0.202500] [0.539750, 0.696250]
9 [0.212125, 0.168750] [0.751875, 0.865000]
10 [0.157500, 0.101250] [0.909375, 0.966250]
11 [0.075000, 0.030375] [0.984375, 0.996625]
12 [0.015625, 0.003375] [1.000000, 1.000000]

Table 5 k-convolution function
for k = 4 a c∗4X (a) C∗4

X (a)

4 [0.000506, 0.003906] [0.000506, 0.003906]
5 [0.002700, 0.009375] [0.003206, 0.013281]
6 [0.010800, 0.036562] [0.014006, 0.049840]
7 [0.029775, 0.063375] [0.043781, 0.113218]
8 [0.065500, 0.123693] [0.109281, 0.236912]
9 [0.115400, 0.157950] [0.224681, 0.394862]
10 [0.165237, 0.189675] [0.389918, 0.584537]
11 [0.193700, 0.174150] [0.583618, 0.758687]
12 [0.181600, 0.129093] [0.765218, 0.887781]
13 [0.133375, 0.076275] [0.898593, 0.964056]
14 [0.072500, 0.029362] [0.971093, 0.993418]
15 [0.025000, 0.006075] [0.996093, 0.999493]
16 [0.003906, 0.000506] [1.000000, 1.000000]
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Table 6 fS(a, px , qk(λ)) and FS(a, px , qk(λ)) if N ∼ Po (λ) with λ = [0.95, 1.05]

a
[
fS(a), fS(a)

] [
FS(a), FS(a)

]

0 [0.3867410, 0.3499377] [0.3867410, 0.3499377]
1 [0.0551105958, 0.0918586591] [0.4418516, 0.4417964]
2 [0.0774074244, 0.0671716445] [0.5192590, 0.5089681]
3 [0.1576191170, 0.1808682646] [0.6768782, 0.6898363]
4 [0.1205263992, 0.1048268547] [0.7974046, 0.7946632]
5 [0.0435339612, 0.0475154628] [0.8409385, 0.8421786]
6 [0.0508710780, 0.0573653615] [0.8918096, 0.8995440]
7 [0.0444186129, 0.0417949788] [0.9362282, 0.9413390]
8 [0.0237236821, 0.0203044197] [0.9599519, 0.9616434]
9 [0.0132899989, 0.0144161633] [0.9732419, 0.9760596]
10 [0.0109873567, 0.0105564695] [0.9842292, 0.9866160]
11 [0.0068962343, 0.0056749560] [0.9911255, 0.9922910]
12 [0.0035705005, 0.0031701383] [0.9946960, 0.9954611]
13 [0.0021754193, 0.0020512116] [0.9968714, 0.9975123]
14 [0.0014261774, 0.0011594188] [0.9982976, 0.9986718]
15 [0.0007767789, 0.0006012915] [0.9990744, 0.9992730]

Fig. 2 FS(a, px , qk(λ)) =
[
FS(a), FS(a)

]
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5 Interval Semantical Interpretation

Let {Xi }i=1,...,N be the set of claims. Let px be the modal intervalar probabilities px =
P [X = x] and let λ be the claim frequency in the Poisson distribution in which we are
working.

In the calculus of the cumulative distribution function FS(a, px, qk(λ))wemust take into
account some distinct values depending on the number of claims

C∗k
X (a) = P [S ≤ a | n = k] .

Let us consider
P proper
X = {

px | px proper
}
,

and
P improper
X = {

px | px improper
}
.

Applying the *-modal interval semantic (Sainz et al. 2014, Theorem 3.1) we obtain

∀λ ∈ λ,∀px ∈ P proper
X , Qd ∈ Fs (a) , ∃px ∈ P improper

X such that d = Fs (a, px , λ) ,

where Q is the modal quantifier associated to the evaluated interval FS(a, px, qk(λ)), that is,
Q = ∃ if FS(a, px, qk(λ)) is a proper interval and Q = ∀ if FS(a, px, qk(λ)) is an improper
interval.

From now on, we will focus the study in the Example 5 where we can observe that the
modality of the evaluated intervals in the cumulative distribution function FS(a, px, qk(λ))

when a = 0, 1, 2, 4 is proper. Instead, the modality of the intervals FS(a, px, qk(λ)) when
a = 3, 5, 6, 7 and 8 is improper.

The transitions from a = 2 to a = 3, from a = 3 to a = 4 and from a = 4 to a = 5 are a
change of the modality that we represent as S3P2I , S4I3P and S5P4I respectively. These transitions
of modality constitute a change in the semantic interpretation of the performed calculus.

• If a = 3, FS(3, px, qk(λ)) = [0.6768782, 0.6898363] which is a proper interval. In the
calculus of this interval we have used x = 1, x = 2 and x = 3. For x = 1, the interval
p1 = P [X = 1] is [0.15, 0.25] which is also a proper interval. For x = 2, the interval
p2 = P [X = 2] is [0.2, 0.15] improper and if x = 3, p3 = P [X = 3] is the proper
interval [0.4, 0.45]. The interval λ is fixed and its value is λ = [0.95, 1.05] which is also
proper.
The semantic interpretation of the calculus FS(3, px, qk(λ)) is:

∀p1 ∈ [0.15, 0.25] ,∀p3 ∈ [0.4, 0.45] , ∀λ ∈ [0.95, 1.05] , ∃d ∈ [0.6768782, 0.6898363] ,

∃p2 ∈ [0.15, 0.2] such that d = Fs (3, p1, p2, p3, λ) .

• If a = 4, FS(4, px, qk(λ)) = [0.7974046, 0.7946632] is an improper interval. To evalu-
ate this valuewe have used x = 1, x = 2, x = 3 and x = 4.The interval p4 = P [X = 4]
is the improper interval [0.25, 0.15]. The other intervals p1, p2, p3 and λ are the same
we have already used in the above case a = 3. The semantic interpretation of the calculus
FS(4, px, qk(λ)) is

∀p1 ∈ [0.15, 0.25] ,∀p3 ∈ [0.4, 0.45] , ∀λ ∈ [0.95, 1.05] , ∀d ∈ [0.7946632, 0.7974046] ,

∃p2 ∈ [0.15, 0.2] , ∃p4 ∈ [0.15, 0.25] such that d = Fs (4, p1, p2, p3, p4, λ) .
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In the transition S3P2I there is a change of the modality of the intervals FS(2, px, qk(λ))

and FS(3, px, qk(λ)) changes, what causes the change of the associated quantifier, and
there is also an increase in the number of variables when we add p4 = P [X = 4].

6 Conclusions

One of the basic objectives of non-life insurance portfoliomanagers is the analysis and control
of solvency. For this purpose, the study of the aggregated cost, S, and their probabilities is
essential. However, the calculation of the cumulative distribution function of the aggregated
cost does not assume uncertainties so far.

In this paper we propose uncertainties both for the probabilities of the random variable
number of claims, N , and for the random variable individual claim amount, X , assuming a
more realistic model for the calculation of the distribution function of the aggregated cost.
Although there are some tools to deal with uncertainty, as classic intervals or fuzzy numbers,
we have chosen modal intervals, as they are a powerful tool not only in the treatment for
uncertainty, but for the treatment of imprecision and indiscernibility as well. The semantic
theorem for modal intervals allows us to quantify and interpret the calculation of an interval
function as the distribution one. Thus, the associated probabilities aremodal interval probabil-
ities, which implies that the probabilities of the aggregate cost (probability density function
and cumulative distribution function) are also modal interval probabilities. Obtaining and
interpreting the results presented for the aggregated cost distribution function requires the
theoretical framework on modal intervals and modal interval probabilities presented in the
first sections of the paper.

A logical extension of the results presented in this paper would be the study of the prob-
ability of ruin. From the probability distribution obtained for the total cost, it would be
straightforward to derive the probability of ruin within a given period, which would corre-
spond to a modal interval. The determination and interpretation of this probability will be
the subject of future research. Deriving the probability of ruin in the long term (whether over
a finite or infinite time horizon) will require further investigation. Alternative approaches to
this problem include, for instance, the method proposed by Albrecher et al. (2011), which
suggests using mixing procedures to address parameter uncertainty in the calculation of ruin
probability.

The analysis of one-period solvency leads us to connect the results obtained with Sol-
vency II and the Estimation Risk Solvency Margin (ERSM), i.e. the additional adjustment
in regulatory capital required to ensure that the insurer can cover not only the known risks,
but also the risks arising from uncertainties in the estimates of key variables. Loisel et al.
(2008) use the influence function applied to the finite-time probability of ruin to calculate the
ERSM. The calculation of this part of the required capital using the interval methodology is
a very relevant topic that will be addressed in future research.
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